

SANYO Semiconductors DATA SHEET

LA5663V — Phase Control Voltage Inverter Control IC

Overview

The LA5663V is Phase Control Voltage Inverter Control IC.

Functions

- Phase control technique allows the voltage transformer to be driven at a frequency that provides excellent efficiency.
- The phase can be adjusted with an external resistor.
- Allows burst adjustment.
- Full complement of built-in protection circuits, including over-voltage protection and tube current detection and protection.
- High-precision reference voltage system. VREM precision: ±1%
- The on/off state of the VREM circuit can be controlled independent.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{CC}		24	V
Maximum power drain allowed	Pd max	Independent IC.	440	mW
Operating temperature range	Topr		-30 to 85	°C
Storage temperature range	Tstg		-55 to 150	°C

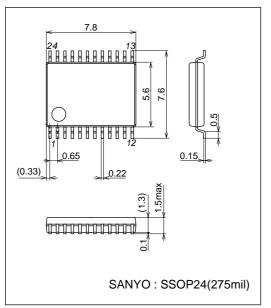
Operating Conditions at $Ta = 25^{\circ}C$

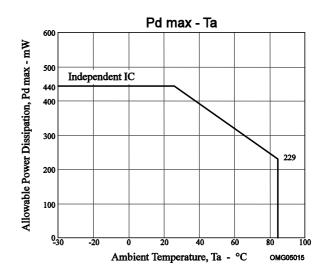
Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	V _{CC}		4.5 to 23	V
Oscillation frequency	fosc		40 to 500	kHz
Burst drive frequency	^f PWM		50 to 1000	Hz
Output drive load capacity	CL1		0 to 1000	pF
	CL2		0 to 1000	pF

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before usingany SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

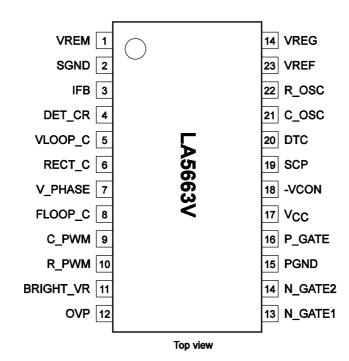
SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 15.0V$

