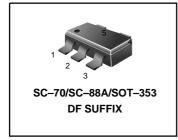
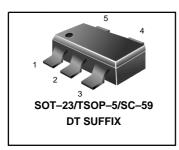


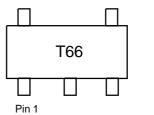
ANALOG Switch with LSTTL–Compatible Inputs


L74VHC1GT66


The L74VHC1GT66 is an advanced high speed CMOS bilateral analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining low power dissipation. This bilateral switch controls analog and digital voltages that may vary across the full power–supply range (from VCC to GND).

The L74VHC1GT66 is compatible in function to a single gate of the very High Speed CMOS MC74VHCT4066. The device has been designed so that the ON resistances (RON) are much lower and more linear over input voltage.

The ON/OFF Control input is compatible with TTL-type input thresholds allowing the device to be used as a logic-level translator from 3.0 V CMOS logic to 5.0 V CMOS logic or from 1.8 V CMOS logic to 3.0 V CMOS logic while operating at the high-voltage power supply. The input protection circuitry on this device allows overvoltage tolerance on the input, which provides protection when voltages of up to 7 V are applied, regardless of the supply voltage. This allows the L74VHC1GT66 to be used to interface 5 V circuits to 3 V circuits.


- High Speed: t $_{PD}$ = 20 ns (Typ) at V $_{CC}$ = 5 V
- Low Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Diode Protection Provided on Inputs and Outputs
- Improved Linearity and Lower ON Resistance over Input Voltage
- On/Off Control Input Has OVT
- We declare that the material of product is ROHS compliant and halogen free.

	PIN ASSIGNMENT									
1	IN/OUT X A									
2	OUT/IN Y A									
3	GND									
4	ON/OFF CONTROL									
5	V cc									

MARKING DIAGRAMS

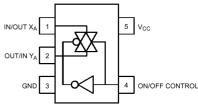


Figure 1. Pinout (Top View)

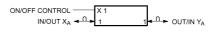


Figure 2. Logic Symbol

On / Off Control Input	State Analog Switch
L	Off
Н	On

FUNCTION TABLE

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS

Symbol	Paran	neter	Value	Unit
V _{cc}	DC Supply Voltage		– 0.5 to + 7.0	V
V _{IN}	DC Input Voltage		– 0.5 to +7.0	V
V _{IS}	Analog Output Voltage		-0.5 to +7.0	V
l _{ік}	Input Diode Current		-20	mA
I _{cc}	DC Supply Current, V cc and	GND	+25	mA
PD	Power dissipation in still air	SC-88A (Note 2.)	200	mW
		TSOP5 (Note 2.)	450	
ΤL	Lead Temperature, 1 mm fror	m Case for 10 s	260	°C
T stg	Storage temperature		-65 to +150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 3)	>5000	V
		Machine Model (Note 4)	> 400	
		Charged Device Model (Note 5)	N/A	
LATCH-UP	Latch–Up Performance Abo	ove V _{cc} and Below GND at 125°C (Note 6)	Class 2	

1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions eyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

2. Derating - SC-88A Package: -3 mW/°C from 65°C to 125°C

- TSOP5 Package: -6 mW/°C from 65°C to 125°C

3. Tested to EIA/JESD22-A114-A

4. Tested to EIA/JESD22-A115-A

5. Tested to JESD22-C101-A

6. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit		
V _{cc}	DC Supply Voltage		2.0	5.5	V	
V IN	DC Input Voltage		GND	5.5	V	
V IS	Analog Input Voltage		GND	V _{cc}	V	
TA	Operating Temperature Range		- 55	+ 125	°C	
t _r ,t _f	Input Rise and Fall Time	$V_{cc} = 3.3 \pm 0.3 V$	0	100	ns/V	
		$V_{cc} = 5.0 \pm 0.5 V$	0	20		

The θ_{JA} of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below.

TIME TO 0.1% BOND FAILURES								
Junction	Time,	Time,						
Temperature °C	Hours	Years						
80	1,032,200	117.8						
90	419,300	47.9						
100	178,700	20.4						
110	79,600	9.4						
120	37,000	4.2						
130	17,800	2.0						
140	8,900	1.0						

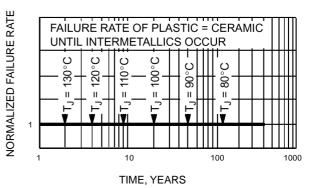


Figure 3. Failure Rate vs. Time Junction Temperature

LESHAN RADIO COMPANY, LTD.

