

SANYO Semiconductors DATA SHEET

Monolithic Linear IC For CD Players and Recorders Four-Channel Driver IC

Overview

The LA6548ND is a four-channel driver IC for CD players and recorders (four BTL amplifier channels).

Functions

- Four BTL connection power amplifier channels
- IO max 0.7A
- Built-in level shifters
- Muting circuit (on/off control of all outputs) (This circuit applies to the BTL amplifier circuits. It does not control operation of the regulator.)
- Built-in regulator (provides a 3.3V output using an external pnp transistor)
- Thermal protection circuit (thermal shutdown circuit)

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		14	V
Maximum output current	I _O max	For each of the channel 1 to 4 outputs	0.7	А
Maximum input voltage	V _{IN}		13	V
Muting pin application voltage	VMUTE		13	V
Allowable power dissipation	Pd max		1.5	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LA6548ND

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} 1		4.6 to 13	V
Supply voltage 2	V _{CC²}	Only used by the BTL amplifiers (Not used by the 3.3V regulator circuit)	3.9 to 13	V

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC}1 = V_{CC}2 = 6V$, VREF = 1.65V, unless otherwise specified.

Durante	Current al		Ratings			1.1-34	
Parameter	Symbol	Conditions	min	typ	max	Unit	
Overall Characteristics							
No-load current drain, on state	I _{CC} ON	All outputs on, MUTE : high		20	40	mA	
No-load current drain, off state	ICCOFF	All outputs off, MUTE : low		15	35	mA	
Thermal shutdown circuit TSE		(Design guarantee value *1)	150	175	200	°C	
Output Amplifier Block	•						
Output offset voltage	VOFF	The voltage difference between each of the + or - outputs.	-50		50	mV	
VREF input voltage range	VINVREF		1.3		V _{CC} -1.5	V	
Output voltage	VO	The voltage across the outputs when R_L = 8Ω	2.6	3		V	
Voltage gain, input to output	VG	The voltage gain from an input to the corresponding +/- outputs.*2		9		dB	
Slew rate	SR	(Design guarantee value *1)		0.15		V/µs	
Muting on voltage	VMUTE	The voltage at which the output on/off state changes		1.2		V	
Power Supply Block (Using a 2SB632K)							
3.3V power supply voltage		I _O = 200mA	3.13	3.3	3.47	V	
Line regulation	∆V _O LIN	$4.6V \le V_{CC} \le 12V$		40	100	mV	
Load regulation	∆V _O LOAD	$5mA \le I_O \le 200mA$		50	150	mV	
Reset Block							
RESET pin high-level voltage	V _O RH		3.08	3.25	3.42	V	
RESET pin low-level voltage VORL		ISRL = 2mA, Cd-GND		100	200	mV	
RESET pin threshold voltage	V _{RT}	*4		2.8		V	
RESET pin hysteresis	V _{HYS}	*5	40	80	160	mV	
RESET pin output delay time	td	$Cd = 0.1 \mu F$		10		ms	

 $^{\star}{\rm 1}$: These parameters are not tested.

*2 : The gain from input to output when only the $\text{V}_{\text{IN}}{}^{\star}$ pins are used.

*3 : The MUTE pin voltage when the output changes between the on and off states. When the MUTE pin is high, all the BTL amplifiers will be on, and the when MUTE is low, all the BTL amplifiers will be off.

*4 : The 3.3V regulator voltage when the RESET pin goes from high to low.

*5 : The 3.3V regulator voltage difference between the RESET pin going from high to low the RESET pin going from low to high. That is, the hysteresis.

Package Dimensions

Block Diagram

Pin Functions

	Pin No.	Pin	Description
	1	V _{CC} 1	Power supply (This pin is shorted to V_{CC}^2 (pin 30)
	2	MUTE	Output on/off control
	3	V _{IN} 1	Channel 1 input
	4	VG1	Channel 1 input (Gain setting)
	5	V _O 1+	Channel 1 output (+)
	6	V _O 1 ⁻	Channel 1 output (-)
	7	GND	GND pin
	8	GND	GND pin
	9	GND	GND pin
	10	V _O 2 ⁻	Channel 2 output (-)
	11	V _O 2+	Channel 2 output (+)
neei	4U.col12	VG2	Channel 2 input (Gain setting)
	13	V _{IN} 2	Channel 2 input
	14	REG_C	Connect this pin to the external pnp transistor collector. (This is the 3.3V regulator output)
	15	REG_B	Connect this pin to the external pnp transistor base.
	16	RESET	Reset output
	17	CD	Connection for the reset delay time setting capacitor
	18	V _{IN} 3	Channel 3 input
	19	VG3	Channel 3 input (Gain setting)
	20	V _O 3+	Channel 3 output (+)
	21	V _O 3-	Channel 3 output (-)
	22	GND	GND pin
	23	GND	GND pin
	24	GND	GND pin
	25 V _O 4 ⁻ Channel 4 output (-)		Channel 4 output (-)
	26	V _O 4+	Channel 4 output (+)
	27	VG4	Channel 4 input (Gain setting)
	28	V _{IN} 4	Channel 4 input
	29	VREF	Reference voltage input
	30	V _{CC} 2	Power supply (This pin is shorted to V_{CC} 1 (pin 1)

Equivalent Circuits

Pin No.	Pin	Description	Equivalent circuit
Pin No. 3 4 13 12 18 19 28 27 27	Pin VIN1 VG1 VIN2 VG2 VIN3 VG3 VIN4 VG4	Description Input pins.	Equivalent circuit
			$\bigcirc \qquad \qquad$

Continued on next page

	Continued fro	om preceding page. Pin	Description	Fouivalent circuit
	5 6 11 10 20 21 26 25	V ₀ 1+ V ₀ 1 ⁻ V ₀ 2+ V ₀ 2 ⁻ V ₀ 3+ V ₀ 3 ⁻ V ₀ 4+ V ₀ 4 ⁻	Output pins.	VCC VCC VCC VCC VCC VCC VCC GND
.DataShee	2 4U.com	MUTE	Muting control input. The outputs will be on when the MUTE pin is at the high level. The outputs will be off when the MUTE pin is at the low level ; in particular, the outputs go to the high-impedance state at this time.	UTE GND
	29	VREF	Reference voltage input.	VCC OFFORMULA
	16	RESET	Reset output. When REG C (3.3VREG) is high, RESET will be high. When REG C (3.3VREG) is low, RESET will be low. Details of Operating voltage see section Reset operation.	VCC REG_C (3.3VREG) GND RESET GND GND
	17	CD	Reset output delay time setting. The delay time until the point the reset output switches from low to high is set by the capacitor connected between this pin and ground. Reference to Reset operation.	

Application Circuit Example

Reset Operation

w.DataSheet4U.com

*1 : td is the delay time. It is set by an external capacitor connected between the CD pin and ground). *2 : The voltage at which RESET changes state is a typical value (voltage).

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2007. Specifications and information herein are subject to change without notice.