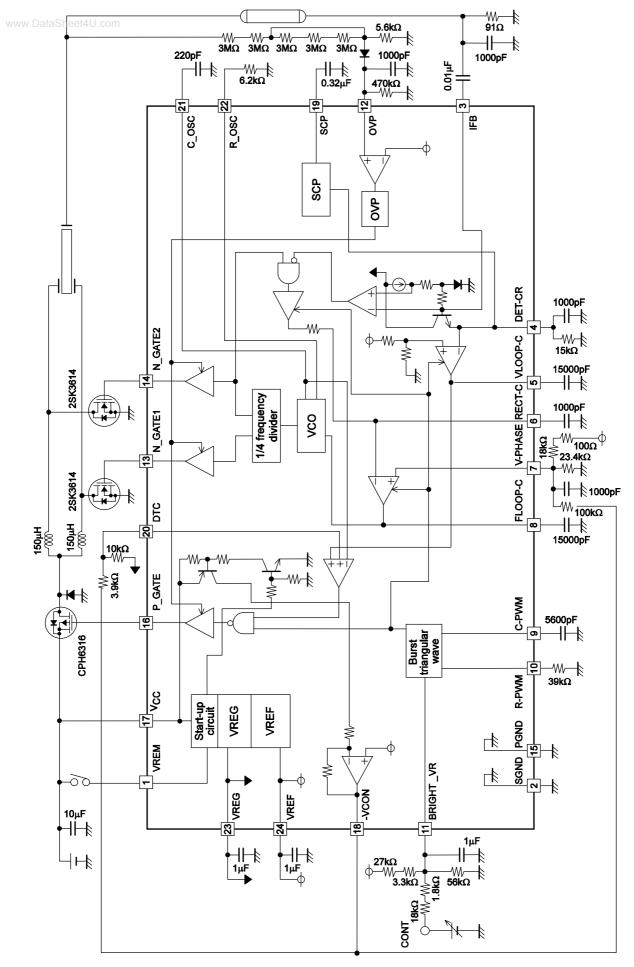

vww.DataSheet4U.com		Symbol	Conditions		Ratings		Un	
ww.DataSheet40	.com			min	typ	max		
Current drain during	standby	loff				5	μA	
Current drain during operation		Іор	V _{CC} = 23V, DTC = 1.229V, CL = 500pF	8	11	14	m/	
Regulator voltage		Vreg	$V_{CC} = 4.5$ to 23V, Ireg = 0 to 0.5mA	3.395	3.5	3.605	V	
Regulator temperatu	ure coefficient	Vreg (T)	Ireg = 0.5mA, Ta = 0 to 60°C		0.23		%	
Regulator current		Ireg		-0.3		2	m	
Reference voltage		Vref	V _{CC} = 4.5 to 23V, Iref = 0 to 0.1mA	1.972	2	2.028	V	
Reference voltage to	emperature coefficient	Vref (T)	Iref = 0.1mA, Ta = 0 to 60°C		0.23		%	
Reference voltage c	urrent	Iref		0		0.2	m	
p-channel	11 11 Jac - 1	Voph1	Relative to V _{CC} , load current of 0mA.	-0.4			V	
output voltage	"H" level	Voph2	Relative to V _{CC} , load current of 10mA.	-1.2			V	
		Vopl1	Relative to GND, load current of 0mA.			1.3	V	
	"L" level	Vopl2	Relative to GND, load current of 10mA.			1.4	١	
	Clamp level	Vopc	Relative to V _{CC}	-12	-10	-8	V	
	tr	trp	CL = 500pF		150		n	
	tf	tfp	CL = 500pF		200	-	n	
n-channel		Vonh1	Relative to V _{CC} , load current of 0mA.	-1.5			١	
output voltage	"H" level	Vonh2	Relative to V _{CC} , load current of 10mA.	-2			\ \	
		Vonl1	Relative to GND, load current of 0mA.			0.4	\ ا	
	"L" level	Vonl2	Relative to GND, load current of 10mA.			1.2	\	
	Clamp level	Vopc	Relative to V _{CC}	8	10	12	\ \	
	tr	trn	CL = 500 PF		650		n	
	tf	tfn	CL = 500pF		50		n	
Burst drive duty	BRIGHT_VR = 2.2V	Duty1	$V_{CC} = 4.5 \text{ to } 23 \text{V}$	100	00		9	
	BRIGHT_VR = 1.847V	Duty2	$V_{CC} = 4.5 \text{ to } 23 \text{V}$	86	90	94	9	
	BRIGHT_VR = 1.229V	Duty2	$V_{CC} = 4.5 \text{ to } 23V$	47	50	53	%	
	BRIGHT_VR = 0.618V	Duty3	$V_{CC} = 4.5 \text{ to } 23V$	7	10	13	%	
	BRIGHT_VR = 0.4V	Duty4	$V_{CC} = 4.5 \text{ to } 23V$	1	10	0	%	
Burst drive duty	BRIGHT_VR = 2.2V	Duty3	$Ta = 0 \text{ to } 60^{\circ}\text{C}$		0		%	
temperature	BRIGHT_VR = 1.847V		$Ta = 0 \text{ to } 60^{\circ}\text{C}$		2		%	
coefficient	BRIGHT_VR = 1.347V BRIGHT_VR = 1.229V	Duty2 (T)			2		%	
	BRIGHT_VR = 0.618V	Duty3 (T)	$Ta = 0 \text{ to } 60^{\circ}\text{C}$		-			
	BRIGHT VR = 0.618V	Duty4 (T)	$Ta = 0 \text{ to } 60^{\circ}\text{C}$		2		%	
Oscillation	fmax	Duty5 (T) fosc1	$Ta = 0 \text{ to } 60^{\circ}C$ $capacity = \pm 1\%$	247	258	269	% k⊢	
frequency	fmin	fosc2	capacity = $\pm 1\%$ capacity = $\pm 1\%$	195	202	209	kH	
Oscillation	fmax (T)	fosc1 (T)	$Ta = 0 \text{ to } 60^{\circ}C$	195	1.3	209	×1	
frequency temperature	fmin (T)	fosc2 (T)	$Ta = 0 \text{ to } 60^{\circ}\text{C}$		1.3		%	
coefficient Burst drive frequenc		foso1	capacity = ±1%	101	202	010	ш -	
•	y temperature coefficient	fosc1		191	0.64	213	Hz %	
		fosc1	Ta = 0 to 60°C	2	0.04		% V	
Remote voltage	During operation	Vremon		2		07		
	Stopped	Vremoff				0.7	V	
OP1 output		-VCON1	$V_{CC} = 22V$	0.27	0.32	0.37	\ 	
		-VCON2	V _{CC} = 7V	1.557	1.6	1.643	V	
		-VCON_SINK	-VCOM sink current	100			μA	
		-VCON_SOUR	-VCOM source current	10			μA	
DTC-100% ON three		V100		2.16	2.2	2.24	١	
DTC-100% OFF three		V0		0.392	0.4	0.408	١	
SCP	Operation start time	tscp	SCP capacity = 0.33μ F	0.7	1	1.5	S	


