100 mA, 5.0 V, Low Dropout **Voltage Regulator with Reset and Sense** The L4949 is a monolithic integrated 5.0 V voltage regulator with a very low dropout and additional functions such as reset and an uncommitted voltage sense comparator. It is designed for supplying microcontroller/microprocessor controlled systems particularly in automotive applications. - Operating DC Supply Voltage Range 5.0 V to 28 V - Transient Supply Voltage Up to 40 V - Extremely Low Quiescent Current in Standby Mode - High Precision Output Voltage 5.0 V ±1% - Output Current Capability Up to 100 mA - Very Low Dropout Voltage Less Than 0.4 V - Reset Circuit Sensing The Output Voltage - Programmable Reset Pulse Delay - Voltage Sense Comparator - Thermal Shutdown and Short Circuit Protections - NCV Prefix for Automotive and Other Applications Requiring Site and Change Control - These are Pb-Free Devices Figure 1. Representative Block Diagram 1 # ON Semiconductor® http://onsemi.com #### **MARKING DIAGRAMS** PDIP-8 **N SUFFIX CASE 626** SOIC-8 **D SUFFIX CASE 751** SOIC-8 EP **PD SUFFIX** CASE 751AC SOIC-20W **DW SUFFIX** CASE 751D = Assembly Location = Wafer Lot WL. L YY. Y = Year WW, W = Work Week = Pb-Free Device #### **PIN CONNECTIONS** ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet. ### **ABSOLUTE MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|---------------------------------------|------------------------|------| | DC Operating Supply Voltage | V _{CC} | 28 | V | | Transient Supply Voltage (t < 1.0 s) | V _{CC TR} | 40 | V | | Output Current | l _{out} | Internally
Limited | - | | Output Voltage | V _{out} | 20 | V | | Sense Input Current | I _{SI} | ±1.0 | mA | | Sense Input Voltage | V _{SI} | V _{CC} | - | | Output Voltages
Reset Output
Sense Output | V _{Reset}
V _{SO} | 20
20 | V | | Output Currents Reset Output Sense Output | I _{Reset} | 5.0
5.0 | mA | | Preregulator Output Voltage | V _Z | 7.0 | V | | Preregulator Output Current | I _Z | 5.0 | mA | | ESD Protection at any pin
Human Body Model
Machine Model | | 2000
400 | V | | Thermal Resistance, Junction-to-Air P Suffix, DIP-8 Plastic Package, Case 626 D Suffix, SOIC-8 Plastic Package, Case 751 PD Suffix, SOIC-8 EP Plastic Package, Case 751AC (Note 1) D Suffix, SOIC-20 Plastic Package, Case 751D | $R_{ heta JA}$ | 100
200
85
80 | °C/W | | Operating Junction Temperature Range | TJ | -40 to +150 | °C | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. # **ELECTRICAL CHARACTERISTICS** (V_{CC} = 14 V, $-40^{\circ}C$ < T_A < 125°C, unless otherwise specified.) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|---------------------|-------------|-------------------|----------------------|------| | Output Voltage (T _A = 25°C, I _{out} = 1.0 mA) | V _{out} | 4.95 | 5.0 | 5.05 | V | | Output Voltage (6.0 V < V _{CC} < 28 V, 1.0 mA < I _{out} < 50 mA) | V _{out} | 4.9 | 5.0 | 5.1 | V | | Output Voltage (V _{CC} = 35 V, t < 1.0 s, 1.0 mA < I _{out} < 50 mA) | V _{out} | 4.9 | 5.0 | 5.1 | V | | Dropout Voltage I _{out} = 10 mA I _{out} = 50 mA I _{out} = 100 mA | $V_{ m drop}$ | -
-
- | 0.1
0.2
0.3 | 0.25
0.40
0.50 | V | | Input to Output Voltage Difference in Undervoltage Condition (V _{CC} = 4.0 V, I _{out} = 35 mA) | V _{IO} | - | 0.2 | 0.4 | V | | Line Regulation (6.0 V < V _{CC} < 28 V, I _{out} = 1.0 mA) | Reg _{line} | - | 1.0 | 20 | mV | | Load Regulation (1.0 mA < I _{out} < 100 mA) | Reg _{load} | - | 8.0 | 30 | mV | | Current Limit Vout = 4.5 V Vout = 0 V | I _{Lim} | 105
- | 200
100 | 400
