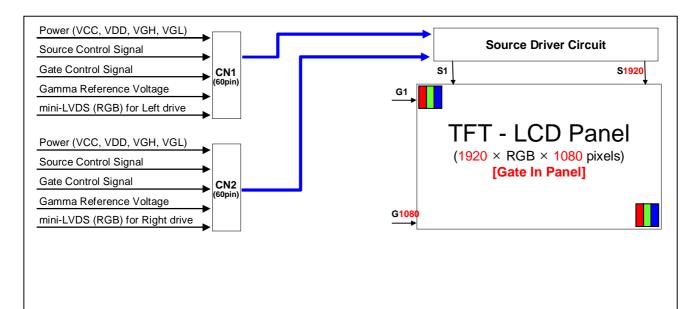


CONTENTS

Number	ITEM	Page
	COVER	0
	CONTENTS	1
	RECORD OF REVISIONS	2
1	GENERAL DESCRIPTION	3
2	ABSOLUTE MAXIMUM RATINGS	4
3	ELECTRICAL SPECIFICATIONS	5
3-1	ELECTRICAL CHARACTERISTICS	5
3-2	INTERFACE CONNECTIONS	7
3-3	SIGNAL TIMING SPECIFICATIONS	9
3-4	DATA MAPPING AND TIMING	12
3-5	PANEL PIXEL STRUCTURE	13
3-6	POWER SEQUENCE	14
4	OPTICAL SPECIFICATIONS	15
5	MECHANICAL CHARACTERISTICS	19
6	RELIABILITY	21
7	INTERNATIONAL STANDARDS	22
7-1	ENVIRONMENT	22
8	PACKING	23
8-1	PACKING FORM	23
9	PRECAUTIONS	24
9-1	ASSEMBLY PRECAUTIONS	24
9-2	OPERATING PRECAUTIONS	24
9-3	ELECTROSTATIC DISCHARGE CONTROL	25
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	25
9-5	STORAGE	25

Ver.	1.0


RECORD OF REVISIONS

Revision No.	Revision Date	Page	Description
0.1	Sep. 18, 2009	-	Preliminary Specification(First Draft)
0.2	Sep. 25, 2009	7, 8	Corrected the 'MODULE CONNECTOR(CN1) PIN CONFIGURATION'
		10	Corrected the 'Last Data Latch to SOE Timing'
0.3	Nov. 13, 2009	5	Corrected the 'ELECTRICAL CHARACTERISTICS'
		29	Added the 'APPENDIX- IV'
0.4	Nov. 20, 2009	7,8	Corrected the 'LCD Connector (CN1) and (CN2)'
0.5	Dec. 30, 2009	5	Changed the 'ELECTRICAL CHARACTERISTICS' and the 'Note'
		7,8	Modified the 'MODULE CONNECTOR(CN1, CN2) PIN CONFIGURATION' for normal operation.
		7,8	Modified the 'Note' for 'MODULE CONNECTOR(CN1, CN2) PIN CONFIGURATION'
		14	Modified the 'Note' for 'POWER SEQUENCE'
		15	Added the 'Color Coordinates' in 'Table 6'
0.6	Jan. 7, 2010	5	Modified the 'Common Voltage'
1.0	Jan. 7, 2010	-	Final Specification
Vor 10			2 /29

1. General Description

The LC470MUK is a Color Active Matrix Liquid Crystal Display with an integral the Source PCB and Gate implanted on Panel (GIP). The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 46.96 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 8-bit gray scale signal for each dot. Therefore, it can present a palette of more than 16.7M(true) colors.

It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

General Features

Active Screen Size	46.96 inches(1192.78mm) diagonal
Outline Dimension	1061.8 (H) x 606.8 (V) x 1.8 (D) mm (Typ.)
Pixel Pitch	0.5415 mm x 0.5415 mm
Pixel Format	1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Color Depth	8-bit, 16.7 M colors
Drive IC Data Interface	Source D-IC : 8-bit mini-LVDS, gamma reference voltage, and control signals Gate D-IC : Gate In Panel
Viewing Angle (CR>10)	Viewing angle free (R/L 178 (Min.), U/D 178 (Min.))
Weight	2.50Кg (Тур.)
Display Mode	Transmissive mode, Normally black
Surface Treatment (Top)	Hard coating(3H), Anti-glare treatment (Haze 10 %)

4 /29

Product Specification

2. Absolute Maximum Ratings


The following items are maximum values which, if exceeded, may cause faulty operation or damage to the LCD module.