L74VHC1GT66

			V _{cc}	Τ_=	25 °C	Τ₄<	85 °C	T _A <125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Max	Min	Max	Min	Max	Unit
V IH	Minimum High–Level	R _{on} =Per Spec								V
	Input Voltage		3.0	1.2		1.2		1.2		
	On/Off Control Input		4.5	2.0		2.0		2.0		
			5.5	2.0		2.0		2.0		
V IL	Maximum Low-Level	R _{on} =Per Spec								V
	Input Voltage		3.0		0.53		0.53		0.53	
			4.5		0.8		0.8		0.8	
			5.5		0.8		0.8		0.8	
I _{IN}	Maximum Input	$V_{IN} = x V_{cc}$ or GND	0 to 5.5		±0.1		±1.0		±1.0	μA
	Leakage Current									
	On/Off Control Input									
I cc	Maximum Quiescent	$V_{IN} = V_{CC} \text{ or } GND$	5.5		1.0		20		40	μA
	Supply Current									
I _{CCT}	Quiescent Supply	On/Off Control	5.5		1.35		1.50		1.65	mA
	Current	at 3.4 V								
R ON	Maximum "ON"	V IN = V IH	3.0		60		70		100	Ω
	Resistance	V IS = V CC or GND	4.5		45		50		60	
		I ıs ≼10 mA (Figure 4.)	5.5		40		45		55	
I _{OFF}	Maximum Off–Channel	V IN = V IL	5.5		0.1		0.5		1.0	mA
	Leakage Current	V IS = V CC or GND								
		Switch Off (Figure 5.)								

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS C load = 50 pF, Input t r/t f = 3.0 ns

			V cc	Т	T ₄ = 25 °C		T₄≪	85 °C	-55°C<	[₄<125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
t PLH ,	Maximum Propogation	Y A = Open	2.0		1	5		6		7	ns
t PHL	Delay,	(Figure 14.)	3.0		0	2		3		4	
	Input X to Y		4.5		0	1		1		2	
			5.5		0	1		1		1	
t PLZ ,	Maximum Propogation	R L = 1000 Ω	2.0		32	40		45		50	ns
t PHZ	Delay,	(Figure 15.)	3.0		28	35		40		45	
	ON/OFF Control to		4.5		24	30		35		40	
	Analog Output		5.5		20	25		30		35	
t PZL ,	Maximum Propogation	R L = 1000 Ω	2.0		32	40		45		50	ns
t PZH	Delay,	(Figure 15.)	3.0		28	35		40		45	
	ON/OFF Control to		4.5		24	30		35		40	
	Analog Output		5.5		20	25		30		35	
C IN	Maximum Input	ON/OFF Control Input	0.0		3	10		10		10	pF
	Capacitance	Contol Input = GND	5.0								
		Analog I/O			4	10		10		10	
		Feedthrough			4	10		10		10	
		Туріс	al @ :	25°C, V	_{cc} = 5.0) V					
C PD	Power Dissip	ation Capacitance (Note	6)			18					pF

7. C _{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \bullet C_{PD}$ is used to determine the no–load dynamic power consumption; $P_{D} = C_{PD} \bullet V_{CC}^{2} \bullet f_{in} + I_{CC} \bullet V_{CC}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Test Conditions	V _{cc}	Limit 25°C	Unit
BW	Maximum On-Channel Bandwidth	f in = 1 MHz Sine Wave	3.0	150	MHz
	or Minimum Frequency Response	Adjust f in voltage to obtain 0 dBm at V OS	4.5	175	
	(Figure 10.)	Increase f in = frequency until dB meter reads -3 dB	5.5	180	
		$R \perp = 50 \Omega$, $C \perp = 10 pF$			
ISO off	Off–Channel Feedthrough	f in = Sine Wave	3.0	-80	dB
	Isolation	Adjust f in voltage to obtain 0 dBm at V IS	4.5	-80	
	(Figure 11.)	f in = 10 kHz, R L = 600 Ω, C L = 50 pF	5.5	-80	
NOISE feed	Feedthrough Noise Control to	V in ←1 MHz Square Wave (t r = t f = 2ns)	3.0	45	mVpp
	Switch	Adjust R \perp at setup so that I s = 0 A	4.5	60	
	(Figure 12.)	R L = 600 Ω , C L = 50 pF	5.5	130	
THD	Total Harmonic Distortion	f in = 1 kHz, R L = 10 k Ω , C L = 50 pF			%
	(Figure 13.)	THD = THD Measured – THD Source			
		V IS = 3.0 V PP sine wave	3.3	0.30	
		V IS = 5.0 V PP sine wave	5.5	0.15	

