

Global LCD Panel Exchange Center

LC550EUF

Product Specification

SPECIFICATION FOR APPROVAL

,	Droliminar	y Specification
(Preliminary	y Specification

Final Specification

Title	55.0" WUXGA TFT LCD

BUYER	LGE
MODEL	

SUPPLIER	LG Display Co., Ltd.		
*MODEL	LC550EUF		
SUFFIX	SDP1(RoHS Verfied)		

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE DATE
	00
	The state of the s
	_
Please return 1 copy for you	r confirmation with
your signature and o	comments.

APPROVED BY	SIGNATURE DATE
P.Y. Kim /Team Leader	
REVIEWED BY	
J.K. Kim / Project Leader	
PREPARED BY	
J.T. Jung / Engineer	
Public Display Devel LG Display Co.,	

Product Specification

CONTENTS

Number	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	11
3-4	SIGNAL TIMING WAVEFORMS	12
3-5	COLOR DATA REFERENCE	15
3-6	POWER SEQUENCE	16
4	OPTICAL SPECIFICATIONS	17
5	MECHANICAL CHARACTERISTICS	23
6	RELIABILITY	26
7	INTERNATIONAL STANDARDS	27
7-1	SAFETY	27
7-2	EMC	27
7-3	Environment	27
8	PACKING	28
8-1	DESIGNATION OF LOT MARK	28
8-2	PACKING FORM	28
9	PRECAUTIONS	29
9-1	MOUNTING PRECAUTIONS	29
9-2	OPERATING PRECAUTIONS	29
9-3	ELECTROSTATIC DISCHARGE CONTROL	30
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	30
9-5	STORAGE	30
9-6	HANDLING PRECAUTIONS FOR PROTECTION FILM	30

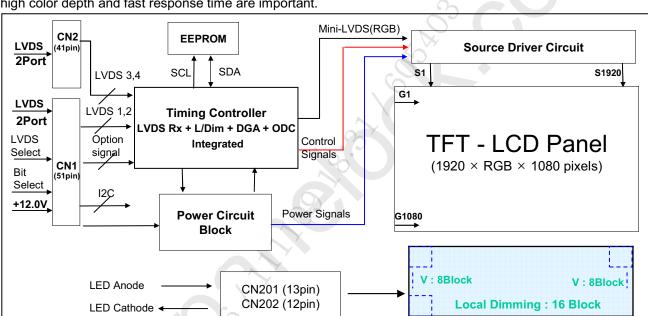
Ver. 0.0 2 / 44

Product Specification

RECORD OF REVISIONS

	Page	Description
May. 25. 2011	-	Preliminary Specification
		22
		0 (1
		OVA
	90	
100	<u> </u>	
	Way. 25. 2011	May. 25. 2011 -

Ver. 0.0 3 / 44


Product Specification

1. General Description

The LC550EUF is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive display type which is operating in the normally black mode. It has a 46.96 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arrayed in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 10-bit gray scale signal for each dot. Therefore, it can present a palette of more than 1.06Bilion colors.

It has been designed to apply the 10-bit 4-port LVDS interface.

It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

General Features

Active Screen Size	54.64 inch (1387.80mm) diagonal
Outline Dimension	1255.6(H) × 726.4(V) X 10.8(B) (Typ.)
Pixel Pitch	0.630 mm x 0.630 mm x RGB
Pixel Format	1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Color Depth	10Bit(D), 1.06 Billion colors
Luminance, White	400 cd/m2 (Center 1point ,Typ.)
Viewing Angle (CR>10)	Viewing angle free (R/L 178 (Min.), U/D 178 (Min.))
Power Consumption	Total 108.5W(Typ.) [Logic= 6.1W, LED Backlight=102.4W (IF_cathode = 100mA)]
Weight	14.5 Kg. (Typ.)
Display Mode	Transmissive mode, Normally black
Surface Treatment	Hard coating(2H), Anti-glare treatment of the front polarizer (Haze 10%)

Product Specification

2. Absolute Maximum Ratings

Global LCD Panel Exchange Center

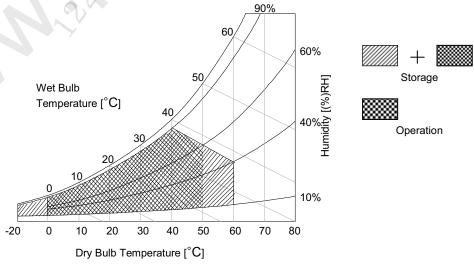

The following items are maximum values which, if exceeded, may cause faulty operation or permanent damage to the LCD module.

Table 1. ABSOLUTE MAXIMUM RATINGS

Para	meter	Symbol	Value		Unit	Note
гана	Syllibol	Min	Max			
Dower Input Voltage	LCD Circuit	VLCD	-0.3	+14.0	VDC	_
Power Input Voltage	Driver	VBL	-0.3	+ 27.0	VDC	
LED Input Voltage		VF	-	+100.0	VDC	1
T-Con Option Selection Voltage		VLOGIC	-0.3	+4.0	VDC	
Operating Temperature		Тор	0,0	+50	°C	2.2
Storage Temperature		Тѕт	-20	+60	°C	2,3
Panel Front Temperature		Tsur	N-	+68	°C	4
Operating Ambient Humidity Storage Humidity		Нор	10	90	%RH	0.0
		Hst	10	90	%RH	2,3

Note1. Ambient temperature condition (Ta = 25 ± 2 °C)

- 2. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be Max 39°C, and no condensation of water.
- 3. Gravity mura can be guaranteed below 40°C condition.
- 4. The maximum operating temperatures is based on the test condition that the surface temperature of display area is less than or equal to 68°C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68 °C. The range of operating temperature may be degraded in case of improper thermal management in final product design.