Parameter	Symbol	Va	lue	Unit	Note
Farameter	Symbol	Min	Max	Unit	Note
Logic Power Voltage	VCC	-0.5	+4.0	VDC	
Gate High Voltage	VGH	+18.0	+30.0	VDC	
Gate Low Voltage	VGL	-8.0	-4.0	Vdc	
Source D-IC Analog Voltage	VDD	-0.3	+18.0	Vdc	1
Gamma Ref. Voltage (Upper)	VGMH	1⁄2VDD-0.5	VDD+0.5	Vdc	
Gamma Ref. Voltage (Low)	VGML	-0.3	1⁄2 VDD+0.5	Vdc	
Panel Front Temperature	TSUR	-	+68	°C	4
Operating Temperature	Тор	0	+50	°C	
Storage Temperature	Тѕт	-20	+60	°C	
Operating Ambient Humidity	Нор	10	90	%RH	2,3
Storage Humidity	Нѕт	10	90	%RH	

Table 1. ABSOLUTE MAXIMUM RATINGS

Note: 1. Ambient temperature condition (Ta = 25 ± 2 °C)

- 2. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be Max 39 °C and no condensation of water.
- 3. Gravity mura can be guaranteed below 40 $^\circ\!\!\mathbb{C}$ condition.
- 4. The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 68 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

5 /29

3. Electrical Specifications

3-1. Electrical Characteristics

It requires several power inputs. The VCC is the basic power of LCD Driving power sequence, Which is used to logic power voltage of Source D-IC and GIP.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Condition	MIN	ТҮР	МАХ	Unit	Note
Logic Power Voltage	VCC	-	3.0	3.3	3.6	VDC	
Logic High Level Input Voltage	Vін		2.7		VCC	VDC	
Logic Low Level Input Voltage	VIL		0		0.6	VDC	
Source D-IC Analog Voltage	VDD	-	15.3	15.5	15.7	VDC	
Half Source D-IC Analog Voltage	H_VDD	-	7.45	7.68	7.82	VDC	7
Gamma Reference Voltage	V _{GMH}	(GMA1 ~ GMA9)	½*VDD		VDD-0.2		
Gamma Reference voltage	V _{GML}	(GMA10 ~ GMA18)	0.2		1⁄2*VDD		
	Vcom	Normal	6.47	6.77	7.07	V	
Common Voltage	vcom	Reverse	6.47	6.77	7.07	V	
Mini-LVDS Clock frequency	CLK	$3.0V \le VCC \le 3.6V$			312	MHz	
mini-LVDS input Voltage (Center)	Vib		0.7 + (VID/2)		(VCC-1.2) - VID / 2	V	
mini-LVDS input Voltage Distortion (Center)	∆Vib	Mini-LVDS Clock			0.8	V	
mini-LVDS differential Voltage range	Vid	and Data	150		800	mV	5
mini-LVDS differential Voltage range Dip	∆Vid		25		800	mV	
Cata Llink Valtana	VGH	@ 25 ℃	27.7	28	28.3	VDC	
Gate High Voltage	VGH	℃ @	28.7	29	29.3	VDC	
Gate Low Voltage	VGL		-5.2	-5.0	-4.8	VDC	
GIP Bi-Scan Voltage	VGI_P VGI_N	-	VGL	-	VGH	Vdc	
GIP Refresh Voltage	VGH even/odd	-	VGL	-	VGH	V	
GIP Start Pulse Voltage	VST	-	VGL	-	VGH	V	
GIP Operating Clock	GCLK	-	VGL	-	VGH	V	
Total Power Current	ILCD	-		800	1040	mA	2
Total Power Consumption	PLcd	-		8.53	11.09	Watt	2

Note: 1. The specified current and power consumption are under the VLcD=12V., 25 \pm 2°C, f_V =120Hz

condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.

2. The above spec is based on the basic model.

3. All of the typical gate voltage should be controlled within 1% voltage level

- 4. Ripple voltage level is recommended under 10%
- 5. In case of mini-LVDS signal spec, refer to Fig 2 for the more detail.
- 6. Logic Level Input Signal : SOE, POL, GSP, H_CONV, OPT_N
- 7. HVDD Voltage level is half of VDD and it should be between Gamma9 and Gamma10.

Ver. 1.0

PDF created with pdfFactory Pro trial version www.pdffactory.com



FIG. 2 Description of VID, \triangle VIB, \triangle VID

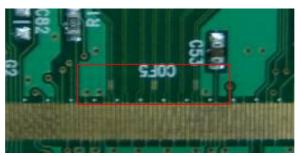


FIG. 3 Measure point

3-2. Interface Connections

This LCD panel employs two kinds of interface connection, two 60-pin FFC connector are used for the module electronics.

