

# SANYO Semiconductors DATA SHEET

## LA7688B

## Monolithic Linear IC PAL/NTSC Color Television-use Single-chip LSI

#### Overview

The LA7688B integrates VIF, SIF, video, chrominance, and deflection processing circuits for PAL/NTSC format TV sets on a single chip and is provided in a 52-pin shrink package.

The VIF and SIF circuits achieve semi-adjustment-free operation, and are adjustment-free except for the VCO coil and the RF AGC circuit. The chrominance circuit can be made adjustment-free by using the LC89950 1H delay line IC. All the signal processing required for a multi-format color TV can be implemented by combining this product with the LA7642 SECAM decoder IC.

#### **Functions**

• VIF, SIF, VIDEO, CHROMA DEFLECTION

#### **Specitications**

#### Absolute Maximum Ratings at Ta = 25 °C

| Parameter S                  | ymbol               | Conditions                               | Ratings     | Unit |
|------------------------------|---------------------|------------------------------------------|-------------|------|
| Maximum supply voltage       | V <sub>40</sub> max |                                          | 9           | V    |
|                              | V <sub>45</sub> max |                                          | 9V          |      |
| Maximum supply current       | I <sub>24</sub> max |                                          | 16          | mA   |
| FBP input current            | I <sub>26</sub> max |                                          | 5           | mA   |
|                              | I <sub>32</sub> max |                                          | 10          | mA   |
| FBP input voltage            | V <sub>26</sub> min |                                          | -5          | V    |
| Allowable power dissipations | Pd max              | $Ta \le 65^{\circ}C$ , *Mounted on board | 1.3         | W    |
| Operating temperature        | Topr                |                                          | -10 to +65  | °C   |
| Storage temperature          | Tstg                |                                          | -55 to +150 | °C   |

\*Board size : 83×86×1.5mm, material : bakelite

#### **Operating Conditions** at $Ta = 25 \ ^{\circ}C$

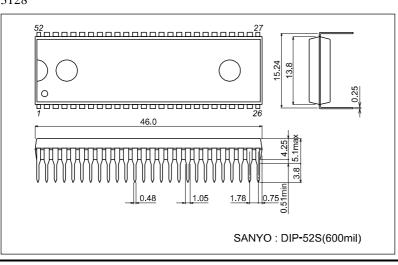
| Parameter S                    | ymbol              | Conditions | Ratings  | Unit |
|--------------------------------|--------------------|------------|----------|------|
| Recommended supply voltage     | V <sub>40</sub>    |            | 7.6      | V    |
|                                | V <sub>45</sub>    |            | 7.6      | V    |
| Recommended supply current     | I <sub>24</sub>    |            | 12       | mA   |
| Operating supply voltage range | V <sub>40</sub> op |            | 7 to 8.2 | V    |
|                                | V <sub>45</sub> op |            | 7 to 8.2 | V    |
| Operating supply current range | I <sub>24</sub> op |            | 10 to 16 | mA   |

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

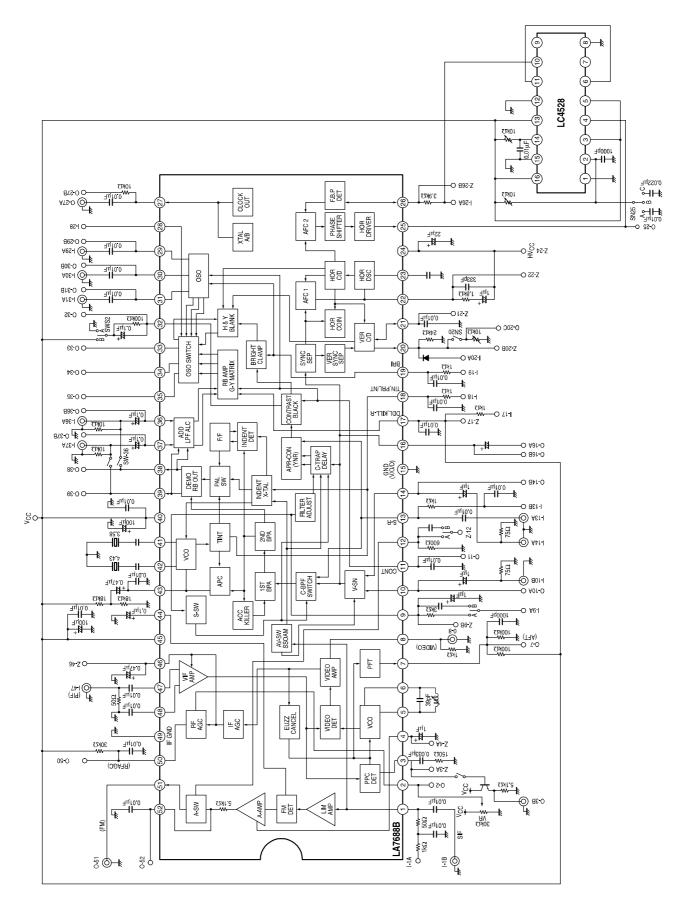
SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

## **Electrical Characteristics** at Ta = 25°C, V<sub>CC</sub> 40, 45 = 7.8V, $I_{24} = 12mA$

| ymbol                | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | min t                            | 1/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | ур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | Deflection block (V24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I <sub>40</sub>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 <sub>45</sub>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V <sub>50</sub> H    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5                              | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V <sub>50</sub> L    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dBμ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GR                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V <sub>I</sub> max   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dBμ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>8</sub>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1                              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V <sub>8</sub> tip   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7                              | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vo                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7                              | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vp-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| V <sub>BTH</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0                              | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V <sub>BCL</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7                              | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S/N                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48                               | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C/S                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                               | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| fc                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DG                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DP                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V7                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6                              | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.3                              | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV/kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R <sub>i</sub>       | f = 38.9MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ci                   | f = 38.9MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| fPU                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8                              | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| fPL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | -2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ∆f U1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8                              | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ∆f L1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | -2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sout                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                              | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mVrms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V <sub>I</sub> (lim) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                               | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dBμ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 390                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mVrms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.0                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v                                | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Gre                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.7                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | Commonto i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V1 TH3               | P/N = PAL/NTSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.9                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | I45         V50H         V50L         VI         GR         VImax         V8         V9         V9         V7         Sf         Ri         Ci         fPL         △f U1 | I40         Iable           V50H | Ido         78           Ido         78           Ido         78           Ido         34           V50L         75           V50L         75           V1         68           V1         68           V1         78           V8         4.1           Vglip         1.7           V0         1.7           V0         1.7           VBTH         1.0           VBCL         2.7           S/N         48           C/S         40           fc         6           DG         78           V7         3.6           V7H         7.3           V7L         0           Sf         10           Ri         f = 38.9MHz           Ci         f = 38.9MHz           V1         0.8           MrU1         0.8           MrU1         0.8 | Id0         78         90           I45         34         40           Vg0L         0.2           Vj         0.2           Vj         39           GR         56           Vg0L         39           GR         4.1           Vg1         39           GR         4.1           Vg1         1.7           V0         1.7           V0         1.7           VgL         2.7           VgL         2.7           SN         44           fc         6           SN         44           fc         6           V7         3.6           JP         6           V7         3.6           JP         6           V7         3.6           JP         0           VgL         0           Vg1         7.3           Vg1         0.8           Vg1         0.8           Vg1         0.8           Vg1         0.8           Vg1         0.8           Gr         1.1           fpu </td <td>Ido         78         90         100           I45         34         40         48           V50H         7.5         7.8         7.8           V50L         0.2         0.6         99         45           GR         56         60         100         17           Vgip         1.7         2.0         2.3         17         2.0         2.3           V0         1.7         2.0         2.3         17         2.0         2.3           V0         1.7         2.0         2.3         3.3         5.N         1.7         2.0         2.3           V0         1.7         2.0         2.3         3.3         5.N         3.3         5.N         3.3         5.N         1.3         1.7         VBCL         2.7         3.0         3.3         5.N         4.0         4.4         4.7         1.6         1.0         1.7         2.0         2.3         5.10         10         15         10         1.1         1.7         2.0         3.3         5.10         10         15         2.0         1.1         1.2         1.1         1.2         1.1         1.1         1.2         1.1</td> | Ido         78         90         100           I45         34         40         48           V50H         7.5         7.8         7.8           V50L         0.2         0.6         99         45           GR         56         60         100         17           Vgip         1.7         2.0         2.3         17         2.0         2.3           V0         1.7         2.0         2.3         17         2.0         2.3           V0         1.7         2.0         2.3         3.3         5.N         1.7         2.0         2.3           V0         1.7         2.0         2.3         3.3         5.N         3.3         5.N         3.3         5.N         1.3         1.7         VBCL         2.7         3.0         3.3         5.N         4.0         4.4         4.7         1.6         1.0         1.7         2.0         2.3         5.10         10         15         10         1.1         1.7         2.0         3.3         5.10         10         15         2.0         1.1         1.2         1.1         1.2         1.1         1.1         1.2         1.1 |