 V_{CC}

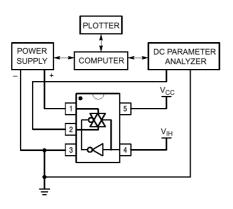
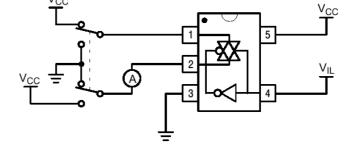
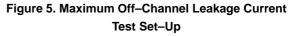




Figure 4. On Resistance Test Set–Up

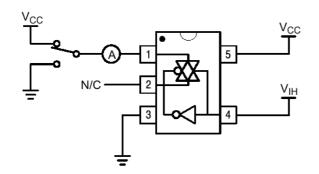
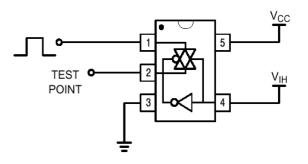
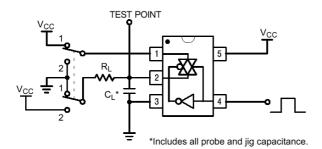
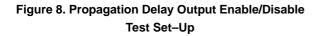
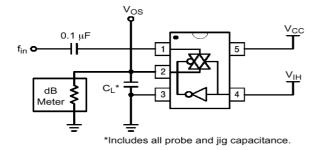
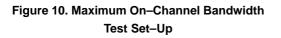


Figure 6. Maximum On–Channel Leakage Current Test Set–Up


Figure 7. Propagation Delay Test Set–Up



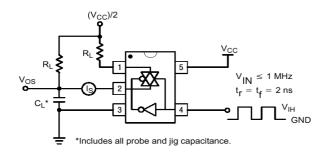

Switch to Position 1 when testing t $_{\rm PLZ}$ and t $_{\rm PZL}$ Switch to Position 2 when testing t $_{\rm PHZ}$ and t $_{\rm PZH}$

Figure 12. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set–Up

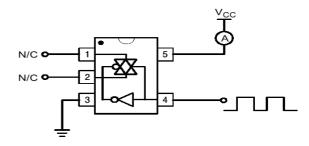


Figure 9. Power Dissipation Capacitance Test Set–Up

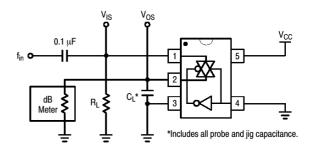


Figure 11. Off–Channel Feedthrough Isolation Test Set–Up

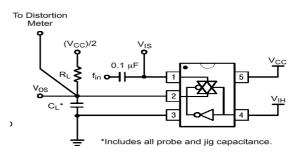


Figure 13. Total Harmonic Distortion Test Set–Up

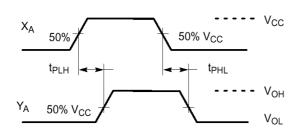


Figure 14. Propagation Delay, Analog In to Analog Out Waveforms

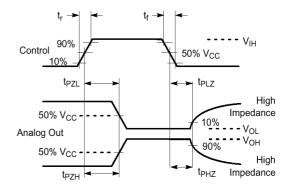


Figure 15. Propagation Delay, ON/OFF Control

DEVICE ORDERING INFORMATION

Devies			Device	- Package Type	Tana and			
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	(Name/SOT#/ Common Name)	Tape and Reel Size
L74VHC1GT66DFT1	L	74	VHC1G	T66	DF	T1	SC-70/SC-88A/ SOT-353	178 mm (7 in) 3000 Unit
L74VHC1GT66DFT2	L	74	VHC1G	T66	DF	T2	SC-70/SC-88A/ SOT-353	178 mm (7 in) 3000 Unit
L74VHC1GT66DFT4	L	74	VHC1G	T66	DF	T4	SC-70/SC-88A/ SOT-353	330 mm (13 in) 10,000 Unit
L74VHC1GT66DTT1	L	74	VHC1G	T66	DT	T1	SOT-23/TSOPS/ SC-59	178 mm (7 in) 3000 Unit
L74VHC1GT66DTT3	L	74	VHC1G	T66	DT	Т3	SOT-23/TSOPS/ SC-59	330 mm (13 in) 10,000 Unit