3-2-1. LCD Module

-LCD Connector (CN1): TF06L-60S-0.5SH (Manufactured by HRS) or Equivalent

No	Symbol	Description	No	Symbol	Description
1	GND	Ground	31	LLV3 -	Left Mini LVDS Receiver Signal(3-)
2	LTD_OUT	LTD OUTPUT	32	LLV3 +	Left Mini LVDS Receiver Signal(3+)
3	GCLK1	GIP GATE Clock 1	33	LCLK -	Left Mini LVDS Receiver Clock Signal(-)
4	GCLK2	GIP GATE Clock 2	34	LCLK +	Left Mini LVDS Receiver Clock Signal(+)
5	GCLK3	GIP GATE Clock 3	35	LLV2 -	Left Mini LVDS Receiver Signal(2-)
6	GCLK4	GIP GATE Clock 4	36	LLV2 +	Left Mini LVDS Receiver Signal(2+)
7	GCLK5	GIP GATE Clock 5	37	LLV1 -	Left Mini LVDS Receiver Signal(1-)
8	GCLK6	GIP GATE Clock 6	38	LLV1 +	Left Mini LVDS Receiver Signal(1+)
9	VGI_N	GIP Bi-Scan (Normal =VGL Rotate = VGH)	39	LLV0 -	Left Mini LVDS Receiver Signal(0-)
10	VGI_P	GIP Bi-Scan (Normal =VGH Rotate = VGL)	40	LLV0 +	Left Mini LVDS Receiver Signal(0+)
11	VGH_ODD	GIP Panel VDD for Odd GATE TFT	41	GND	Ground
12	VGH_EVEN	GIP Panel VDD for Even GATE TFT	42	SOE	Source Output Enable SIGNAL
13	VGL	GATE Low Voltage	43	POL	Polarity Control Signal
14	VST	VERTICAL START PULSE	44	GSP	GATE Start Pulse
15	GND	Ground	45	H_CONV	"H" H 2dot Inversion/ "L" H 1dot Inversion
16	VCOM_L_FB	VCOM Left Feed-Back Output	46	OPT_N	"H" Normal Display / "L" Rotation Display
17	VCOM_L	VCOM Left Input	47	GND	Ground
18	GND	Ground	48	GMA 18	GAMMA VOLTAGE 18 (Output From LCD)
19	VDD	Driver Power Supply Voltage	49	GMA 16	GAMMA VOLTAGE 16
20	VDD	Driver Power Supply Voltage	50	GMA 15	GAMMA VOLTAGE 15
21	H_VDD	Half Driver Power Supply Voltage	51	GMA 14	GAMMA VOLTAGE 14
22	H_VDD	Half Driver Power Supply Voltage	52	GMA 12	GAMMA VOLTAGE 12
23	GND	Ground	53	GMA 10	GAMMA VOLTAGE 10 (Output From LCD)
24	VCC	Logic Power Supply Voltage	54	GMA 9	GAMMA VOLTAGE 9 (Output From LCD)
25	VCC	Logic Power Supply Voltage	55	GMA 7	GAMMA VOLTAGE 7
26	GND	Ground	56	GMA 5	GAMMA VOLTAGE 5
27	LLV5 -	Left Mini LVDS Receiver Signal(5-)	57	GMA 4	GAMMA VOLTAGE 4
28	LLV5 +	Left Mini LVDS Receiver Signal(5+)	58	GMA 3	GAMMA VOLTAGE 3
29	LLV4 -	Left Mini LVDS Receiver Signal(4-)	59	GMA 1	GAMMA VOLTAGE 1 (Output From LCD)
30	LLV4 +	Left Mini LVDS Receiver Signal(4+)	60	GND	Ground

Table 4-1. MODULE CONNECTOR(CN1) PIN CONFIGURATION

Note: 1. Please refer to application note for details.

(GIP & Half VDD & Gamma Voltage & H_CONV setting)

2. These 'input signal' (OPT_N,H_CONV) should be connected.

Ver. 1.0

-LCD Connector (CN2): TF06L-60S-0.5SH(Manufactured by HRS) or Equivalent

No	Symbol	Description	No	Symbol	Description
1	GND	Ground	31	RLV1 -	Right Mini LVDS Receiver Signal(1-)
2	GMA 1	GAMMA VOLTAGE 1 (Output From LCD)	32	RLV1 +	Right Mini LVDS Receiver Signal(1+)
3	GMA 3	GAMMA VOLTAGE 3	33	RLV0 -	Right Mini LVDS Receiver Signal(0-)
4	GMA 4	GAMMA VOLTAGE 4	34	RLV0 +	Right Mini LVDS Receiver Signal(0+)
5	GMA 5	GAMMA VOLTAGE 5	35	GND	Ground
6	GMA 7	GAMMA VOLTAGE 7	36	VCC	Logic Power Supply Voltage
7	GMA 9	GAMMA VOLTAGE 9 (Output From LCD)	37	VCC	Logic Power Supply Voltage
8	GMA 10	GAMMA VOLTAGE 10 (Output From LCD)	38	GND	Ground
9	GMA 12	GAMMA VOLTAGE 12	39	H_VDD	Half Driver Power Supply Voltage
10	GMA 14	GAMMA VOLTAGE 14	40	H_VDD	Half Driver Power Supply Voltage
11	GMA 15	GAMMA VOLTAGE 15	41	VDD	Driver Power Supply Voltage
12	GMA 16	GAMMA VOLTAGE 16	42	VDD	Driver Power Supply Voltage
13	GMA 18	GAMMA VOLTAGE 18 (Output From LCD)	43	GND	Ground
14	GND	Ground	44	VCOM_R	VCOM Right Input
15	OPT_N	"H" Normal Display / "L" Rotation Display	45	VCOM_R_FB	VCOM Right Feed-Back Output
16	H_CONV	"H" H 2dot Inversion/ "L" H 1dot Inversion	46	GND	Ground
17	GSP	GATE Start Pulse	47	VST	VERTICAL START PULSE
18	POL	Polarity Control Signal	48	VGL	GATE Low Voltage
19	SOE	Source Output Enable SIGNAL	49	VGH_EVEN	GIP Panel VDD for Even GATE TFT
20	GND	Ground	50	VGH_ODD	GIP Panel VDD for Odd GATE TFT
21	RLV5 -	Right Mini LVDS Receiver Signal(5-)	51	VGI_P	GIP Bi-Scan (Normal =VGH Rotate = VGL)
22	RLV5 +	Right Mini LVDS Receiver Signal(5+)	52	VGI_N	GIP Bi-Scan (Normal =VGL Rotate = VGH)
23	RLV4 -	Right Mini LVDS Receiver Signal(4-)	53	GCLK6	GIP GATE Clock 6
24	RLV4 +	Right Mini LVDS Receiver Signal(4+)	54	GCLK5	GIP GATE Clock 5
25	RLV3 -	Right Mini LVDS Receiver Signal(3-)	55	GCLK4	GIP GATE Clock 4
26	RLV3 +	Right Mini LVDS Receiver Signal(3+)	56	GCLK3	GIP GATE Clock 3
27	LCLK -	Right Mini LVDS Receiver Clock Signal(-)	57	GCLK2	GIP GATE Clock 2
28	LCLK +	Right Mini LVDS Receiver Clock Signal(+)	58	GCLK1	GIP GATE Clock 1
29	RLV2 -	Right Mini LVDS Receiver Signal(2-)	59	LTD_OUT	LTD OUTPUT
30	RLV2 +	Right Mini LVDS Receiver Signal(2+)	60	GND	Ground

Table 4-2. MODULE CONNECTOR(CN2) PIN CONFIGURATION

Note: 1. Please refer to application note for details.

(GIP & Half VDD & Gamma Voltage & H_CONV setting)

2. These 'input signal' (OPT_N,H_CONV) should be connected.

Source Right PCB	CN 2	CN 1 #1 #60	Source Left PCB	
Ver. 1.0			8 /29	

9 /29

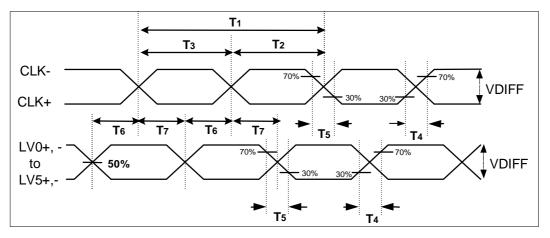

3-3. Signal Timing Specifications

Table 6. Timing Requirements

Parameter	Symbol	Condition	Min	Тур	Мах	Unit	Note
Mini Clock pulse period	T 1		3.2	3.4		ns	
Mini Clock pulse low period	T2		1.6	-	-	ns	
Mini Clock pulse high period	Тз		1.6	-	-	ns	1
Mini Data setup time	T6		0.6	-	-	ns	
Mini Data hold time	T 7		0.6	-	-	ns	
Reset low to SOE rising time	T8		0	-	-	ns	
SOE to Reset input time	Тэ		200	-	-	ns	
Receiver off to SOE timing	T10		10	-	-	CLK cycle	
POL signal to SOE setup time	T 11		-5	-	-	ns	
POL signal to SOE hold time	T 12		6	-	-	ns	
Reset High Period	T13		3			CLK cycle	
SOE signal GSP setup time	T 14		100			ns	
SOE signal GSP Hold time	T15		100			ns	
SOE signal Pulse Width	T 16		200			ns	

