

Product Specification

CONTENTS

Number	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	11
3-4	SIGNAL TIMING WAVEFORMS	12
3-5	COLOR DATA REFERENCE	15
3-6	POWER SEQUENCE	16
4	OPTICAL SPECIFICATIONS	18
5	MECHANICAL CHARACTERISTICS	24
6	RELIABILITY	27
7	INTERNATIONAL STANDARDS	28
7-1	SAFETY	28
7-2	EMC	28
7-3	ENVIRONMENT	28
8	PACKING	29
8-1	DESIGNATION OF LOT MARK	29
8-2	PACKING FORM	29
9	PRECAUTIONS	30
9-1	MOUNTING PRECAUTIONS	30
9-2	OPERATING PRECAUTIONS	30
9-3	ELECTROSTATIC DISCHARGE CONTROL	31
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	31
9-5	STORAGE	31
9-6	HANDLING PRECAUTIONS FOR PROTECTION FILM	31
9-7	OPERATING GONDITION GUIDE	31

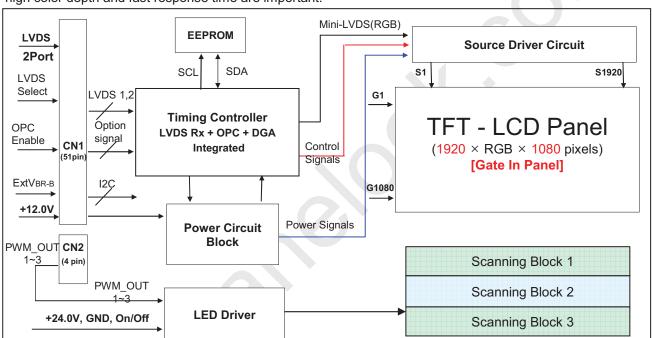
Ver. 0.1 1/38

Product Specification

RECORD OF REVISIONS

Revision No.	Revision Date	Page	Description
0.1	Jan, 12, 2012	-	Preliminary Specification (First Draft)

Ver. 0.1 2 /38


Product Specification

1. General Description

The LC420EUN is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive display type which is operating in the normally black mode. It has a 42.02 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arrayed in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 8-bit gray scale signal for each dot. Therefore, it can present a palette of more than 16.7Million colors.

It has been designed to apply the 8-bit 2-port LVDS interface.

It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

General Features

<u>Goriorai i Gataroo</u>	
Active Screen Size	42.02 inches(1067.31mm) diagonal
Outline Dimension	960.4(H) × 560.4(V) X 9.9(B)/17.4 mm(D) (Typ.)
Pixel Pitch	0.4845 mm x 0.4845 mm
Pixel Format	1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Color Depth	8bit, 16.7Million colors
Luminance, White	360 cd/m² (Center 1point ,Typ.)
Viewing Angle (CR>10)	Viewing angle free (R/L 178 (Min.), U/D 178 (Min.))
Power Consumption	Total 51.8W [Logic= 6.3W, LED Driver=45.5W (ExtVbr_B=100%)]
Weight	9.0 Kg (Typ.)
Display Mode	Transmissive mode, Normally black
Surface Treatment	Hard coating(2H), Anti-glare treatment of the front polarizer (Haze < 1%)

Ver. 0.1 3 /38

Product Specification

2. Absolute Maximum Ratings

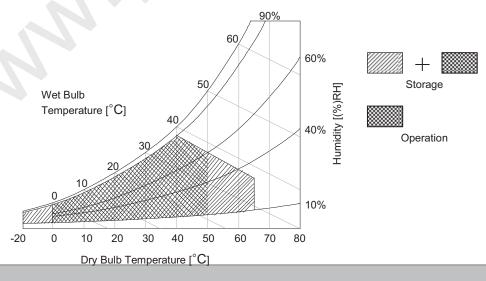

The following items are maximum values which, if exceeded, may cause faulty operation or permanent damage to the LCD module.

Table 1. ABSOLUTE MAXIMUM RATINGS

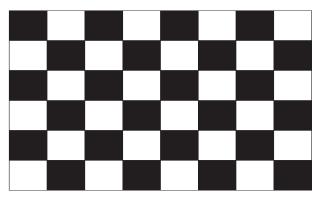
Para	Symbol	Va	Value		Note	
Parameter		Syllibol	Min	Max	Unit	Note
Dower Input Voltage	LCD Circuit	VLCD	-0.3	+14.0	VDC	
Power Input Voltage	Driver	VBL	-0.3	+ 27.0	VDC	
Driver Control Voltage	ON/OFF	Voff / Von	-0.3	+5.5	VDC	1
	Brightness	EXTVBR-B	-0.3	+4.0	VDC	
T-Con Option Selection	Voltage	VLOGIC	-0.3	+4.0	VDC	
Operating Temperature		Тор	0	+50	°C	2.2
Storage Temperature		Тѕт	-20	+65	°C	2,3
Panel Front Temperature		Tsur	-	+68	°C	4
Operating Ambient Hum	Нор	10	90	%RH	0.0	
Storage Humidity	Нѕт	10	90	%RH	2,3	

Note 1. Ambient temperature condition (Ta = 25 ± 2 °C)

- 2. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be Max 39°C, and no condensation of water.
- 3. Gravity mura can be guaranteed below 40°C condition.
- 4. The maximum operating temperatures is based on the test condition that the surface temperature of display area is less than or equal to 68°C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68°C. The range of operating temperature may be degraded in case of improper thermal management in final product design.

Product Specification

3. Electrical Specifications


3-1. Electrical Characteristics

It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the LED backlight and LED Driver circuit.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Symbol		Value			Note
Farameter	Syllibol	Min	Тур	Max	Unit	Note
Circuit :						-
Power Input Voltage	VLCD	10.8	12.0	13.2	VDC	
Power Input Current	luop	-	528	686	mA	1
	ILCD	-	789	1025	mA	2
Power Consumption	PLCD		6.34	8.23	Watt	1
Rush current	IRUSH	-	-	3.0	А	3
	ExtV _{BR-B}	5	-	100	%	On Duty
Brightness Adjust for Back Light	EXIV _{BR-B}	1	<i>-</i>	100	%	4
	ExtV _{BR-B} Frequency	40	50/60	80	Hz	
Pulse Duty Level	High Level	2.5	-	3.6	Vdc	HIGH : on duty
(PWM)	Low Level	0	-	0.8	Vdc	LOW : off duty

- Note 1. The specified current and power consumption are under the V_{LCD} =12.0V, Ta=25 \pm 2°C, f_V=60Hz condition, and mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.
 - 2. The current is specified at the maximum current pattern.
 - 3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).
 - 4. ExtV_{BR-B} signal have to input available duty range and sequence. After Driver ON signal is applied, ExtV_{BR-B} should be sustained from 5% to 100% more than 500ms. After that, ExtV_{BR-B} 1% and 100% is possible For more information, please see 3-6-2. Sequence for LED Driver.
 - 5. Ripple voltage level is recommended under $\pm 5\%$ of typical voltage

Mosaic Pattern(8 x 6)

White: 255 Gray Black: 0 Gray

5 /38

Product Specification

Table 3. ELECTRICAL CHARACTERISTICS (Continue)

Parameter				Values					
			Symbol	Min	Тур	Max	Unit	Notes	
LED Driver :									
Power Supply Input Voltage			VBL	22.8	24.0	25.2	Vdc	1	
Power Supply Input Current			IBL	-	1.9	2.1	А	1	
Power Supply Input Current (In-Rush)			In-rush	-	-	3.5	А	VBL = 22.8V Ext VBR-B = 100% 3	
Power Consumption	n		PBL	-	45.5	49.8	W	1	
Input Voltage for	0 /0"	On	V on	2.5	-	5.0	Vdc		
Control System Signals	On/Off Off	V off	-0.3	0.0	0.7	Vdc			
LED:									
Life Time				30,000	50,000		Hrs	2	

Notes:

- 1. Electrical characteristics are determined after the unit has been 'ON' and stable for approximately 60 minutes at 25±2°C. The specified current and power consumption are under the typical supply Input voltage 24V and VBR (ExtVBR-B: 100%), it is total power consumption.
- 2. The life time (MTTF) is determined as the time which luminance of the LED is 50% compared to that of initial value at the typical LED current (ExtVBR-B :100%) on condition of continuous operating in LCM state at $25\pm2^{\circ}$ C.
- 3. The duration of rush current is about 200ms. This duration is applied to LED on time.
- $4. \ Even though inrush current is over the specified value, there is no problem if I^2T spec of fuse is satisfied. \\$

Ver. 0.1 6 /38

Product Specification

3-2. Interface Connections

This LCD module employs two kinds of interface connection, 51-pin connector is used for the module electronics and 14-pin connector is used for the integral backlight system.

3-2-1. LCD Module

- LCD Connector(CN1): FI-R51S-HF(manufactured by JAE) or compatible
- Mating Connector : FI-R51HL(JAE) or compatible

Table 4. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description No		Symbol	Description
1	NC	No Connection (Note 4)	27	NC	No Connection
2	NC	No Connection (Note 4)	28	R2AN	SECOND LVDS Receiver Signal (A-)
3	NC	No Connection (Note 4)	29	R2AP	SECOND LVDS Receiver Signal (A+)
4	NC	No Connection (Note 4)	30	R2BN	SECOND LVDS Receiver Signal (B-)
5	NC	No Connection (Note 4)	31	R2BP	SECOND LVDS Receiver Signal (B+)
6	NC	No Connection (Note 4)	32	R2CN	SECOND LVDS Receiver Signal (C-)
7	LVDS Select	'H' =JEIDA , 'L' or NC = VESA	33	R2CP	SECOND LVDS Receiver Signal (C+)
8	ExtVBR-B	External PWM (from System)	34	GND	Ground
9	NC	No Connection (Note 4)	35	R2CLKN	SECOND LVDS Receiver Clock Signal(-)
10	OPC Enable	'H' = Enable , 'L' or NC = Disable	36	R2CLKP	SECOND LVDS Receiver Clock Signal(+)
11	GND	Ground	37	GND	Ground
12	R1AN	FIRST LVDS Receiver Signal (A-)	38	R2DN	SECOND LVDS Receiver Signal (D-)
13	R1AP	FIRST LVDS Receiver Signal (A+)	39	R2DP	SECOND LVDS Receiver Signal (D+)
14	R1BN	FIRST LVDS Receiver Signal (B-)	40	NC	No Connection
15	R1BP	FIRST LVDS Receiver Signal (B+)	41	NC	No Connection
16	R1CN	FIRST LVDS Receiver Signal (C-)	42	NC or GND	No Connection or Ground
17	R1CP	FIRST LVDS Receiver Signal (C+)	43	NC or GND	No Connection or Ground
18	GND	Ground	44	GND	Ground
19	R1CLKN	FIRST LVDS Receiver Clock Signal(-)	45	GND	Ground
20	R1CLKP	FIRST LVDS Receiver Clock Signal(+)	46	GND	Ground
21	GND	Ground	47	NC	No connection
22	R1DN	FIRST LVDS Receiver Signal (D-)	48	VLCD	Power Supply +12.0V
23	R1DP	FIRST LVDS Receiver Signal (D+)	49	VLCD	Power Supply +12.0V
24	NC	No Connection	50	VLCD	Power Supply +12.0V
25	NC	No Connection	51	VLCD	Power Supply +12.0V
26	NC or GND	No Connection or Ground	-	-	-

Note

- 1. All GND(ground) pins should be connected together to the LCD module's metal frame.
- 2. All VLCD (power input) pins should be connected together.
- 3. All Input levels of LVDS signals are based on the EIA 644 Standard.
- 4. #1~#6 & #9 NC (No Connection): These pins are used only for LGD (Do not connect)
- 5. Specific pins(pin No. **#10**) are used for Scanning function of the LCD module.

 If not used, these pins are no connection. (Please see the **Appendix VI** for more information.)
- 6. Specific pin No. **#44** is used for "No signal detection" of system signal interface. It should be GND for NSB(No Signal Black) during the system interface signal is not. If this pin is "H", LCD Module displays AGP(Auto Generation Pattern).

Ver. 0.1 7 /38

Product Specification

3-2-2. Backlight Module

Master

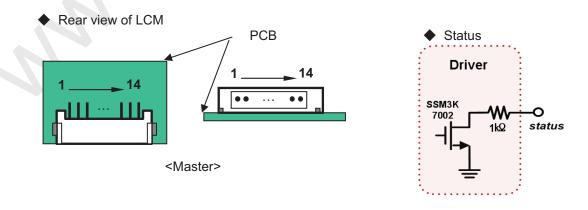

- -LED Driver Connector
- : 20022WR H14B2(Yeonho) or Compatible
- -Mating Connector
- : 20022HS 14B2(Yeonho) or Compatible

Table 5. LED DRIVER CONNECTOR PIN CONFIGURATION

Pin No	Symbol	Description	Note
1	VBL	Power Supply +24.0V	
2	VBL	Power Supply +24.0V	
3	VBL	Power Supply +24.0V	
4	VBL	Power Supply +24.0V	
5	VBL	Power Supply +24.0V	
6	GND	Backlight Ground	
7	GND	Backlight Ground	
8	GND	Backlight Ground	1
9	GND	Backlight Ground	
10	GND	Backlight Ground	
11	Status	Back Light Status	2
12	Von/off	Backlight ON/OFF control	3
13	NC	Don't care	
14	NC	Don't care	

Notes :1. GND should be connected to the LCD module's metal frame.

- 2. Normal: Low (under 0.7V) / Abnormal: OPEN
- 3. Each impedance of pin #12 is over 50 $[K\Omega]$.

Ver. 0.1 8 /38

Product Specification

3-3. Signal Timing Specifications

Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation.

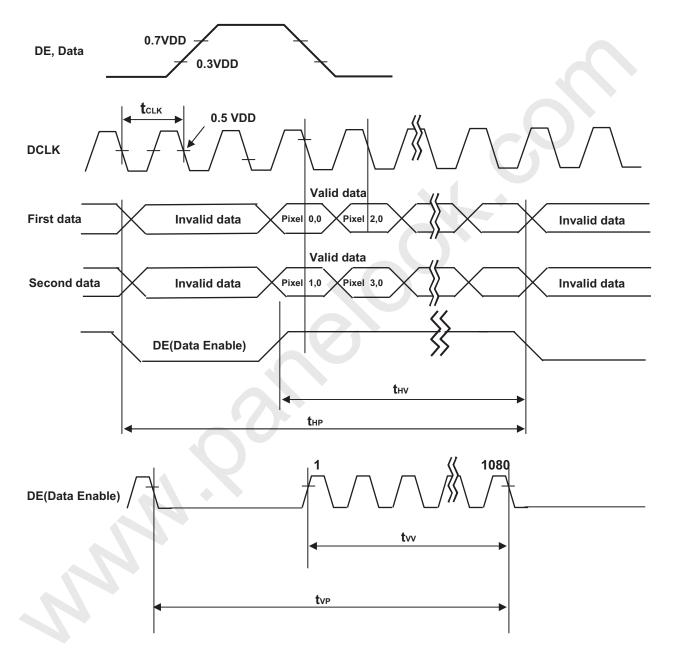
Table 6. TIMING TABLE (DE Only Mode)

ITE	ITEM Symbol Min Typ Max		Unit	Note			
	Display Period	tHV	960	960	960	tCLK	1920 / 2
Horizontal	Blank	tнв	100	140	240	tCLK	1
	Total	tHP	1060	1100	1200	tCLK	
	Display Period	tvv	1080	1080	1080	Lines	
Vertical	Blank	tvв	20 (228)	45 (270)	69 (300)	Lines	1
	Total	tvp	1100 (1308)	1125 (1350)	1149 (1380)	Lines	

ITE	ITEM		Min	Тур	Max	Unit	Note
	DCLK	fclk	63.00	74.25	78.00	MHz	
	Horizontal	fH	57.3	67.5	70	KHz	2
Frequency	Vertical	fv	57 (47)	60 (50)	63 (53)	Hz	2 NTSC : 57~63Hz (PAL : 47~53Hz)

Note: 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.

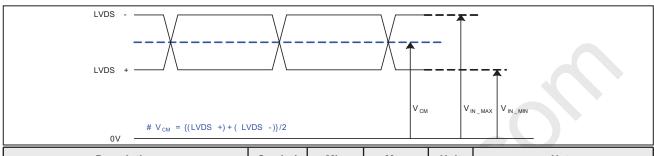
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency
- Timing should be set based on clock frequency.


Ver. 0.1 9/38

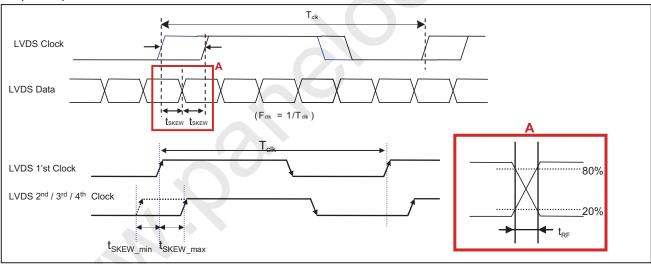
Product Specification

3-4. LVDS Signal Specification

3-4-1. LVDS Input Signal Timing Diagram


10 /38 Ver. 0.1

Product Specification

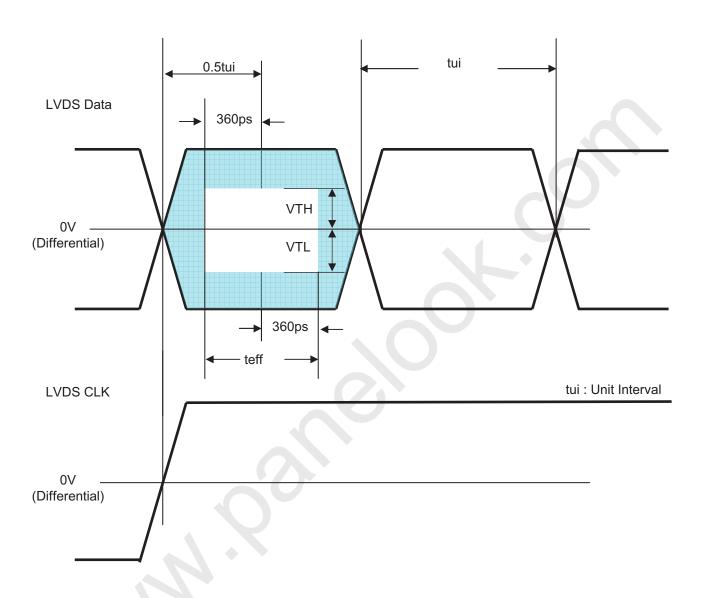

3-4-2. LVDS Input Signal Characteristics

1) DC Specification

Description	Symbol	Min	Max	Unit	Note
LVDS Common mode Voltage	V _{CM}	1.0	1.5	V	<u>-</u>
LVDS Input Voltage Range	V _{IN}	0.7	1.8	V	<u>-</u>
Change in common mode Voltage	△VCM	-	250	mV	-

2) AC Specification

Description	Symbol	Min	Max	Unit	Note	
LVDS Differential Voltage	High Threshold	V_{TH}	100	600	mV	2
LVDS Differential Voltage	Low Threshold	V_{TL}	-600	-100	mV	J
LVDS Clock to Data Skew	t _{SKEW}	-	(0.2*T _{clk})/7	ps	-	
LVDS Clock/DATA Rising/Fall	t _{RF}	260	(0.3*T _{clk})/7	ps	2	
Effective time of LVDS	t _{eff}	±360	-	ps	-	
LVDS Clock to Clock Skew (E	t _{SKEW_EO}	-	1/7* T _{clk}	ps	-	


Note 1. All Input levels of LVDS signals are based on the EIA 644 Standard.

- 2. If t_{RF} isn't enough, t_{eff} should be meet the range.
- 3. LVDS Differential Voltage is defined within t_{eff}

Ver. 0.1 11 /38

Product Specification

^{*} This accumulated waveform is tested with differential probe

Ver. 0.1 12 /38

Product Specification

3-5. Color Data Reference

The brightness of each primary color(red,green,blue) is based on the 8bit gray scale data input for the color. The higher binary input, the brighter the color. Table 7 provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

Color		Input Color Data																							
					RE	D							GRE	EN							BL	UE			
		<u> </u>	SB					LS		_	/ISB					LSI		<u> </u>	ISB					LS	_
		R	7 R6	R5	R4	R3	R2 I	R1 F	0	G	7 G 6	G5	G4	G3	G2 (G1 (30	В	7 B6	B5	B4	В3	B2 I	31 E	30
Basic	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED	RED (001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																									
	GREEN (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
BLUE	BLUE (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	BLUE (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Ver. 0.1

Product Specification

3-6. Power Sequence

3-6-1. LCD Driving circuit

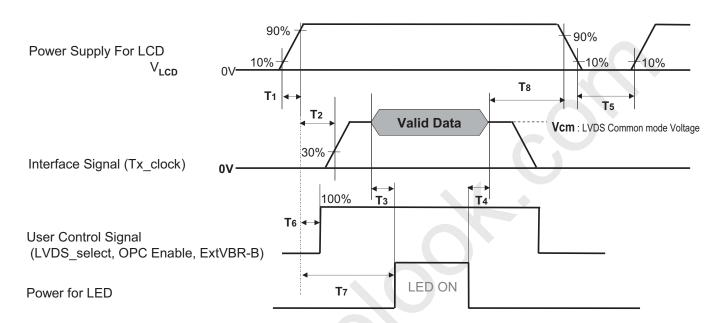


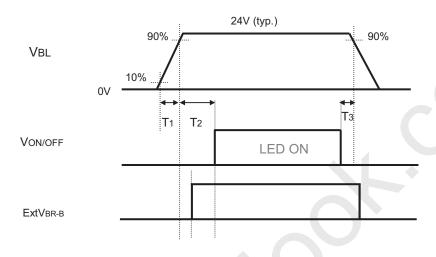
Table 8. POWER SEQUENCE

Downwater.		11	Notes		
Parameter	Min Typ Max				Unit
T1	0.5	-	20	ms	1
T2	0	-	-	ms	2
Т3	200	-	-	ms	3
T4	200	-	-	ms	3
T5	1.0	-	-	s	4
T6	-	-	T2	ms	5
T7	0.5	-	-	S	6
T8	100	-	-	ms	7

Note:

- 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.
- 2. If T2 is satisfied with specification after removing LVDS Cable, there is no problem.
- 3. The T3 / T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem.
- 4. T5 should be measured after the Module has been fully discharged between power off and on period.
- 5. If the on time of signals (Interface signal and user control signals) precedes the on time of Power (V_{LCD}), it will be happened abnormal display. When T6 is NC status, T6 doesn't need to be measured.
- 6. If there is no abnormal display, no problem.
- 7. It is recommendation specification that T8 has to be 100ms as a minimum value.
- * Please avoid floating state of interface signal at invalid period.
- * When the power supply for LCD (VLCD) is off, be sure to pull down the valid and invalid data to 0V.

Ver. 0.1



Product Specification

3-6-2. Sequence for LED Driver

Global LCD Panel Exchange Center

Power Supply For LED Driver

3-6-3. Dip condition for LED Driver

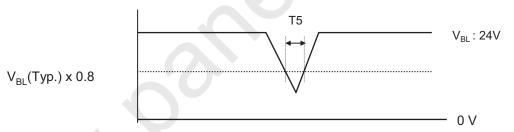


Table 9. Power Sequence for LED Driver

Daram	otor		Values	Linita	Remarks			
Param	leter	Min	Тур	Max	Units	Remarks		
T1		20	-	-	ms	1		
T2		500	-	-	ms			
T3		10	-	-	ms			

Notes: 1. T1 describes rising time of 0V to 24V and this parameter does not applied at restarting time. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.

2. In T6 section, ExtVBR-B should be sustained from 5% to 100% .

15 /38 Ver. 0.1