

No.2247A

L A 4 5 3 5 M

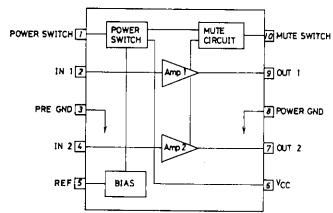
Power Amp for 1.5V Headphone Stereo

Features

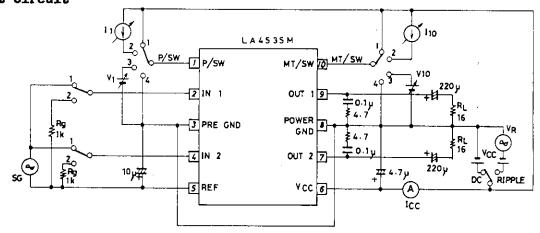
- . Low current dissipation
- . 16ohm load drive capability
- . Excellent reduced voltage characteritics
- . Excellent power supply ripple rejection
- . Minimum number of external parts required (no input capacitor, feedback capacitor required)
- . Less harmonic interference in radio band
- . On-chip power switch function, muting function

Maximum Ratings at Ta=25°C				unit
Maximum Supply Voltage	$v_{cc^{max}}$	Quiescent	4.5	· v
Allowable Power Dissipation	Pďmax		300	mW
Operating Temperature	Topr		-20 to +75	°C
Storage Temperature	Tstg		-40 to +125	°C
Operating Conditions at Ta=25°	c	•	,	unit
Recommended Supply Voltage	v_{cc}		1.5	V
Operating Voltage Range	V _{CC} op		0.9 to4.0	v
Recommended Load Resistance	$R_{\mathbf{L}}^{\mathbf{CC}}$		16 to 32	ohm

Operating Characteristics at Ta=25 $^{\rm O}$ C, R_L=16ohms, Rg=600ohms, See Test Circuit.

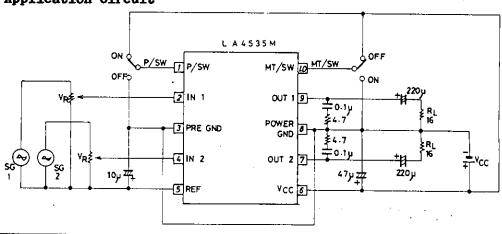

. 			min	typ	max	unit
Quiescent Current *1	Icco(1)	V _{CC} =1.2V, quiescent		3.5	6.0	mA
		$V_{CC}=2.5V$, pin 10 \rightarrow GND		1.5	2.5	mA
		$V_{CC}=2.5V, pin1-GND$			1.0	uA
Voltage Gain	VG(1)	$V_{CC}=1.2V, f=1kHz, Vo=-20dBm$	20.5	22	23	dВ
•	VG(2)	$V_{CC}=0.9V, f=1kHz, Vo=-20dBm$		22	23	dΒ
Voltage Gain Difference	△VG(1)	$V_{CC}=1.2V, f=1kHz, Vo=-20dBm$			1.0	ďΒ
	△ V G(2)	$V_{CC}=0.9V, f=1kHz, Vo=-20dBm$			1.0	dB
Total Harmonic Distortion	THD	$V_{CC}=1.2V, f=1kHz, Po=0.5mW$		0.8	1.5	9,
Output Power	Po	V _{CC} =1.5V,f=1kHz,THD=10%	5	8		mW
Crosstalk	CT	V _{CC} =1.2V, f=100Hz, Rg=1kohm, Vo=-20dBm		45		dB
Ripple Rejection	SVRR	V _{CC} =1.0V,f=100Hz,Rg=1kohm, V _B =-30dBm,BPF=100Hz	45	50		đВ
		Continu	ed on	next	page	

Package Dimensions
(unit: mm)
3086


Continued on no

Continued from preceding page	ge.					
0-1			min	typ	max	unit
Output Noise Voltage	v _{NO}	V _{CC} =2.5V,Rg=1kohm, BPF=20Hzto20kHz		30	44	μV
Power OFF Effect	Vo(off)	$V_{CC}=0.9V, f=100Hz,$ Pin1 \rightarrow GND, Vi=-10dBm			-80	dBm
Muting Effect	Vo(MT)	V _{CC} =0.9V,f=100Hz, Pin10→GND,V1=-10dBm			-80	dBm
Power ON Current Sensitivity Power OFF Voltage Sensitivity	y I _{1(on)}			0.1	1.0	μA
Power OFF Voltage Sensitivi	ty V _{1(off)}	V _{CC} =0.85V,V ₅ ≧0.5V V _{CC} =0.85V,V ₅ ≷0.1V	0.5	0 (-		v
Muting OFF Current Sensitivi Muting ON Voltage Sensitivi	ity Incorr	v _{CC} =0.85v,v ₅ ≥0.5v		0.3	1.0	μÅ
Muting ON Voltage Sensitivi	ty V _{10(on)}	$V_{CC} = 0.85 \text{ V}, V_5 \ge 0.1 \text{ V}$	0.5	0.65		· v
More) - 1 The datescent calle	ent is repre	esented by the current	flowi	ng in	to pi	n
6. The respective	maximum cur	rrents flowing into pin	1 and	d pin	10 ar	e
calculated by (V p	0.5)/1	6 ($V/kohm$) and the to	tal o	urre	nt in	_
creases by these c	urrent value	es.				

Equivalent Circuit Block Diagram



Test Circuit

Sample Application Circuit

Unit (resistance: Ω , capacitance: F)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.