- | mA | | Quiescent Current (I _{out} = 0.3 mA, T _A < 100°C) | I _{QSE} | ı | 150 | 260 | μΑ | | Quiescent Current (I _{out} = 100 mA) | IQ | - | _ | 5.0 | mA | ^{1.} Soldered to a 200 mm² 1 oz. copper-clad FR-4 board. # **ELECTRICAL CHARACTERISTICS (continued)** ($V_{CC} = 14 \text{ V}, -40^{\circ}\text{C} < T_A < 125^{\circ}\text{C}$, unless otherwise specified.) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|------------------------|------|------------------------|------|------| | RESET | | • | • | | | | Reset Threshold Voltage | V _{Resth} | - | V _{out} – 0.5 | - | V | | Reset Threshold Hysteresis @ T _A = 25°C | V _{Resth,hys} | 50 | 100 | 200 | mV | | @ T _A = -40 to +125°C | | 50 | - | 300 | | | Reset Pulse Delay (C _T = 100 nF, $t_R \ge 100 \mu s$) | t _{ResD} | 55 | 100 | 180 | ms | | Reset Reaction Time (C _T = 100 nF) | t _{ResR} | - | 5.0 | 30 | μs | | Reset Output Low Voltage (R _{Reset} = 10 k Ω to V _{out} , V _{CC} \geq 3.0 V) | V _{ResL} | - | - | 0.4 | V | | Reset Output High Leakage Current (V _{Reset} = 5.0 V) | I _{ResH} | - | - | 1.0 | μΑ | | Delay Comparator Threshold | V _{CTth} | - | 2.0 | - | V | | Delay Comparator Threshold Hysteresis | V _{CTth, hys} | - | 100 | - | mV | | SENSE | | | | | | | Sense Low Threshold (V _{SI} Decreasing = 1.5 V to 1.0 V) | V _{SOth} | 1.16 | 1.23 | 1.35 | V | | Sense Threshold Hysteresis | V _{SOth,hys} | 20 | 100 | 200 | mV | | Sense Output Low Voltage (V $_{SI}$ \leq 1.16 V, V $_{CC}$ \geq 3.0 V, R $_{SO}$ = 10 k Ω to V $_{out}$ | V _{SOL} | - | - | 0.4 | V | | Sense Output Leakage (V_{SO} = 5.0 V, V_{SI} \geq 1.5 V) | I _{SOH} | - | - | 1.0 | μΑ | | Sense Input Current | I _{SI} | -1.0 | 0.1 | 1.0 | μΑ | | PREREGULATOR | | | | | | | Preregulator Output Voltage ($I_Z = 10 \mu A$) | Vz | - | 6.3 | - | V | # PIN FUNCTION DESCRIPTION | Pin
SOIC-8, PDIP-8 | Pin
SOIC-8 EP | Pin
SOIC-20W | Symbol | Description | |-----------------------|------------------|-----------------|------------------|--| | 1 | 1 | 19 | V _{CC} | Supply Voltage | | 2 | 2 | 20 | S _i | Input of Sense Comparator | | 3 | 3 | 1 | V _Z | Output of Preregulator | | 4 | 4 | 2 | C _T | Reset Delay Capacitor | | 5 | 5 | 4 – 7, 14 – 17 | GND | Ground | | 6 | 6 | 10 | Reset | Output of Reset Comparator | | 7 | 7 | 11 | S _O | Output of Sense Comparator | | 8 | 8 | 12 | V _{out} | Main Regulator Output | | _ | - | 3, 8, 9, 13, 18 | NC | No Connect | | _ | EPAD | - | EPAD | Connect to Ground potential or leave unconnected | #### **TYPICAL CHARACTERIZATION CURVES** Figure 2. ESR Stability Border Vs. Output Current (Full ESR Range) Figure 3. ESR Stability Border Vs. Output Current (Very Low ESR) Figure 4. Output Voltage versus Junction Temperature Figure 5. Output Voltage versus Supply Voltage Figure 6. Dropout Voltage versus Output Current Figure 7. Dropout Voltage versus Junction Temperature ## TYPICAL CHARACTERIZATION CURVES (continued) Figure 8. Quiescent Current versus Output Current Figure 9. Quiescent Current versus Supply Voltage Figure 10. Reset Output versus Regulator Output Voltage Figure 11. Reset Thresholds versus Junction Temperature Figure 12. Sense Output versus Sense Input Voltage Figure 13. Sense Thresholds versus Junction Temperature ### **APPLICATION INFORMATION** ### **Supply Voltage Transient** High supply voltage transients can cause a reset output signal perturbation. For supply voltages greater than 8.0 V the circuit shows a high immunity of the reset output against supply transients of more than 100 V/µs. For supply voltages less than 8.0 V supply transients of more than 0.4 V/ μs can cause a reset signal perturbation. To improve the transient behavior for supply voltages less than 8.0 V a capacitor at Pin 3 can be used. A capacitor at Pin 3 (C3 \leq 1.0 μ F) also reduces the output noise. NOTE: 1. For stability: $C_s \ge 1.0~\mu\text{F},~C_O \ge 4.7~\mu\text{F},~ESR < 10~\Omega$ at 10 kHz 2. Recommended for application: $C_s = C_O = 10~\mu\text{F}$ Figure 14. Application Schematic #### **OPERATING DESCRIPTION** The L4949 is a monolithic integrated low dropout voltage regulator. Several outstanding features and auxiliary functions are implemented to meet the requirements of supplying microprocessor systems in automotive applications. It is also suitable in other applications where the included functions are required. The modular approach of this device allows the use of other features and functions independently when required. ### **Voltage Regulator** The voltage regulator uses an isolated collector vertical PNP transistor as a regulating element. With this structure, very low dropout voltage at currents up to 100 mA is obtained. The dropout operation of the standby regulator is maintained down to 3.0 V input supply voltage. The output voltage is regulated up to a transient input supply voltage of 35 V. A typical curve showing the standby output voltage as a function of the input supply voltage is shown in Figure 16. The current consumption of the device (quiescent current) is less than 200 μA . To reduce the quiescent current peak in the undervoltage region and to improve the transient response in this region, the dropout voltage is controlled. The quiescent current as a function of the supply input voltage is shown in Figure 17. #### Short Circuit Protection: The maximum output current is internally limited. In case of short circuit, the output current is foldback current limited as described in Figure 15. Figure 15. Foldback Characteristic of Vout Figure 16. Output Voltage versus Supply Voltage Figure 17. Quiescent Current versus Supply Voltage ### Preregulator To improve transient immunity a preregulator stabilizes the internal supply voltage to 6.0 V. This internal voltage is present at Pin 3 (V_Z). This voltage should not be used as an output because the output capability is very small ($\leq 100 \, \mu A$). This output may be used to improve transient behavior for supply voltages less than 8.0 V. In this case a capacitor (100 nF -1.0μ F) must be connected between Pin 3 and GND. If this feature is not used Pin 3 must be left open. ### **Reset Circuit** The block circuit diagram of the reset circuit is shown in Figure 18. The reset circuit supervises the output voltage. The reset threshold of 4.5 V is defined by the internal reference voltage and standby output divider. The reset pulse delay time t_{RD} , is defined by the charge time of an external capacitor C_T : $$t_{RD} = \frac{C_T \, x \, 2.0 \, V}{2.0 \, \mu A}$$ The reaction time of the reset circuit originates from the discharge time limitation of the reset capacitor C_T and is proportional to the value of C_T . The reaction time of the reset circuit increases the noise immunity. Figure 18. Reset Circuit Output voltage drops below the reset threshold only marginally longer than the reaction time results in a shorter reset delay time. The nominal reset delay time will be generated for output voltage drops longer than approximately 50 µs. The typical reset output waveforms are shown in Figure 19. Figure 19. Typical Reset Output Waveforms # **Sense Comparator** The sense comparator compares an input signal with an internal voltage reference of typical 1.23 V. The use of an external voltage divider makes this comparator very flexible in the application. It can be used to supervise the input voltage either before or after a protection diode and to provide additional information to the microprocessor such as low voltage warnings. # **ORDERING INFORMATION** | Device | Operating Temperature Range | Package | Shipping [†] | |---------------|--|------------------------|--------------------------| | L4949NG | | PDIP-8
(Pb-Free) | 50 Units / Rail | | L4949DG | | SOIC-8