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

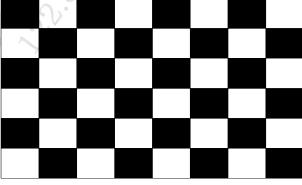

It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the LED backlight and LED Driver circuit.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Value			Unit	Note
i didilietei	Symbol	Min	Тур	Max	Offic	14016
Circuit :						
Power Input Voltage	V _{LCD}	10.8	12.0	13.2	V _{DC}	
B 1 10 1		-	510	663	mA	1
Power Input Current	ILCD	-	765	995	mA	2
Power Consumption	P _{LCD}	- ^	6.1	8.0	Watt	1
Rush current	I _{RUSH}	C	-	5.0	Α	3

- Note: 1. The specified current and power consumption are under the V_{LCD} =12.0V, 25 ± 2°C, f_V =120Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.
 - 2. The current is specified at maximum current pattern.
 - 3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).

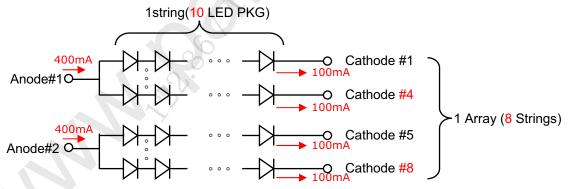
White: 1023 Gray Black: 0 Gray

Mosaic Pattern(8 x 6)

Product Specification

Table 3. ELECTRICAL CHARACTERISTICS (Continue)

Parameter		Symbol	Values			Unit	Note
		Cyllison	Min	Тур	Max	Onit	14016
Backlight Assemb							
Forward Current	Anode	I _{F (anode)}		400		mAdc	±5%
(one array)	Cathode	I _{F (cathode)}	95	100	105	mAdc	2, 3
Forward Voltage		V _F	58.9	64.9	70.9	Vdc	4
Forward Voltage Variation		$\triangle V_{F}$			1.7	Vdc	5
Power Consumption	n	P _{BL}	92.8	102.4	112.0	W	6
Burst Dimming Duty		On duty	1		0-100	%	
Burst Dimming Frequency		1/T	95		182	Hz	8
LED Array : (APP			/_	X			
Life Time			30,000	50,000		Hrs	7


Notes: The design of the LED driver must have specifications for the LED array in LCD Assembly.

The electrical characteristics of LED driver are based on Constant Current driving type.

The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED Driver. So, all the parameters of an LED driver should be carefully designed. When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the driver (no lighting, flicker, etc) has never been occurred. When you confirm it, the LCD—Assembly should be operated in the same condition as installed in your instrument.

- 1. Electrical characteristics are based on LED Array specification.
- 2. Specified values are defined for a Backlight Assembly. (2 LED arrays/LCM)
- 3. Each LED array has $\frac{2}{2}$ anode terminals and $\frac{8}{2}$ cathode terminals.

The forward current(IF) of the anode terminals are 400mA and it supplies 100mA into 4 Strings, respectively

- The forward voltage(V_F) of LED array depends on ambient temperature (Appendix-VII)
- 5. ΔV_F means Max V_F -Min V_F in one Backlight. So V_F variation in a Backlight isn't over Max. 1.7V
- 6. Maximum level of power consumption is measured at initial turn on. Typical level of power consumption is measured after 1hrs aging at $25 \pm 2^{\circ}$ C.
- 7. The life time(MTTF) is determined as the time at which brightness of the LED is 50% compared to that of initial value at the typical LED current on condition of continuous operating at $25 \pm 2^{\circ}$ C, based on duty 100%.
- 8. The reference method of burst dimming duty ratio.

It is recommended to use synchronous V-sync frequency to prevent waterfall (Vsync x 1 =Burst Frequency)

Though PWM frequency is over 182Hz (max252Hz), function of backlight is not affected.

Ver. 0.0 7 / 44

Product Specification

3-2. Interface Connections

This LCD module employs two kinds of interface connection, 51-pin connector and 41-pin connector are used for the module electronics and 12-pin,13-pin connector is used for the integral backlight system.

3-2-1. LCD Module

- LCD Connector(CN1): FI-R51S-HF(manufactured by JAE) or IS050-C51B-C39(manufactured by UJU)

 Refer to below and next Page table
- Mating Connector : FI-R51HL(JAE) or compatible

Table 4-1. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	NC	No Connection	27	Bit Select	'H' or NC= 10bit(D), 'L' = 8bit
2	NC	No Connection	28	R2AN	SECOND LVDS Receiver Signal (A-)
3	NC	No Connection	29	R2AP	SECOND LVDS Receiver Signal (A+)
4	NC	No Connection (Note 4)	30	R2BN	SECOND LVDS Receiver Signal (B-)
5	NC	No Connection (Note 4)	31	R2BP	SECOND LVDS Receiver Signal (B+)
6	NC	No Connection (Note 4)	32	R2CN	SECOND LVDS Receiver Signal (C-)
7	LVDS Select	'H' =JEIDA , 'L' or NC = VESA	33	R2CP	SECOND LVDS Receiver Signal (C+)
8	NC	No Connection (Note 4)	34	GND	Ground
9	NC	No Connection (Note 4)	35	R2CLKN	SECOND LVDS Receiver Clock Signal(-)
10	L-DIM Enable	'H' = Enable , 'L' or NC = Disable	36	R2CLKP	SECOND LVDS Receiver Clock Signal(+)
11	GND	Ground	37	GND	Ground
12	R1AN	FIRST LVDS Receiver Signal (A-)	38	R2DN	SECOND LVDS Receiver Signal (D-)
13	R1AP	FIRST LVDS Receiver Signal (A+)	39	R2DP	SECOND LVDS Receiver Signal (D+)
14	R1BN	FIRST LVDS Receiver Signal (B-)	40	R2EN	SECOND LVDS Receiver Signal (E-)
15	R1BP	FIRST LVDS Receiver Signal (B+)	41	R2EP	SECOND LVDS Receiver Signal (E+)
16	R1CN	FIRST LVDS Receiver Signal (C-)	42	NC	No Connection
17	R1CP	FIRST LVDS Receiver Signal (C+)	43	NC	No Connection
18	GND	Ground	44	GND	Ground
19	R1CLKN	FIRST LVDS Receiver Clock Signal(-)	45	GND	Ground
20	R1CLKP	FIRST LVDS Receiver Clock Signal(+)	46	GND	Ground
21	GND	Ground	47	NC	No connection
22	R1DN	FIRST LVDS Receiver Signal (D-)	48	VLCD	Power Supply +12.0V
23	R1DP	FIRST LVDS Receiver Signal (D+)	49	VLCD	Power Supply +12.0V
24	R1EN	FIRST LVDS Receiver Signal (E-)	50	VLCD	Power Supply +12.0V
25	R1EP	FIRST LVDS Receiver Signal (E+)	51	VLCD	Power Supply +12.0V
26	NC	No Connection	-	-	-