Note : 1. Mini-LVDS timing measure conditions

- : 268MHz < Clock Frequency < 312MHz , 150mV < VID < 800mV @ 3.0<VCC<3.3
- 2. Setup time and hold time couldn't be satisfied at the same time

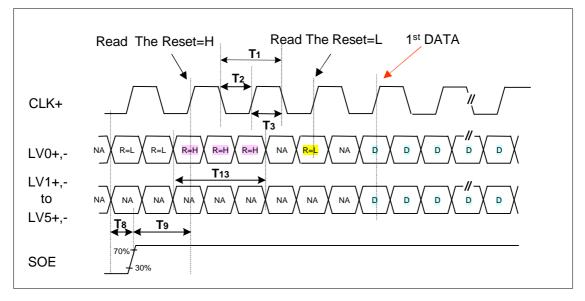


FIG 5-1. Input Data Timing for 1st Source D-IC Chip

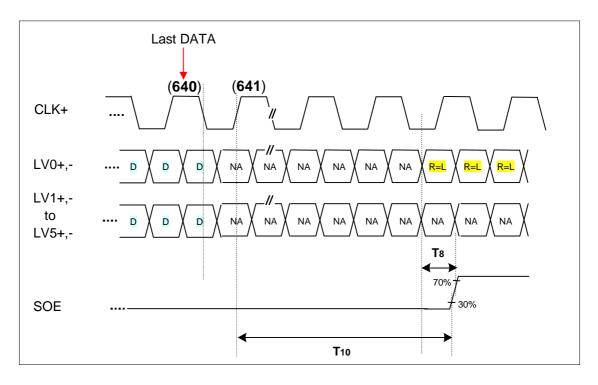


FIG 5-2. Last Data Latch to SOE Timing

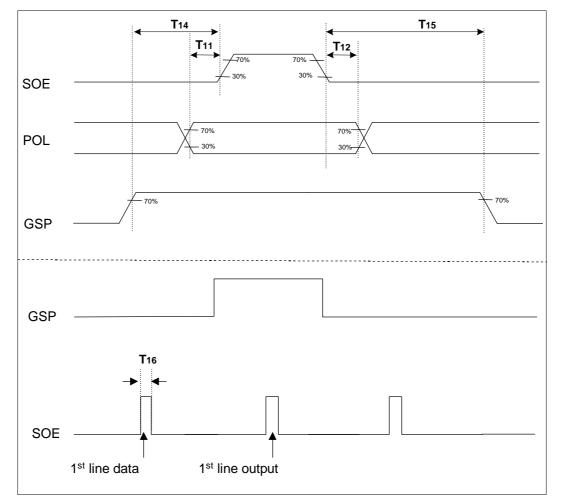
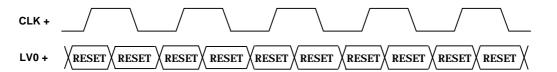



FIG 6. POL, GSP and SOE Timing Waveform

3-4. Data Mapping and Timing

Display data and control signal (RESET) are input to LV0 to LV5.

3-4-1. Control signal input mode

3-4-2. Display data input mode

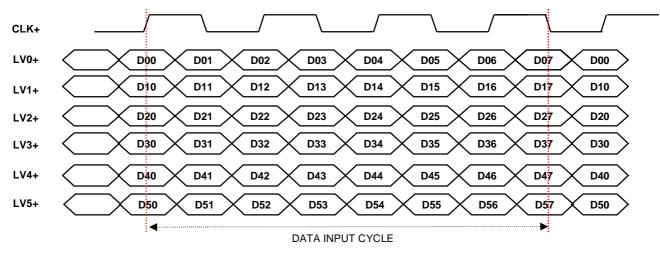
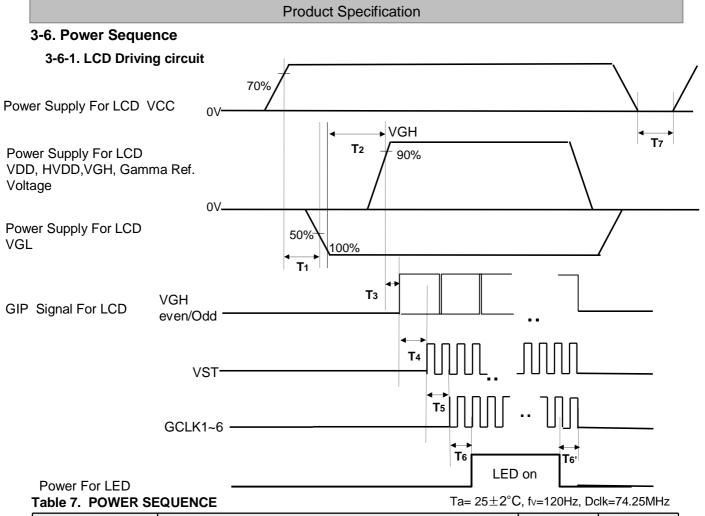


Fig. 7 Mini-LVDS Data


Note: 1. For data mapping, please refer to panel pixel structure Fig.8

3-5. Panel Pixel Structure

FIG. 8 Panel Pixel Structure

Ver. 1.0

Devenueter		Unit	Natas		
Parameter	Min	Тур	Max	Unit	Notes
T 1	0.5		-	ms	
T2	0.5		-	ms	
Тз	0		-	ms	
T4	10		-	ms	2
T5	0		-	ms	
T6 / T6'	20		-	ms	
T7	2		-	sec	

Note: 1. Power sequence for Source D-IC must follow the Case1 & 2. ※ Please refer to Appendix V for more details.

2. VGH Odd signal should be started "High" status and VGH even & odd can not be "High at the same time.

3. Power Off Sequence order is reverse of Power On Condition including Source D-IC.

4. GCLK On/Off Sequence

Normal : GCLK4 à GCLK5 à GCLK6 à GCLK1 à GCLK2 à GCLK3.

Reverse : GCLK3 à GCLK2 à GCLK1 à GCLK6 à GCLK5 à GCLK4.

5. VDD_odd/even transition time should be within V_blank

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at 25±2°C. The values are specified at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °.

It is presented additional information concerning the measurement equipment and method in FIG. 9.

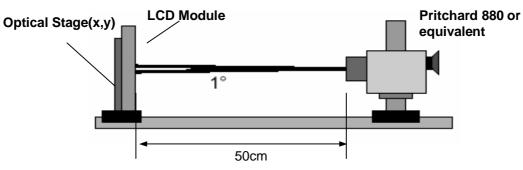


FIG. 9 Optical Characteristic Measurement Equipment and Method

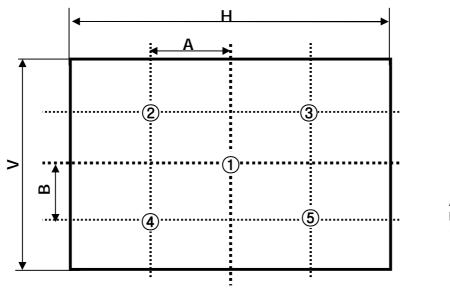
Ta= 25±2°C, VDD,H_VDD,VGH,VGL=typ, fv=120Hz, Dclk=74.25MHz,

Table 6. OPTICAL CHARACTERISTICS			EXTVвR-в =100% Back Light : LGD B/L				
Parameter Contrast Ratio		Symbol		Value			Note
			Min	Тур	Max	Unit	Note
		CR	1000	1400	-		1
D	Rising	Tr	-	8	12	ms	
Response Time	Falling	Tf	-	10	14		4
		Rx		0.649	Тур +0.03		
	RED	Ry		0.332			
	GREEN	Gx	Тур -0.03	0.307			
Color Coordinate	S GREEN	Gy		0.595			
[CIE1931]	BLUE	Bx		0.149			
		Ву		0.059			
			-				
Viewing Angle (CR>10)		1				
x axis, right(o=0°)		θr	89	- 1	-		
x axis, left (ϕ =180°)		θΙ	89	-	-	degree	5
y axis, up (థ=90°)		θu	89	-	-		
y a	xis, down (_{\$=270°})	θd	89	-	-		
Gray Scale			-	-	-		6

Table 6. OPTICAL CHARACTERISTICS

Ver. 1.0

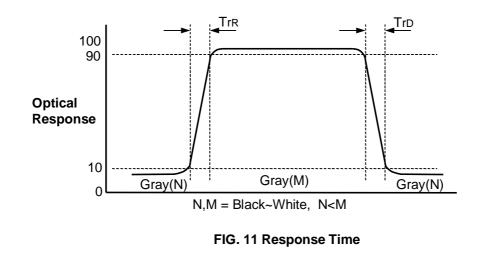
Note : 1. Contrast Ratio(CR) is defined mathematically as :


Contrast Ratio =	Surface Luminance with all white pixels			
	Surface Luminance with all black pixels			
It is measured at center 1-point.				

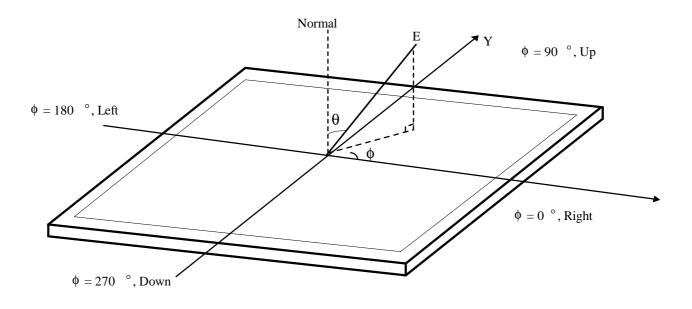
- 2. Response time is the time required for the display to transition from G(0) to G(255) (Rise Time, Tr_R) and from G(0) to G(255) (Decay Time, Tr_D). For additional information see the FIG. 11.
- 3. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 12.
- 4. Gray scale specification Gamma Value is approximately 2.2. For more information, see the Table 7.

Gray Level	Luminance [%] (Typ)		Gray Level	Gamma Ref.
L0	0.07		LO	Gamma9
L15			L1	Gamma8
L31	1.04		L31	Gamma7
L47	2.49			
L63	4.68	Positive	L63	Gamma6
L79	7.66	Voltage	L127	Gamma5
L95	11.5		L191	Gamma4
L111	16.1		L223	Gamma3
L127	21.6		L255	Gamma1
L143	28.1		L255	Gamma18
L159	35.4		L223	Gamma16
L175	43.7			
L191	53.0		L191	Gamma15
L207	63.2	Negative	L127	Gamma14
L223	74.5	Voltage	L63	Gamma13
L239	86.7		L31	Gamma12
L255	100		L1	Gamma11
			LO	Gamma10
1.0				16 /29

Table 7. GRAY SCALE SPECIFICATION


Measuring point for surface luminance & luminance variation

A : H/4 mm B : V/4 mm @ H,V : Active Area


FIG. 10 5 Points for Luminance Measure

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

Dimension of viewing angle range

5. Mechanical Characteristics

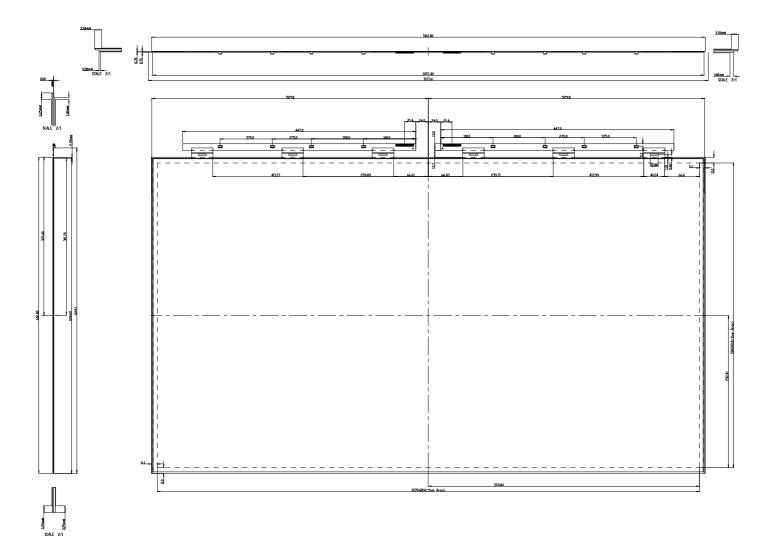

Table 8 provides general mechanical characteristics.

Table 8. MECHANICAL CHARACTERISTICS

Item	Value		
	Horizontal	1061.8 mm	
Outline Dimension	Vertical	606.8 mm	
	Depth	1.8 mm	
Antina Disalau Anan	Horizontal	1039.68 mm	
Active Display Area	Vertical	584.82 mm	
Weight	2.50 Kg (Typ.) , 2.75 Kg (Max.)		
Surface Treatment	Hard coating(3H) Anti-glare treatment of the front polarizer(10%)		

Note : Please refer to a mechanical drawing in terms of tolerance at the next page.

[FRONT VIEW]

Ver. 1.0

6. Reliability

Table 9. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition
1	High temperature storage test	Ta= 60°C 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 240h
4	Low temperature operation test	Ta= 0°C 240h
5	Humidity condition Operation	Ta= 40 °C ,90%RH
6	Altitude operating storage / shipment	0 - 15,000 ft 0 - 40,000 ft

Note : Before and after Reliability test, Board ass'y should be operated with normal function.

7. International Standards

7-1. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

LC470MUK

8. Packing

8-1. Packing Form

- a) Package quantity in one Pallet : 70 pcs
- b) Pallet Size : 1250 mm(L) X 800 mm(W) X 1105 mm(H)

9. Precautions

Please pay attention to the followings when you use this TFT LCD panel.

9-1. Assembly Precautions

- (1) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (2) You should adopt radiation structure to satisfy the temperature specification.
- (3) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (4) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (5) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer
- (6) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (7) Board ass'y should be put on the mold frame properly.
- (8) FFC Cable should be connected between System board and Source PCB correctly.
- (9) Mechanical structure for backlight system should be designed for sustaining board ass'y safely.

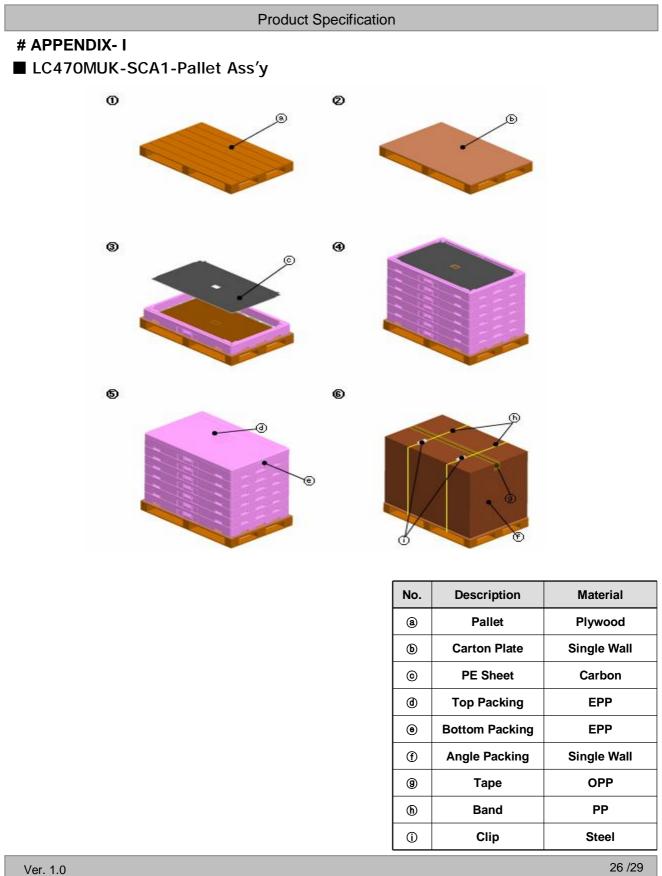
9-2. Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200mV(Over and under shoot voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer
- (4) Be careful for condensation at sudden temperature change.Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or electrical impact to board assy. Otherwise, it can't be operated its full characteristics perfectly.

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. Panel ground path should be connected to metal ground.

9-4. Precautions for Strong Light Exposure


Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

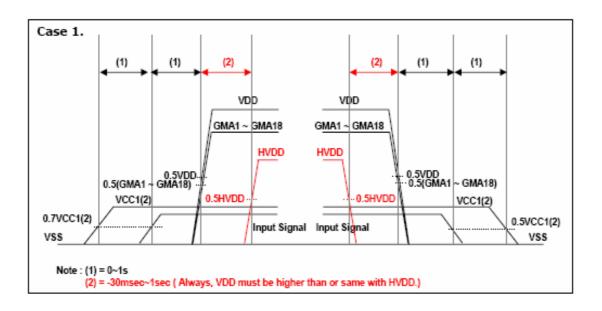
When storing the board ass'y as spares for a long time, the following precautions are necessary.

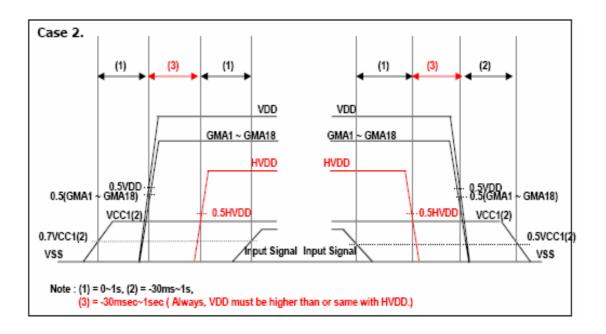
- (1) Store them in a dark place. Do not expose the board ass'y to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.It is recommended that they be stored in the container in which they were shipped.

LC470MUK

APPENDIX- II ■ LC470MUK-SCA1-Serial Label

LC470MUK


APPENDIX- III


■ LC470MUK-SCA1-Pallet Label

<	100.0		>	
	C470	MUK		
SCA1				
10 PCS	001/01-01		0.0	
MADE	IN KOREA	RoHS Verified		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				

APPENDIX- IV

■ LC470MUK-SCA1-Source D-IC Power Sequence

- Input Signal : SOE,POL,GSP,H_CONV,OPT_N