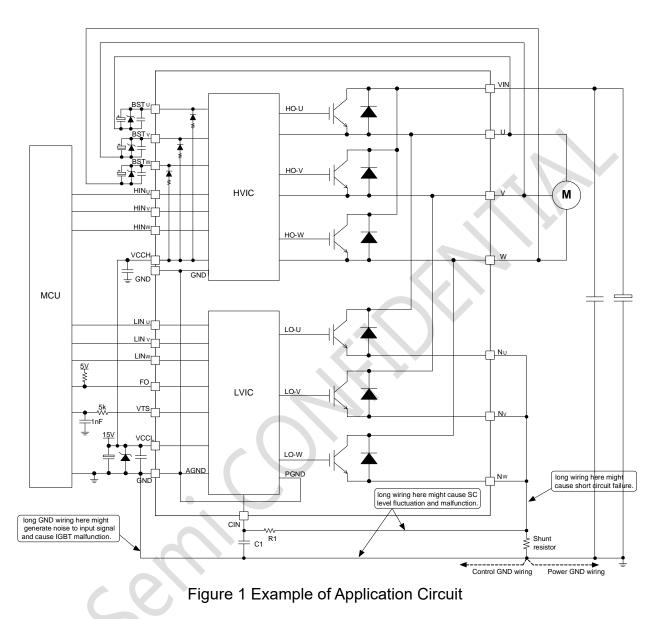
3 Phase 20A/600V intelligent Power Module

Super-Mini-DIP IPM Series

LAM3N2060

Overview

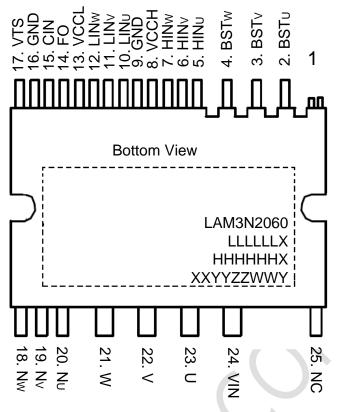
LAM3N2060 is a highly integrated and high reliability 3 phase intelligent power module designed for advanced BLDC motor drive applications such Air condition, wash machine etc. LAM3N2060 integrates 6 low power dissipation IGBTs and HVICs. The dedicated open-emitter pins from low side IGBTs are provided for current sensing. The input works with Schmitt-trigger and the logic voltage is compatible with 3.3V/5V/15V signal. The UVLO, deadtime, over current protection and thermal indication/thermal shutdown are also provided.


Features

- 3 phase DC/AC inverter
- Built-in high-performance 20A/600V IGBT and >5us short circuit tolerance
- Built-in Bootstrap diode with current limiting resistor
- Low Side IGBT open emitter
- For High side: Drive circuit, HV high-speed level shifting, Control supply undervoltage (UV) protection
- For Low side: Drive circuit, Control supply under-voltage protection (UV), Short Circuit protection (SC), Over temperature protection
- Fault signaling: Corresponding to SC fault (low side IGBT), UV fault (Low side supply) and OT fault
- Temperature output: Output LVIC temperature by analog signal
- Input interface: 3.3, 5V, 15V line, Schmitt trigger receiver circuit (High Active)

Typical Application

• AC 100~240Vrms (DC voltage:400V or below) class low power motor control



Package Mark and Order Information

Device	Package	Temperature range	Packaging Type	Purchase Contact
LAM3N2060	DIP25	-40 to 125°C	11 pcs/Tube	sales@latticeart.com

Pin Diagram

LLLLL: LVIC Lot number HHHHHH: HVIC lot number XXYYZZ: IGBT&FRD Code WW: week number Y: Year code

Pin Description

Din Ma	Cumphel	Din Departmetian
Pin No.	Symbol	Pin Description
1	NC	Not used, VCC1&GND signal
2	BSTu	U phase high side floating supply
3	BSTv	V phase high side floating supply
4	BSTw	W phase high side floating supply
5	HIN∪	U phase High Side gate driver input
6	HIN∨	V phase High Side gate driver input
7	HINw	W phase High Side gate driver input
8	VCCH	Power supply for HVIC's input circuit.
9	GND	Ground pin
10	LINυ	U phase low side gate driver input
11	LIN∨	V phase low side gate driver input
12	LINw	W phase low side gate driver input
13	VCCL	Power supply for LVIC
14	FO	Fault Output indicator