Note

- 1. All GND(ground) pins should be connected together to the LCD module's metal frame.
- 2. All VLCD (power input) pins should be connected together.
- 3. All Input levels of LVDS signals are based on the EIA 644 Standard.
- 4. #1~#6 & #8~#9 NC (No Connection): These pins are used only for LGD (Do not connect)
- Specific pins(pin No. #10) are used for Local Dimming function of the LCD module.
 If not used, these pins are no connection. (Please see the Appendix V for more information.)
- 6. LVDS pin (pin No. **#24,25,40,41**) are used for 10Bit(D) of the LCD module. If used for 8Bit(R), these pins are no connection.
- 7. Specific pin No. **#44** is used for "No signal detection" of system signal interface. It should be GND for NSB(No Signal Black) during the system interface signal is not. If this pin is "H", LCD Module displays AGP(Auto Generation Pattern).

Product Specification

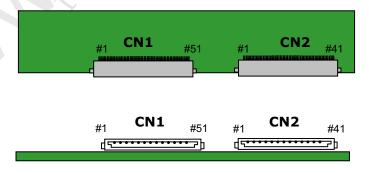

-LCD Connector (CN2): FI-RE41S-HF (manufactured by JAE) or IS050-C41B-C39(manufactured by UJU) - Mating Connector: FI-RE41HL or compatible

Table 4-2. MODULE CONNECTOR(CN2) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	NC	No connection	22	RE3N	THIRD LVDS Receiver Signal (E-)
2	NC	No connection	23	RE3P	THIRD LVDS Receiver Signal (E+)
3	NC	No connection	24	GND	Ground
4	NC	No connection	25	GND	Ground
5	NC	No connection	26	RA4N	FORTH LVDS Receiver Signal (A-)
6	NC	No connection	27	RA4P	FORTH LVDS Receiver Signal (A+)
7	NC	No connection	28	RB4N/	FORTH LVDS Receiver Signal (B-)
8	NC	No connection	29	RB4P	FORTH LVDS Receiver Signal (B+)
9	GND	Ground	30	RC4N	FORTH LVDS Receiver Signal (C-)
10	RA3N	THIRD LVDS Receiver Signal (A-)	31	RC4P	FORTH LVDS Receiver Signal (C+)
11	RA3P	THIRD LVDS Receiver Signal (A+)	32	GND	Ground
12	RB3N	THIRD LVDS Receiver Signal (B-)	33	RCLK4N	FORTH LVDS Receiver Clock Signal(-)
13	RB3P	THIRD LVDS Receiver Signal (B+)	34	RCLK4P	FORTH LVDS Receiver Clock Signal(+)
14	RC3N	THIRD LVDS Receiver Signal (C-)	35	GND	Ground
15	RC3P	THIRD LVDS Receiver Signal (C+)	36	RD4N	FORTH LVDS Receiver Signal (D-)
16	GND	Ground	37	RD4P	FORTH LVDS Receiver Signal (D+)
17	RCLK3N	THIRD LVDS Receiver Clock Signal(-)	38	RE4N	FORTH LVDS Receiver Signal (E-)
18	RCLK3P	THIRD LVDS Receiver Clock Signal(+)	39	RE4P	FORTH LVDS Receiver Signal (E+)
19	GND	Ground	40	GND	Ground
20	RD3N	THIRD LVDS Receiver Signal (D-)	41	GND	Ground
21	RD3P	THIRD LVDS Receiver Signal (D+)	-		

Note: 1. All GND(ground) pins should be connected together to the LCD module's metal frame.

2. LVDS pin (pin No. #22,23,38,39) are used for 10Bit(D) of the LCD module. If used for 8Bit(R), these pins are no connection.

Rear view of LCM

Product Specification

3-2-2. Backlight Module

[CN201]

- 1) LED Array assy Connector (Plug)
 - : 20022HS-13B2(BK) (manufactured by Yeonho)
- 2) Mating Connector (Receptacle)
- : 20022WR-13BD (manufactured by Yeonho) or equivalent

[CN202]

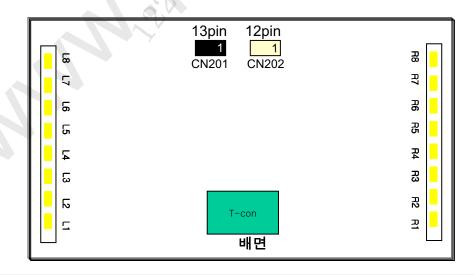

- 1) LED Array assy Connector (Plug)
- : 20022HS-12B2 (manufactured by Yeonho)
- 2) Mating Connector (Receptacle)
- : 20022WR-12BD (manufactured by Yeonho)or equivalent

Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION(CN201,CN202)

No	Symbol	Description	Note
1	Anode_L1 (1~4Cathode)	LED Input Current	
2	N.C	Open	
3	L1 Cathode	LED Output Current	
4	L2 Cathode	LED Output Current	
5	L3 Cathode	LED Output Current	
6	L4 Cathode	LED Output Current	
7	N.C	Open	
8	L5 Cathode	LED Output Current	6
9	L6 Cathode	LED Output Current	20
10	L7 Cathode	LED Output Current	
11	L8 Cathode	LED Output Current	
12	N.C	Open	1
13	Anode_L2 (5~8Cathode)	LED Input Current	