Continued from preceding page.			Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit
Input pin						
Input current of V_PHASE pin	IVPHASE		-0.2		0.2	μA
Input current of BRIGHT_VR pin	IBRIGHT_VR		-0.2		0.2	μA
Current of DTC	IVPHASE		-0.2		0.2	μΑ

Package Dimensions


unit: mm

3175C

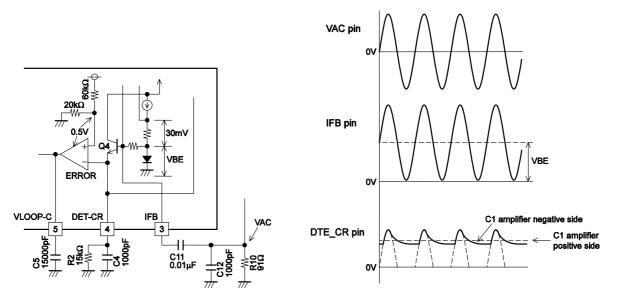


Pin Assignment

Pin Functions

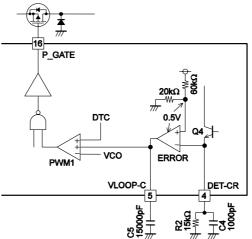
Pin No.	Pin name	Function	Equivalent circuit
www.Dat	a ⊽REM 4U.com	ON/OFF terminal of the IC.	VREM
2	SGND	Signal Ground terminal.	
3	IFB	CCFL electric current waveform input terminal.	
4	DET_CR	Rectification (pulse way) waveform of CCFL output terminal.	IFB O 30kΩ DET_CR O SGND
5	VLOOP_C	Error amplifier output terminal.	VCC VREG
6	RECT_C	Phase difference output terminal	VCC VREG RECT_C VREG
7	V_PHASE	Phase difference setup terminal	Vcc VREG

	from preceding page.	Europhian.	Equivelant size it
Pin No.	Pin name	Function VCO input terminal.	Equivalent circuit
www.Dat	ELOOP_C aSheet40.com		VCC OVREG
9	C_PWM	Capacitor terminal for the burst drive frequency setup.	VCC C_PWMO C C C C C C C C C C C C C C C C C C C
10	R_PWM	Resistance terminal for the burst drive frequency setup.	V _{CC} ○ VREG R_PWM ○ SGND
11	BRIGHT_VR	Burst width set up terminal.	V _{CC} O VREG VREG SODA SGND
12	OVP	Detection input terminal of over voltage protection circuit.	V _{CC} O VREG OVP O 10kΩ SGND Continued on next page.