| Parameter S                                                  | ymbol               | Conditions      |       | Ratings |      | Unit   |
|--------------------------------------------------------------|---------------------|-----------------|-------|---------|------|--------|
| Falameter S                                                  | ymbol               | Conditions      | min t | ур      | max  | Unit   |
| [Video SW block]                                             |                     | -               |       |         |      |        |
| Video input 1 DC voltage                                     | V <sub>10</sub> DC  |                 | 3.2   | 3.5     | 3.8  | V      |
| Video input 1 AC voltage                                     | V <sub>10</sub> AC  |                 |       | 1.0     |      | Vp-p   |
| Video input 2 DC voltage                                     | V <sub>14</sub> DC  |                 | 3.2   | 3.5     | 3.8  | V      |
| Video input 2 AC voltage                                     | V <sub>14</sub> AC  |                 |       | 1.0     |      | Vp-p   |
| SVO pin DC voltage                                           | V <sub>16</sub> DC  |                 | 2.5   | 2.8     | 3.1  | V      |
| SVO pin AC voltage                                           | V <sub>16</sub> AC  |                 | 1.7   | 2.0     | 2.3  | Vp-p   |
| [Filter block]                                               |                     |                 |       |         |      |        |
| Filter automatic adjustment open voltage                     | V <sub>9</sub> OPN  | fsc = 4.43MHz   | 3.3   | 3.8     | 4.3  | V      |
| S input threshold                                            | V <sub>9</sub> TH   |                 | 1.5   | 2.0     | 2.5  | V      |
| C-TRAP G                                                     | TRAP                |                 | -20   | -26     | -32  | dB     |
| C-BPF1 G                                                     | BPF1                |                 | -5    | -3      | -1   | dB     |
| C-BPF2 G                                                     | BPF2                |                 | -2    | -1      | 0    | dB     |
| C-BPF3 G                                                     | BPF3                |                 | -6    | -4      | -2   | dB     |
| Y-DL time 1                                                  | T dy1               | PAL             | 400   | 450     | 500  | ns     |
| Y-DL time 2                                                  | T dy2               | NTSC            | 410   | 460     | 510  | ns     |
| Y-DL time 3                                                  | T dy3               | S (PAL)         | 230   | 280     | 330  | ns     |
| Y-DL time 4                                                  | T dy4               | SECAM           | 510   | 560     | 610  | ns     |
| [Video block]                                                | I                   | 1               |       |         | -    | -      |
| Contrast center                                              | E CCEN              |                 | 1.0   | 1.2     | 1.4  | Vp-p   |
| Contrast variable range                                      | dGC                 |                 | 18.0  | 22.0    | 26.0 | dB     |
| Bright min (0.5V)                                            | VB min              |                 | 0.4   | 0.7     | 1.0  | V      |
| Bright typ (2.5V)                                            | VB typ              |                 | 1.9   | 2.2     | 2.5  | V      |
| Bright max (4.5V)                                            | VB max              |                 | 3.4   | 3.7     | 4.0  | V      |
| Soft control characteristics                                 | dGSOFT              |                 | -6.0  | -4.0    | -2.0 | dB     |
| Sharp control characteristics                                | dGSHARP             |                 | 4.5   | 7.5     | 10.5 | dB     |
| Y signal frequency characteristics (1)                       | BW1                 | S-VHS           | 4.5   | 5.0     | 5.5  | MHz    |
| Y signal frequency characteristics (2)                       | BW2                 | PAL             | 3.2   | 3.63    | 4.0  | MHz    |
| Y signal frequency characteristics (2)                       | BW3                 | NTSC            | 2.6   | 3.05    | 3.4  | MHz    |
| DC transmission ratio                                        | dVAPL               |                 | 2.0   | 100     | 5.4  | %      |
| Black expansion threshold                                    | B STH               |                 | 40    | 50      | 60   | IRE    |
| Black expansion maximum gain                                 | BS max              |                 | -20   | -13     | -6   | IRE    |
| 1 0                                                          | BS max              |                 | -20   | -13     | -0   | IKE    |
| [Chroma common]                                              | N 50                |                 |       | 4.0     |      |        |
| R-Y output DC voltage                                        | V <sub>39</sub> DC  |                 | 3.6   | 4.0     | 4.4  | V      |
| R-Y output AC voltage                                        | E <sub>39</sub> AC  |                 | 0.4   | 0.55    | 0.7  | Vp-p   |
| B-Y output DC voltage                                        | V <sub>38</sub> DC  |                 | 3.6   | 4.0     | 4.4  | V      |
| B-Y output AC voltage                                        | E <sub>38</sub> AC  |                 | 0.3   | 0.45    | 0.6  | Vp-p   |
| R-Y input DC voltage                                         | V <sub>37</sub> DC  |                 | 4.2   | 4.6     | 5.0  | Vp-p   |
| R-Y input AC voltage                                         | E <sub>37</sub> AC  |                 | 0.4   | 0.55    | 0.7  | Vp-p   |
| R-Y input AC range                                           | V <sub>37</sub> ALC |                 | 160   | 200     | 250  | Vp-p   |
| B-Y input DC voltage                                         | V <sub>36</sub> DC  |                 | 4.2   | 4.6     | 5.0  | V      |
| B-Y input AC voltage                                         | E <sub>36</sub> AC  |                 | 0.3   | 0.45    | 0.6  | Vр-р   |
| B-Y input AC range                                           | E <sub>36</sub> ALC |                 | 160   | 200     | 250  | mVp-p  |
| Color residue                                                | E CMIN              |                 |       |         | 200  | mVp-p  |
| Contrast color amplitude characteristics                     | dGCC                |                 | 30    | 35      | 40   | dB     |
| RGB difference output DC difference                          | dVC                 | Chroma no input | -0.3  | 0.0     | 0.3  | V      |
| voltage                                                      |                     | Chroma no input |       | ~ ~ ~   |      | m\//00 |
| RGB difference output DC voltage temperature characteristics | ∂VC-Y/∂T            | Chroma no input |       | 0.0     |      | mV/°C  |
| RGB difference residual distortion level                     | E car               |                 |       |         | 0.2  | Vp-p   |
| RGB difference output residual carrier                       | e car               | Chroma no input |       |         | 0.3  | Vp-p   |
| level                                                        |                     |                 |       |         | 0.0  | 444    |

| Parameter S                          | ymbol               | Conditions                      |       | Ratings |       | Unit   |
|--------------------------------------|---------------------|---------------------------------|-------|---------|-------|--------|
| Falameter 5                          | yinboi              | Conditions                      | min t | ур      | max   | Unit   |
| fsc output pin DC voltage            | V <sub>27</sub> OPN |                                 | 4.5   | 5.0     | 5.3   | V      |
| fsc output level P                   | V <sub>27</sub> ACP | PAL                             | 0.14  | 0.2     | 0.26  | Vp-p   |
| fsc output level N                   | V <sub>27</sub> ACN | NTSC                            | 0.19  | 0.26    | 0.33  | Vp-p   |
| DEF COIN-L                           | V <sub>27</sub> LO  |                                 | 1.0   | 1.3     | 1.6   | V      |
| Xtal SW threshold                    | V <sub>27</sub> TH  |                                 |       | 400     |       | μΑ     |
| PAL SW threshold                     | V <sub>18</sub> PTH |                                 |       |         | 0.6   | V      |
| NT SW threshold                      | V <sub>18</sub> NTH |                                 | 0.9   |         |       | V      |
| [Chroma PAL block]                   |                     |                                 |       |         |       |        |
| ACC amplitude characteristics 1      | ACC1p               |                                 | -2    | 1       | +4    | dB     |
| ACC amplitude characteristics 2      | ACC2p               |                                 | -4    | 0       | +2    | dB     |
| Killer operating point               | E KILp              |                                 | -37   | -30     | -25   | dB     |
| Killer hysteresis                    | dE KILp             |                                 | 1     | 3       | 7     | dB     |
| RGB output level                     | E Bp                | Chroma 50%, Color typ           | 3.5   | 4.0     | 4.5   | Vp-p   |
| Maximum RGB output                   | EBMAXp              | Chroma 50%, Color max           | 5.0   | 5.5     | 6.0   | Vp-p   |
| APC pull-in range+                   | df scp+             |                                 | 500   |         |       | Hz     |
| APC pull-in range-                   | df scp-             |                                 |       |         | -500  | Hz     |
| Demodulator output ratio B/R         | B/Rp                |                                 | 1.5   | 1.78    | 2.00  | double |
| Demodulator output ratio G/R         | G/Rp                | B-Y no signal                   | -0.56 | -0.51   | -0.46 | double |
| Demodulator output ratio G/B         | G/Bp                | R-Y no signal                   | -0.21 | -0.19   | -0.17 | double |
| Demodulation angle                   | RBp                 |                                 | 85    | 90      | 95    | deg    |
| [Chroma NTSC block]                  |                     |                                 |       |         |       |        |
| ACC amplitude characteristics 1      | ACC1n               |                                 | 0     | 3       | +6    | dB     |
| ACC amplitude characteristics 2      | ACC2n               |                                 | -4    | 0       | +2    | dB     |
| ACC phase characteristics 1          | PCC1n               |                                 | -5    | 0       | +5    | deg    |
| ACC phase characteristics 2          | PCC2n               |                                 | -5    | 0       | +5    | deg    |
| Killer operating point               | E KILn              |                                 | -40   | -34     | -29   | dB     |
| Killer hysteresis                    | dE KILn             |                                 | 1     | 4       | 8     | dB     |
| RGB output level                     | E Bn                | Chroma 50%, Color typ           | 2.8   | 3.2     | 3.6   | Vp-p   |
| Maximum RGB output                   | EBMAXn              | Chroma 50%, Color max           | 4.5   | 5.0     | 5.5   | Vp-p   |
| APC pull-in range+                   | df scn+             |                                 | 350   |         |       | Hz     |
| APC pull-in range-                   | df scn-             |                                 |       |         | -350  | Hz     |
| Tint variable range                  | dP TI               |                                 | -33   |         | +50   | deg    |
| Demodulator output ratio R           | R/Bn                |                                 | 0.81  | 0.9     | 0.99  | double |
| Demodulator output ratio G           | G/Bn                |                                 | 0.24  | 0.30    | 0.36  | double |
| Demodulation angle RB                | RBn                 |                                 | 95    | 105     | 115   | deg    |
| Demodulation angle GB                | GBn                 |                                 | -130  | -120    | -110  | deg    |
| [RGB block]                          |                     |                                 |       |         |       | 0      |
| OSD input level                      | E OSD               | Typical input, 100% white level |       | 0.7     |       | Vp-p   |
| OSD input DC voltage                 | V OSD               | No signal                       | 2.9   | 3.2     | 3.5   | V      |
| F-BLK input threshold level          | V <sub>28</sub> TH  |                                 | 0.8   | 1.0     | 1.2   | V      |
| OSD output pedestal level            | V OSDC              |                                 | -0.3  | 0       | +0.3  | Vp-p   |
| OSD output MAX                       | E OSD max           |                                 | 4.3   | 4.8     | 5.3   | Vp-p   |
| OSD output MIN                       | E OSD min           |                                 | 0.3   | 0.6     | 0.9   | Vp-p   |
| OSD signal frequency characteristics | BW OSD              |                                 | 5     | 7       | 5.0   | MHz    |
| TV-OSD crosstalk (R, G, B)           | C TTVY              |                                 | 50    |         |       | dB     |
| OSD-TV crosstalk (R, G, B)           | C TOSDC             |                                 | 40    |         |       | dB     |
| Teletext inter channel CH crosstalk  | C TOSD              |                                 | 30    |         |       | dB     |
| [DEF block]                          | 0.000               |                                 | 00    |         |       | 30     |
| Horizontal free-running frequency 50 | TVFREE50            |                                 | 312   | 312.5   | 313   | н      |
| Horizontal free-running frequency 60 | TVFREE60            |                                 | 262   | 262.5   | 263   | н      |