No	Symbol	Description	Note
1	Anode_R2 (5~8Cathode)	LED Input Current	
2	N.C	Open	
3	R8Cathode	LED Output Current	
4	R7 Cathode	LED Output Current	
5	R6 Cathode	LED Output Current	
6	R5 Cathode	LED Output Current	
7	R4 Cathode	LED Output Current	
8	R3 Cathode	LED Output Current	
9	R2 Cathode	LED Output Current	
10	R1 Cathode	LED Output Current	
11	N.C	Open	
12	Anode_R1 (1~4Cathode)	LED Input Current	

◆ Rear view of LCM

Product Specification

3-3. Signal Timing Specifications

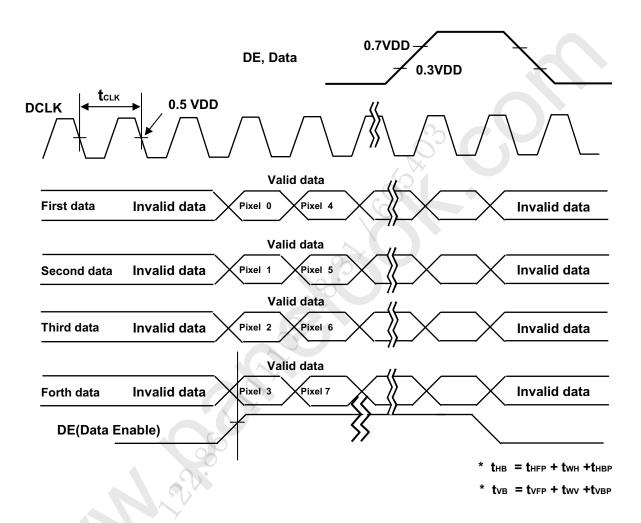
Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation.

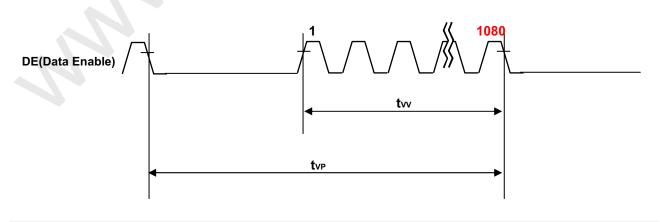
Table 6. TIMING TABLE (DE Only Mode)

ITE	М	Symbol	Min	Тур	Max	Unit	Note
	Display Period	thv	480	480	480	tCLK	1920 / 4
Horizontal	Blank	tнв	40	70	200	tCLK	1
	Total	tHP	520	550	680	tCLK	
	Display Period	tvv	1080	1080	1080	Lines	
Vertical	Blank	t∨B	20 (228)	45 (270)	86 (300)	Lines	1
	Total	tvp	1100 (1308)	1125 (1350)	1166 (1380)	Lines	

ITE	М	Symbol	Min	Тур	Max	Unit	Note
	DCLK	fclk	66.97	74.25	78.00	MHz	
	Horizontal	fн	121.8	135	140	KHz	2
Frequency	Vertical	fv	108 (95)	120 (100)	122 (104)	Hz	2 NTSC : 108~122Hz (PAL : 95~104Hz)

Note: 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.

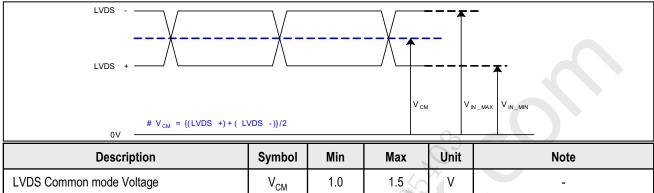

- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency
- Timing should be set based on clock frequency.



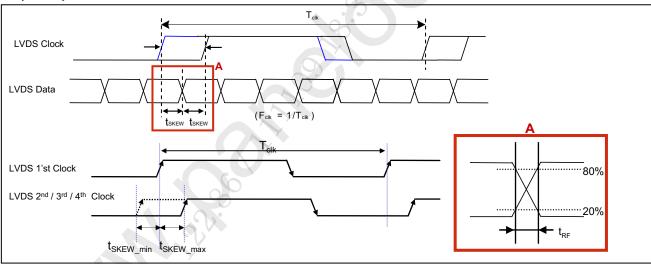
Product Specification

3-4. LVDS Signal Specification

3-4-1. LVDS Input Signal Timing Diagram


Ver. 0.0 12 / 44

Product Specification

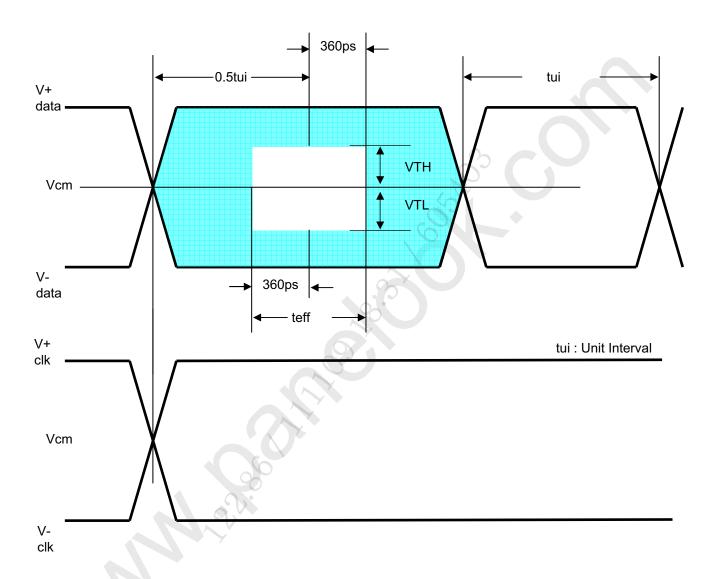

3-4-2. LVDS Input Signal Characteristics

1) DC Specification

Description	Symbol	Min	Max	Unit	Note
LVDS Common mode Voltage	V_{CM}	1.0	1.5	٧	-
LVDS Input Voltage Range	V_{IN}	0.7	1.8	٧	<u>-</u>
Change in common mode Voltage	△VCM		250	mV	-

2) AC Specification

Description	1	Symbol	Min	Max	Unit	Note
LVDC Differential Voltage	High Threshold			300	mV	2
LVDS Differential Voltage	Low Threshold	V_{TL}	-300	-100	mV	J
LVDS Clock to Data Skew Mar	rgin	t _{skew}		(0.25*T _{clk})/7	ps	-
LVDS Clock/DATA Rising/Fall	ing time	t _{RF}	260	(0.3*T _{clk})/7	ps	2
Effective time of LVDS	t _{eff}	±360		ps	-	
LVDS Clock to Clock Skew Ma	t _{SKEW_EO}		1/7* T _{clk}	T _{clk}	-	


Note 1. All Input levels of LVDS signals are based on the EIA 644 Standard.

- 2. If t_{RF} isn't enough, t_{eff} should be meet the range.
- 3. LVDS Differential Voltage is defined within \mathbf{t}_{eff}

②

Product Specification

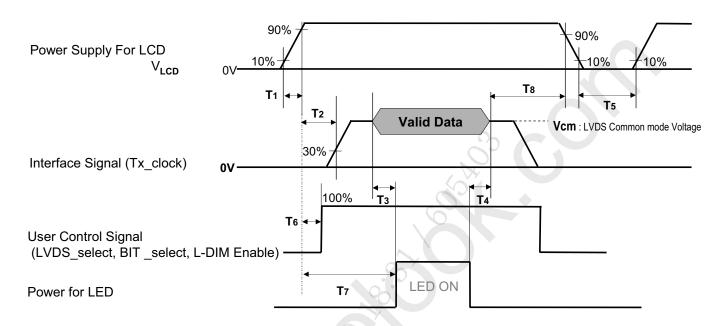
Product Specification

3-5. Color Data Reference

The brightness of each primary color(red,green,blue) is based on the 10-bit gray scale data input for the color. The higher binary input, the brighter the color. Table 8 provides a reference for color versus data input.

Table 8. COLOR DATA REFERENCE

													Inp	ut	Col	or	Da	ta											
	Color					ĒD			.SB		MS				GRE			£	LSB						UE.			LSI	
	1	R9 F	R8 R	7 R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1 G0	B9	B8	В7	В6	B5	B4	В3	B2	B1 I	30
	Black	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	Red (1023)		1	1 1	. 1 	1	1 	1 	1	1	0	0		0	0	0	0	0	0 0	0			0					0	0
	Green (1023)	0	0 (0 0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1	0	0	0	0	0	0	0	0	0	0
Basic	Blue (1023)	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0 (0 0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1 1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	0	0	0	0	0	0	0	0	0	0
	White	1	1 -	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1
	RED (000)	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	RED (001)	0	0 (0 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
RED									• • •			• • •	•••	•••	• • •		• • •]	•••	• •		•••		•••	•••		•
	RED (1022)	1	1	1 1	Dep 1	1			1	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	RED (1023)	1	1	1 1	9	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	0	0	0
GREEN																													
	GREEN (1022)	0	0 (0 0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 0	0	0	0	0	0	0	0	0	0	0
	GREEN (1023)	0	0 (0 0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1	0	0	0	0	0	0	0	0	0	0
	BLUE (000)	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	1
BLUE							• • •	•••	•••				• • •	•••						ļ		• • •					• • •		•
	BLUE (1022)	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	1	1	1	1	1	1	1	1	1	0
	BLUE (1023)	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	1	1	1	1	1	1	1	1	1	1


Ver. 0.0 15 / 44

Product Specification

3-6. Power Sequence

3-6-1. LCD Driving circuit

Table 8. POWER SEQUENCE

Parameter	Min	Тур	Max	Unit	Notes
T1	0.5	-	20	ms	1
T2	0	-	-	ms	2
Т3	200	-	-	ms	3
T4	200	-	-	ms	3
T5	1.0	-	-	s	4
T6	Y	-	T2	ms	5
T 7	0.5	-	-	S	6
T8	100	-	-	ms	7

Note:

- 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.
- 2. If T2 is satisfied with specification after removing LVDS Cable, there is no problem.
- 3. The T3 / T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem.
- 4. T5 should be measured after the Module has been fully discharged between power off and on period.
- 5. If the on time of signals (Interface signal and user control signals) precedes the on time of Power (V_{LCD}), it will be happened abnormal display. When T6 is NC status, T6 doesn't need to be measured.
- 6. If there is no abnormal display, no problem.
- 7. It is recommendation specification that T8 has to be 100ms as a minimum value.
- * Please avoid floating state of interface signal at invalid period.
- ₩ When the power supply for LCD (VLCD) is off, be sure to pull down the valid and invalid data to 0V.

Ver. 0.0 16 / 44

Product Specification

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at $25\pm2^{\circ}$ C. The values are specified at distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °. FIG. 1 shows additional information concerning the measurement equipment and method.

