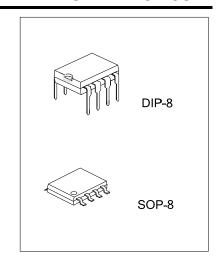
UNISONIC TECHNOLOGIES CO., LTD

L8562

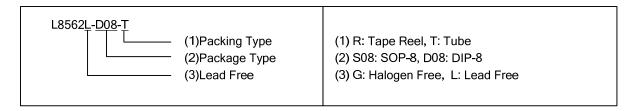

LINEAR INTEGRATED CIRCUIT

POWER FACTOR CORRECTOR

DESCRIPTION

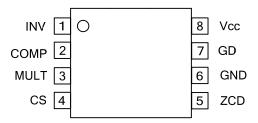
The UTC L8562 is a Power Factor Corrector, which can work in wide input voltage range applications (from 85V ~ 265V) with an excellent THD. It has very low start up current (about 20 uA) and a disable function on the ZCD pin, which is designed to keep lower current consumption in stand by mode.

The device is operating in transition mode, and is able to drive a Power MOS or IGBT with a ± 400mA current for sourcing and sinking.



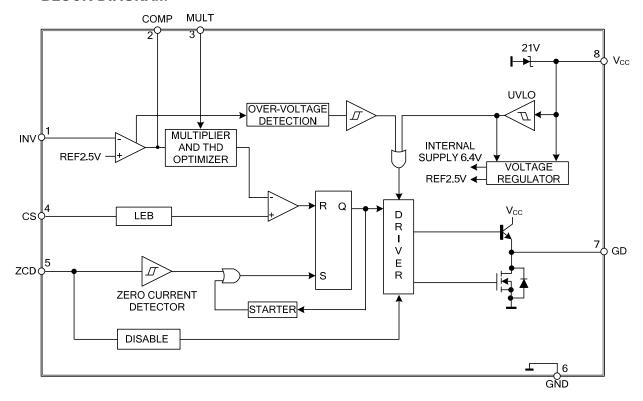
FEATURES

- * 1% Precision (@ T_J = 25°C) Internal Reference Voltage
- * Output Overvoltage Protection
- * Very Low Power Start-Up Current
- * Current Sense Filter On Chip
- * Disable Function (with ZCD pin)
- * Transition Mode Operation
- * Gate Driving Current: ± 400mA
- * 15V Gate clamped


ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking		
Lead Free	Halogen Free	Package	Packing		
L8562L-D08-T	L8562G-D08-T	DIP-8	Tube		
L8562L-S08-R	L8562G-S08-R	SOP-8	Tape Reel		
L8562L-S08-T	L8562G-S08-T	SOP-8	Tube		

www.unisonic.com.tw 1 of 6 QW-R119-018.C


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	DESCRIPTION
1	INV	Inverting input of the error amplifier.
2	COMP	Output of the error amplifier.
3	MULT	Input of the multiplier stage.
4	CS	Input of the current sense stage.
5	ZCD	Input of the zero current detection .
6	GND	Ground.
7	GD	Gate driver output.
8	V _{CC}	Voltage supply.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

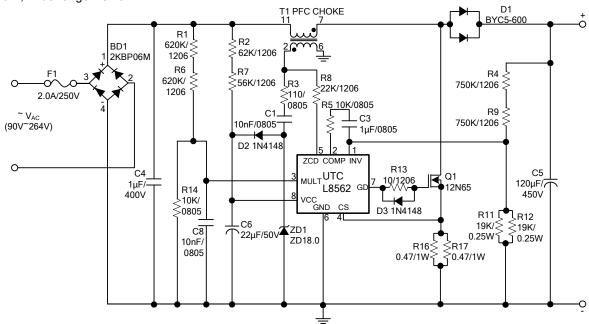
PARAMETER		SYMBOL	RATINGS	UNIT
Analog Inputs & Outputs		INV, COMP MULT	-0.3 ~ 7	V
Current Sense Input		CS	-0.3 ~ 7	V
$Iq+Iz (I_{GD}=0)$		IV _{CC}	30	mA
Output Totem Pole Peak Current (2ms)		I_{GD}	±700	mA
Zero Current Detector		ZCD	50 (source)	mA
		ZCD	-10 (sink)	mA
Power Dissipation @ T _A =50°C	SOP-8	D	1	W
	DIP-8	P _D	0.65	W
Junction Temperature		TJ	125	$^{\circ}\!\mathbb{C}$
Operating Temperature		T_{OPR}	-20 ~ +85	$^{\circ}\!\mathbb{C}$
Storage Temperature		T_{STG}	-40 ~ +150	$^{\circ}\!\mathbb{C}$

Note 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V_{CC}=12V, T_A=-25°C ~ 125°C, unless otherwise specified)