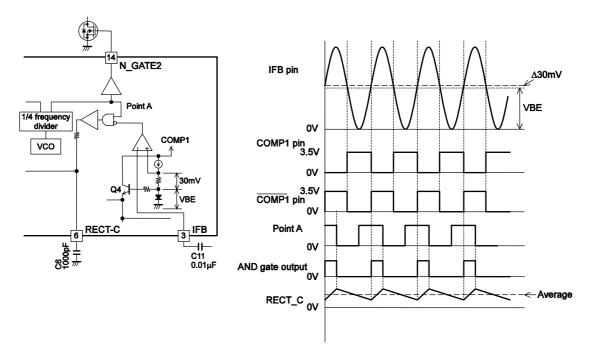

Pin No.	from preceding page. Pin name	Function	Equivalent circuit
13 www.Dat 14	N_GATE1	NchMOS drive terminal. NchMOS drive terminal.	N_GATE* O VCC
15	PGND	Power ground terminal.	
16	P_GATE	PchMOS drive terminal.	P_GATE O VCC
17	Vcc	Power supply terminal.	
18	-VCON	Output voltage is inversely proportional to V _{CC} .	0 VCC 0 VCC
19	SCP	Time constant of short protection circuit setup terminal.	V _{CC} V _{CC} V _{CC} V _{REG}

	from preceding page.	E	
Pin No.	Pin name	Function	Equivalent circuit
20 www.Da	aSheet4U.com	Dead time setup terminal.	
21	C_OSC	Capacitor terminal for the VCO frequency setup.	VREG OVCC
22	R_OSC	Resistance terminal for the VCO frequency setup.	V _{CC} VREG R_OSC
23	VREF	Standard voltage output terminal.	CVCC CVCC
24	VREG	Regulator voltage output terminal.	VCC VCC VREG VREG VREG VREG VREG VREG VREG VREG

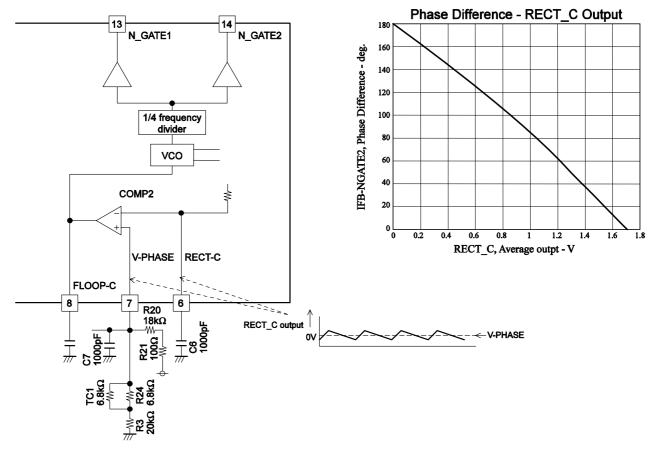
Functional Descriptions


(1) IFB and DET_CR pins

The IFB pin connects the CCFL current waveform detected by R10 to the Q4 base with bias VBE. The DET_CR pin output level depends on both the Q4 base voltage less the VF component and the time constant determined by C4 and R2. These connections rectify the AC CCFL current waveform (VAC) for input to the negative side of the ERROR amplifier.


(2) VLOOP_C and PGATE pins

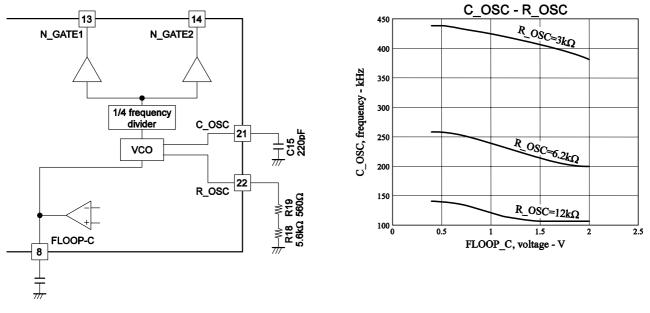
The PWM waveform output from the P_GATE pin is the result of the PWM1 amplifier comparing the VLOOP_C voltage and the VOC triangular wave so that the rectified CCFL current waveform from the DET_CR pin has the same potential (0.5V) as the positive side of the ERROR amplifier. This PWM control ensures that the CCFL current remains constant.


(3) RECT_C pin

COMP1 rectifies the CCFL current waveform, plus bias VBE, from the IFB pin. ANDing this waveform voltage with that from point A (this latter has the same phase as NGATE2) averages the two, producing phase difference voltage output from the RECT_C pin.

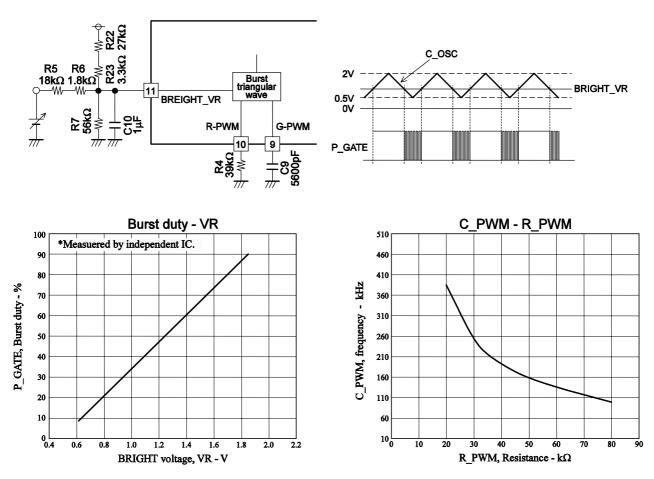
(4) V_PHASE and FLOOP_C pins

COMP2 controls the VCO frequency so that the RECT_C and V_PHASE pins have the same voltage. The RECT_C pin voltage represents a phase difference voltage, so changing the V_PHASE pin voltage adjusts the phase difference.



* The above graph is based on measurements for the IC in isolation. Actual phase difference adjustment requires connection to the piezoelectric transformer.

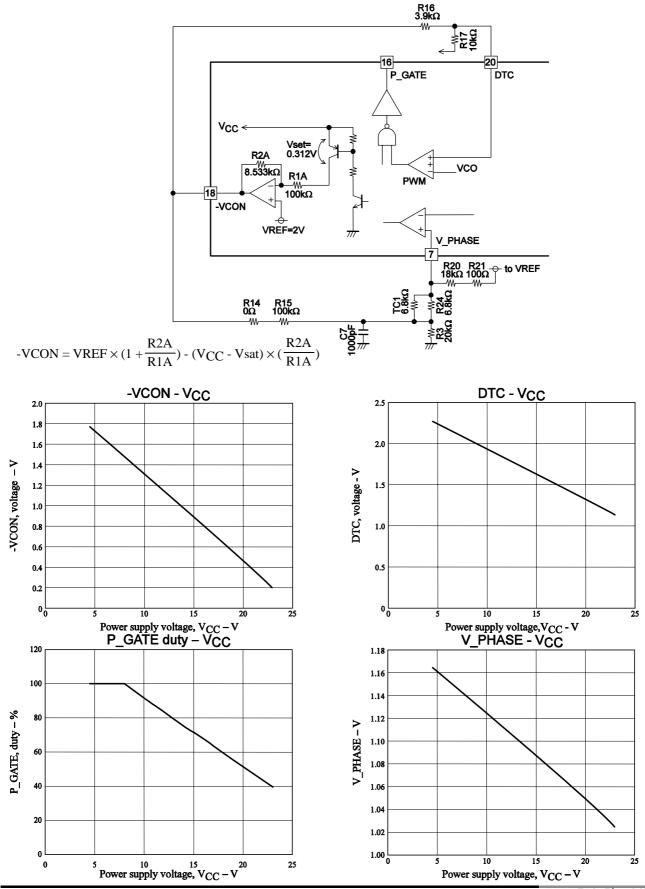
(5) C_OSC and R_OSC pins


These inputs determine the VCO oscillation frequency. Use R_OSC to change the basic frequency.

www.DataSheet4U.com

(6) C_PWM, R_PWM, and BRIGHT_VR pins

These inputs determine the burst drive frequency. Use the BRIGHT_VR pin voltage to change the burst width and R_PWM to change the burst drive frequency.