(Pb-Free) | 98 Units / Rail | | L4949DR2G | | SOIC-8
(Pb-Free) | 2500 Units / Tape & Reel | | NCV4949DG* | | SOIC-8
(Pb-Free) | 98 Units / Rail | | NCV4949PDG* | $T_{J} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | SOIC-8 EP
(Pb-Free) | 98 Units / Rail | | NCV4949DR2G* | | SOIC-8
(Pb-Free) | 2500 Units / Tape & Reel | | NCV4949PDR2G* | | SOIC-8 EP
(Pb-Free) | 2500 Units / Tape & Reel | | NCV4949DWR2G* | | SOIC-20W
(Pb-Free) | 1000 Units / Tape & Reel | [†]For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV4949: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. PDIP-8 CASE 626-05 ISSUE P **DATE 22 APR 2015** **TOP VIEW** NOTE 5 STYLE 1: PIN 1. AC IN 2. DC + IN 3. DC - IN 4. AC IN 5. GROUND 6. OUTPUT 7. AUXILIARY 8. V_{CC} #### NOTES - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK- - AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. - DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. - 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE - LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. - PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE | | INC | HES | MILLIM | ETERS | |-----|-----------|-------|--------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 0.210 | | 5.33 | | A1 | 0.015 | | 0.38 | | | A2 | 0.115 | 0.195 | 2.92 | 4.95 | | b | 0.014 | 0.022 | 0.35 | 0.56 | | b2 | 0.060 TYP | | 1.52 | TYP | | С | 0.008 | 0.014 | 0.20 | 0.36 | | D | 0.355 | 0.400 | 9.02 | 10.16 | | D1 | 0.005 | | 0.13 | | | E | 0.300 | 0.325 | 7.62 | 8.26 | | E1 | 0.240 | 0.280 | 6.10 | 7.11 | | е | 0.100 BSC | | 2.54 | BSC | | eB | | 0.430 | | 10.92 | | L | 0.115 | 0.150 | 2.92 | 3.81 | | М | | 10° | | 10° | # **GENERIC MARKING DIAGRAM*** XXXX = Specific Device Code = Assembly Location WL = Wafer Lot YY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED" | | |------------------|-------------|--|-------------| | DESCRIPTION: | PDIP-8 | | PAGE 1 OF 1 | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. SOIC-8 NB CASE 751-07 **ISSUE AK** **DATE 16 FEB 2011** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | C | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 BSC | | 0.050 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | 7 | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | ## **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. ### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from
Printed versions are uncontrolled except when stamped "CONTROLLED of the control | | |------------------|-------------|--|-------------| | DESCRIPTION: | SOIC-8 NB | | PAGE 1 OF 2 | ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. # SOIC-8 NB CASE 751-07 ISSUE AK # DATE 16 FEB 2011 | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. PINS 2 | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 7: PIN 1. IMPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 | 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE 2. SOURCE | |--|---|--| | PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND | PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 | PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE 2. SOURCE | | PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND | PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2 | PIN 1. SOURCE
2. SOURCE | | 6. BIAS 2
7. INPUT