| Parameter S                                                     | ymbol              | Conditions                | Ratings |      |       | Unit |
|-----------------------------------------------------------------|--------------------|---------------------------|---------|------|-------|------|
| Falameter S                                                     | ymbol              | Conditions                | min t   | ур   | max   | Unit |
| Horizontal sync maximum cycle 50                                | TV MAX50           | Vertical sync signal only | 356.5   | 357  | 357.5 | Н    |
| Horizontal sync maximum cycle 60                                | TV MAX60           | Vertical sync signal only | 296.5   | 297  | 297.5 | Н    |
| Horizontal sync minimum cycle 50                                | TV MIN50           |                           | 268.5   | 269  | 269.5 | Н    |
| Horizontal sync minimum cycle 60                                | TV MIN60           |                           | 224.5   | 225  | 225.5 | Н    |
| Horizontal blanking peak value                                  | VHVBL              |                           |         | 0.6  | 1.0   | V    |
| Horizontal blanking pulse width 50                              | PWBLK50            |                           | 23      | 23.5 | 24    | Н    |
| Horizontal blanking pulse width 60                              | PWBLK60            |                           | 19      | 19.5 | 20    | Н    |
| Horizontal blanking pulse width                                 | PWVOUT             |                           | 8       | 8.5  | 9     | Н    |
| Horizontal output voltage H                                     | V <sub>OUT</sub> H |                           | 5.3     | 5.6  | 5.9   | V    |
| Horizontal output voltage M                                     | VOUTM              |                           | 4.0     | 4.3  | 4.6   | V    |
| Horizontal output voltage L                                     | VOUTL              |                           |         | Ì    | 0.3   | V    |
| Vertical external trigger load resistance                       | R <sub>TR</sub>    |                           | 3.0     | 4.7  | Ī     | kΩ   |
| Vertical automatic sync stop voltage                            | VSAS               |                           |         | 1.4  | 1.9   | V    |
| Vertical AFC gate release voltage                               | V <sub>GS</sub>    |                           |         | 2.0  | 2.5   | V    |
| Horizontal output start $V_{CC}$ voltage                        | S <sub>VV</sub>    |                           |         | 4.2  | 4.7   | V    |
| Vertical free-run frequency deviation                           | ΔfH                |                           | -150    | 0    | 150   | Hz   |
| Dependence of vertical free-run frequency<br>on V <sub>CC</sub> | $\Delta fH/V_{CC}$ |                           |         | 2    |       | Hz   |
| Vertical pull-in range                                          | fHPULL             |                           | ±450    |      |       | Hz   |
| Vertical output start V <sub>CC</sub> voltage                   | S <sub>HV</sub>    |                           |         | 4.8  | 5.2   | V    |
| AFC2 FBP peak value H                                           | FBPH               |                           | 6.0     | 6.5  | 7.0   | V    |
| AFC2 FBP peak value M                                           | F <sub>BPM</sub>   |                           | 3.2     | 3.7  | 4.2   | V    |
| AFC2 FBP peak value L                                           | F <sub>BPL</sub>   |                           | -0.3    | 0.2  | 0.7   | V    |
| Vertical output pulse width                                     | PWHOUT             |                           | 21.8    | 23.8 | 25.8  | μs   |
| Vertical output phase max                                       | HPMAX              |                           | 14      | 17   |       | μS   |
| Vertical output phase center                                    | HPCEN              |                           | 4.8     | 5.8  | 6.8   | μs   |
| Vertical output phase min                                       | HPMIN              |                           |         | 3.8  | 4.8   | μs   |
| Burst gate pulse width                                          | P <sub>WBGP</sub>  |                           | 3       | 4    | 5     | μs   |
| Burst gate pulse phase                                          | T <sub>dBGP</sub>  |                           | -0.2    | 0.3  | 0.8   | μS   |
| 50/60 output voltage 50                                         | V <sub>50</sub>    |                           |         | 1.1  | 1.5   | V    |
| 50/60 output voltage 60                                         | V <sub>60</sub>    |                           | 3.8     | 4.1  |       | V    |
| 50/60 input voltage 50                                          | V <sub>IN</sub> 50 |                           | 0.5     |      |       | V    |
| 50/60 input voltage 60                                          | V <sub>IN</sub> 60 |                           |         |      | 7.0   | V    |
| SECAM V pulse peak value                                        | SVH                |                           | 1.8     | 2.2  | 2.6   | V    |
| SECAM V pulse width                                             | SVW                |                           | 11.0    | 11.5 | 12.0  | н    |

## Package Dimensions

unit : mm 3128



**Block Diagram and Measurement Circuit Diagram** 



#### VIF Input Signals and Test Conditions

- 1. All input signals must be applied to VIF IN shown in the test circuit diagram.
- 2. The indicated voltage values of the input signals are all measured at VIF IN shown in the test circuit diagram.
- 3. All switches must be set to OFF unless otherwise specified.
- 4. All VRs must be set to their center position unless otherwise specified.
- 5. The input signals and their levels are summarized below.

| Input Signals | Waveform                        | Conditions                                                                          |
|---------------|---------------------------------|-------------------------------------------------------------------------------------|
| SG1           | CW<br>Signal level<br>dBμ<br>AM | 38.9MHz or variable frequency<br>38.9MHz, 40% or 78% MOD                            |
| SG2           | Signal level dBµ                | 38.9MHz, 87.5% VIDEO MOD<br>10-step waveform (subcarrier : 4.43MHz) standard signal |
| SG3           | 34.                             | 47MHz                                                                               |
| SG4           | 33.                             | 4MHz                                                                                |
| SG5           | Cw                              | Sweep signal, center frequency = 38.9MHz                                            |

#### SIF Block Input Signal and Test Conditions

- 1. The SIF block input signal must be applied to SIF IN shown in the test circuit diagram.
- 2. The indicated voltage value of the input signal is measured at SIF IN shown in the test circuit diagram.
- 3. All switches must be set to OFF unless otherwise specified.
- 4. All VRs must be set to their center position unless otherwise specified.
- 5. The input signals and their levels are summarized below.

| Input Signals | Waveform                        | Conditions                          |
|---------------|---------------------------------|-------------------------------------|
| SG1           | 5.5                             | MHz, $\Delta f = \pm 30 \text{kHz}$ |
| (SIF IN)      | FM<br>Signal level<br>dBµ<br>AM | 5.5MHz, 30% MOD                     |