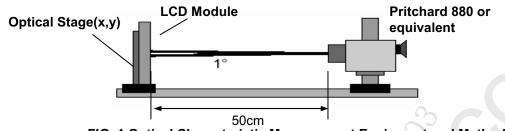


FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 10. OPTICAL CHARACTERISTICS

Ta= $25\pm2^{\circ}$ C, V_{LCD}=12.0V, fv=120Hz, Dclk =297MHz IF_cathode = 100mA (Typ)

							ir_callioue = i	oonii (i yp
Parameter					Value		1.1:4	Nets
Parame	ter	Symi	DOI	Min	Тур	Max	Unit	Note
Ratio		CF	{	1100	1600	-		1
Surface Luminance, white		, 2D		320	400		- 1/ 2	2
		L _{WH}	3D	120	150		CG/m²	8
Luminance Variation			5P	^		1.35		3
	Gray-to-Gray	G to	G	0)-	5	8	me	4
Time	MPRT	MPF	RT	0	8	12	1113	5
TITLE	Uniformity	δ _{MP}	RT	у -	-	1		6
	Uniformity	δ _{G T}	O G	-	-	1		6
	BED				0.651(TBD)			
	KED	Ry	, 7		0.333(TBD)			
	ODEEN	Gx			0.307(TBD)			
rdinates	GREEN	Gy		Тур	0.602(TBD)	Тур		
	DLUE	Вх		-0.03	0.150(TBD)	+0.03		
	BLUE	Ву			0.060(TBD)			
	WILLIE	W	<		0.279			
	VVIIIE	Wy	/		0.292			
nperature					10,000		К	
nut					72		%	
	right(φ=0°)	θr (x a	ıxis)	89	-	-		
2D	left (φ=180°)	θI (x a	xis)	89	-	-	4	7
(CR>10)	up (φ=90°)	θи (у а	axis)	89	-	-	aegree	7
	down (φ=270°)	θ d (y a	axis)	89	-	-		
3D (CT≤10%) up + down		θu (y axis) +θd (y axis)		17	20	-		9
BD Crosstalk		3D C/T		-	1(TBD)	3	%	
Gray Scale					2.2			8
	Ratio uminance, where Variation Time Time rdinates reperature mut 2D (CR>10) 3D (CT≤10%) alk	Ratio uminance, white e Variation Gray-to-Gray MPRT Uniformity Uniformity Uniformity RED GREEN BLUE WHITE mperature mut 2D right(ϕ =0°) left (ϕ =180°) up (ϕ =90°) down (ϕ =270°) alk	Ratio CF uminance, white L_{WH} e Variation δ_{WHITE} Gray-to-Gray G to MPRT MPF Uniformity δ_{GT} RED Ry Gray Gray Gray RED Ry Gray Gray RED Ry Gray RED Ry Gray Gray RED Ry Gray Gray RED Ry Gray Gray Gray Gray RED Ry Gray RED Ry Gray Gray RED Ry	Ratio CR uminance, white L_{WH} $\frac{2D}{3D}$ e Variation δ_{WHITE} $5P$ Gray-to-Gray G to G MPRT MPRT Uniformity δ_{MPRT} Uniformity δ_{GTOG} RED Ry GREEN Gy BLUE By WHITE Wy MHITE Wy unperature mut 2D Ieft (ϕ =180°) θ 1 (x axis) θ 1 (CR>10) θ 2 (y axis) θ 3 (CT \leq 10%) alk θ 3 (CT \leq 10%) θ 4 (y axis) θ 5 (PRED AND AND AND AND AND AND AND AND AND AN	Ratio CR 1100 1100 1100 1100 1100 1100 1100 11	Parameter Symbol Min Typ Ratio CR 1100 1600 uminance, white L _{WH} 2D 320 400 uminance, white L _{WH} 3D 120 150 de Variation δ white 5P 5P MPRT MPRT - 5 MPRT MPRT - 8 Uniformity δ MPRT - - RED Rx R 0.651(TBD) RED Rx R 0.602(TBD) BLUE Bx -0.03 0.150(TBD) By 0.060(TBD) 0.060(TBD) 0.279 0.292 mperature 10,000 mut 72 2D left (φ=180°) θr (x axis) 89 - 2D left (φ=180°) θu (y axis) 89 - 4D Quy (φ=270°) θd (y axis) 89 - 3D Quy +	Parameter Symbol Min Typ Max Ratio CR 1100 1600 - uminance, white L _{WH} 2D 320 400 uminance, white L _{WH} 3D 120 150 e Variation Sumpact 5P 5 8 MPRT MPRT - 8 12 Uniformity δ MPRT - 8 12 Uniformity δ MPRT - - 1 RED RX - - 1 RED RX RX 0.651(TBD) 0.333(TBD) RED Bx -0.03 0.50(TBD) Typ 0.602(TBD) Typ 0.060(TBD) +0.03 0.060(TBD) 0.060(TBD) +0.03 0.279 0.292 10.000 mut 72 - 10 [cR > 10] Her (φ=180°) Her (x axis) 89 - - 2D Ieft (φ=180°)	Value Unit Ratio CR 1100 1600 - Latio CR 1100 1600 - Cd/m² a principle CRATION CRATION CAMPAT -

Product Specification

Notes :1. Contrast Ratio(CR) is defined mathematically as :

CR = Surface Luminance at all white pixels

Surface Luminance at all black pixels

It is measured at center 1-point.

- 2. Surface luminance is determined after the unit has been 'ON' and 1Hour after lighting the backlight in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 2.
- 3. The variation in surface luminance , δ WHITE is defined as : δ WHITE(5P) = Maximum($L_{on1}, L_{on2}, L_{on3}, L_{on4}, L_{on5}$) / Minimum($L_{on1}, L_{on2}, L_{on3}, L_{on4}, L_{on5}$) Where L_{on1} to L_{on5} are the luminance with all pixels displaying white at 5 locations . For more information, see the FIG. 2.
- 4. Response time is the time required for the display to transit from G(N) to G(M) (Rise Time, Tr_R) and from G(M) to G(N) (Decay Time, Tr_D). For additional information see the FIG. 3. (N<M)
 ※ G to G Spec stands for average value of all measured points.
 Photo Detector: RD-80S / Field: 2°
- 5. MPRT is defined as 10% to 90% blur-edge width Bij(pixels) and scroll speed U(pixels/frame)at the moving picture. For more information, see FIG 4
- 6. Gray to Gray and MPRT Response time uniformity is Reference data. Appendix VII-1/VII-2
- 7. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 5.
- 8. Gray scale specification
 Gamma Value is approximately 2.2. For more information, see the Table 12.
- 9. 3D performance specification is expressed by 3D luminance, 3D Crosstalk and 3D viewing angle. 3D luminance and 3D crosstalk is measured at center 1-point. For more information, see the FIG 6~9.