8. GROUND | 5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1 | 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN | STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 | | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE | | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN | | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 | | | | | PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE 8. CATHODE 8. CATHODE 8. CATHODE 8. CATHODE 9. COMMON CATHODE/VCC 9. COMMON CATHODE/VCC 1. I/O LINE 1 2. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 5 8. COMMON ANODE/GND 8. COMMON ANODE/GND 8. COMMON ANODE/GND 8. COMMON ANODE/GND 8. I/O LINE 5 8. COMMON ANODE/GND 8. SOURCE 9. I/O LINE 5 8. COMMON ANODE/GND 8. VILLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILLIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC 8. VCC 8. VCC 8. VCC 8. VCC 8. SOURCE 2 4. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 | PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. CATHODE, COMMON 8. N-DRAIN 8. CATHODE, COMMON CATHODE 9IN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 4. GATE 2 5. DRAIN 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 8. COMMON CATHODE/VCC 1. COMMON CATHODE/VCC 1. COMMON CATHODE/VCC 1. (/O LINE 1 2. COMMON CATHODE/VCC 1. (/O LINE 3 5. COMMON ANODE/GND 6. (/O LINE 4 7. (/O LINE 5 8. COMMON ANODE/GND 8. LINE 2 OUT 9. COMMON ANODE/GND 8. LINE 1 OUT STYLE 26: PIN 1. GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 28: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. COMM | | DOCUMENT NUMBER: | 98ASB42564B | Printed versions are uncontrolled except when stamped "CONTROLLED | ' ' | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-8 NB | | PAGE 2 OF 2 | ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. # **MECHANICAL CASE OUTLINE** NOTES 4&5 HIH TOP VIEW SIDE VIEW **BOTTOM VIEW** NOTE 6 Е NOTE 6 B A1 NOTE 8 0.20 C D △ 0.10 C D NOTES 4&5 0.10 C D 8X b NOTES 3&7 **♦** 0.25**№** C A-B D 0.10 C С SEATING PLANE SOIC-8 EP CASE 751AC ISSUE D **DATE 02 APR 2019** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS - CONTROLLING DIMENSION: MILLIMETERS DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.004 IN EXCESS OF MAXIMUM MATERIAL CONDITION. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 PER SIDE. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.010 mm PER SIDE. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H. - 6. DATUMS A AND B ARE TO BE DETERMINED AT DATUM H. - 8. A1 IS DEFINED AND CAPPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 FROM THE LEAD TIP. 8. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. **DETAIL A** RECOMMENDED MOUNTING FOOTPRINT* | A 1.35 1.55 1 A1 0.05 C A2 1.35 1.50 1 | 75
) 10
65
) 51 | | | | | |--|--------------------------|--|--|--|--| | A1 0.05 C
A2 1.35 1.50 1 |).10
.65 | | | | | | A2 1.35 1.50 1 | .65 | | | | | | | | | | | | | b 0.31 0.41 0 |).51 | | | | | | D 0.31 0.41 0 | | | | | | | c 0.17 0.21 0 |).23 | | | | | | D 4.90 BSC | 4.90 BSC | | | | | | E 6.00 BSC | | | | | | | E1 3.90 BSC | | | | | | | e 1.27 BSC | 1.27 BSC | | | | | | F 2.24 2.72 3 | 3.20 | | | | | | F1 0.15 0.20 0 |).25 | | | | | | G 1.55 2.03 2 | 2.51 | | | | | | G1 0.41 0.46 0 |).51 | | | | | | h 0.25 0.38 0 |).50 | | | | | | L 0.40 0.84 1 | .27 | | | | | | L1 1.04 REF | | | | | | | L2 0.25 REF | | | | | | | Ø 0° 4° 8 | 3° | | | | | ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D." ## **GENERIC MARKING DIAGRAM*** XXXXXX = Specific Device Code = Assembly Location Υ = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present and may be in either location. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON14029D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-8 EP | | PAGE 1 OF 1 | | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 2.35 | 2.65 | | | A1 | 0.10 | 0.25 | | | b | 0.35 | 0.49 | | | С | 0.23 | 0.32 | | | D | 12.65 | 12.95 | | | E | 7.40 | 7.60 | | | е | 1.27 BSC | | | | Н | 10.05 | 10.55 | | | h | 0.25 | 0.75 | | | L | 0.50 | 0.90 | | | A | 0 ° | 7 ° | | ### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ## **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative