🕒 LG Displa	ay					LC215EUE
		Product	Spe	cification		
		SPECII I APP	FIC FOI	CATION R		
()Preliminary Spe (●)Final Specifica	ecificatio	2 •			С С	
Title	Title 21.5" Full HD TFT LCD					
BUYER	MC	ONSTONE		SUPPLIER	LG Dis	play Co., Ltd.
MODEL				*MODEL	LC	215EUE
				SUFFIX	SDA1(F	RoHS Verified)
				*When you obtain stand please use the above r	dard approva nodel name	al, without suffix
APPROVED	вү	SIGNATURE DATE		APPROVED H. S. SONG / Tear	BY m Leader	SIGNATURE DATE
				Y. J. KIM / Project	BY Leader	1011.02.16
				PREPARED K. M. LEE / Eng	BY 201	1.02.16 Jugung
Please return 1 cop	by for you	ur confirmation with		MNT Product LG Dis	s Engineer play Co., L	ing Dept. td

www.panelook.com

your signature and comments.

Ver. 1.0

1 / 27

屏库:全球液晶屏交易中心

 \oslash

 \oslash

CONTENTS

Number	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	10
3-4	LVDS SIGNAL SPECIFICATIONS	11
3-5	COLOR DATA REFERENCE	14
3-6	POWER SEQUENCE	15
4	OPTICAL SPECIFICATIONS	16
5	MECHANICAL CHARACTERISTICS	20
6	RELIABILITY	23
7	INTERNATIONAL STANDARDS	24
7-1	SAFETY	24
7-2	EMC	24
7-3	Environment	24
8	PACKING	25
8-1	INFORMATION OF LCM LABEL	25
8-2	PACKING FORM	25
9	PRECAUTIONS	26
9-1	MOUNTING PRECAUTIONS	26
9-2	OPERATING PRECAUTIONS	26
9-3	ELECTROSTATIC DISCHARGE CONTROL	27
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	27
9-5	STORAGE	27
9-6	HANDLING PRECAUTIONS FOR PROTECTION FILM	27
Ver. 1.0	FEB 14. 2011	2 / 27

屏库:全球液晶屏交易中心

LC215EUE

 \bigotimes

RECORD OF REVISIONS

Revision No.	Revision Date	Page	Description
0.1	SEP. 10. 2010	-	First Draft, Preliminary Specifications
0.2		5	Changed Table1. Absolute Maximum ratings
0.2	DEC. 03. 2010	7	Changed Table 3. ELECTRICAL CHARACTERISTICS
1.0	FEB. 08. 2011	16	Change Table 10. OPTICAL CHARACTERISTICS
		21, 22	Change the Dimension
		23	Change Table 13. ENVIRONMENT TEST CONDITION
		25	Change Packing Form
		28,29	Change APPENDIX- I-1, I-2
Ver. 1.0			FEB 14. 2011 3 / 27

 $\langle \mathcal{P} \rangle$

1. General Description

LC215EUE is a Color Active Matrix Liquid Crystal Display with a Light Emitting Diode (White LED) backlight system without LED driver. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 21.46 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M colors with A-FRC (Advanced Frame Rate Control).

Product Specification

It has been designed to apply the 8Bit 2 port LVDS interface.

It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

General Features

[Figure 1] Block diagram

Active Screen Size	21.46 inches(545.22mm) diagonal
Outline Dimension	495.6(H) x 292.2(V) x 10.2(D) mm (Typ.)
Pixel Pitch	0.2475 mm x 0.2475mm
Pixel Format	1920 horiz. By 1080 vert. Pixels RGB stripes arrangement
Color Depth	16,7M colors (6bit + A-FRC)
Luminance, White	250 cd/m ² (Center 1 Point, Typ.)
Viewing Angle(CR>10)	View Angle Free (R/L 178(Typ.), U/D 178(Typ.))
Power Consumption	Total 22.68 Watt (Typ.) (4.38 Watt @VLCD, 18.3 Watt @W/O Driver)
Weight	1300 g (typ.)
Display Operating Mode	Transmissive mode, normally black
Surface Treatment	Hard coating(3H), Anti-Glare treatment of the front polarizer(Haze 10%)