晶艺半导体有限公司 Lattice Art Semiconductor

LAM3N2060

15	CIN	Over current detection input
16	GND	Ground pin
17	VTS	Temperature sensing voltage
18	Nw	W phase low side IGBT open emitter output
19	Nv	V phase low side IGBT open emitter output
20	Nυ	U phase low side IGBT open emitter output
21	W	W phase power output
22	V	V phase power output
23	U	U phase power output
24	VIN	High voltage power supply pin
25	NC	No Connect pin

Block Diagram

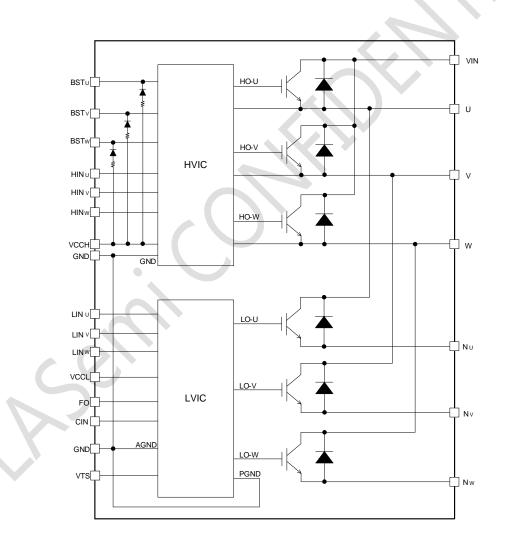


Figure 2 IPM block diagram

Absolute Maximum Ratings (note 1)

INVERTER PART

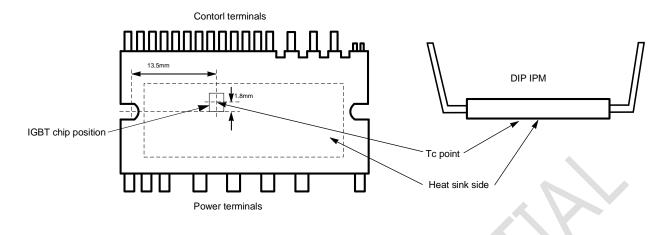
 $T_A=25^{0}C$, unless otherwise specified.

Symbol	Definition	Ratings	Unit
VIN	DC bus	450	V
VINSURGE	DC bus surge	500	V
VCES	IGBT collector-emitter voltage	600	V
lc	Each IGBT collector current, Tc=25°C, Tj<150°C	20	А
ICP	Each IGBT pulse current<1ms, Tc=25°C	40	А
Pc	Collector dissipation per 1 chip(Tj=125 °C)	33.3	W
Tj	Junction temperature (Note 2)	-40 to +150	°C

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are not tested at manufacturing.

Note 2: The maximum junction temperature rating of built-in power chips is 150°C (@Tc<100°C). However, to ensure safe operation of LAM3N2060, the average junction temperature should be limited to $T_{j(Ave)}$ <125°C(@Tc<100°C).

CONTROL PART


Symbol	Definition	Ratings	Unit
VCCH/VCCL	Control supply voltage	20	V
VBST-SW	High side control supply voltage	20	V
Vinput	Input voltage	-0.5~20	V
Vfo	Fault output supply voltage	-0.5~20	V
IFO	Fault output current, sink current at FO pin	10	mA
Vvts	Temperature monitor output	-0.5~5	V
Vcin	Current sensing input voltage	-1~20	V

TOTAL SYSTEM

Symbol	Definition	Ratings	Unit
VINsc	Self-protection supply voltage limit (short circuit	400	V
	protection capability); VCC=15V, Inverter part,		
	Tj=125 ⁰ C, non-repetitive, less than 2us		
Тс	Module case operation temperature	-30~+100	0C
Тѕтс	Storage temperature	-40~+125	0C
Viso	Isolation voltage, 60Hz, Sinusoidal AC 1min	1500	Vrms
	between connected all pins and heat sink plate		