PARAMETER	PIN	SYMBOL	BOL TEST CONDITIONS		TYP	MAX	UNIT		
SUPPLY VOLTAGE SECTION									
Operating Range	8	V_{CC}	after turn-on	11		18	V		
Turn-on Threshold	8	V _{CC(ON)}		14	15.3	16.5	V		
Turn-off Threshold	8	V _{CC OFF}		7.2	7.9	8.7	V		
Hysteresis	8	Hys		6.5		8.3	V		
SUPPLY CURRENT SECTION									
Start-up Current	8	I _{START-U}	V _{CCON} -1V		30	50	Α		
Quiescent Current	8	lq			6	9	mΑ		
Operating Supply Current	0	_	C _L =1nF @ 70KHz		10	15	mΑ		
Operating Supply Current	8	I _{CC}	In OVP condition V _{pin1} =2.7V			6.8	mA		
Outlean and Outment	8	la.	V _{PIN5} " 150mA, V _{CC} >V _{CC off}			6	mA		
Quiescent Current	8	lq	V _{PIN5} " 150mV, V _{CC} <v<sub>CC off</v<sub>	4	7	10	Α		
Zener Voltage	8	V_Z	I _{CC} =20mA	18	21	24	V		
ERROR AMPLIFIER SECTION									
Voltage Feedback Input	1	V _{INV}	T _A =25°C	2.465	2.5	2.535	V		
Threshold			10.3V <v<sub>CC<18V</v<sub>	2.44		2.56	V		
Line Regulation			V _{CC} =10.3 ~ 18V		3	5	mV		
Input Bias Current	1	I _{INV}			-0.1	-1	Α		
Voltage Gain		G_V	Open loop	60	80		dB		
Gain Bandwidth		G _B			8.0		MHz		
Source Current	2		V _{COMP} =4V, V _{INV} =2.4V	-2	-4	-8	mA		
Sink Current		I _{COMP}	V _{COMP} =4V, V _{INV} =2.6V	2.5	4.5		mA		
Upper Clamp Voltage	2	\ \/	I _{SOURCE} =0.5mA	4.5	5	5.5	V		
Lower Clamp Voltage	2	V_{COMP}	I _{SINK} =0.5mA	2.25	2.4	2.55	V		
MULTIPLIER SECTION									
Linear Operating Voltage	3	V_{MULT}		0~ 2.5	0 ~ 3.5		V		
Output Max.Slope		△Vcs	V _{MULT} =from 0V ~ 0.5V	1.65	1.9				
		$\triangle V_{MULT}$	V _{COMP} =Upper Clam Voltage						
Gain		K	V _{MULT} =1V, V _{COMP} =4V	0.5	0.7	0.9	1/V		

^{2.} The device is guaranteed to meet performance specification within 0° C \sim 70 $^{\circ}$ C operating temperature range and assured by design from -20° C \sim 85 $^{\circ}$ C.

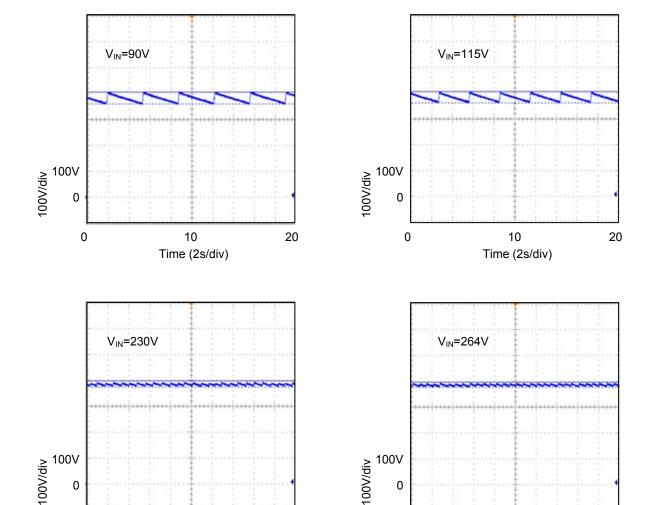

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	PIN	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
CURRENT SENSE COMPARATOR								
Current Sense Reference Clamp	4	V _{CS}	V _{MULT} =2.5V V _{COMP} =Upper Clamp Voltage	1.6	1.7	1.8	V	
Input Bias Current	4	I _{CS}	V _{OS} =0		-0.05	-1	Α	
Delay to Output	4	t _{D(H-L)}			200	450	ns	
ZERO CURRENT DETECTOR								
Input Threshold Voltage Rising Edge	5	.,	(Note)		2.1		V	
Hysteresis		V _{ZCD}	(Note)	0.4	0.6	8.0	V	
Upper Clamp Voltage	5	V_{ZCD}	I _{ZCD} =20 A	5.9	6.5	7.3	V	
Upper Clamp Voltage	5	V_{ZCD}	I _{ZCD} =2.5mA	6.1	6.6	7.5	V	
Lower Clamp Voltage	5	V_{ZCD}	I _{ZCD} =-2.5mA	0.3	0.7	1	V	
Sink Bias Current	5	I _{ZCD}	$1V \le V_{ZCD} \le 4.5V$		2		Α	
Source Current Capability	5	I _{ZCD}		-3		-10	mA	
Sink Current Capability	5	I _{ZCD}		3		10	mA	
Disable threshold	5	V_{DIS}		100	200	300	mV	
Restart Current After Disable	5	I _{ZCD}	V _{ZCD} <v<sub>DIS, V_{CC}>V_{CCOFF}</v<sub>	-20	-50		Α	
OUTPUT SECTION								
	7	V _{GD}	I _{GD(SOURCE)} =200mA		1.2	2	V	
Dropout Voltage			I _{GD(SOURCE)} =20mA		8.0	1.2	V	
			I _{GD(SINK)} =200mA		1.2	1.9	V	
Output Voltage Rise Time	7	t _R	C _L =1nF		40	100	ns	
Output Voltage Fall Time	7	t _F	C _L =1nF		40	100	ns	
IGD Sink Current	7	I _{GD(OFF)}	V_{CC} =3.5V, V_{GD} =1V	10	40		mA	
OUTPUT OVERVOLTAGE SECTION								
OVP Triggering Current	2	I _{OVP}		30	40	50	Α	
Static OVP Threshold				2.25	2.4	2.55	V	
RESTART TIMER								
Start Timer		tstart		70	130	300	s	

Note: Parameter guaranteed by design, not tested in production.

■ TYPICAL APPLICATION CIRCUIT

150W, Wide-range mains



TYPICAL CHARACTERISTICS

Output ripple at 0.5W

0

0

0

0

10

Time (2s/div)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

20

10

Time (2s/div)

20