Ver. 1.0

FEB 14. 2011

2. Absolute Maximum Ratings

The following items are maximum values which, if exceeded, may cause faulty operation or damage to the LCD module.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Va	lue	Unit	Note
Fala	lietei	Symbol	Min	Max		Note
Dowor Input Voltago	LCD Circuit	VLCD	-0.3	+6.0	Vdc	
Power Input Voltage	Driver	VBL	-0.3	+ 27.0	Vdc	
	ON/OFF	VOFF / VON	-0.3	+5.5	Vdc	1
Driver Control Voltage	Brightness	VBR	0.0	+5.5	Vdc	
T-Con Option Selection	/oltage	VLOGIC	-0.3	+4.0	Vdc	
Operating Temperature		Тор	0	+50	°C	2.2
Storage Temperature		Tst	-20	+60	°C	2,5
Panel Front Temperature	e	Tsur	-	+68	°C	4
Operating Ambient Humidity		Нор	10	90	%RH	
Storage Humidity		Hst	10	90	%RH	2,3

Note 1. Ambient temperature condition (Ta = 25 ± 2 °C)

2. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be Max 39°C, and no condensation of water.

- 3. Gravity mura can be guaranteed below 40°C condition.
- 4. The maximum operating temperatures is based on the test condition that the surface temperature of display area is less than or equal to 68°C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68°C. The range of operating temperature may degraded in case of improper thermal management in final product design.

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the LED backlight and LED Driver circuit.

Table 2. ELECTRICAL CHARACTERISTICS

Baramatar	Symbol		Values	Unit	Notoo			
Farameter	Symbol	Min	Тур	Max	Unit	NOLES		
Circuit :								
Power Supply Input Voltage	VLCD	4.5	5.0	5.5	Vdc			
Device Conclusion Concert	ILCD	-	875	1006	mA	1		
Power Supply Input Current		-	1120	1288	mA	2		
Power Consumption	Ρ ς τγρ	-	4.38	5.04	Watt	1		
Rush current	Irush	-	-	3.0	А	3		

Note :

1. The specified current and power consumption are under the V_{LCD} =5.0V, 25 ± 2°C,f_v=60Hz condition whereas Typical Power Pattern[Mosaic] shown in the [Figure 3] is displayed.

2. The current is specified at the maximum current pattern.

3. Maximum Condition of Inrush current :

The duration of rush current is about 5ms and rising time of power Input is 500us \pm 20%.(min.).

Mosaic Pattern(8 x 6)

```
Ver. 1.0
```

FEB 14. 2011

Product Specification

Table 3. ELECTRICAL CHARACTERISTICS (Continue)

Parameter		Symbol		Values	Unit	Note	
		Symbol	Min	Тур Мах		Onit	Note
Backlight Assemb	ly :						
Forward Current	Anode	I _{F (anode)}		110		mAdc	±5%
(one array)	Cathode	I _{F (cathode)}				mAdc	2, 3
Forward Voltage		V _F	39.0	41.6	44.2	Vdc	4
Forward Voltage Va	riation	$ riangle V_F$			1.7	Vdc	5
Power Consumption	ı	P_{BL}	17.2	18.3	19.5	W	6
Burst Dimming Duty	/	On duty	10		100	%	
Burst Dimming Frequency		1/T				Hz	8
LED Array : (APPE	NDIX-V)						
Life Time			30,000			Hrs	7

The design of the LED driver must have specifications for the LED array in LCD Assembly. The electrical characteristics of LED driver are based on Constant Current driving type.

The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED Driver. So, all the parameters of an LED driver should be carefully designed. When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the driver (no lighting, flicker, etc) has never been occurred. When you confirm it, the LCD– Assembly should be operated in the same condition as installed in your instrument.

- 1. Electrical characteristics are based on LED Array specification.
- 2. Specified values are defined for a Backlight Assembly. (IBL : 1 LED array, 110mA)
- 3. The forward current(I_F) of the anode terminal is 110mA and it supplies four strings, respectively

- 4. The forward voltage(V_F) of LED array depends on ambient temperature (Appendix-V)
- 5. ΔV_F means Max V_F -Min V_F in one Backlight. So V_F variation in a Backlight isn't over Max. 1.7V
- 6. Maximum level of power consumption is measured at initial turn on.
- Typical level of power consumption is measured after 1 hrs aging at $25 \pm 2^{\circ}$ C.
- The life time(MTTF) is determined as the time at which brightness of the LED is 50% compared to that of initial value at the typical LED current on condition of continuous operating at 25 ± 2°C, based on duty 100%.
- The reference method of burst dimming duty ratio. It is recommended to use synchronous V-sync frequency to prevent waterfall (Vsync x 1 =Burst Frequency) Though PWM frequency is over 182Hz (max252Hz), function of backlight is not affected.

```
Ver. 1.0
```

FEB 14. 2011

3-2. Interface Connections

3-2-1. LCD Module

- LCD Connector(CN1). : GT103-30S-HF15 (manufactured by LSM) or compatible

- Mating Connector : FI-X30C2L (Manufactured by JAE) or Equivalent

Table 4-1. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Symbol
1	FR0M	Minus signal of odd channel 0 (LVDS)	16	SR1P	Plus signal of even channel 1 (LVDS)
2	FR0P	Plus signal of odd channel 0 (LVDS)	17	GND	Ground
3	FR1M	Minus signal of odd channel 1 (LVDS)	18	SR2M	Minus signal of even channel 2 (LVDS)
4	FR1P	Plus signal of odd channel 1 (LVDS)	19	SR2P	Plus signal of even channel 2 (LVDS)
5	FR2M	Minus signal of odd channel 2 (LVDS)	20	SCLKINM	Minus signal of even clock channel (LVDS)
6	FR2P	Plus signal of odd channel 2 (LVDS)	21	SCLKINP	Plus signal of even clock channel (LVDS)
7	GND	Ground	22	SR3M	Minus signal of even channel 3 (LVDS)
8	FCLKINM	Minus signal of odd clock channel (LVDS)	23	SR3P	Plus signal of even channel 3 (LVDS)
9	FCLKINP	Plus signal of odd clock channel (LVDS)	24	GND	Ground
10	FR3M	Minus signal of odd channel 3 (LVDS)	25	NC	No Connection (I2C Serial interface for LCM)
11	FR3P	Plus signal of odd channel 3 (LVDS)	26	NC	No Connection.(I2C Serial interface for LCM)
12	SR0M	Minus signal of even channel 0 (LVDS)	27	PWM_OUT	For Control Burst frequency of Inverter
13	SR0P	Plus signal of even channel 0 (LVDS)	28	VLCD	Power Supply +5.0V
14	GND	Ground	29	VLCD	Power Supply +5.0V
15	SR1M	Minus signal of even channel 1 (LVDS)	30	VLCD	Power Supply +5.0V

Note: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.

2. All VLCD (power input) pins should be connected together.

3. All Input levels of LVDS signals are based on the EIA 644 Standard.

4. PWM_OUT signal controls the burst frequency of a inverter.

This signal is synchronized with vertical frequency.

It's frequency is 3 times of vertical frequency, and it's duty ratio is 50%.

If you don't use this pin, it is no connection.

Ver. 1.0

FEB 14. 2011

Product Specification

3-2-2. Backlight Module

The LED interface connector is a model 10019HR-H06B manufactured by Yeonho . The mating connector is a FFC/FPC specified in LED interface connector specification. . The pin configuration for the connector is shown in the table below.

Table 5. LED CONNECTOR PIN CONFIGURATION

Pin	Symbol	Description	Notes
1	FB1	Channel1 Current Feedback	
2	FB2	Channel2 Current Feedback	
3	VLED	LED Power Supply	
4	VLED	LED Power Supply	
5	FB3	Channel3 Current Feedback	
6	FB4	Channel4 Current Feedback	

Backlight connector View

FEB 14. 2011

 $\langle \mathcal{P} \rangle$

3-3. Signal Timing Specifications

Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation.

Product Specification

Table 6. TIMING TABLE (DE Only Mode)

ITE	м	Symbol	Min	Тур	Мах	Unit	Note
	Display Period	tHV	480	480	480	tCLK	1920 / 4
Horizontal	Blank	tнв	50	70	120	tCLK	1
	Total	tHP	530	550	600	tCLK	
	Display Period	tvv	1080	1080	1080	Lines	
Vertical	Blank	tvв	<mark>20</mark> (228)	45 (270)	69 (300)	Lines	1
	Total	tvp	<mark>1100</mark> (1308)	1125 (1350)	1149 (1380)	Lines	

ITE	М	Symbol	Min	Тур	Мах	Unit	Note
	DCLK	fclk	63.00	74.25	78.00	MHz	
	Horizontal	fн	121.8	135	140	KHz	2
Frequency	Vertical	fv	57 (47)	60 (50)	63 (53)	Hz	2 NTSC : 57~63Hz (PAL : 47~53Hz)

Note: 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.

2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency

* Timing should be set based on clock frequency.

Product Specification

LC215EUE

 \bigotimes

3-4-1. LVDS Input Signal Timing Diagram

Ver. 1.0

FEB 14. 2011

 \bigotimes

3-4-2. LVDS Input Signal Characteristics

1) DC Specification

2) AC Specification

Description		Symbol	Min	Max	Unit	Note
	High Threshold	V _{TH}	100	300	mV	2
LVDS Differential Voltage	Low Threshold	V_{TL}	-300	-100	mV	3
LVDS Clock to Data Skew	t _{skew}	-	(0.2*T _{clk})/7	ps	-	
LVDS Clock/DATA Rising/Falling time		t _{RF}	260	(0.3*T _{clk})/7	ps	2
Effective time of LVDS		t _{eff}	±360	-	ps	-
LVDS Clock to Clock Skew	v (Even to Odd)	t _{skew_eo}	-	1/7* T _{clk}	ps	-

Note 1. All Input levels of LVDS signals are based on the EIA 644 Standard.

2. If t_{RF} isn't enough, t_{eff} should be meet the range.

3. LVDS Differential Voltage is defined within teff

FEB 14. 2011

 \oslash

 \bigotimes

3-5. Color Input Data Reference

The Brightness of each primary color(red,green,blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

												I	npu	t Co	olor	Dat	ta									
	Color					RE	D							GRI	EEN	I						BL	UE			
			MS	B					L	SB	MS	B					Ľ	SB	MS	B					L	SB
			R7	R6	R5	R4	R3	R2	R 1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B 7	B 6	B5	B 4	B 3	B2	B1	B0
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED														-												
	RED (254)		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																							•			
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE														-												
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Ver. 1.0

FEB 14. 2011

Table 8. POWER SEQUENCE

Devementer		Unit	Notes		
Parameter	Min	Unit			
T1	0.5	-	20	ms	
T2	0	-	-	ms	4
Т3	200	-	-	ms	3
T4	200	-	-	ms	3
T5	1.0	-	-	S	5
T6	-	-	T2	ms	4
T7	0.5	-	-	S	
Т8	100	-	-	ms	6

Note :1. Please avoid floating state of interface signal at invalid period.

- 2. When the power supply for LCD (VLCD) is off, be sure to pull down the valid and invalid data to 0V.
- 3. The T₃ / T₄ is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem.
- 4. If the on time of signals(Interface signal and user control signals) precedes the on time of Power(VICD), it will be happened abnormal display. When T6 is NC status, T6 doesn't need to be measured.
- 5. T5 should be measured after the Module has been fully discharged between power off and on period.

6. It is recommendation specification that T8 has to be 100ms as a minimum value.

FEB 14. 2011

 $\langle P \rangle$

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at $25\pm2^{\circ}$ C. The values are specified at distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0°. FIG. 1 shows additional information concerning the measurement equipment and method.

Table 10. OPTICAL CHARACTERISTICS	Ta= 25±2°C, V
-----------------------------------	---------------

 $= 25 \pm 2^{\circ}$ C, V_{LCD}=5.0V, fv=60Hz, Dclk=74.25MHz,I_F = 110mA (Typ)

		Cumhal		Values	Unite	Notos	
P	arameter	Symbol	Min	Тур	Max	Units	notes
Contrast Ratio		CR	600	1000	-		1
Surface Lumina	ance, white	L _{WH}	200	250	-	cd/m ²	2
Luminance Var	iation	δ_{WHITE} 5P			1.3		3
	Gray-to-Gray (BW)	G to G $_{\rm BW}$		8	TBD	ms	4
Response Time	Uniformity	$\delta_{\text{ G TO G}}$	-	-	1	ms	5
	RED	Rx		0.638			
		Ry		0.331	Тур +0.03		
	GREEN	Gx		0.308			
Color		Gy	Тур -0.03	0.625			
[CIE1931]	BLUE	Bx		0.154			
		Ву		0.072			
	WHITE	Wx		0.313			
		Wy		0.329			
Color Tempera	ture			6,500K		К	
Color Gamut				72%		%	
Viewing Angle	(CR>10)						
x axis, right($\phi=0^\circ$)		θr	89	-	-		
x axis, left (ϕ =180°) y axis, up (ϕ =90°)		θl	89	-	-	degree	6
		θu	89	-	-		
	(h=270°)	θd	89	-	-		7
Gray Scale					-		/

Ver. 1.0

 $\langle \mathcal{P} \rangle$

Product Specification								
Note : 1. Contrast Ratio(CR) is defined mathematically as :								
Contrast Ratio = $\frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}$ It is measured at center 1-point.								
 Surface luminance are determined after the unit has been 'ON' and 1 Hour after lighting the backlight in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 2. 								
3. The variation in surface luminance , δ WHITE is defined as : δ WHITE(5P) = Maximum(L _{on1} ,L _{on2} , L _{on3} , L _{on4} , L _{on5}) / Minimum(L _{on1} ,L _{on2} , L _{on3} , L _{on4} , L _{on5}) Where L _{on1} to L _{on5} are the luminance with all pixels displaying white at 5 locations . For more information, see the FIG. 2.								
 4. Response time is the time required for the display to transit from G(N) to G(M) (Rise Time, Tr_R) and from G(M) to G(N) (Decay Time, Tr_D). For additional information see the FIG. 3. (N<m)< li=""> ※ G to G Spec stands for average value of all measured points. Photo Detector : RD-80S / Field : 2° 5. Gray to Gray Response time uniformity is Reference data. </m)<>								
6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are								

- 6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 4.
- 7. Gray scale specification Gamma Value is approximately 2.2. For more information, see the Table 11.

Gray Level	Relative Luminance [%] (Typ.)
0	0.11
31	1.08
63	4.72
95	11.49
127	21.66
159	35.45
191	53.00
223	74.48
255	100

Table 11. GRAY SCALE SPECIFICATION

Ver. 1.0

FEB 14. 2011

www.panelook.com

屏库:全球液晶屏交易中心

 \oslash

LC215EUE

Measuring point for surface luminance & luminance variation

FIG. 2 5 Points for Luminance Measure

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

屏库:全球液晶屏交易中心

 \oslash

Dimension of viewing angle range

Ver. 1.0

FEB 14. 2011

 $\langle \mathcal{P} \rangle$

5. Mechanical Characteristics

Table 11 provides general mechanical characteristics.

Table 12. MECHANICAL CHARACTERISTICS

Item	Value						
	Horizontal	495.6mm					
Outline Dimension	Vertical	292.2mm					
	Depth	10.2mm					
Decel Aver	Horizontal	478.8mm					
Bezel Area	Vertical	271.3mm					
Active Display Area	Horizontal	475.2mm					
Active Display Area	Vertical	267.3mm					
Weight	Тур : 1300 g , Мах : 1370 g						

Note : Please refer to a mechanical drawing in terms of tolerance at the next page.

Ver. 1.0

FEB 14. 2011

屏库:全球液晶屏交易中心

 \Diamond

LC215EUE

 \oslash

LC215EUE

<REAR VIEW>

LGD Highly recommendation :

As The IPS panel is sensitive & slim, please recommend the metal frame of the system supports the panel by the double side-mount.

FEB 14. 2011

 \bigotimes

6. Reliability

Table 13. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition					
1	High temperature storage test	Ta= 60°C 240h					
2	Low temperature storage test	Ta= -20°C 240h					
3	High temperature operation test	Ta= 50°C 50%RH 240h					
4	Low temperature operation test	Ta= 0°C 240h					
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.0Grms Bandwidth : 10-300Hz Duration : X,Y,Z, 30 min Each direction per 10 min					
6	Shock test (non-operating)	Shock level : 100G Waveform : half sine wave, 2ms Direction : $\pm X$, $\pm Y$, $\pm Z$ One time each direction					
7	Humidity condition Operation	Ta= 40 °C ,90%RH					
8	Altitude operating storage / shipment	0 - 15,000 ft 0 - 40,000 ft					

Note : Before and after Reliability test, LCM should be operated with normal function.

Ver. 1.0

FEB 14. 2011

7. International Standards

7-1. Safety

- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc. Information Technology Equipment - Safety - Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electrotechnical Standardization(CENELEC). Information Technology Equipment - Safety - Part 1 : General Requirements.
- d) IEC 60950-1:2005, Second Edition, The International Electrotechnical Commission (IEC).
 Information Technology Equipment Safety Part 1 : General Requirements.
 (Including report of IEC60825-1:2001 clause 8 and clause 9)

Notes

1. Laser (LED Backlight) Information

2. Caution

: LED inside. Class 1M laser (LEDs) radiation when open. Do not open while operating.

7-2. EMC

- a) ANSI C63.4 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." American National Standards Institute (ANSI), 2003.
- b) CISPR 22 "Information technology equipment Radio disturbance characteristics Limit and methods of measurement." International Special Committee on Radio Interference (CISPR), 2005.
- c) CISPR 13 "Sound and television broadcast receivers and associated equipment Radio disturbance characteristics Limits and method of measurement." International Special Committee on Radio Interference (CISPR), 2006.

7-3. Environment

a) RoHS. Directive 2002/95/EC of the European Parliament and of the Council on the reduction of the use of certain hazardous substances in electrical and electronic equipment. January 2003

Ver. 1.0

FEB 14. 2011

 $\langle p \rangle$

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

Note

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	С	D	Е	F	G	H	J	K

2. MONTH

1. YEAR

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

- a) Package quantity in one box : 12 pcs
- b) Box Size : 365 X 315 X 570mm

Ver. 1.0

FEB 14. 2011

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.
- (10) As The IPS panel is sensitive & slim, please recommend the metal frame of the system supports the panel by the double side-mount.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 mV(Over and under shoot voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw.
- (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) When LCMs are used for public display defects such as Yogure, image sticking can not be guarantee.

Ver. 1.0

FEB 14. 2011

 $\langle \! \! \rangle$

LC215EUE

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.
- It is recommended that they be stored in the container in which they were shipped.
- (3) Storage condition is guaranteed under packing conditions.
- (4) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Ver. 1.0

FEB 14. 2011

Ver 1.0

APPENDIX- I-2

Product Specification

3)

 \oslash

Pallet Ass'y

NO.	DESCRIPTION	MATERIAL
1	PACKING ASS'Y	
2	PALLET	Plywood
3	ANGLE, COVER	PAPER (SWR4)
4	LABEL	PAPER
5	BAND	PP
6	CLIP, BAND	STEEL

Ver 1.0

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Ver. 1.0

 $\langle p \rangle$

Product Specification

肩库:全球液晶屏交易中心

 \Diamond

APPENDIX- II-2

Box Label

Pallet Label

LC215EUE								
SDA1								
12 pcs	001/01-01							
MADE IN	RoHS Verified							

C			$\overline{\mathbf{O}}$							
	LC215EUE									
		SDA1								
	108 PCS	001/01-01								
	MADE I	n korea	RoHS Verified							

Ver. 1.0

Product Specification

LC215EUE

 \Diamond

LVDS Data-Mapping Information (LVDS 2Port)

						Tclk											<u> </u>	
RCLK+			Tclk* 4/7 Tclk* 3/7												.(MSB	R7	
RXinO0 +/-	OR3	OR2	OR1	OR0	060	OR5	OR4	OR3	OR2	OR1	OR0	OG0	OR5	OR4			R6 R5	
RXinO1 +/-	0G4	OG3	OG2	OG1	OB1	ОВО	OG5	OG4	OG3	0G2	OG1	OB1	ОВО	OG5			R4	
RXinO2 +/-	OB5	OB4	OB3	OB2	DE	VSYNC	HSYNC	OB5	OB4	OB3	OB2	DE	VSYNC	HSYNC			R3 R2	
RXinO3 +/-	OG7	OG6	OR7	OR6	X	OB7	OB6	OG7	066	OR7	OR6	X	OB7	OB6			R1	
RXinE0 +/-	ER3	ER2	ER1	ER0	EGO	ER5	ER4	ER3	ER2	ER1	ERO	EG0	ER5	ER4		* 0	D = 1et	Pival
RXinE1 +/-	EG4	EG3	EG2	EG1	EB1	EBO	EG5	EG4	EG3	EG2	EG1	EB1	EBO	EG5		EVE	N = 2nd	Pixel
RXinE2 +/-	EB5	EB4	EB3	EB2	DE	VSYNC	HSYNC	EB5	EB4	EB3	EB2	DE	VSYNC	HSYNC				
RXinE3 +/-	EG7	EG6	ER7	ER6	X	ЕВ7	EB6	EG7	EG6	ER7	ER6	X	EB7	EB6				
	Pre	evious(N	I-1)th Cy	rcle			—Curre	ent(Nth)	Cycle—		>	K–Next	(N+1)th	Cycle—				,

< LVDS Data Format >

Ver. 1.0

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

屏库:全球液晶屏交易中心

LC215EUE

 \bigotimes

APPENDIX- IV

■ LED Array Electrical Spec

LED Array 사양서에 0℃ Vf Spec 추가

Items	Symbol	Condition	Min	Тур	Max	Unit
Module Current	١ _F		-	150 5	240	mA
	V _F	I _{FM} =150mA	126 /	127	74 <i>3</i> 18	V
Array Operating Voltage	△Vop *2)	I _{FM} =150mÆ	\bigcirc	$\langle \rangle \langle \rangle \langle \rangle$	1.3	V
Luminous of White	lv	I _{FM} =150mA		(9500)	\mathbb{Z}	nit
Oslan Ohnensetisitu	cx C	I _{FM} =150mA	Q.245	0.258	0.261	
Color Chromaticity	¢ €	IFM A BORNA) 0.220))	0.228	0.236	
Bright Uniformity *3)	Bu	HEW=120mA	90			%
Color Uniformity *4)	(Try)	VFM=150ma	-		0.007	

Forward Current vs. Forward Voltage

Ambient Temperature vs. Forward Voltage

lf – Vf curve 추가 : 0℃, 50℃ Curve 추가

Ta – Vf curve 추가 : Operating 조건 -20℃~ 70℃ 표기 요망