Tc MEASUREMENT POINT

THERMAL RESISTANCE

Symbol	Definition	Limits	Unit
Rth(j-c)-IGBT	Junction to case thermal resistance (note 3)	Max 3.0	k/W
Rth(j-c)-FRD		Max 3.9	k/W

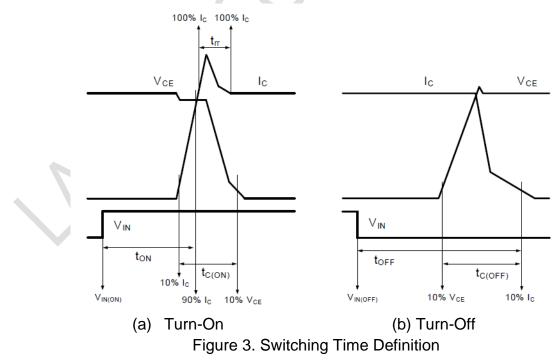
Note 3: Grease with good thermal conductivity and long-term endurance should be applied evenly with about +100 μ +200 μ on the contacting surface of LAM3N2060 and heat sink. The contacting thermal resistance between case and heat sink $R_{th(c-f)}$ is determined by the thickness and the thermal conductivity of the applied grease. For reference, $R_{the(c-f)}$ is about 0.3k/W (per 1/6 module, grease thickness:20 μ , thermal conductivity:1.0W/m*k).

Recommended Operation Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VIN	Supply Voltage		0	300	400	V
VCCH/VCCL	Control supply		13.5	15	18.5	V
	voltage					
V _{BST-SW}	High side control		13	15	18	V
	supply					
ΔVCC,	Control supply	V _{HIN} =5V	-1		1	V
ΔV_{BST-SW}	variation					
t _{DT}	Arm shoot-		2			us
	through deadtime					
f _{PWM}	PWM input	Tc<100⁰C, Tj<125⁰C			20	kHz
	frequency					
l _o	Allowable r.m.s	VIN=300V,Vcc=15V,P.F=0.8,			10.0	Arms
	current	Sinusoidal PWM, T _C ≤100⁰C,				
		T _j ≤125 ⁰ C, f _{PWM} =5kHz				

LAM3N2060

		VIN=300V,Vcc=15V,P.F=0.8, Sinusoidal PWM, $T_C \le 100^{\circ}$ C, $T_j \le 125^{\circ}$ C, $f_{PWM}=15$ kHz (Note 4)		6.0	Arms
PW _{IN_ON}	Minimum on input		0.7		us
	pulse				
PW_{IN_OFF}	Minimum off input		0.7		us
	pulse				
GND	GND variation	Between GND-N _{U,V,W}	-5.0	+5.0	V
Тј	Junction		-30	+125	0C
	temperature				


Note 4: Allowable r.m.s current depends on the actual application conditions.

Electrical Characteristics

T_A=25⁰C, unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{CE(SAT)}	IGBT CE saturation voltage	VCC=15V, V_{IN} =5V,		1.70	1.90	V
		I _C =20A, T _j =25 ^o C				
		VCC=15V, V_{IN} =5V,		1.90		V
		I _C =20A, T _j =100°C				
		VCC=15V, V_{IN} =5V,		0.90		V
		I _C =2.0A, T _j =25 ⁰ C				
V _{EC}	FRD forward voltage	V _{IN} =0V, I _C =-20A		1.5	1.7	V
t _{ON}	Switching times	VIN=300V,	0.5	0.6	0.8	us
t _{C(ON)}		VCC1=VCC2=15V,		0.56	0.65	us
toff		I _C =20A, T _j =125 ^o C,		0.9	1.3	us
t _{C(OFF)}		V_{IN} =0→5V, inductive		0.2	0.35	us
t _{rr}		Load (Upper-lower		0.20		us
		arm) (Note 5)				
I _{CES}	Collector-emitter cut-off	$V_{IN}=0V, V_{CE}=600V$			4	uA
	current					
V _{(BR)CES}	Collector-emitter	V _{IN} =0V, I _{CE} =1mA	600			V
	Breakdown Voltage					

Note 5: t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under given gate driving condition internally . For detailed information, please see Figure 3.

