

UTC UNISONIC TECHNOLOGIES CO., LTD

L8602

Preliminary

LINEAR INTEGRATED CIRCUIT

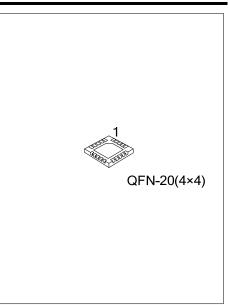
LOW POWER 6 STAGE FET LNA AND MIXER BIAS CONTROLLER

DESCRIPTION

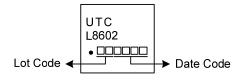
The UTC L8602 is a programmable low power depletion mode FET bias and mixer controller intended primarily for satellite Low Noise Blocks (LNBs).

Designed to provide system flexibility the UTC L8602 can be programmed to bias six low noise amplifier (LNA) stages or four LNA and two active mixer stages, allowing the UTC L8602 to be used in several system designs.

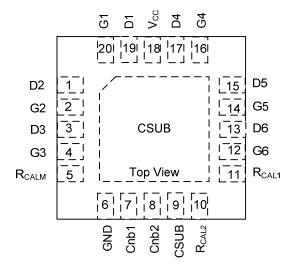
Combining an advanced IC process and packaging techniques, the UTC L8602 helps minimize power consumption, component cost and PCB area whilst enhancing overall reliability.


FEATURES

- * Low quiescent supply current, 1.6mA typical
- * Six stage FET bias controller, two configurable as mixer stages
- * Operating range of 3.0V to 8.0V
- * Amplifier FET drain voltages set at 2.0V, mixer drain voltage set at 0.25V
- * Amplifier FET drain current selectable from 0 to 15mA, mixer current from 0 to 7.5mA
- * Switchable FET's for power management
- * FET drain voltages and currents held stable over temperature and V_{CC} variations
- * FETs protected against overstress during power-up and power-down.
- * Internal negative supply generator allowing single supply operation (available for external use)
- * Low external component count


ORDERING INFORMATION

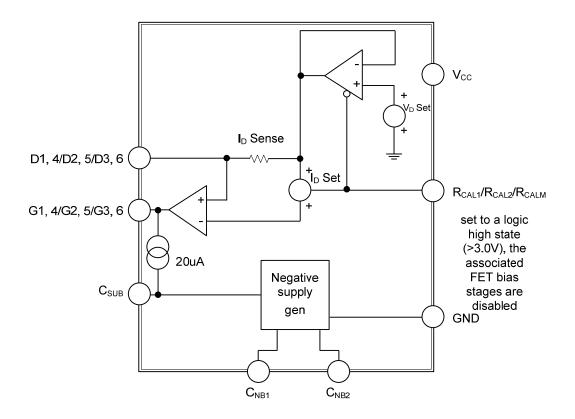
Ordering	Number	Dookago	Packing		
Lead Free	Halogen Free	Package			
L8602G-Q20-4040-R	L8602G-Q20-4040-R	QFN-20(4×4)	Tape Reel		


L8602 <u>G</u> - <u>Q20-4040-</u> R	
(1)Packing Type	(1) R: Tape Reel
(2)Package Type	(2) Q20-4040: QFN-20(4×4)
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

■ PIN CONFIGURATION

PIN DESCRIPTION


PIN NO.	PIN NAME	DESCRIPTION
1	D2	To D of fet 2
2	G2	To G of fet 2
3	D3	To D of fet 3
4	G3	To G of fet 3
5	R _{CALM}	Connect 68kohm to set Id3/6 to 5mA
6	GND	Ground
7	Cnb1	connect an external cap to cnb2
8	Cnb2	connect an external cap to cnb1
9	CSUB	connect an external cap to produce -2.5V
10	R _{CAL2}	Connect 36kohm to set Id2/5 to 10mA
11	R _{CAL1}	Connect 36kohm to set Id1/4 to 10mA
12	G6	To G of fet 6
13	D6	To D of fet 6
14	G5	To G of fet 5
15	D5	To D of fet 5
16	G4	To G of fet 4
17	D4	To D of fet 4
18	V _{CC}	Power supply
19	D1	To D of fet 1
20	G1	To G of fet 1

L8602

Preliminary

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.6 ~ +10	V
Supply Current	I _{CC}	100	mA
Power Dissipation	PD	600	mW
Operating Temperature Range	T _{OPR}	-40 ~ +85	°C
Storage Temperature Range	T _{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

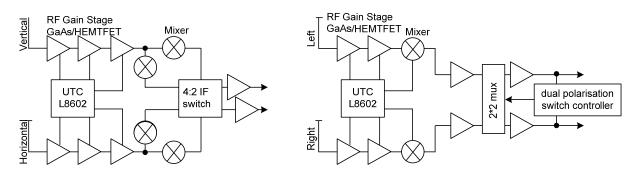
(Measured at T_A=25°C, V_{CC}=3.3V(Note 1), R_{CAL1}=R_{CAL2}=36K Ω (setting ID1/2/4/5 to 10mA), R_{CALM}=68K Ω (setting ID3/6 to 5mA) unless otherwise stated)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage Range	V _{CC}		3.0		8.0	V
		I _{D1-6} =0	5.0	1.6	4.0	mA
Supply Current		I _{D1-6} =10mA, no R _{CALM}		62	64	mA
	()		-3.0	-2.65	-2.0	V
Substrate Voltage	VCSUB	I _{CSUB} =0	-3.0	-2.05	-2.0	V
Oscillator Frequency	V _{CSUB(L)} Fosc	I _{CSUB} =-200uA	100	260	600	v kHz
Gate Characteristics	FOSC		100	200	000	KI IZ
Gate (G1 to G6, resistor R _{CALM} ot prese	(nt)					
Current Range			-100		+500	uA
Voltage Low	l _G	I _D =12mA, I _G =-10uA	-3.0	-2.5	-2.0	V
	V _{G(L)}		-3.0	-2.5	-	V
Voltage High	V _{G(H)}	$I_{\rm D}$ =8mA, $I_{\rm G}$ = 0	-	-	1.0	-
Voltage Disabled (Note 1)	V _{G(DIS)}	I _D =0, I _G =-10uA, V _{RCAL1-2} =3.0V	-3.0	-2.5	-2.0	V
Gate (G3 and G6, resistor R _{CALM} preser			100			
Current Range	l _G		-100		+500	uA
Voltage Low	V _{G(L)}	I _D =6mA, I _G =-10uA	-3.0	-2.5	-2.0	V
Voltage High	V _{G(H)}	I _D =4mA, I _G =0	0	0.7	1.0	V
Voltage Disabled (Note 1)	V _{G(DIS)}	$I_D=0, I_G=-10uA, V_{RCAL2}=V3.0V$	-3.0	-2.5	-2.0	V
Drain Characteristics						
Drain (D1 to D6, resistor R _{CALM} not pres	sent)					-
Current Range	I _D		0		15	mA
Current Operating	I _{D(OP)}	Standard Application Circuit	8	10	12	mA
Current Disabled (Note 1)	I _{D(DIS)}	V _D =0, V _{RCAL} =3.0V			10	uA
Voltage Operating	V _{D(OP)}	I _D =10mA	1.8	2.0	2.2	V
Drain Characteristics						
Drain (D3 and D6, resistor R _{CALM} prese	nt)					
Current Range	I _{DM}		0.5		7.5	mA
Current Operating	I _{DM(OP)}	Standard Application Circuit	4	5	6	mA
Current Disabled (Note 1)	I _{DM(DIS)}	V _D =0, V _{RCAL} =3.0V, R _{CALM} not present			10	uA
Voltage Operating	V _{DM(OP)}	I _D =5mA	0.15	0.3	0.45	V

■ ELECTRICAL CHARACTERISTICS (Cont.)

(Measured at T_A=25°C, V_{CC}=3.3V(Note 1), R_{CAL1}=R_{CAL2}=36K Ω (setting ID1/2/4/5 to 10mA), R_{CALM}=68K Ω (setting ID3/6 to 5mA) unless otherwise stated)

100/0 to offic) unless otherwise stated						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{CAL} (1 and 2)						
Disable Threshold (Note 1)	V _{RCAL(DIS)}		1.8	2.7	3.0	V
Input Current	I _{RCAL(DIS)}	V _{RCAL} =3.0V		1.7	10	uA
R _{CALM}						
Disable Threshold (Note 1)	R _{CALM(DIS)}		1.5M	3.3M	5.0M	Ω
R _{CALM} Range	R _{CALM}		39k		390k	Ω
Voltage and Temperature dependence	ce (R _{CALM} no	t present)				
delta I _D vs. V _{CC}	dI _D /dV _{CC}	V _{CC} =3.3 to 8.0V		1.2		%/V
delta I _D vs. T _{OP}	dI_D/dT_{OP}	T _{OP} =-40°C to +85°C		0.05		%/°C
delta V _D vs. V _{CC}	dV_D/dV_{CC}	V _{CC} =3.3 to 8.0V		0.05		%/V
delta V _D vs. T _{OP}	dV_D/dT_{OP}	T _{OP} =-40°C to +85°C		50		ppm/° C
Output Noise						
Drain Voltage	V _{D(NOISE)}	C _{GATE-GND} =10nF, C _{DRAIN-GND} =10nF			0.02	Vpk-pk
Gate Voltage	$V_{G(\text{NOISE})}$	C _{GATE-GND} =10nF, C _{DRAIN-GND} =10nF			0.005	Vpk-pk


Notes: 1. To disable FET stages 3 and 6, pin R_{CAL2} must be set to 3V or above and pin R_{CALM} should be open circuit.

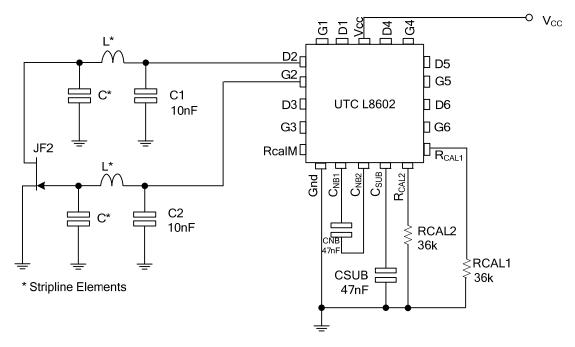
2. The characteristics are measured using up to three external reference resistors, R_{CAL1} , R_{CAL2} and R_{CALM} , wired from pins $R_{CAL1/2/M}$ to ground. Resistor R_{CAL1} sets the drain current of FETs 1 and 4. If R_{CALM} is not present, resistor R_{CAL2} sets the drain currents of FETs 2, 3, 5 and 6. If R_{CALM} is present, resistor R_{CAL2} sets the drain currents of FETs 2 and 5 and R_{CALM} sets the drain currents of FETs 3 and 6.

- 3. The negative bias voltages are generated on-chip using an internal oscillator. Two external capacitors, CNB and CSUB of value 47nF are required for this purpose.
- 4. The QFN-20(4×4) package exposed pad must either be connected to Csub or left open circuit.
- 5. Noise voltage measurements are made with FETs and gate and drain capacitors of value 10nF in place. Noise voltages are not measured in production.
- 6. ESD sensitive, handling precautions are recommended.

LNB SYSTEM DIAGRAM

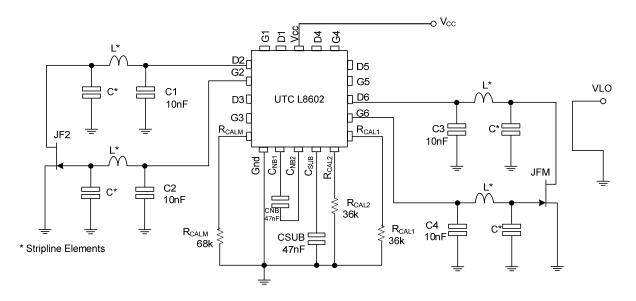
TYPICAL APPLICATION CIRCUIT

The UTC **L8602** series of devices are designed to meet the bias requirements of GaAs and HEMT FETs commonly used in satellite receiver LNBs with a minimum of external components whilst operating from a minimal voltage supply and using minimal current.


The truth table below shows the function of UTC L8602's features.

FEATURE	R _{CAL} Pin Resistor Termination			1st LNA Stages		FET Stage 2nd LNA Stages		3rd LNA/ Mixer Stages	
	R _{CAL1}	R _{CAL2}	R _{CALM}	Bias 1	Bias 4	Bias 2	Bias 5	Bias 3	Bias 6
6 LNA stages to provide	GND	GND	OPEN	on	on	on	on	on	on
standard bias to the GaAs or HEMT FET's	3V	GND	OPEN	off	off	on	on	on	on
	GND	3V	OPEN	on	on	off	off	off	off
Power down FET groups for LNA switching or power saving.	3V	3V	OPEN	off	off	off	off	off	off
4 LNA stages to provide standard bias to the GaAs or HEMT FET's plus 2 active mixer stages	GND	GND	GND	on	on	on	on	mixer	mixer
	GND	3V	GND	on	on	off	off	mixer	mixer
	3V	GND	GND	off	off	on	on	mixer	mixer
	3V	3V	GND	off	off	off	off	mixer	mixer

L8602 truth table



TYPICAL APPLICATION CIRCUIT (Cont.)

UTC L8602 in 6 LNA mode

The bias stages are split up into two groups, with the drain current of each group set by an external R_{CAL} resistor. R_{CAL1} sets the drain currents of stages 1 and 4, whilst R_{CAL2} sets the drain currents of stages 2, 3, 5 and 6. To ensure that the mixer function is disabled the R_{CALM} pin should be left open circuit.

UTC L8602 in 4 LNA and 2 active mixer mode

The bias stages are split up into three groups, with the drain current of each group set by an external R_{CAL} resistor. R_{CAL1} sets the LNA drain currents of stages 1 and 4, and R_{CAL2} sets the drain currents of LNA stages 2 and 5. R_{CALM} sets the mixer drain currents of stages 3 and 6.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