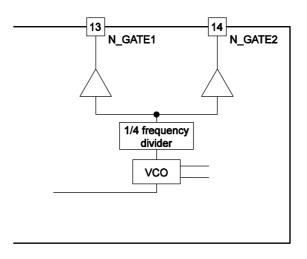


* The above graph is based on measurements for the independent IC.

(7) –VCON and DTC pins

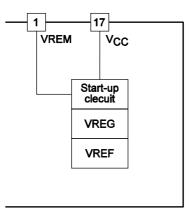
The –VCON pin output voltage is inversely proportional to V_{CC}. Using this output to create the DTC pin input voltage specifies a maximum duty dependent on V_{CC}. On the other hand, connecting this output to the V_PHASE pin input via the resistances R14 and R15 specifies a phase setting dependent on V_{CC}. (Eliminate resistances R14 and R15 if such a V_{CC}-dependent phase setting is not necessary.)

* The Specifications stipulate OP1 output electrical characteristics for the -VCON pin.



www.DataSheet4U.com No.A0003-12/15

(8) N_GATE1 and N_GATE2 pins

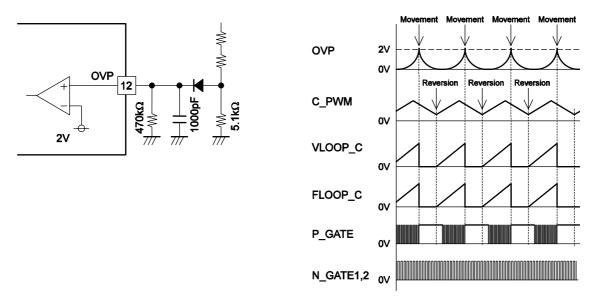

These pins drive the n-channel MOSFET. The frequency is 1/4 the VCO frequency.

www.DataSheet4U.com

(9) VREM pin

This input turns the IC on and off. Turning the IC off reduces the current drain to $5\mu A$ or less.

(10) OVP


This is the over-voltage detection terminal.

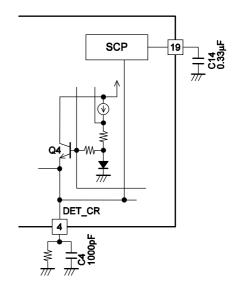
An OVP terminal gains a voltage that is divided by resistances. It works with threshold voltage 2V.

It becomes the condition of the table at the time of the movement.

Terminal	Condition
P_GATE	Hi
VLOOP_C	Low
FLOOP_C	Low
N_GATE1, 2	Drive

And once over-voltage protection works, it doesn't revert soon even if OVP is lower than 2V again. It reverts after fixed time (the period of C_PWM) passes.

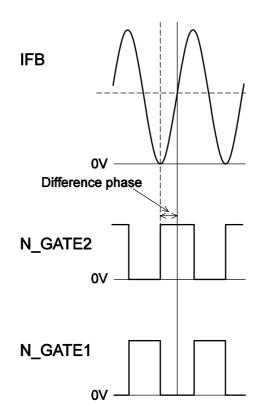
(11) SCP


CCFL electric current decrease by the CCFL opening and so on. And a charge begins in the condenser connected to SCP when the voltage of DET_CR was less than 0.26V.

Latch is set when the voltage of the condenser is more than 2V. The voltage of each terminal at this time becomes a table.

The charge of the condenser is stopped in the burst Duty again at the time of off period.

Terminal	Condition
P_GATE	Hi
VLOOP_C	Low
FLOOP_C	Low
N_GATE1, 2	Low


tscp = $3.03 \times 10^6 \times C14 \times (100/burst duty)$ [S] Example: tscp = 1 [S] (At C14 = 0.33μ F, burst duty = 100%)

(12) The polarity of the piezoelectric transformer

You must put logic with the transformer together, because a phase is controlled by comparing the common mode wave shape of N_GATE2 with the common mode wave shape of CCFL electric current.

Connect a piezoelectric transformer so that each wave shape may become relations like a figure.

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 2006. Specifications and information herein are subject to change without notice.