LVIC PART

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{VCCL}	supply current	VCC2=15, V _{IN} =0V		0.3		mA
		VCC2=15, V _{IN} =5V		0.3		mA
VCCLON	VCCL turn on voltage		10	11	12	V
VCCLOFF	VCCL turn off voltage		8	10	11	V
V _{CIN}	Short circuit trip level		0.45	0.5	0.55	V
V _{VTS}	(Note 6	LVIC Temp=90°C	2.63	2.77	2.91	V
		LVIC Temp=25°C	0.88	1.13	1.39	V
TOTP	Over temperature	VCC2=15V.	120	130	140	0 ⁰
	protection	Detect LVIC				
		temperature				
T _{HYS}	Hysteresis of trip-reset			20		0 ⁰
V_{FOH}	Fault output voltage	V _{CIN} =0V, FO pin pulled	4.8			V
		up to 5V by 10kohm				
V_{FOL}	Fault output voltage	V _{CIN} =1V, I _{FO} =5mA			0.5	V
t _{FO}	Fault output pulse width		20	65		us
I _{LIN}	Input current	V _{LIN} =5V		16		uA
$V_{\text{LIN}_{ON}}$	On threshold voltage		2.6			
V_{LIN_OFF}	On threshold voltage				0.8	V

HVIC PART

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Туссн	High side supply current	VCC1=15,U,V,W=0V,		50		uA
	0 113	V _{IN} =0V				
		VCC1=15, U,V,W=0V,		50		uA
		V _{IN} =5V				
V_{BST_ON}	BST-SW turn on voltage		9	10	11	V
V_{BST_OFF}	BST-SW turn off voltage		8	9	10	V
V _{HIN_ON}	On threshold voltage		2.6			V
V_{HIN_OFF}	OFF threshold voltage				0.8	V
V _F	Bootstrap Diode forward	I _F =10mA (note 7)	1.1	1.7	2.3	V
	voltage					
R _{BST}	Built-in limiting Resistance		80	90	100	Ω

Note 6: Temperature of LVIC vs. VTS output characteristics is described in Fig.6 and Fig.7.

Note 7: The characteristics bootstrap diode is described in Fig.5.

LAM3N2060

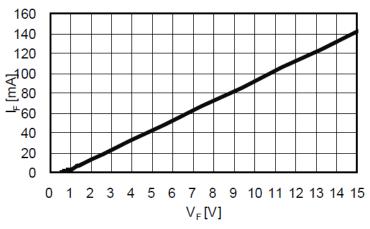


Figure 5 Built-In Bootstrap Diode Characteristic

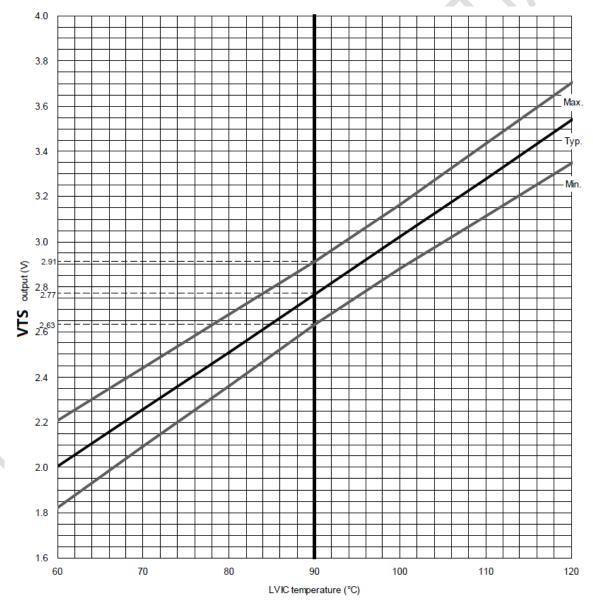


Figure 6 Temperature of LVIC vs. VTS output characteristics

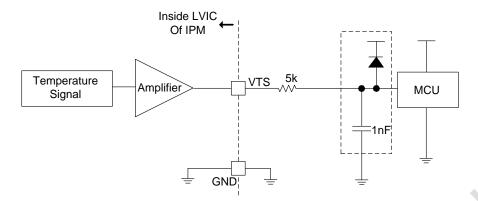
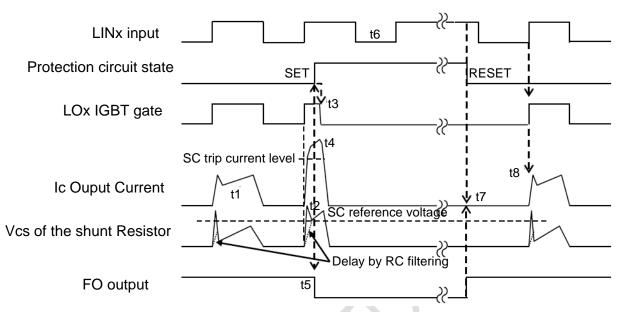


Figure 7 VTS output circuit

- (1) It is recommended to insert RC($5k\Omega$ +1nF) between VTS and MCU and the capacitor is placed to be close to MCU. This can make sure MCU detect a clean analog voltage signal.
- (2) In the case of using VTS with low voltage controller like 3.3V MCU, VTS output might exceed control supply voltage 3.3V when the temperature rises excessively. If system uses low voltage MCU, it is recommended to insert a clamp Diode between control supply of the MCU and the VTS input signal to MCU.
- (3) In the case of not using VTS, leave VTS output no connection.

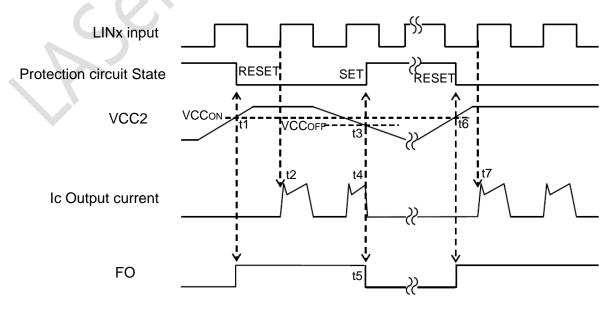

MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Condition		Min.	Тур.	Max.	Unit
Mounting torque	Mounting screw:	Recommended	0.59	0.69	0.78	N*m
	M3	0.69N*m (Note 8)				
Weight				8.5		g
Heat-sink flatness			-50		100	um

Note 8: Do not make over torque when mounting screws. Much mounting torque may cause package crack, as well as bolts and AI heat-sink destruction.

Function Descriptions

1. Timing Chart of Short-Circuit Protection (Low side Only with external shunt resistor and RC filter)


t1: Normal operation: IGBT ON and outputs current.

t2: Short circuit current detection (SC trigger)

(It is recommended to set RC time constant 1.5~2.0us so that IGBT shut down within 2.0us when SC.)

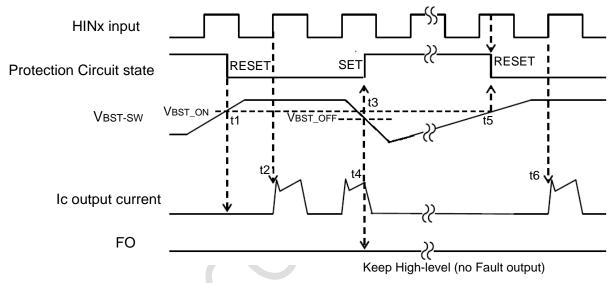
- t3: All low side IGBT's gates are hard shutdown.
- t4: All low side IGBTs turn OFF.
- t5: FO outputs for t_{FO}=minimum 20us, typical 65us.
- t6: Input=Low: IGBT OFF.
- t7: FO finishes output, but IGBTs don't turn on until inputting next ON signal($L \rightarrow H$).
- t8: Normal operation: IGBT ON and outputs current.

2. Timing Chart of Under-Voltage Protection (Low side, VCC2_UVLO)

t1: VCC2 exceeds under voltage reset level (VCC_{ON}), but IGBT turns ON by next ON signal (L \rightarrow H). (IGBT of each phase can return to normal state by inputting ON signal to each phase.)

t2: Normal operation: IGBT ON and outputs current.

t3: VCC level drops to under voltage trip level. (VCCOFF)


t4: All low side IGBTs turn OFF in spite of LINx condition.

t5: FO outputs for t_{FO} =minimum 20us, typical 65us, but FO output is extended during VCC keeps below VCC_{ON}.

t6: VCC level reaches VCC_{ON}.