Table 11. GRAY SCALE SPECIFICATION

Gray Level	Luminance [%] (Typ.)
LO	0.07
L63	0.27
L127	1.04
L191	2.49
L255	4.68
L319	7.66
L383	11.5
L447	16.1
L511	21.6
L575	28.1
L639	35.4
L703	43.7
L767	53.0
L831	63.2
L895	74.5
L959	86.7
L1023	100

Product Specification

Measuring point for surface luminance & measuring point for luminance variation

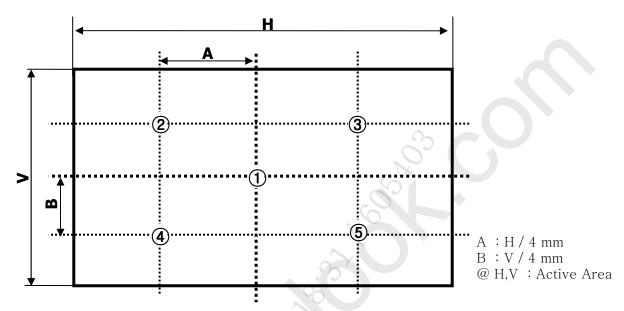


FIG. 2 Measure Point for Luminance

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

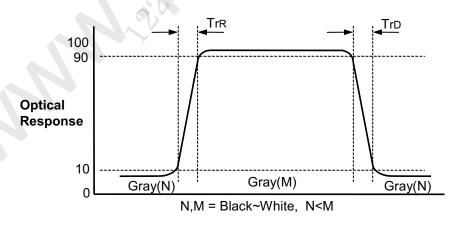
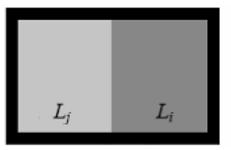
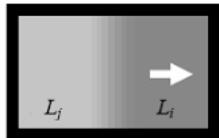



FIG.3 Response Time(G to G)



Product Specification

MPRT is defined as 10% to 90% blur-edge with Bij(pixels) and scroll speed U(pixels/frame)at the moving picture.

$$M = \frac{1}{U} Bij \ (i \neq j)$$

Example) Bij = 12pixels, U = 10pixels / 120Hz

M = 12pixels / (10pixels / 120Hz)

= 12pixels / {10pixels / (1/120)s}

= 12 / 1,200 s

= 10 ms

Global LCD Panel Exchange Center

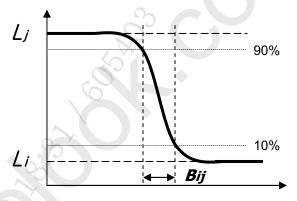
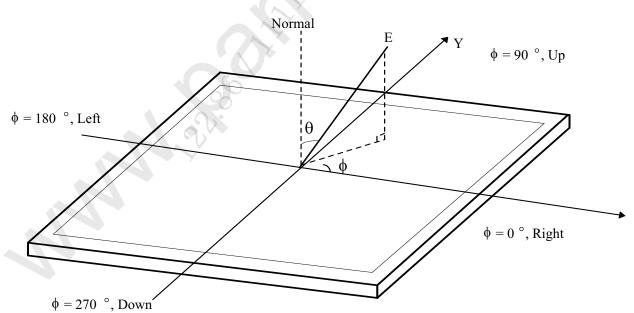
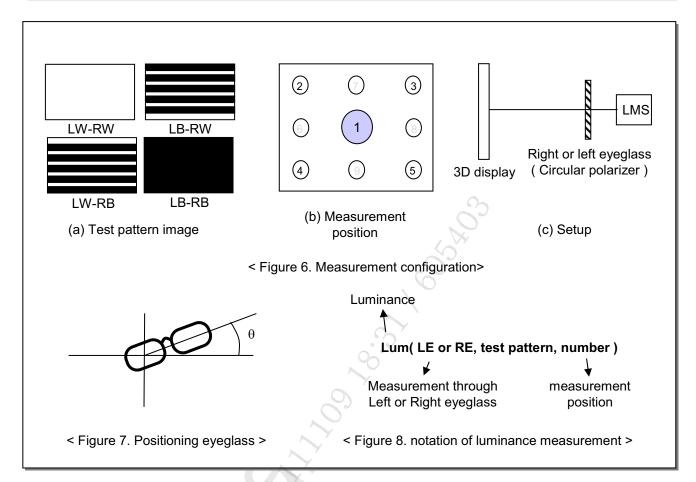


FIG. 4 MPRT

Dimension of viewing angle range




FIG. 5 Viewing angle

Global LCD Panel Exchange Center

LC550EUF

Product Specification

In order to measure 3D luminance, 3D crosstalk and 3D viewing angle, it need to be prepared as below;

- 1) Measurement configuration
 - 4-Test pattern images. Refer to FIG 8.
 - -. LW-RW: White for left and right eye
 - -. LW-RB: White for left eye and Black for right eye
 - -. LB-RW : Black for left eye and white for right eye
 - -. LB-RB: Black for left eye and right eye

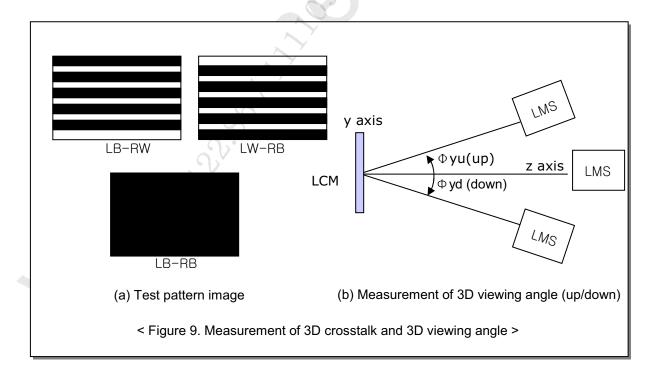
Image files where black and white lines are displayed on even or odd lines.