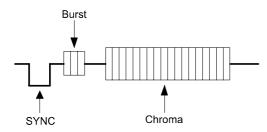
| Parameter S               | ymbol                  | Test   | Input<br>symbol              | Test method                                                                |           |          |
|---------------------------|------------------------|--------|------------------------------|----------------------------------------------------------------------------|-----------|----------|
|                           |                        | point  | Symbol                       |                                                                            | TPO-2 T   | PZ-46    |
| [VIF block]               | V 11 <b>T</b>          | DO 50  | 001                          | Management that have been that TDO 50 waiting a                            | 7.0)/     | 0        |
| RF AGC voltage max        | V <sub>50</sub> Н Т    | PO-50  | SG1,<br>fp = 38.9MHz cw,     | Measure the level at TP0-50 using a DC digital voltmeter.                  | 7.8V      | Open     |
|                           |                        |        | 85dBµ                        | , i i i i i i i i i i i i i i i i i i i                                    |           |          |
| RF AGC voltage min        | V <sub>50</sub> L      | TPO-50 | Same as above                | Same as above                                                              | 0         | Open     |
| Input sensitivity         | V <sub>I</sub> TPO     | -8     | SIG1                         | Monitor the level at TP0-8 using an                                        | VR center | Open     |
|                           |                        | +100k  | fp = 38.9MHz                 | oscilloscope with a resistor of $100k\Omega$                               |           |          |
|                           |                        |        | fm = 400Hz                   | connected to TP0-8.                                                        |           |          |
|                           |                        |        | AM = 40%                     | Measure the VIF input level at which                                       |           |          |
|                           |                        |        | mod                          | the 400Hz demodulation signal level becomes 0.8Vp-p.                       |           |          |
| AGC range                 | GR                     | TPO-8  | Same as above                | Monitor the level at TP0-8 using an                                        | VR center | 7.8V     |
| i co i allgo              |                        |        |                              | oscilloscope and measure the VIF input                                     |           | 1101     |
|                           |                        |        |                              | level at which the 400Hz demodulation                                      |           |          |
|                           |                        |        |                              | signal level becomes 0.8Vp-p. Assign                                       |           |          |
|                           |                        |        |                              | the measured value to $V_{I}$ .                                            |           |          |
|                           |                        |        |                              | GR = 20log (VI'/VI) [dB]                                                   |           |          |
| Maximum allowable input   | V <sub>I</sub> max T   | PO-8   | SG1                          | Increase the VIF input relative to the                                     | VR center | Open     |
|                           |                        |        | fp = 38.9MHz,                | output level at TO0-8 when the VIF                                         |           |          |
|                           |                        |        | fm = 15kHz,<br>AM = 78% mod  | input is 80dBµ and measure the VIF input level at which the output level   |           |          |
|                           |                        |        | / im = 7 0 /0 mou            | increases by 1dB.                                                          |           |          |
| No-signal video output    | V <sub>8</sub>         | TPO-8  | No-signal                    | Measure the level at TO0-8 using a DC                                      | VR center | 7.8V     |
| voltage                   | Ũ                      |        | _                            | digital voltmeter.                                                         |           |          |
| Sync signal tip voltage   | V <sub>8</sub> TIP TPO | -8     | SG1,                         | Same as above                                                              | VR center | Open     |
|                           |                        |        | fp = 38.9MHz                 |                                                                            |           |          |
| N/2 1 / / // // /         | 1/0 TD0                |        | cw, 80dΒμ                    |                                                                            |           |          |
| Video output amplitude    | VO <sub>8</sub> TPO    | -8     | SIG                          | Monitor the level at TP0-8 using an oscilloscope and measure the p-p       | VR center | Open     |
|                           |                        |        | fp = 38.9MHz,<br>fm = 15kHz, | value of the 15kHz demodulation                                            |           |          |
|                           |                        |        | AM = 78% MOD                 | waveform.                                                                  |           |          |
|                           |                        |        | 80dBμ                        |                                                                            |           |          |
| Black noise threshold     | VBTH TPO               | -8     | SG1                          | Connect an oscilloscope to TP0-8 and                                       | VR center | Variable |
| voltage                   |                        |        | fp = 38.9MHz                 | input a sweep signal to the VIF input.                                     |           |          |
|                           |                        |        | fm = 400Hz                   | Apply voltage to TPZ-46 externally and                                     |           |          |
|                           |                        |        | AM 78% MOD                   | adjust it as shown below.                                                  |           |          |
|                           |                        |        |                              |                                                                            |           |          |
|                           |                        |        |                              | Clamp level                                                                |           |          |
|                           |                        |        |                              | VBTH VBTH                                                                  |           |          |
|                           |                        |        |                              |                                                                            |           |          |
| Black noise clamp voltage | VBCL                   | TPO-8  | Same as above                | Measure the level at clamp voltage of                                      | VR center | Variable |
|                           |                        |        |                              | shown above.                                                               |           |          |
| Video S/N                 | S/N                    | TPO-8  | SG1,                         | Using an RMS voltmeter, measure a                                          | VR center | Open     |
|                           |                        |        | fp = 38.9MHz<br>cw, 80dBμ    | noise voltage generated at TO0-8<br>through a band-pass filter of 10kHz to |           |          |
|                           |                        |        | τω, ουασμ                    | 5MHz.                                                                      |           |          |
|                           |                        |        |                              | $S/N = 20\log(1.43 (Vp-p) / noise voltage)$                                |           |          |
|                           |                        |        |                              | (Vrms) ) [dB]                                                              |           |          |
| 1.07MHz beat level        | l1.07                  | TPO-8  | SG1,                         | Mix the SG1 signal, SG3 signal, and                                        | VR center | Variable |
|                           |                        |        | fp = 38.9MHz,                | SG4 signal and input the mixed signal                                      |           |          |
|                           |                        |        | cw, 80dΒμ                    | to VIF IN. (The level at VIF IN must be                                    |           |          |
|                           |                        |        | SG3,                         | as shown left.)                                                            |           |          |
|                           |                        |        | fc = 4.43MHz,                | Connect an oscilloscope and a                                              |           |          |
|                           |                        |        | cw, 70dBμ<br>SG4,            | spectrum analyzer to TP0-8 and<br>adjust the external voltage at TPZ-46    |           |          |
|                           |                        |        | fs = 5.5MHz,                 | so that the lower end of the                                               |           |          |
|                           |                        |        | cw, 70dBμ                    | demodulation waveformbecomes 3V.                                           |           |          |
|                           |                        |        |                              | Measure the differential component                                         |           |          |
|                           |                        |        |                              | between 4.43MHz and 1.07MHz using                                          |           |          |
|                           |                        |        | 1                            | the spectrum analyzer.                                                     | 1         |          |

| Doromotor S                    | vmbol              | Test  | Input                                                                               | Toot mothod                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Applied vo | oltage (V) |
|--------------------------------|--------------------|-------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Parameter S                    | ymbol              | point | symbol                                                                              | Test method                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TPO-2 T    | PZ-46      |
| Frequency characteristics      | fc                 | TPO-8 | SG2,<br>fp = 38.9MHz,<br>cw, 80dBμ<br>SG1,<br>fc = 38.8MHz to<br>25MHz, cw<br>66dBμ | Mix the SG1 signal and SG2 signal and<br>input the mixed signal to VIF IN. Set the<br>SG1 frequency at 38.8MHz and using<br>an oscilloscope adjust the external<br>voltage at TPZ-46 so that the output<br>level at TP0-8 becomes 3V.<br>And then lower the SG1 frequency until<br>the output level at TP0-8 becomes<br>0.35Vp-p. Measure the frequency at<br>that moment.<br>fc = 38.9-f [MHz]                                                                                   | VR center  | Variable   |
| Differential gain              | DG                 | TPO-8 | SG1,<br>fp = 38.9MHz,<br>staircase wave<br>AM = 87.5% MOD<br>80dBμ                  | Measure the level at TP0-8 using a vector scope.                                                                                                                                                                                                                                                                                                                                                                                                                                  | VR center  | Open       |
| Differential phase             | DP                 | TPO-8 | Same as above                                                                       | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VR center  | Open       |
| No-signal AFT voltage          | V <sub>7</sub>     | TPO-7 | No-signal                                                                           | Measure the level at TP0-7 using a DC digital voltmeter.                                                                                                                                                                                                                                                                                                                                                                                                                          | VR center  | 7.8V       |
| Maximum AFT voltage            | ∨ <sub>7</sub> н т | PO-7  | SG1,<br>fp = 38.9MHz<br>±1MHz, cw,<br>80dBμ                                         | Connect a DC digital voltmeter to<br>TO0-7 and vary the SG frequency<br>±1MHz tomeasure a maximum voltage.                                                                                                                                                                                                                                                                                                                                                                        | VR center  | Open       |
| Minimum AFT voltage            | V <sub>7</sub> L   | TPO-7 | Same as above                                                                       | Connect a DC digital voltmeter to<br>TO0-7 and vary the SG frequency<br>±1MHz to measure a minimum voltage.                                                                                                                                                                                                                                                                                                                                                                       | VR center  | Open       |
| AFT detection sensitivity      | Sf TPO             | -7    | SG1<br>fp = 38.9MHz,<br>±1MHz, cw,<br>80dBμ                                         | Connect a DC digital voltmeter to<br>TO0-7 and vary the SG frequency<br>±1MHz to measure frequency deviation<br>$\Delta f$ when the voltage changes from 2V<br>to 7V.<br>Sf = $\frac{5000(mV)}{\Delta f (kHz)}$ [mV/kHz]                                                                                                                                                                                                                                                          | VR center  | Open       |
| APC pull-in range (U)          | f <sub>PU</sub> T  | PO-8  | SG5<br>fp = 38.9MHz<br>5MHz cw,<br>50dB                                             | Connect an oscilloscope to TP0-8 and<br>set the SG5 frequency at a frequency<br>higher than 38.9MHz to unlock the PLL.<br>(The PLL is assumed to be unlocked<br>when a beat signal appears at TO0-8.)<br>When the SG5 frequency is lowered,<br>the PLL is unlocked again.<br>Measure the frequency at that moment<br>and assign the measured frequency to<br>$f_{PU}$ . For $f_{PL}$ , set the SG5 frequency at<br>a frequency lower than 38.9MHz and<br>make measurements in the | VR center  | Open       |
| APC pull-in range (L)          | fPL                | TPO-8 | Same as above                                                                       | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VR center  | Open       |
| VCO1 maximum variable<br>range | ∆fU<br>∆fL         | TPO-8 | No-signal                                                                           | Connect a spectrum analyzer to TO0-8<br>and check to see that the VCO<br>oscillation frequency is 9MHz. And then<br>apply DC voltage to TPZ-4A and vary it.<br>Assign the frequency max. at TO0-8 to<br>fU max. and the frequency min. at<br>TP0-8 to fL min.<br>$\Delta$ fU = fUmax-38.9MHz<br>$\Delta$ fL = 38.9MHz-fLmin                                                                                                                                                       | VR center  | 7.8V       |

| Parameter S                       | ymbol             | Test     | Input                                                                           | Test method                                                                                                                                                                                                                                                                                                                | Applied vo | ltage (V) |
|-----------------------------------|-------------------|----------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Falameter 5                       | yinboi            | point    | symbol                                                                          | rest method                                                                                                                                                                                                                                                                                                                | TPO-2 T    | PZ-46     |
| VCO1 control sensitivity          | β1                | TPO-8    | No-signal                                                                       | Connect a spectrum analyzer to TP0-8<br>and check to see that the VCO<br>oscillation frequency is 38.9MHz.<br>And then apply DC voltage to TPZ-3A<br>and vary it from 3.2V to 2.8V.<br>Assign the frequency range at that<br>moment to $\Delta f$ .<br>$\beta = \frac{\Delta f k H z}{400 m V}$                            | VR center  |           |
| [SIF block]                       |                   |          |                                                                                 | I                                                                                                                                                                                                                                                                                                                          |            |           |
| SIF limiting sensitivity          | Vilim             | TPO-52   | SG1<br>fo = 5.5MHz<br>fm = 400Hz<br>FM : ∆f = ±30kHz                            | With the SG1 output level being<br>100dB $\mu$ , measure the level at TP0-52<br>using an AC voltmeter.<br>And then lower the SG1 output level<br>and measure the SIF input level when<br>the reading on the AC voltmeter drops<br>3dB.<br>(AC voltmeter input resistance = 1M $\Omega$ )                                   | VR center  | 7.8V      |
| FM detection sensitivity          | V <sub>52</sub> Т | PO-52    | Same as above<br>100dBµ                                                         | Measure the level at TP0-52 using an AC voltmeter. (AC voltmeter input resistance = $1M\Omega$ )                                                                                                                                                                                                                           | VR center  | 7.8V      |
| AM rejection ratio                | AMR T             | PO-52    | SG1<br>fo = 5.5MHz<br>fm = 400Hz<br>AM = 30% MOD<br>100dBμ                      | Measure the level at TP0-52 using an<br>AC voltmeter and assign the measured<br>value to V52'.<br>(Input resistance=1MHz) AMR is<br>calculated relative to the VO1 value of<br>Test No.2 as shown below.<br>$AMR = \frac{V52(mVrms)}{V52'(mVrms)} [dB]$                                                                    | VR center  | 7.8V      |
| FM detection output<br>distortion | THD T             | PO-52    | SG1<br>fo = 5.5MHz<br>fm = 400Hz<br>FM : $\Delta f = \pm 30$ kHz<br>100dB $\mu$ | Measure the distortion at TP0-52 using a distortion meter.                                                                                                                                                                                                                                                                 | VR center  | 7.8V      |
| SIF S/N                           | S/N<br>(SIF)      | TPO-52 S | G1<br>fo = 5.5MHz, cw                                                           | Measure the level at TP0-52 using an<br>AC voltmeter. Assign the measured<br>value to Vn.<br>(Use a filter of 20Hz to 20kHz.)<br>S/N = 20logV52/Vn (dB)                                                                                                                                                                    | VR center  | 7.8V      |
| FM detection range                | WFM               | TPO-52   | SG1<br>fo = 5.5MHz,<br>$\Delta f = \pm 3$ kHz<br>fm = 400Hz                     | Connect an oscilloscope to TP0-52 and<br>lower the SG1 frequency to measure<br>the lower pull-in characteristic.<br>Assign the measured value to fL.<br>In the same manner, raise the SG1<br>frequency to measure the upper pull-in<br>characteristic.<br>Assign the measured value to fU.<br>WFM : fL≤4.0MHz<br>fU≥7.0MHz | VR center  | 7.8V      |
| FM detection output<br>variation  | ΔV <sub>O</sub> T | PO-52    | SG1<br>fo = 5.5MHz,<br>$\Delta f = \pm 30$ kHz<br>fm = 400Hz                    | Connect an AC voltmeter to TP0-52<br>and vary the SG1 frequency from<br>4.5MHz to 6.5MHz. Take Vo as the<br>reading on the AC voltmeter.<br>$\Delta V_{O}$ : -1.5dB $\leq$ Vo $\leq$ 1.5dB                                                                                                                                 | VR center  | 7.8V      |

| Parameter S       | . make al | Test   | Input                                                              | Test method                                                                                                                                                                                           | Applied vo | ltage (V) |
|-------------------|-----------|--------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Parameter S       | ymbol     | point  | symbol                                                             | Test method                                                                                                                                                                                           | TPO-2 T    | PZ-46     |
| SIF signal level  | Sout      | TPO-8  | SG1<br>fp = 38.9MHz<br>cw 80dBμ<br>SG2<br>fp = 33.4MHz<br>cw 60dBμ | Mix SG1 and SG2 and enter the mixed<br>signal to VIF IN.<br>Connect the spectrum analyzer to<br>TPO-8 and measure the 5.5MHz level.                                                                   | VR center  | OPEN      |
| [AUDIO SW block]  |           |        |                                                                    | •                                                                                                                                                                                                     |            |           |
| AF EXT gain       | GAF       | TPO-51 | SG1<br>fo = 400Hz<br>Vf = 500mVrms                                 | Apply the DC voltage so that I-1A<br>becomes EXT.<br>Enter SG1 from Z-12 and connect the<br>AC voltmeter to TPO-51.<br>Measure the 400Hz level and set it as<br>V51.<br>GAF = 20log V51/500mVrms      | VR center  | 7.8V      |
| AF EXT distortion | THDAF     | TPO-51 | SG1<br>fo = 400Hz<br>Vf = 500mVrms                                 | Apply the DC voltage so that I-1A<br>becomes EXT.<br>Enter SGI from Z-12 and connect a<br>distortion factor meter to TPO-51.<br>Measure the distortion factor in this<br>case.<br>B.P.F 20Hz to 20kHz | VR center  | 7.8V      |

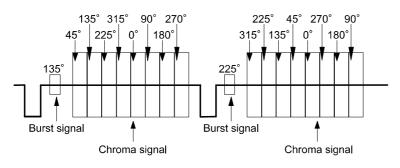
#### Description of LA7688B chroma block input waveforms

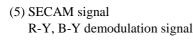

1. The color bar signals which are input from pin 10 and pin 14 are a standard composite video signal.

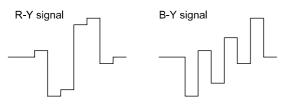
(1) Color bar : 0dB

Composite video signal with 1Vp-p color bar

(2) Monochrome signal


[PAL] SYNC : 0.3Vp-p Burst : 300mVp-p Chroma : 600mVp-p [NTSC] SYNC : 0.3Vp-p Burst : 286mVp-p Chroma : 572mVp-p





(3) Burst only

Signal obtained by eliminating the chroma component from the signal of (2)

(4) 8-division signal







2. The chroma signal which is input from pin 13 (S-CHROMA IN) is assumed to be a PAL chroma signal.

#### INT/EXT SW block, SAB block, VIDEO SW block, FILTER block Input signals and test conditions

Set up the following conditions unless otherwise specified for each test item. (VIF, SIF blocks : No signal)

1. In put signals

INT SECA --- INT IN (pin 10) 1Vp-p : SECAM color bar

INT PAL --- INT IN (pin 10) 1Vp-p : PAL color bar

EXT PAL --- EXT IN (pin 14) 1Vp-p : PAL color bar

EXT SECA --- EXT IN (pin 14) 1Vp-p : SECAM color bar

EXT NT --- EXT IN (pin 14) 1Vp-p : NTSC color bar

AUDIO IN --- EXT AUDIOIN (12pin) 1Vrms SIN wave (1kHz)

2. S-CHROMA IN (pin 13) : DC5V+Chroma signal

3. VR control position : Contrast VR-4V, sharpness VR-2V, others-control center

4. V CC, ICC conditions :  $V_{CC} = 7.8V$ , ICC = 12mA.

| Parameter S                  | ymbol                | Test<br>point | Input<br>conditions | Test method                                                                    | V-SW<br>Pin 1 |
|------------------------------|----------------------|---------------|---------------------|--------------------------------------------------------------------------------|---------------|
| [INT/EXT SW block]           |                      |               |                     |                                                                                |               |
| AFT EXT gain                 | GAF                  | O-51          | EXT PAL<br>I-12     | Measure the gain difference between input and output.<br>(f = 400Hz, 500mVrms) | 3.3V          |
| INT/EXT<br>crosstalk (AUDIO) | THDAF O-             | 51            | EXT PAL<br>I-12     | Measure the distortion factor of the output.<br>(f = 400Hz, 500mVrms)          | 3.3V          |
| System SW I-SE               | V <sub>1</sub> TH1 O | -16A<br>O-39  | INT SECA            | Check to see that the selected signal is INT-SECAM.                            | 0V<br>1.2V    |
| System SW I-P/N              | V <sub>1</sub> TH2 O | -16A<br>O-39  | INT PAL             | Check to see that the selected signal is INT-PAL.                              | 1.7V<br>2.6V  |
| System SW E-P/N              | V <sub>1</sub> TH3 O | -16A<br>O-39  | EXT PAL             | Check to see that the selected signal is EXT-PAL.                              | 2.9V<br>3.8V  |
| System SW E-SE               | V <sub>1</sub> TH4 O | -16A<br>O-39  | EXT SECA            | Check to see that the selected signal is EXT-SECAM.                            | 4.1V<br>5V    |

| Parameter S                        | ymbol | Test<br>point | Input<br>conditions    | Test method                                                                                                                                                          | Contrast | Sharpness | Bright |
|------------------------------------|-------|---------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------|
| Y signal frequency                 | BW3   | O-32          | f = variable           | Measure the frequency at which the                                                                                                                                   | 4V 1.8V  |           | 2.5V   |
| characteristics (3)<br>(NTSC MODE) |       |               | 100mVp-p               | output level drops by 3dB relative to that<br>when f = 100kHz is set.                                                                                                |          |           |        |
| DC transmission<br>ratio           | DVAPL | O-32          | White<br>100%<br>black | Measure the output pedestal level<br>variations when a white 100% signal and<br>a black signal are input.                                                            | 4V 2V    |           | 2.5V   |
| Black expansion<br>threshold       | BSTH  | O-33          | I-14                   | Set S32 to "B".<br>Connect an oscilloscope to 0-33 and<br>measure the level of 5IRE expansion<br>when the RAMP signal APL is changed<br>for a range from 10% to 90%. | 4V 2V    |           | 2.5V   |
| Maximum black<br>expansion gain    | Bsmax | O-33          | I-14                   | Set S32 to "B".<br>Connect an oscilloscope to 0-33 and<br>measure the change in the pedestal level<br>when the RAMP signal APL is changed to<br>90%.                 | 4V 2V    |           | 2.5V   |

| Parameter S                              | ymbol               | Test<br>point       | Input<br>signal            | Test method                                                                                                                                                                                                                            | COLOR VR                                         | CONTRAST | TINT VR |
|------------------------------------------|---------------------|---------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|---------|
| RGB output DC difference voltage         | DVC O-              | 33<br>O-34<br>O-35  | (3)                        | Obtain the DC difference voltage of each<br>output measured for Parameter "RGB<br>difference output DC voltage".                                                                                                                       | 2.5V                                             | 4V       | 0V      |
| RGB output<br>residual harmonic<br>level | Ecar2 O-3           | 3<br>O-34<br>O-35   | (3)                        | Measure the residual harmonic level for<br>the scanning period each of RGB<br>difference outputs.<br>(SHARP : 0V)                                                                                                                      | 2.5V 4V                                          |          | 0V      |
| RGB output carrier<br>leak               | Ecar O              | -33<br>O-34<br>O-35 | (2)                        | Measure the residual carrier level for the<br>scanning period each of RGB difference<br>outputs.<br>(SHARP : 0V)                                                                                                                       | 2.5V 4V                                          |          | 0V      |
| fsc output pin DC voltage                | V <sub>27</sub> OPN | Z-27B               | (3)                        | Measure the DC voltage.                                                                                                                                                                                                                | 2.5V                                             | 4V       | 0V      |
| fsc output level P                       | V <sub>27</sub> ACP | Z-27A               | (3)                        | Measure the AC voltage.                                                                                                                                                                                                                | 2.5V                                             | 4V       | 0V      |
| fsc output level N                       | V <sub>27</sub> ACN | Z-27A               | (3)                        | Measure the AC voltage.                                                                                                                                                                                                                | 2.5V                                             | 4V       | 3V      |
| DEF COIN-L                               | V <sub>27</sub> LO  | Z-27B               | No signal                  | Measure the DC voltage.                                                                                                                                                                                                                | 2.5V                                             | 4V       | 0V      |
| Xtal SW threshold                        | V <sub>27</sub> A   | Z-27A               | No signal                  | Measure the frequency voltage.                                                                                                                                                                                                         | 2.5V                                             | 4V       | 0V      |
| PAL SW threshold                         | V <sub>18</sub> PTH | O-35                | (1) PAL                    | Measure the AC voltage.                                                                                                                                                                                                                | 2.5V                                             | 4V       | 0.6V    |
| NT SW threshold                          | V <sub>18</sub> NTH | O-35                | (1) NT                     | Measure the AC voltage.                                                                                                                                                                                                                | 2.5V                                             | 4V       | 0.9V    |
| [Chroma block PAL]                       | 10                  |                     | ( )                        |                                                                                                                                                                                                                                        |                                                  |          |         |
|                                          | ACC1p O-3           | 3                   | (1)<br>0dB/6dB             | Measure the output's Vp-p value.<br>After chaning the input signal level from<br>0dB to 6dB, measure the B output's Vp-p<br>value and calculate the ratio in dB to the B<br>output's Vp-p value when the input signal<br>level is 0dB. | 2.5V                                             | 4V       | 0V      |
|                                          | ACC2p O-3           | 3                   | (1)<br>-20dB               | In the same manner, obtain the amplitude variations when the input signal level is changed from 0dB to -20dB.                                                                                                                          | 2.5V 4V                                          |          | 0V      |
| Killer operating point                   | EKILp               | O-33                | (1) : Level<br>variable    | Attenuate the input signal level from 0dB<br>until there comes a point where the B<br>output ceases ; that point is the killer<br>operating point.                                                                                     | 2.5V 4V                                          | 2.5V 4V  |         |
| Killer hyesteresis                       | DEKILp              | O-33                | (1) : Level<br>variable    | Measure the difference between killer-on level and killer-off level.                                                                                                                                                                   | 2.5V 4V                                          |          | 0V      |
| RGB output level                         | Ebp                 | O-33                | (1) Y-OFF<br>Chroma<br>50% | Measure the Vp-p value of the B output's<br>signal component.<br>BRIGHT : 5V                                                                                                                                                           | the Vp-p value of the B output's 2.5V 4V ponent. |          | 0V      |
| Maximum RGB<br>output                    | EBMAXp O            | -33                 | (1) Y-OFF<br>Chroma<br>50% | Measure the Vp-p value of the B output's<br>output amplitude.<br>BRIGHT : 5V                                                                                                                                                           | 5V 4V                                            |          | 0V      |
| APC pull-in range                        | Dfscp+<br>Dfscp-    | O-27A (1            |                            | Vary the subcarrier frequency to measure<br>the pull-in frequency and calculate the<br>difference from fsc.                                                                                                                            | 2.5V 4V                                          |          | 0V      |

### LA7688B

| Deremeter C                      | , make al | Test           | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test method                                                                                                                                                                                                                                                                                                    | COLOR VR | CONTRACT |         |
|----------------------------------|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|
| Parameter S                      | ymbol     | point          | signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test method                                                                                                                                                                                                                                                                                                    | COLOR VR | CONTRAST | TINT VR |
| Demodulator<br>output ratio      | B/RP O    | -33<br>O-35    | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calculate the ratio between output<br>amplitude BM corresponding to 0<br>degrees and 180 degrees of the chroma<br>input in the B output and output amplitude<br>RM corresponding to 90 dgrees and 270<br>degrees of the chroma input in the R                                                                  | 2.5V     | 4V       | OV      |
|                                  | G/RP O-3  | 4<br>O-35      | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | output.<br>Measure the output amplitude<br>corresponding to 90 degrees and 270<br>degrees of the chroma input in the G<br>output and calculate the ratio to the above<br>RM.                                                                                                                                   | 2.5V 4V  |          | 0V      |
|                                  | G/BP O-3  | 3<br>O-34      | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Measure the output amplitude<br>corresponding to 0 dgrees and 180<br>degrees of the chroma input in the G<br>output and calculate the ratio to the above<br>BM.                                                                                                                                                | 2.5V 4V  |          | 0V      |
| Demodulation<br>angle            | ∠RBP O    | -33<br>O-35    | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Take Ba and Bb as the output amplitudes<br>corresponding to the first and the third of<br>the chroma 8-division signal inputs in the<br>B output respectively and calculate by<br>using the following formula. For the R<br>output also, calculate with Ra and Rb.<br>$Tan^{-1}(Bb/Ba) +$<br>$Tan^{-1}(Rb/Ra)$ | 2.5V 4V  |          | OV      |
| Chroma block NTSC                | ]         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                |          |          |         |
|                                  | 3         | (1)<br>0dB/6dB | Adjust the relative phase of the SG's<br>chroma and burst so that the B output<br>assumes a horizntal waveform. And then<br>measure the B output's Vp-p value.<br>After changing the input signal level from<br>OdB to 6dB, adjust the relative phase of<br>the SG's chroma and burst again when<br>the B-Y output assumes a horizontal<br>waveform ; that adjusted phase amount is<br>PCC1n. Measure the B output's Vp-p at<br>that moment and calculate the ratio in dB<br>to the B output's Vp-p when the input<br>signal level is 0dB ; that ratio is ACC1n. | 2.5V 4V                                                                                                                                                                                                                                                                                                        |          | 3V       |         |
|                                  | ACC2n O-3 | 3              | (1)<br>-20dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | In the same manner as above, measure<br>the variations of the amplitude and phase<br>when the input signal level is changed<br>from 0dB to -20dB.                                                                                                                                                              | 2.5V 4V  |          | 3V      |
| ACC phase<br>characteristics 1/2 | PCC1n O-3 | 3              | (1)<br>0dB/6dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Same as for ACC1.                                                                                                                                                                                                                                                                                              | 2.5V     | 4V       | 3V      |
|                                  | PCC2n O-3 | 3              | (1)<br>-20dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Same as for ACC2.                                                                                                                                                                                                                                                                                              | 2.5V     | 4V       | 3V      |
| Killer operating<br>point        | EKILn     | O-33           | (1) : Level<br>variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Attenuate the input signal level from 0dB<br>until there comes a point where the B<br>output ceases ; that point is the killer<br>operating point.                                                                                                                                                             | 2.5V 4V  |          | 3V      |
| Killer hysteresis                | DEKILn    | O-33           | (1) : Level<br>variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Measure the difference between killer-on level and killer-off level.                                                                                                                                                                                                                                           | 2.5V 4V  |          | 3V      |
| RGB output level                 | EBn       | O-33           | (1)<br>Y-OFF<br>chroma<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Adjust the SG so that the B output<br>assumes a horizontal waveform and<br>measure the Vp-p value of the B output's<br>signal component.                                                                                                                                                                       | 2.5V 4V  |          | 3V      |

## LA7688B

|                     |          | Test     | Input     | <b>—</b>                                    | 0010-07   | 0.01/77  | <b></b> · · · · |
|---------------------|----------|----------|-----------|---------------------------------------------|-----------|----------|-----------------|
| Parameter S         | ymbol    | point    | signal    | Test method                                 | COLOR VR  | CONTRAST | TINT VR         |
| Maximum RGB         | EBMAXn O | -33      | (1)       | Adjust the SG so that the B output          | 5V        | 4V       | 3V              |
| output              |          |          | Y-OFF     | assumes a horizontal waveform and           |           |          |                 |
|                     |          |          | chroma    | measure the Vp-p value of the B output's    |           |          |                 |
|                     |          |          | 50%       | signal component.                           |           |          |                 |
|                     |          |          |           | BRIGHT : 5V                                 |           |          |                 |
| APC pull-in range   | Dfscn+   | O-27A (1 |           | Vary the subcarrier frequency to measure    | 2.5V 4V   |          | 3V              |
|                     | Dfscn-   |          | fsc       | the pull-in frequency and calculate the     |           |          |                 |
|                     |          |          | frequency | difference from fsc.                        |           |          |                 |
|                     |          |          | variable  |                                             |           |          |                 |
| Tint center         | TCEN     | O-33     | (1)       | Make the relative phase of the SG's         | 2.5V 4V   |          | 3V              |
|                     |          |          | Y-OFF     | chroma and burst normal.                    |           |          |                 |
|                     |          |          |           | Adjust the relative phase of the SG's       |           |          |                 |
|                     |          |          |           | chroma and burst so that the B output       |           |          |                 |
|                     |          |          |           | assumes an oblique linear waveform.         |           |          |                 |
|                     |          |          |           | That phase amount adjusted relative to      |           |          |                 |
|                     |          |          |           | the normal mode is TCEN.                    |           |          |                 |
| Tint variable range | dPTIN    | O-33     | (1)       | Adjust the relative phase of the SG's       | 2.5V 4V   |          | 1V              |
|                     |          |          | Y-OFF     | chroma and burst so that the B output       |           |          | ↑               |
|                     |          |          |           | assumes a horizontal waveform.              |           |          | 3V              |
|                     |          |          |           | (Tint VR : 2.5V) Set the tint VR at 5V and  |           |          | $\downarrow$    |
|                     |          |          |           | adjust the relative phase of the SG's       |           |          | 5V              |
|                     |          |          |           | chroma and burst so that the B-Y output     |           |          |                 |
|                     |          |          |           | assumes a horizontal waveform ; that        |           |          |                 |
|                     |          |          |           | phase amount is + $\Delta$ T.               |           |          |                 |
|                     |          |          |           | In the same manner, set the tint VR at 0V   |           |          |                 |
|                     |          |          |           | and obtain - $\Delta T$ .                   |           |          |                 |
| Demodulation        | R/Bn O-  | 33       | (2)       | Adjust the relative phase of the SG's       | Adjust 4V |          | 3V              |
| output ratio        |          | O-35     |           | chroma and burst so that the B output is    |           |          |                 |
|                     |          |          |           | maximized and adjust the color VR so        |           |          |                 |
|                     |          |          |           | that the B output becomes 2Vp-p.            |           |          |                 |
|                     |          |          |           | And then adjust the relative phase of the   |           |          |                 |
|                     |          |          |           | SG's chroma and burst so that the R         |           |          |                 |
|                     |          |          |           | output is maximized and measure the R       |           |          |                 |
|                     |          |          |           | output's Vp-p. Calculate the ratio to       |           |          |                 |
|                     |          |          |           | 2Vp-p. (R/B)                                |           |          |                 |
|                     | G/Bn O-3 | 3        | (2)       | In the same manner, calculate the           | Adjust 4V |          | 3V              |
|                     |          | 0-34     |           | demodulation output ratio between the G     |           |          |                 |
|                     |          |          | (-)       | output at TP33 and the B output. (G/B)      |           |          |                 |
| Demodulation        | ∠RBn O-  | 33       | (2)       | Adjust the relative phase of the SG's       | Adjust 4V |          | 3V              |
| angle               |          | O-35     |           | chroma and burst so that the B output       |           |          |                 |
|                     |          |          |           | becomes 0 at the demodulation output        |           |          |                 |
|                     |          |          |           | ratio R/B's color position. And then adjust |           |          |                 |
|                     |          |          |           | the relative phase of the SG's chroma       |           |          |                 |
|                     |          |          |           | and burat so that the R output becomes      |           |          |                 |
|                     | 100.5    |          | (0)       | 0 ; that phase amount is ∠RBn.              |           |          |                 |
|                     | ∠GBn O-3 | 3        | (2)       | In the same manner as above, measure        | Adjust 4V |          | 3V              |
|                     |          | O-35     |           | the G output and B output's demodulation    |           |          |                 |

#### **OSD** block Input signals and test conditions

Set up the following conditions unless otherwise specified for each test item. (VIF, SIF blocks : No signal)

- 1. INT IN (pin 10) : No signal
- 2. EXT IN (pin 14) : Input signal color bar : 0dB (PAL)
- 3. S-CHROMA IN (pin 13) : DC-sharp + chroma signal
- 4. SW conditions : EXT VIDEO selected. SW36 shorted (SW36 : ON)
- 5. VR control position : Contrast VR 4V, sharpness VR 2V, others control center
- 6. V<sub>CC</sub>, I<sub>CC</sub> conditions : V<sub>CC</sub> = 7.8V, I<sub>CC</sub> = 12mA
- 7. The OSD input waveform is such that :

(1) a pulse signal of blanking period 0V and scanning period 0.7V is input

(2) no signal

#### (3) a 100mVp-p AC sweep (100kHz to 10MHz) of blanking interval 0V and scanning period 0.35V is input

|                                            | 1 1                              |                         |                 |                                                                                                                               |          | 1         |          |
|--------------------------------------------|----------------------------------|-------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|
| Parameter S                                | ymbol                            | Test<br>point           | Input<br>signal | Test method                                                                                                                   | CONTRAST | BRIGHT VR | BLK IN   |
| [OSD block]                                |                                  | •                       | •               |                                                                                                                               | •        |           |          |
| OSD input level                            | E OSD                            | O-33                    | (1)             | Measure the DC voltage amplitude.                                                                                             | 4V       | 2.5V      | 2V       |
| OSD input DC voltage                       | V OSD                            | O-29B<br>O-30B<br>O-31B | (2)             | Measure the DC voltage.                                                                                                       | 4V       | 2.5V      | 2V       |
| F-BLK input<br>threshold level             | V <sub>28</sub> тн               | O-33                    | (2)             | Raise the voltage at I-28 from 0.5V until<br>the B output becomes OSD mode.<br>Measure the voltage at I-28 at that<br>moment. | 4V       | 2.5V      | Variable |
| OSD output<br>pedestal<br>difference       | V OSD R<br>V OSD G<br>V OSD B    | O-35<br>O-34<br>O-33    | (2)             | Measure the R, G, and B's DC voltage.                                                                                         | 4V       | 2.5V      | 2V       |
| OSD output max                             | E OSD R1<br>E OSD G1<br>E OSD B1 | O-35<br>O-34<br>O-33    | (1)             | Measure the R, G, and B's DC voltage amplitude.                                                                               | 5V 2.5V  |           | 2V       |
| OSD output min                             | E OSD R2<br>E OSD G2<br>E OSD B2 | O-35<br>O-34<br>O-33    | (1)             | Measure the R, G, and B's DC voltage amplitude.                                                                               | 0V 2.5V  |           | 2V       |
| OSD signal<br>frequency<br>characteristics | BW OSD                           | O-33                    | (3)             | Measure the frequency at which the<br>output level drops 3dB relative to that<br>when f = 100kHz is set.                      | 4V 2.5V  |           | 2V       |
| TV-OSD crosstalk<br>(C-Y)                  | C TTVR<br>C TTVG<br>C TTVB       | O-35<br>O-34<br>O-33    | (2)             | Measure the R, G, B, AC voltage.                                                                                              | 4V       | 2.5V      | 2V       |
| OSD-TV crosstalk<br>(C-Y)                  | C TOSDR<br>C TOSDG<br>C TOSDB    | O-35<br>O-34<br>O-33    | (3)             | Measure the R, G, B, AC voltage.                                                                                              | 4V       | 2.5V      | 0V       |
| OSD CH between<br>crosstalk (G-Y)          | C TOSD                           | O-34                    | (3)             | Measure the G AC voltage.                                                                                                     | 4V       | 2.5V      | 0V       |

#### Deflection block Input signals and test conditions

Set up the following conditions unless otherwise specified for each test item.

(VIF, SIF blocks : No signal)

- (I- 14A)
- 1. EXT VIDEO IN : Horizontal · vertical composite signal (1Vp-p, same as for video block, chroma block) • Horizontal sync signal only (0.5Vp-p, pulse width 4.7µs)

• Open

2. SW conditions : All SW's turned off unless otherwise specified

3. V CC, ICC conditions :  $V_{CC} = 7.8V$ , ICC = 12mA

|                                    | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | / 00          | r                                                  |                                                                                                                                                                                                                                                                                                           |                |      |
|------------------------------------|----------------------------------------------|---------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|
| Parameter S                        | ymbol                                        | Test<br>point | Input<br>signal                                    | Test method                                                                                                                                                                                                                                                                                               | SW20           | SW25 |
| [Deflection block]                 |                                              |               |                                                    |                                                                                                                                                                                                                                                                                                           |                |      |
| Vertical free-running period       | TV free<br>50                                | Z-20B I-1     | 4A :<br>No signal                                  | With Z-21 connected to GND, measure the vertical output period at Z-20B and calculate the ratio to the horizontal period.                                                                                                                                                                                 | OFF B          |      |
|                                    | TV free<br>60                                | Z-20B I-1     | 4A :<br>No signal                                  | With 7.8V applied to Z-21, measure the vertical<br>output period and calculate the ratio to the<br>horizontal period.                                                                                                                                                                                     | OFF B          |      |
| Vertical sync maximum period       | TV max50                                     | Z-20B         | I-14A :<br>Horizontal<br>sync signal               | With Z-21 connected to GND, measure the vertical<br>output period at Z-20B and calculate the ratio to the<br>horizontal period.                                                                                                                                                                           | OFF B          |      |
|                                    | TV max60                                     | Z-20B         | I-14A :<br>Horizontal<br>sync signal               | With 7.8V applied to Z-21, measure the vertical<br>output period and calculate the ratio to the<br>horizontal period.                                                                                                                                                                                     | OFF B          |      |
| Vertical sync minimum<br>period    | TV min50                                     | Z-20B<br>O-25 | I-14A :<br>Horizontal<br>sync signal               | Apply 8.5V and 0V to Z-27B and Z-21,<br>respectively. Turn off SW20 and make adjustments<br>so that the resistance between O-20 and GND<br>becomes $4.7k\Omega$ and then turn on SW20.<br>Calculate the ratio between the vertical output<br>period at Z-20B and the horizontal output period at<br>O-25. | OFF<br>→<br>ON | В    |
|                                    | TV min60                                     | Z-20B<br>O-25 | I-14A :<br>Horizontal<br>sync signal               | Apply 8.5V and 7.8V to Z-27B and Z-21,<br>respectively.<br>Make measurements in the same manner as for<br>TV min 50.                                                                                                                                                                                      | OFF<br>↓<br>ON | В    |
| Vertical blanking pulse peak value | VHVBL O                                      | -32           | I-14A :<br>Horizontal ·<br>vertical sync<br>signal | Measure the vertical blanking pulse peak value in<br>the video output at O-32.<br>(GND is assumed to be 0V.)                                                                                                                                                                                              | OFF B          |      |
| Vertical blanking pulse<br>width   | PW BLK50                                     | O-32          | I-14A :<br>Horizontal<br>sync signal               | With Z-21 connected to GND, measure the vertical<br>blanking pulse width in the video output at O-32<br>and calculate the ratio to the horizontal period.                                                                                                                                                 | OFF B          |      |
|                                    | PW BLK60                                     | O-32          | I-14A :<br>Horizontal<br>sync signal               | With 7.8V applied to Z-21, measure the vertical blanking pulse width in the video output at O-32 and calculate the ratio to the horizontal period.                                                                                                                                                        | OFF B          |      |
| Vertical output pulse width        | PWVOUT Z                                     | -20B          | I-14A :<br>Horizontal ⋅<br>vertical sync<br>signal | Measure the vertical output width at Z-20B and calculate the ratio to the horizontal period.                                                                                                                                                                                                              | OFF B          |      |

## LA7688B

| Parameter S                                                              | ymbol                  | Test                   | Input                                              | Test method                                                                                                                                                                                                                                                           | SW20           | SW25  |
|--------------------------------------------------------------------------|------------------------|------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| Vertical output voltage                                                  | V OUT H                | point<br>Z-20B I-1     | signal<br>4A :                                     | Measure the voltage for each vertical output at                                                                                                                                                                                                                       | OFF            | 30020 |
| Yonica bapa Yongo                                                        |                        |                        | Horizontal ·<br>vertical sync<br>signal            | Z-20B.                                                                                                                                                                                                                                                                |                |       |
|                                                                          | V OUT M                |                        |                                                    | 0V                                                                                                                                                                                                                                                                    |                |       |
| Vertical external trigger load resistance                                | R <sub>TR</sub> Z-     | 20B<br>O-20C           | I-14A :<br>Horizontal<br>sync signal               | Turn on SW20 and set V,VR to a maximum and<br>then decrease slowly until the vertical output period<br>becomes 225H.<br>Turn off SW20 and measure the resistance<br>between O-20C and GND.                                                                            | ON<br>↓<br>OFF | В     |
| Vertical automatic sync stop<br>voltage                                  | V <sub>SAS</sub> I-2   | 0A<br>Z-22             | I-14A :<br>Horizontal ·<br>vertical sync<br>signal | Use the vertical output at Z-20B to synchronize an oscilloscope and monitor the output waveform at Z-22.<br>Connect a DC power supply to I-20A and raise the voltage slowly until the output waveform becomes larger.<br>Measure the voltage at I-20A at that moment. | OFF B          |       |
| Horizontal AFC gate release voltage                                      | V <sub>GS</sub> Z-     | 22<br>Z-20A            | I-14A :<br>Horizontal<br>sync signal               | Connect a DC power supply to I-20A and set it at<br>0V. Monitor the AFC1 waveform at Z-22 and raise<br>the supply voltage at Z-20A slowly until the AFC1<br>waveform for the vertical sync's equivalent pulse<br>period changes.                                      | OFF B          |       |
| Vertical output pulse start<br>V <sub>CC</sub> voltage                   | S <sub>VV</sub> Z-     | 20B<br>V <sub>CC</sub> | I-14A :<br>No signal<br>(open)                     | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                 | OFF B          |       |
| Horizontal free-running<br>frequency deviation                           | ∆fH O-2                | 5                      | I-14A :<br>No signal<br>(open)                     | Connect a counter to O-25 (horizontal output) to measure the horizontal free-running frequency. Calculate the deviation from 15.680kHz.                                                                                                                               | OFF B          |       |
| Dependence of horizontal<br>free-running<br>frequency on V <sub>CC</sub> | ΔfHV <sub>CC</sub> O-2 | 5                      | I-14A :<br>No signal<br>(open)                     | Connect a DC power supply to $I_{CC}$ (horizontal pin 24 $V_{CC}$ ) and set it at 6.0V. And then measure the horizontal output frequency at TP14 and calculate the deviation from the horizontal free-running frequency.                                              | OFF B          |       |
| Horizontal pull-in range                                                 | fHPULL                 | O-25<br>I-14A          | I-14A :<br>Horizontal<br>sync signal               | Monitor the horizontal sync signal and the<br>horizontal output at O-25 using an oscilloscope<br>and vary the horizontal sync signal frequency to<br>measure the pull-in range.                                                                                       | OFF B          |       |
| Horizontal output pulse start<br>V <sub>CC</sub> voltage                 | S <sub>HV</sub> O-2    | 5<br>ICC               | I-14A :<br>No signal<br>(open)                     | Connect a DC power supply to $I_{CC}$ (horizontal pin 24 $V_{CC}$ ) and raise it from 0V slowly until a pulse signal appears in the horizontal output at O-25. Measure the lcc pin voltage at that moment.                                                            | OFF B          |       |
| AFC2 FBP peak value                                                      | FBPH                   | Z-26B I-1              | 4A :<br>Horizontal<br>sync signal                  | Measure the FBP peak value at Z-26B.                                                                                                                                                                                                                                  | OFF            | В     |

| Continued from precedir       | ng page.              |               |                                                  | -                                                                                                                                                                                               |       |      |
|-------------------------------|-----------------------|---------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Parameter S                   | ymbol                 | Test<br>point | Input<br>signal                                  | Test method                                                                                                                                                                                     | SW20  | SW25 |
| Horizontal output pulse width | PWHOUT O-2            | 2 5           | I-14A :<br>Horizontal<br>sync signal             | Measure the horizontal output pulse width at O-25.                                                                                                                                              | OFF   | В    |
| Horizontal output pulse phase | H <sub>PF</sub> O-2   | 5<br>I-14A    | I-14A :<br>Horizontal<br>sync signal             | Measure the time from when the horizontal output<br>pulse at O-25 rises until the horizontal sync signal<br>at I-14A falls.                                                                     | OFF   | A    |
|                               | H <sub>PCEN</sub> O-2 | 5<br>I-14A    | I-14A :<br>Horizontal<br>sync signal             | Measure the time from when the horizontal output<br>pulse at O-25 rises until the horizontal sync signal<br>at I-14A falls.                                                                     | OFF   | В    |
|                               | H <sub>PR</sub> O-2   | 5<br>I-14A    | I-14A :<br>Horizontal<br>sync signal             | Measure the time from when the horizontal output<br>pulse at O-25 rises until the horizontal sync signal<br>at I-14A falls.                                                                     | OFF   | С    |
| Burst gate pulse width        | P <sub>WBGP</sub> Z-  | 26B<br>I-14A  | I-14A :<br>Horizontal<br>vertical sync<br>signal | Measure the burst gate level width at Z-26B.<br>TdBGP<br>0.25V<br>5V<br>PWBGP                                                                                                                   | OFF   | В    |
| Burst gate pulse phase        | T <sub>dBGP</sub> Z-  | 26B<br>I-14A  | I-14A :<br>Horizontal<br>vertical sync<br>signal | Measure the delay time from when the horizontal<br>output pulse at I-14A rises until the burst gate pulse<br>at Z-26B falls.                                                                    | OFF   | В    |
| 50/60 output voltage          | V <sub>50</sub> Z     | -21           | I-14A :<br>No signal                             | Connect Z-21 to GND once and then bring it into open state. And then measure the voltage at Z-21.                                                                                               | OFF   | В    |
|                               | V <sub>60</sub> Z     | -21           | I-14A :<br>No signal                             | Pull Z-21 up to V <sub>CC</sub> once and then bring it into open state. And then measure the voltage.                                                                                           | OFF   | В    |
| 50/60 input voltage           | V <sub>IN</sub> 50 Z- | 21            | I-14A :<br>No signal                             | With 7.8V applied to Z-21, monitor the frequency at Z-20B. Lower the voltage at Z-21 slowly until the frequency at Z-20B changes from 60Hz to 50Hz. Measure the voltage at Z-21 at that moment. | OFF B |      |
|                               | V <sub>IN</sub> 60 Z- | 21            | I-14A :<br>No signal                             | With 0V applied to Z-21, monitor the frequency at Z-20B. Raise the voltage at Z-21 slowly until the frequency at Z-20B changes from 50Hz to 60Hz. Measure the voltage at Z-21 at that moment.   | OFF B |      |
| SECAM V pulse peak value      | s <sub>VH</sub> z     | -26B          | I-14A :<br>No signal                             | Measure the peak value for the V period at Z-26B.                                                                                                                                               | OFF   | В    |
| SECAM V pulse width           | S <sub>VW</sub> Z     | -26B          | I-14A :<br>No signal                             | Measure the width for the V period at Z-26B.                                                                                                                                                    | OFF   | В    |

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, of otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 2005. Specifications and information herein are subject to change without notice.