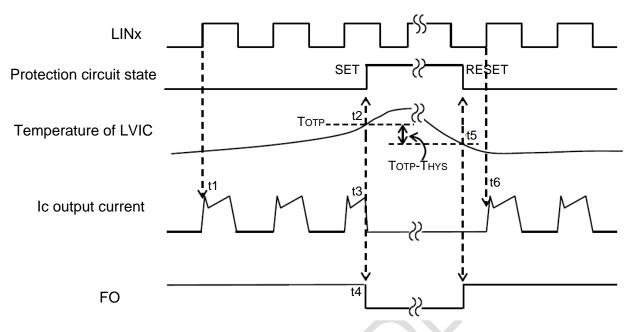
t7: Normal operation: IGBT ON and outputs current.

3. Timing Chart of Under-Voltage Protection (High side, VBST-SW_UVLO)

t1: V_{BST-SW} rises. After the voltage reaches under voltage reset level V_{BST_ON}, IGBT turns on by next ON signal (L \rightarrow H).

t2: Normal operation: IGBT ON and outputs current.

t3: V_{BST-SW} level drops to under voltage trip level V_{BST_OFF}.


t4: IGBT of the correspond phase only turns OFF in spite of HINx input signal, but there is no FO signal output.

t5: VBST-SW level reaches VBST_ON.

t6: Normal operation: IGBT ON and outputs current.

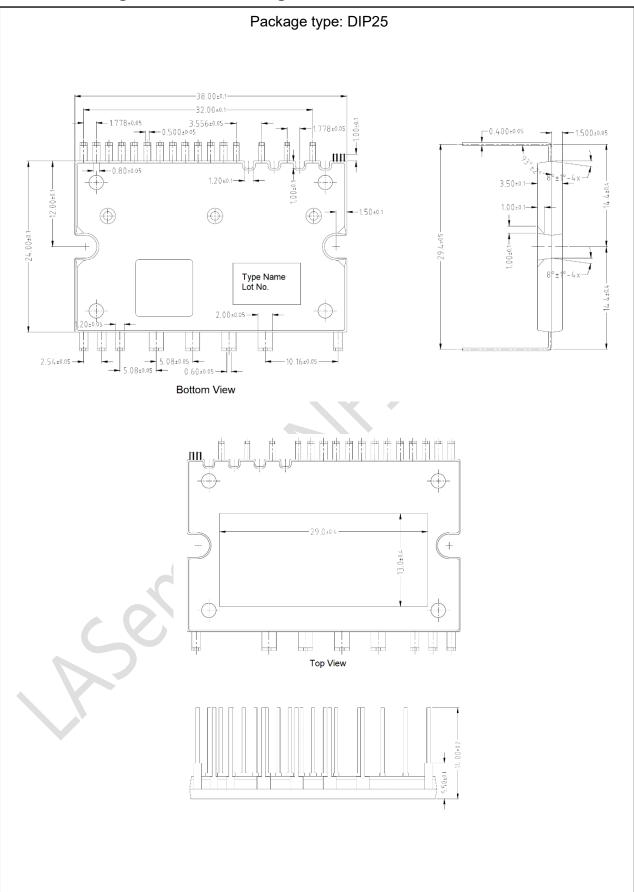
4. Timing Chart of Over Temperature Protection (low side, Detecting LVIC temperature)

t1: Normal operation: IGBT ON and outputs current.

t2: LVIC temperature exceeds over temperature trip level (TOTP).

t3: All low side IGBTs turn OFF in spite of LINx input condition.

t4: FO outputs for t_{FO} =65us typ, but output is extended during LVIC temperature keeps over Totp-Thys.


t5: LVIC temperature drops to over temperature reset level.

t6: Normal operation: IGBT turns on by next ON signal (L \rightarrow H). (IGBT of each phase can return to normal state by inputting ON signal to each phase.)

Rev.0.5 2021/11/05

Detail Package Outline Drawing