Luminance measurement system (LMS) with narrow FOV (field of view) is used. Refer to FIG 1.

2) Positioning Eyeglass (refer to appendix-VIII for standard specification of eyeglass) Find angle of minimum transmittance.

This value would be provided beforehand or measured by the following steps;

- (i) Test image (LB-RW) is displayed.
- (ii) Left eyeglass are placed in front of LMS and luminance is measured, rotating right eyeglass such as FIG 7. The notation for luminance measurement is "Lum(LE, LB-RW,1)".
- (iii) Find the angle where luminance is minimum.
- * Following measurements should be performed at the angle of minimum transmittance of eyeglass.



Product Specification

- 3) Measurement of 3D luminance
 - (i) Test image (LW-RW) is displayed.
 - (ii) Left or right eyeglass are placed in front of LMS successively and luminance is measured at center 1 point where the notation for luminance measurement is "Lum(LE, LW-RW,1)" or "Lum(RE, LW-RW,1).
- 4) Measurement of 3D crosstalk
 - (i) Test image (LB-RW, LW-RB and LB-RB) is displayed.
 - (ii) Right or left eyeglass are placed in front of LMS successively and luminance is measured for position 1.with rotating LMS or sample vertically.

5) Measurement of 3D Viewing Angle

3D viewing angle is the angle at which the 3D crosstalk is under 10%. The angles are determined for the vertical or y axis with respect to the z axis which is normal to the LCD module surface and measured for position 1. For more information, see the Fig 9

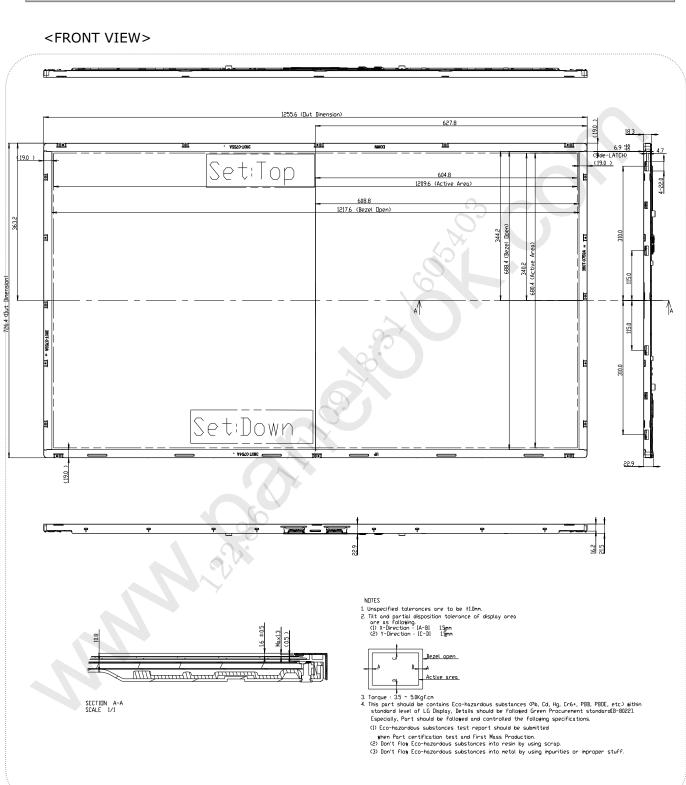
Ver. 0.0 22 / 44

Product Specification

5. Mechanical Characteristics

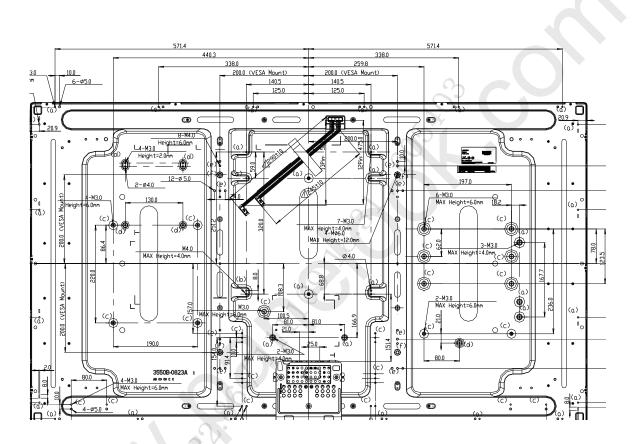
Table 12 provides general mechanical characteristics.

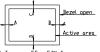
Table 12. MECHANICAL CHARACTERISTICS


Item	Value				
	Horizontal	1255.6 mm			
Outline Dimension	Vertical	726.4 mm			
	Depth	10.8 mm			
Down Area	Horizontal	1217.6 mm			
Bezel Area	Vertical	688.4 mm			
Activo Display Area	Horizontal	1209.6 mm			
Active Display Area	Vertical	680.4 mm			
Weight	14.5 Kg . 16.0 Kg (Max.)				

Note : Please refer to a mechanical drawing in terms of tolerance at the next page.

Ver. 0.0 23 / 44


Product Specification



Product Specification

<REAR VIEW>

NO	TAP	Max Depth (mm)	Torque (Kgf.cm)	Notes
(a)	M3.0	4.0	Ma×6.0	
(b)	M4.0	4.0	Ma×10.0	
(c)	M3.0	6.0	Ma×6.0	
(d)	M3.0	2.0	Ma×6.0	
(6)	M4.0	6.0	Ma×10.0	
(f)	M6.0	12.0	Ma×15.0	Vesa

- 3. Torque: 3.5 5.0kgf.cn
 4. This part should be contains Eco-hazardous substances (Pb, Cd, Hg, Cr6+, PBB, PBDE, etc.) within standard level of LG Display, