

Engineering Specification

SPECIFICATION FOR APPROVAL

(●) Prelin	ninary Spe	ecification
------------	------------	-------------

() Final Specification

Title	32.0" WUXGA TFT LCD
-------	---------------------

BUYER	General
MODEL	

SUPPLIER	RAKEN
*MODEL	LC320WUE
SUFFIX	SBR1(ROHS Verified)

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE DATE
1	
Please return 1 copy for you	r confirmation with
your signature and o	comments.

APPROVED BY	SIGNATURE DATE				
/ Team Leader					
REVIEWED BY					
/ PM					
PREPARED BY					
/ Engineer					
LCM R&D Dept. RAKEN Technology Co., Ltd					

Ver. 0.1 1/39

Engineering Specification

CONTENTS

Number	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	10
3-3	SIGNAL TIMING SPECIFICATIONS	12
3-4	DATA MAPPING AND TIMING	13
3-5	PANEL PIXEL STRUCTURE	14
3-6	POWER SEQUENCE	15
4	OPTICAL SPECIFICATIONS	16
5	MECHANICAL CHARACTERISTICS	20
6	RELIABILITY	23
7	INTERNATIONAL STANDARDS	24
7-1	SAFETY	24
7-2	EMC	24
8	PACKING	25
8-1	DESIGNATION OF LOT MARK	25
8-2	PACKING FORM	25
9	PRECAUTIONS	26
9-1	MOUTING PRECAUTIONS	26
9-2	OPERATING PRECAUTIONS	26
9-3	ELECTROSTATIC DISCHARGE CONTROL	27
9-4	PRECAUTION FOR STRONG LIGHT EXPOSURE	27
9-5	STORAGE	27
9-6	HANDING PRECAUTION FOR PROTECTION FILM	27

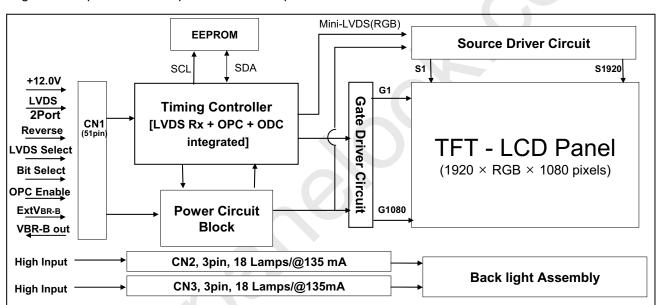
Engineering Specification

RECORD OF REVISIONS

Revision No.	Revision Date	Page	Description
0.1	Aug, 03, 2009	-	Preliminary Specification
			, in the second

Ver. 0.1 3 /39

Engineering Specification


1. General Description

The LC320WUE is a Color Active Matrix Liquid Crystal Display with an integral External Electrode Fluorescent Lamp (EEFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive display type which is operating in the normally black mode. It has a 31.55 inch diagonally measured active display area with WUXGA resolution progressive mode (1080 vertical by 1920 horizontal pixel array).

Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arrayed in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 10-bit gray scale signal for each dot. Therefore, it can present a palette of more than 1.06B(true) colors.

It has been designed to apply the 10-bit 2-port LVDS interface.

It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

General Features

Active Screen Size	31.55 inches(801.31mm) diagonal
Outline Dimension	760 (H) x 450 (V) x 47.5 mm(D) (Typ.)
Pixel Pitch	0.36375 mm x 0.36375 mm
Pixel Format	1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Color Depth	10-bit(D), 1.06 B colors
Luminance, White	500 cd/m² (Center 1point ,Typ.)
Viewing Angle (CR>10)	Viewing angle free (R/L 178 (Min.), U/D 178 (Min.))
Power Consumption	Total 116.2 W (Typ.) (Logic=6.2 W, Back Light=110W with Inverter ,Control PCB)
Weight	5.7Kg(TBD)
Display Mode	Transmissive mode, Normally black
Surface Treatment	Hard coating(3H), Anti-glare treatment of the front polarizer (Haze 10%)

Engineering Specification

2. Absolute Maximum Ratings

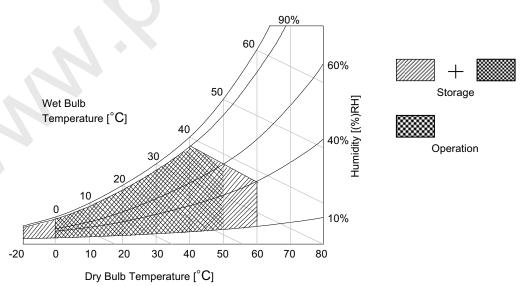

The following items are maximum values which, if exceeded, may cause faulty operation or damage to the LCD Panel.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter		Value		Unit	Remark	
		Symbol	Min	Max	Offic	Remark
Power Input Voltage	LCD circuit	VLCD	-0.3	+14.0	V [DC]	at 25 ± 2 °C
B/L Input voltage	Operating Voltage (one side)	Vop	700	1100	V[RMS]	at 25 ± 2 °C Burst Dimming Duty 100%
Operating Temperat	ture	Тор	0	+50	°C	
Storage Temperature		Тѕт	-20	+60	°C	Note 1
Operating Ambient Humidity		Нор	10	90	%RH	note i
Storage Humidity		Нѕт	10	90	%RH	

Notes: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be Max 39 °C and no condensation of water.

2. Gravity mura can be guaranteed below 40 ℃ condition.

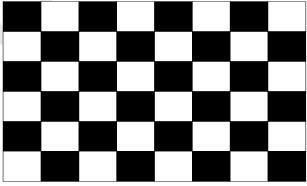
Engineering Specification

3. Electrical Specifications

It requires two kind of power inputs.

One is employed to power for the LCD circuit. The other Is used for the EEFL backlight circuit.

3-1. Electrical Characteristics


Table 2. DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Value			Unit	Note
i diametei	Gymbol	Min	Тур	Max	Offic	14016
Circuit :						
Power Input Voltage	VLCD	10.8	12.0	13.2	VDC	
Power Input Current	ILCD	-	500	650	mA	1
Power Input Current		-	690	900	mA	2
Power Consumption	PLCD	-	6.2	8.1	Watt	1
Rush current	Irush	-	-	3.0	А	3

Notes : 1. The specified current and power consumption are under the V_{LCD} =12.0V, 25 \pm 2°C, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.

- 2. The current is specified at the maximum current pattern.
- 3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).

White : 1023Gray Black : 0Gray

Mosaic Pattern(8 x 6)

Ver. 0.1 6 /39

LC420WUE

Product Specification

Table 3. ELECTRICAL CHARACTERISTICS for IPB& Lamp (Continue)

Parameter		Symbol				- Unit	Notes
		Symbol	Min	Тур	Max	Offic	140163
Backlight Assembly :							
Operating Voltage (one side,fBL=62KHz, IBL=135mArms))		VBL	800	950	1100	V_{RMS}	1, 2
Operating Current (one side)	İBL	130	135	140	mA _{RMS}	1
Established Starting	0℃	Vs	-	-	1225	V	1, 3
Voltage (one side)	25℃	l vs	-	-	1020	V_{RMS}	1, 3
Operating Frequency		fBL	43	45	47	kHz	4
Striking Time		S TIME	-	-	2.0	sec	3
Power Consumption		PBL		67	74	Watt	6
Burst Dimming Duty		PWM duty	20		100	%	9
Burst Dimming Frequency		1/T	98	-	182	Hz	9

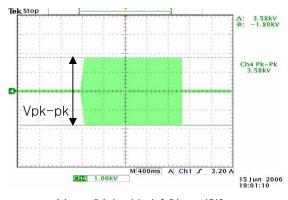
Parameter		Symbol	A (Values		Unit	Notes
T diameter	i didilletei			Тур	Max	Oille	110103
Lamp : APPENDIX							
Lamp Voltage (one side)		VLAMP	820	1035	1075	V_{RMS}	2
Lamp Current (one side)		ILAMP	3	7.5	8	mA_RMS	
Discharge Stabilization Tim	е	Ts	-	-	3	Min	5
Lamp Frequency		f LAMP	40	65	80	KHz	
Lamp Temperature		TLAMP			130	° C	
Established Starting	Established Starting 0°C				1225	.,,	2
Voltage (one side) 25℃		Vs			1020	V_{RMS}	3
Life Time			50,000			Hrs	7

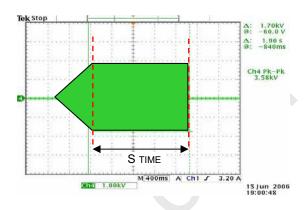
Notes: The design of the inverter must have specifications for the lamp in LCD Assembly.

The electrical characteristics of inverter are based on High-High Driving type.

The performance of the lamps in LCM, for example life time or brightness, is extremely influenced by the characteristics of the DC-AC inverter. So, all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure unwanted lighting caused by the mismatch of the lamp and the inverter (no lighting, flicker, etc) has never been occurred. When you confirm it, the LCD- Assembly should be operated in the same condition as installed in your instrument.

- Do not attach a conductive tape to lamp connecting wire.
 If you attach conductive tape to the lamp wire, not only luminance level can be lower than typical one but also inverter operate abnormally on account of leakage current which is generated between lamp wire and conductive tape.
- 1. Specified values are defined for a Backlight Assembly. (IBL: 18 lamp, 7.5mA/Lamp)
- 2. Operating voltage is measured at $25 \pm 2^{\circ}$ C(after 2hr.aging). The variance range for operating voltage is \pm 10%.
- 3. The established starting voltage [Vs] should be applied to the lamps for more than Striking time (S TIME) for start-up. Inverter open voltage must be more than established starting voltage. Otherwise, the lamps may not be turned on. The used lamp current is typical value.

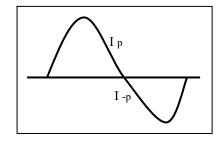

Ver. 0.1 7 /33

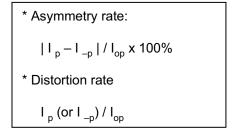

Global LCD Panel Exchange Center

LC320WUE

Engineering Specification

Vs = (Vpk-pk) / [2*root(2)]

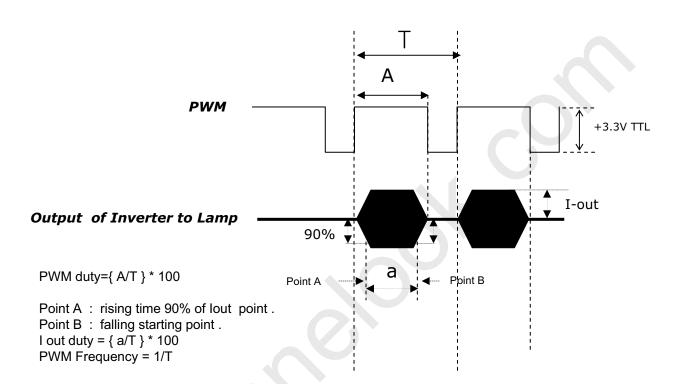



- 4. Lamp frequency may produce interference with horizontal synchronous frequency. As a result, the may cause beat on the display. Therefore, lamp frequency shall be away as much as possible from the horizontal synchronous frequency and its harmonics range in order to prevent interference.
- 5. The brightness of the lamp after lighted for 5minutes is defined as 100%. T_S is the time required for the brightness of the center of the lamp to be not less than 95% at typical current. The screen of LCD module may be partially dark by the time the brightness of lamp is stable after turn on.
- Maximum level of power consumption is measured at initial turn on. Typical level of power consumption is measured after 2hrs aging at $25 \pm 2^{\circ}$ C.
- 7. The life time is determined as the time at which brightness of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at 25 ± 2 °C, based on duty 100%.
- 8. The output of the inverter must have symmetrical (negative and positive) voltage and current waveform (Unsymmetrical ratio is less than 10%). Please do not use the inverter which has not only unsymmetrical voltage and current but also spike wave.

Requirements for a system inverter design, which is intended to achieve better display performance, power efficiency and more reliable lamp characteristics.

It can help increase the lamp lifetime and reduce leakage current.

- a. The asymmetry rate of the inverter waveform should be less than 10%.
- b. The distortion rate of the waveform should be within $\sqrt{2} \pm 10\%$.
 - 'Inverter output waveform had better be more similar to ideal sine wave.



Engineering Specification

 The reference method of burst dimming duty ratio.
 It is recommended to use synchronous V-sync frequency to prevent waterfall (Vsync x 2 =Burst Frequency)

- * We recommend not to be much different between PWM duty and lout duty .
- * Dimming current output rising and falling time may produce humming and inverter trans' sound noise.
- Burst dimming duty should be 100% for more than 1second after turn on.
- *** Equipment**

Oscilloscope :TDS3054B(Tektronix) Current Probe : P6022 AC (Tektronix) High Voltage Probe: P5100(Tektronix)

- 10. The Cable between the backlight connector and its inverter power supply should be connected directly with a minimized length. The longer cable between the backlight and the inverter may cause the lower luminance of lamp and may require more higher starting voltage (Vs).
- 11. The operating current must be measured as near as backlight assembly input.
- 12. The operating current unbalance between left and right must be under 10% of Typical current | Left(Master) current Right(Slave) Current | < 10% of typical current

Ver. 0.1 9 /39

Engineering Specification

3-2. Interface Connections

This LCD module employs two kinds of interface connection, a 51-pin connector is used for the module electronics and two 3-pin Balance PCB connectors are used for the integral backlight system.

3-2-1. LCD Module

- LCD Connector(CN1): FI-R51S-HF(manufactured by JAE) or KN25-51P-0.5SH(manufactured by Hirose)
- Mating Connector: FI-R51HL(JAE) or compatible

Table 4. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	GND	Ground	27	Bit Select	'H' or NC= 10bit(D), 'L' = 8bit
2	NC	No Connection	28	R2AN	SECOND LVDS Receiver Signal (A-)
3	NC	No Connection	29	R2AP	SECOND LVDS Receiver Signal (A+)
4	NC	No Connection	30	R2BN	SECOND LVDS Receiver Signal (B-)
5	NC	No Connection	31	R2BP	SECOND LVDS Receiver Signal (B+)
6	NC	No Connection	32	R2CN	SECOND LVDS Receiver Signal (C-)
7	LVDS Select	'H' =JEIDA , 'L' or NC = VESA	33	R2CP	SECOND LVDS Receiver Signal (C+)
8	VBR EXT	Vbr Input (For OPC)	34	GND	Ground
9	OPC OUT	Vbr Output (For OPC)	35	R2CLKN	SECOND LVDS Receiver Clock Signal(-)
10	OPC Enable	H : OPC Enable / L : OPC Disable	36	R2CLKP	SECOND LVDS Receiver Clock Signal(+)
11	GND	Ground	37	GND	Ground
12	R1AN	FIRST LVDS Receiver Signal (A-)	38	R2DN	SECOND LVDS Receiver Signal (D-)
13	R1AP	FIRST LVDS Receiver Signal (A+)	39	R2DP	SECOND LVDS Receiver Signal (D+)
14	R1BN	FIRST LVDS Receiver Signal (B-)	40	R2EN	SECOND LVDS Receiver Signal (E-)
15	R1BP	FIRST LVDS Receiver Signal (B+)	41	R2EP	SECOND LVDS Receiver Signal (E+)
16	R1CN	FIRST LVDS Receiver Signal (C-)	42	Reserved	No connection or GND
17	R1CP	FIRST LVDS Receiver Signal (C+)	43	Reserved	No connection or GND
18	GND	Ground	44	GND	Ground
19	R1CLKN	FIRST LVDS Receiver Clock Signal(-)	45	GND	Ground
20	R1CLKP	FIRST LVDS Receiver Clock Signal(+)	46	GND	Ground
21	GND	Ground	47	NC	No connection
22	R1DN	FIRST LVDS Receiver Signal (D-)	48	VLCD	Power Supply +12.0V
23	R1DP	FIRST LVDS Receiver Signal (D+)	49	VLCD	Power Supply +12.0V
24	R1EN	FIRST LVDS Receiver Signal (E-)	50	VLCD	Power Supply +12.0V
25	R1EP	FIRST LVDS Receiver Signal (E+)	51	VLCD	Power Supply +12.0V
26	Reserved	No connection or GND	•	-	-

- Notes: 1. All GND(ground) pins should be connected together to the LCD module's metal frame.
 - 2. All VLCD (power input) pins should be connected together.
 - 3. All Input levels of LVDS signals are based on the EIA 644 Standard.
 - 4. Specific pins(pin No. #2~#6) are used for internal data process of the LCD module. If not used, these pins are no connection.
 - 5. LVDS pin (pin No. #24,25,40,41) are used for 10Bit(D) of the LCD module. If used for 8Bit(R), these pins are no connection.
 - 6. Specific pin No. #44 is used for "No signal detection" of system signal interface. It should be GND for NSB(No Signal Black) during the system interface signal is not. If this pin is "H", LCD Module displays AGP(Auto Generation Pattern).

Engineering Specification

3-2-2. Backlight Module

[Master]

1) Balance Connector

: 65002WS-03 (manufactured by YEONHO)

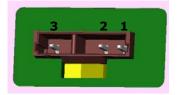
2) Mating Connector

: 65002HS-03 (manufactured by YEONHO)

[Slave]

1) Balance Connector

: 65002WS-03 (manufactured by YEONHO)


2) Mating Connector

: 65002HS-03 (manufactured by YEONHO)

Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION(CN2,CN3)

No	Symbol	Master	Slave	Note
1	H_Input	High_Input	High_Input	
2	H_Input	High_Input	High_Input	
3	FB	NC	NC	

♦ Rear view of LCM

Master

Slave

Ver. 0.1

Global LCD Panel Exchange Center

LC320WUE

Engineering Specification

3-3. Signal Timing Specifications

Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timing should be satisfied with the following specification for normal operation.

Table 6. TIMING TABLE for NTSC (DE Only Mode)

ı	TEM	Symbol	Min	Тур	Max	Unit	Note
	Display Period	thv	-	960	-	tclk	
Horizontal	Blank	tнв	100	140	240	tclk	
	Total	tHP	1060	1100	1200	tclk	2200/2
	Display Period	tvv	-	1080	-	Lines	
Vertical	Blank	t∨B	11	45	69	Lines	
	Total	tvp	1091	1125	1149	Lines	

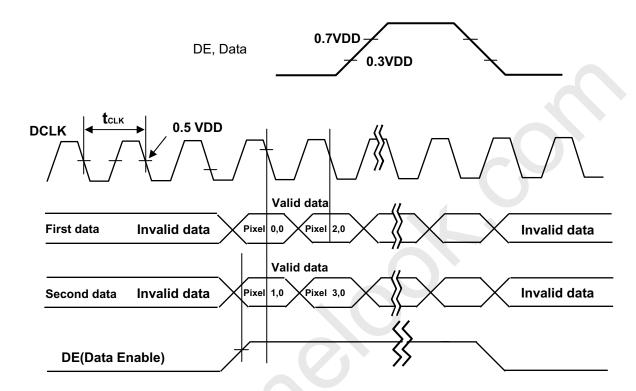
IT	EM	Symbol	Min	Тур	Max	Unit	Note
	DCLK	fclk	70	74.25	77	MHz	148.5/2
Frequency	Horizontal	fH	65	67.5	70	KHz	
	Vertical	fv	57	60	63	Hz	

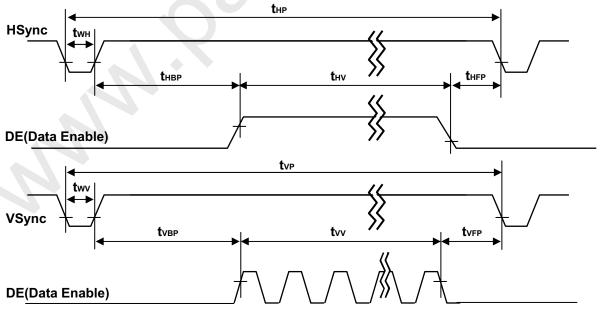
Table 7 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timing should be satisfied with the following specification for normal operation.

Table 7. TIMING TABLE for PAL (DE Only Mode)

	TEM	Symbol	Min	Тур	Max	Unit	Note
	Display Period	thv	-	960	-	tclk	
Horizontal	Blank	tнв	100	140	240	tclk	
	Total	tHP	1060	1100	1200	tclk	2200/2
	Display Period	tvv	-	1080	-	Lines	
Vertical	Blank	t∨B	228	270	300	Lines	
	Total	tvp	1308	1350	1380	Lines	

II	EM	Symbol	Min	Тур	Max	Unit	Note
	DCLK	fclk	70	74.25	77	MHz	148.5/2
Frequency	Horizontal	fH	65	67.5	70	KHz	
	Vertical	fv	47	50	53	Hz	


Note: The Input of HSYNC & VSYNC signal does not have an effect on normal operation(DE Only Mode). The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate.


Engineering Specification

3-4. Signal Timing Waveforms

* Reference : Sync. Relation

- * the = thee + twh +thee
- * $t_{VB} = t_{VFP} + t_{WV} + t_{VBP}$

Ver. 0.1

Engineering Specification

3-5. Color Data Reference

The brightness of each primary color(red,green,blue) is based on the 10-bit gray scale data input for the color. The higher binary input, the brighter the color. Table 8 provides a reference for color versus data input.

Table 8. COLOR DATA REFERENCE

														Inp	out	Со	lor	Da	ata												
Co	lor					RI	ΞD									GR	EEN	1							V	BL	UE				
CC	0101	MSB							L	.SB		MS	В							L	SB	MSE	3							LS	В
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	' G6	G G 5	G4	G3	G2	G1	G0	В9	B8	В7	В6	B5	B4	В3	B2	B1	В
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1023)		1	1	1	1	1	1	1	.1	1	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
Basic	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•
	RED (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	RED (001)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
RED			• • •	• • •	• • •			•••	•	• • •			• • •	• •				• • •	• • •	• • •			• • •	• • •		• • •		• • •	• • •		
	RED (1022)	1	 1	1	1	1	1	 1	 1	 1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	٠.
	RED (1023)	1	 1	 1	 1	 1	 1	 1	 1	 1	 1	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	٠.
	GREEN (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	GREEN (001)	0	0		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	 1	0	0	0	0	0	0	0	0	0	
			• • •		• • •		 	• • •		• • •				• •	• • • •			• • •	• • •	• • •		· 		• • •			· · ·				
GREEN	GREEN (1022)	0	0	0	0	0	0	0	0	0	0	1		1	1	1	1				0	0	0	0	0	0	0	0	0	0	
	GREEN (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1			1	1	0	0	0	0	0	0	0	0	0	
	BLUE (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	BLUE (001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
BLUE		ļ			• • •		• • • • •					ļ		• •	• • • •				• • •			ļ	• • •	• • •			···				
	BLUE (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
	BLUE (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	1	1	1	 1		1	 1	 1	1	

Engineering Specification

3-6. Power Sequence

Global LCD Panel Exchange Center

3-6-1. LCD Driving circuit

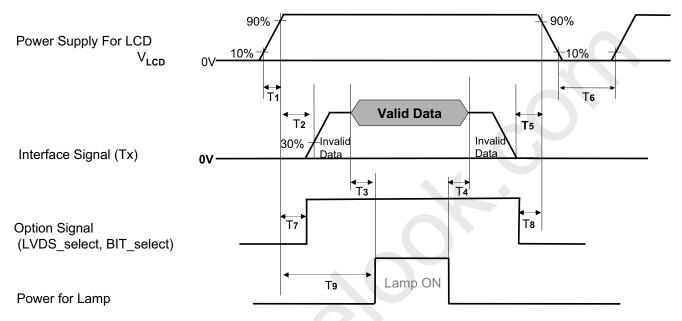


Table 9. POWER SEQUENCE

Daramatar		Value		Unit	Notos
Parameter	Min	Тур	Max	Onit	Notes
T1	0.5	-	20	ms	
T2	0.5	_	-	ms	4, 5
Т3	200	-	-	ms	3
T4	200	-	-	ms	3
T5	0	-	-	ms	
T6	2.0	-	-	S	6
T7	0.5	-	T2	ms	4
Т8	0	-	-	ms	4
Т9	T2 + T3	-	5	S	

Note: 1. Please avoid floating state of interface signal at invalid period.

- 2. When the interface signal is invalid, be sure to pull down the power supply V_{LCD} to 0V.
- 3. The T3/T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem.
- 4. If the on time of signals(Interface signal and Option signals) precedes the on time of Power(V_{LCD}), it will be happened abnormal display.
- 5. T6 should be measured after the Module has been fully discharged between power off and on period.

Engineering Specification

4. Optical Specification

Global LCD Panel Exchange Center

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at 25±2°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0°.

FIG. 10 shows additional information concerning the measurement equipment and method.

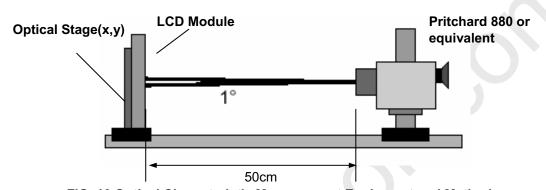


FIG. 10 Optical Characteristic Measurement Equipment and Method

Ta= 25±2°C, VDD, VGH, VGL=typ., fv=60Hz, Dclk=148.5MHz,

Table 8. OPTI	CAL CHARACTE	RISTICS		O , 100,	· O, · O	p., oo,	I _{BL} =112mArms
Dave		Cy made al		Value		l lmit	Note
Para	ımeter	Symbol	Min	Тур	Max	Unit	Note
Contrast Ratio		CR		1300	-		1
Surface Luminar	ce, white	L _{WH}	400	500	-	cd/m ²	2
Luminance Varia	tion	δ _{WHITE} 5P	-	-	1.3		3
Poononee Time	Gray-to-Gray	G to G	-	6	9	ms	4
Response Time	Rising / Falling	Tr / Tf	-	6	9	ms	4
	RED	Rx		0.638			
	KED	Ry		0.340			
Calar	GREEN	Gx		0.279			
Color Coordinates	GILLIN	Gy	Тур	0.611	Тур		
[CIE1931]	BLUE	Bx	-0.03	0.146	+0.03		
[0.2.001]		Ву		0.062			
	WHITE	Wx		0.279			
		Wy		0.292			
Viewing Angle (C	CR>10)						
ха	xis, right(φ=0°)	θr	89	-	-		
ха	xis, left (φ=180°)	θΙ	89		-]	_
уа	xis, up (φ=90°)	θu	89	-	-	degree	5
уа	xis, down (φ=270°)	θd	89	-			
Gray Scale			-	-	-		6

Engineering Specification

Notes: 1. Contrast Ratio(CR) is defined mathematically as:

Surface Luminance at all white pixels CR =

Surface Luminance at all black pixels

It is measured at center 1-point.

- 2. Surface luminance is determined after the unit has been 'ON' and 1Hour after lighting the backlight in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 10.
- 3. The variation in surface luminance , δ WHITE is defined as : $\delta \text{ WHITE(5P) = Maximum}(L_{on1}, L_{on2}, L_{on3}, L_{on4}, L_{on5}) / \text{ Minimum}(L_{on1}, L_{on2}, L_{on3}, L_{on4}, L_{on5})$ Where L_{on1} to L_{on5} are the luminance with all pixels displaying white at 5 locations . For more information, see the FIG. 11.
- Response time is the time required for the display to transit from G(N) to G(M) (Rise Time, Trp) and from G(N) to G(M) (Decay Time, Tr_D). And the GtoG is the average response time when the overdriving function adapted.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 13.
- 6. Gray scale specification Gamma Value is approximately 2.2. For more information, see the Table 8.

Table 8. GRAY SCALE SPECIFICATION

Gray Level	Luminance [%] (Typ.)
LO	0.08
L63	0.27
L127	1.04
L191	2.49
L255	4.68
L319	7.66
L383	11.5
L447	16.1
L511	21.6
L575	28.1
L639	35.4
L703	43.7
L767	53.0
L831	63.2
L895	74.5
L959	86.7
L1023	100

Global LCD Panel Exchange Center

LC320WUE

Engineering Specification

Measuring point for surface luminance & measuring point for luminance variation.

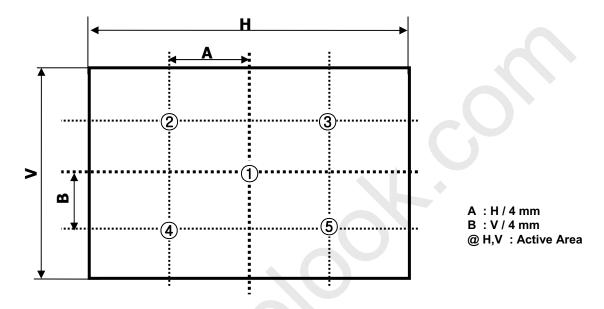


FIG. 11 5 Points for Luminance Measure

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(0)" and "Gray(255)".

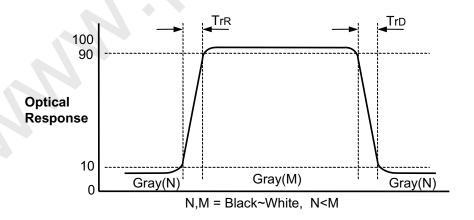


FIG. 12 Response Time

Global LCD Panel Exchange Center

LC320WUE

Engineering Specification

Dimension of viewing angle range

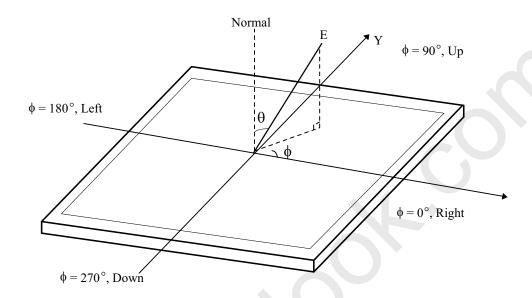


FIG. 13 Viewing Angle

Engineering Specification

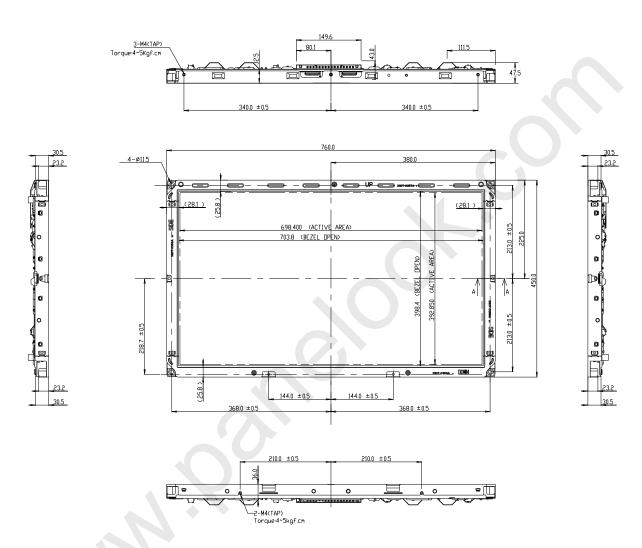
5. Mechanical Characteristics

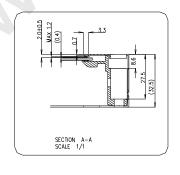
Table 10 provides general mechanical characteristics.

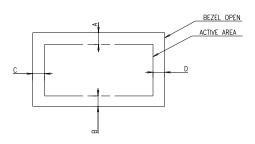
Table 10. MECHANICAL CHARACTERISTICS

ltem	Value				
	Horizontal	760 mm			
Outline Dimension	Vertical	450 mm			
	Depth	47.5 mm			
Bezel Area	Horizontal	703.8 mm			
Dezel Area	Vertical	398.4 mm			
Active Display Area	Horizontal	698.40 mm			
Active Display Area	Vertical	392.85 mm			
Weight	5,700g (Typ.) , 6,200g (Max.)				

Note : Please refer to a mechanic drawing in terms of tolerance at the next page.

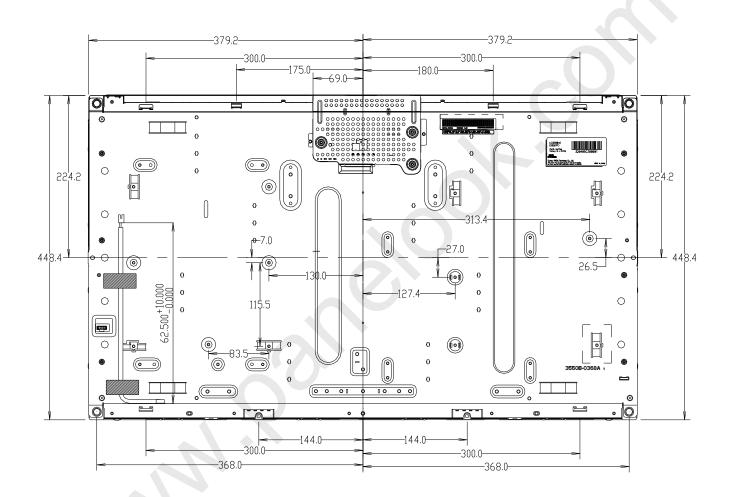

Ver. 0.1 20 /39




Engineering Specification

<FRONT VIEW>

NOTES 1.UNSPECIFIED TOLERANCES TO BE ± 1.0 MM 2.THIT AND PARTIAL DISPOSITION TOLERANCE OF DISPLAY AREA ARE AS FOLLOWING. (1) Y-DIRECTION: 1 A-B | \leq 1.5 (2) X-DIRECTION: 1 C-D | \leq 1.5



Engineering Specification

<REAR VIEW>

Ver. 0.1 22 /39

Engineering Specification

6. Reliability

Table 13. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition
1	High temperature storage test	Ta= 60°C 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 240h
4	Low temperature operation test	Ta= 0°C 240h
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.0Grms Bandwidth : 10-300Hz Duration : X,Y,Z, 10 min One time each direction
6	Shock test (non-operating)	Shock level : $50G$ Waveform : half sine wave, $11ms$ Direction : $\pm X$, $\pm Y$, $\pm Z$ One time each direction
7	Humidity condition Operation	Ta= 40 °C ,90%RH
8	Altitude operating storage / shipment	0 - 15,000 ft 0 - 40,000 ft

Note: Before and after Reliability test, LCM should be operated with normal function.

Ver. 0.1 23 /39

Engineering Specification

7. International Standards

7-1. Safety

- a) UL 60065, 7th Edition, dated June 30, 2003, Underwriters Laboratories, Inc., Standard for Audio, Video and Similar Electronic Apparatus.
- b) CAN/CSA C22.2, No. 60065:03, Canadian Standards Association, Standard for Audio, Video and Similar Electronic Apparatus.
- c) IEC60065:2001, 7th Edition CB-scheme and EN 60065:2002, Safety requirements for Audio, Video and Similar Electronic Apparatus...

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) CISPR13 "Limits and Methods of Measurement of Radio interference characteristics of Sound and Television broadcast receivers and associated equipment"
 CISPR22 "Limits and Methods of Measurement of Radio interference characteristics of Information Technology Equipment" International Special Committee on Radio Interference.
- c) EN55013 "Limits and Methods of Measurement of Radio interference characteristics of Sound and Television broadcast receivers and associated equipment"
 EN55022 "Limits and Methods of Measurement of Radio interference characteristics of Information Technology Equipment" European Committee for Electro Technical Standardization. (CENELEC), 1988(Including A1:2000)

Ver. 0.1 24 /39

Engineering Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

АВ	C D	E F	GH	I	J	K	L	М	
----	-----	-----	----	---	---	---	---	---	--

A,B,C: SIZE(INCH)

D : YEAR E : MONTH

F : PANEL CODE G : FACTORY CODE H : ASSEMBLY CODE I,J,K,L,M : SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	4	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial NO. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one Pallet: 30 pcs

b) Pallet Size : 1140 mm $\,$ X 870mm $\,$ X 1188mm.

Ver. 0.1 25 /39

Engineering Specification

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- (1) You must mount a module using specified mounting holes (Details refer to the drawings).
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it can causes conductive particles and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) Partial darkness may happen during $3\sim5$ minutes when LCM is operated initially in condition that luminance is under 40% at low temperature (under 5° C). This phenomenon which disappears naturally after $3\sim5$ minutes is not a problem about reliability but LCD characteristic

Ver. 0.1 26 /39

Engineering Specification

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

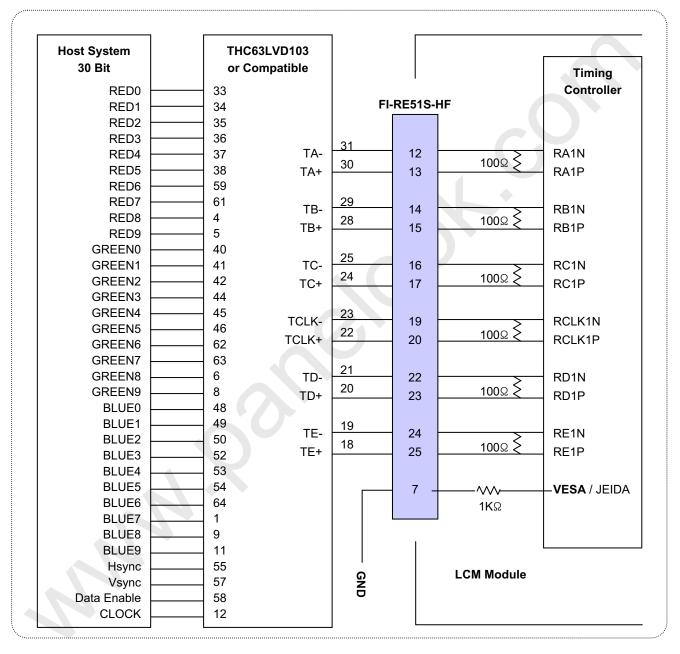
When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Ver. 0.1 27 /39



Engineering Specification

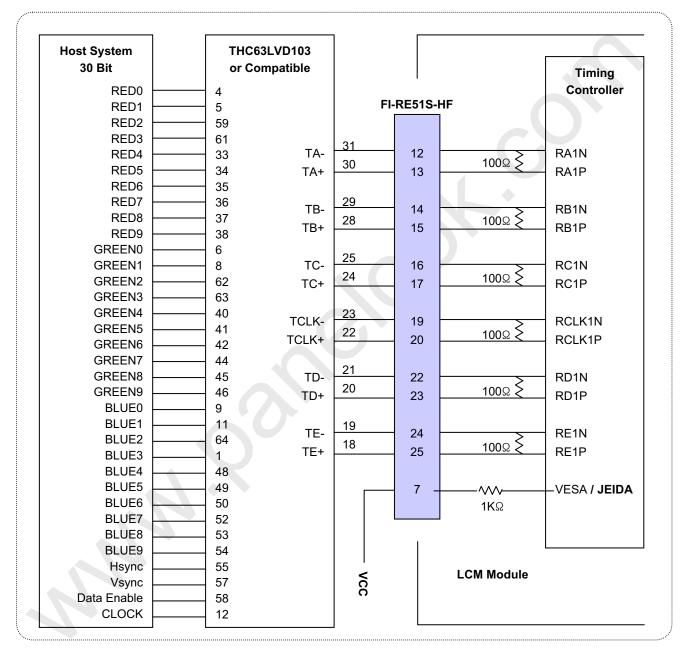
APPENDIX- I-1

■ Required signal assignment for Flat Link (Thine : THC63LVD103) Transmitter (Pin7="L or NC")

Notes:

- 1. The LCD module uses a 100 Ohm(Ω) resistor between positive and negative lines of each receiver input.
- 2. Refer to LVDS transmitter data sheet for detail descriptions. (THC63LVD103 or Compatible)
- 3. '9' means MSB and '0' means LSB at R,G,B pixel data.

Ver. 0.1 28 /39



Engineering Specification

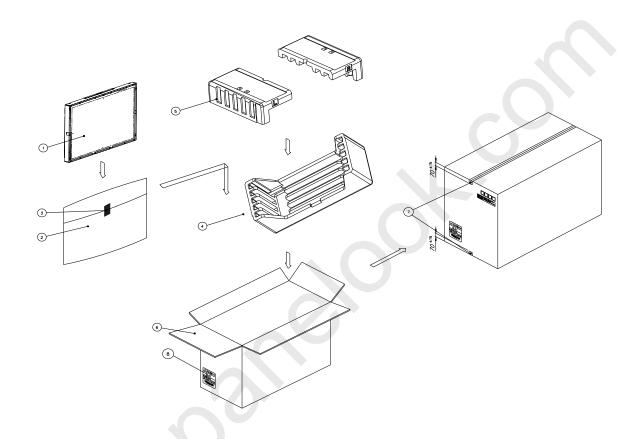
APPENDIX- 1-2

■ Required signal assignment for Flat Link (Thine : THC63LVD103) Transmitter (Pin7="H")

Notes:

- 1. The LCD module uses a 100 Ohm(Ω) resistor between positive and negative lines of each receiver input.
- 2. Refer to LVDS transmitter data sheet for detail descriptions. (THC63LVD103 or Compatible)
- 3. '9' means MSB and '0' means LSB at R,G,B pixel data.

Ver. 0.1 29 /39

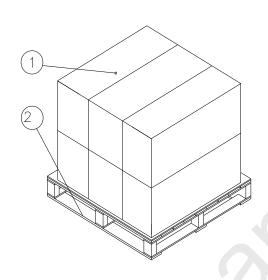


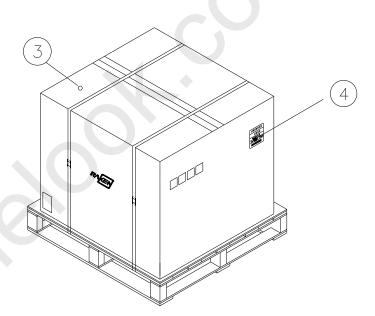
Engineering Specification

APPENDIX- I1-1

Packing Ass'y

NO.	DESCRIPTION	MATERIAL
1	LCD MODULE	
2	BAG	AL
3	TAPE	MASKING 20MM X 50M
4	PACKING, BOTTOM	EPS
5	PACKING, TOP R_L	EPS
6	BOX	PAPER_DW3
7	TAPE	OPP 70MMX300M
8	LABEL	YUPO PAPER 100X100


Ver. 0.1 30 /39



Engineering Specification

APPENDIX- II-2

Pallet Ass'y

NO.	DESCRIPTION	MATERIAL
1	PACKING ASS'Y	
2	PALLET	Plywood
3	ANGLE, PACKING	PAPER (DW3)
4	LABEL	PAPER

APPENDIX- III-1

■ LCM Label

Engineering Specification

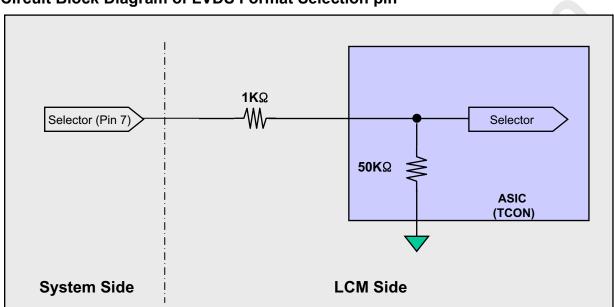
APPENDIX- III-2

Global LCD Panel Exchange Center

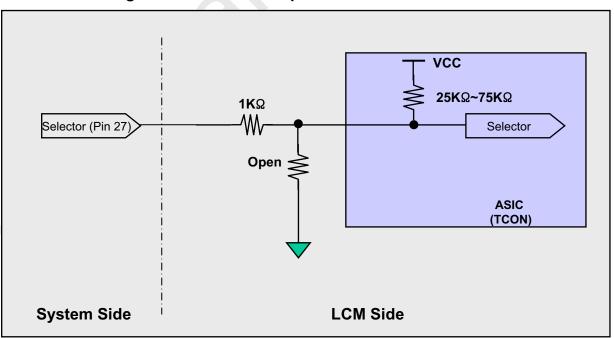
■ Box Label

LC320WUE									
SBR1									
5 PCS	001/01-01								
MADE IN	RoHS	Verified							

■ Pallet Label



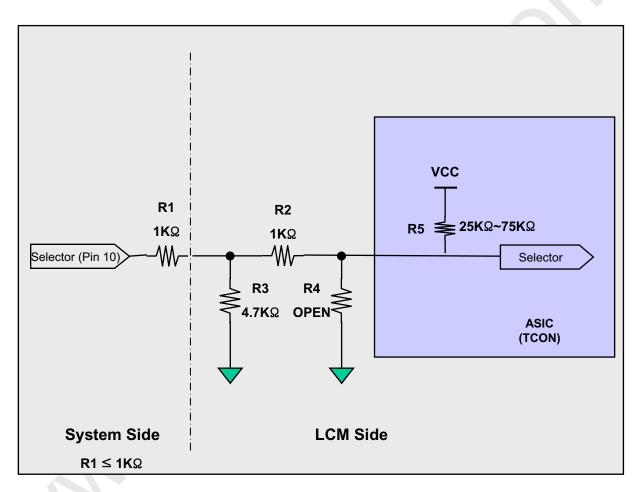
APPENDIX- IV-1


RAKEN

Option Pin Circuit Block Diagram

Circuit Block Diagram of LVDS Format Selection pin

Circuit Block Diagram of Bit Selection pin

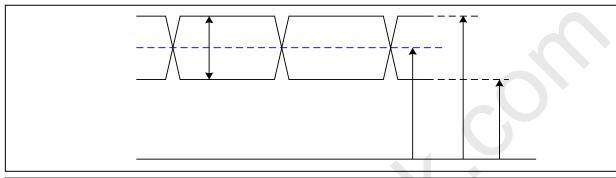


Engineering Specification

APPENDIX- IV-2

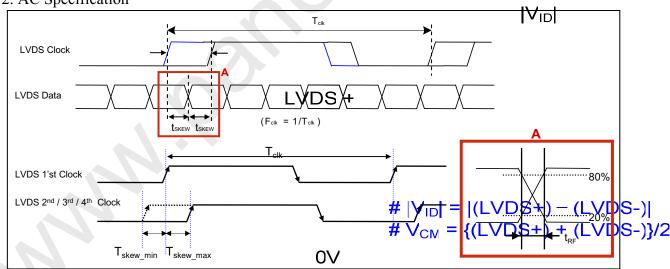
■ Option Pin Circuit Block Diagram

Circuit Block Diagram of OPC Enable Selection pin


Engineering Specification

APPENDIX- V

Global LCD Panel Exchange Center


LVDS Input characteristics

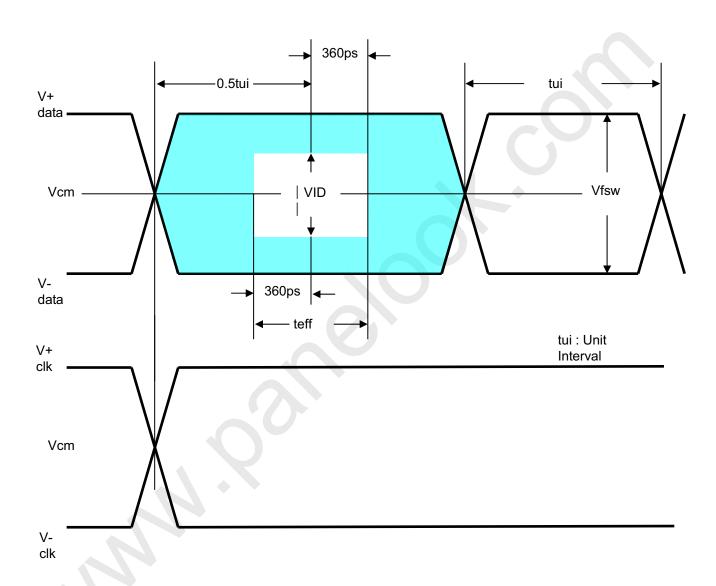
1. DC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Single end Voltage	V _{ID}	200	600	mV	-
LVDS Common mode Voltage	V _{CM}	1.1	1.5	V	-
LVDS Input Voltage Range	V _{IN}	0.7	1.8	V	-
Change in common mode Voltage	∆V L M V	DS -	150	mV	-

2. AC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skew Margin	t _{SKEW}		480	ps	78MHz > Fclk ≥ 70MHz
LVDS Clock/DATA Rising/Falling time	t _{RF}	260	(0.3*T _{clk})/7	ps	-
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}		1/7* T _{clk}	T _{clk}	-

Note. All Input levels of LVDS signals are based on the EIA 644 Standard.

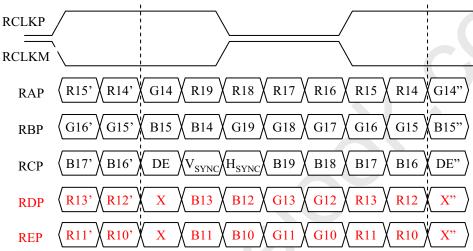


Engineering Specification

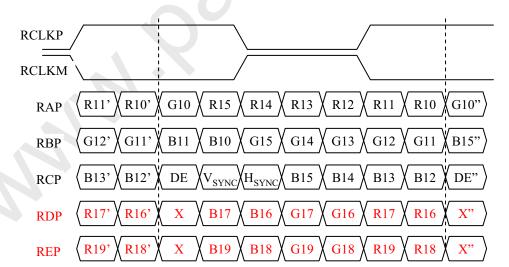
APPENDIX- VI

LVDS Input characteristics

Ver. 0.1 37 /39



Engineering Specification

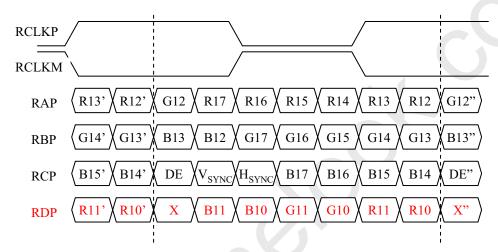

APPENDIX- VII-1

LVDS Data-Mapping info. (10bit)

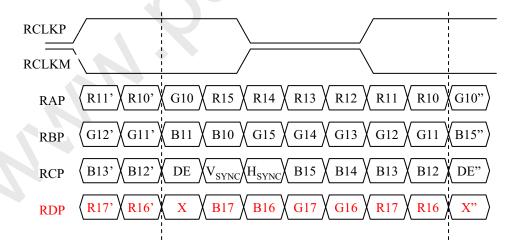
■ LVDS Select : "H" Data-Mapping (JEIDA format)

■ LVDS Select : "L" Data-Mapping (VESA format)

Ver. 0.1 38 /39



Engineering Specification


APPENDIX- VII-2

LVDS Data-Mapping info. (8bit)

■ LVDS Select: "H" Data-Mapping (JEIDA format)

■ LVDS Select: "L" Data-Mapping (VESA format)

Ver. 0.1 39 /39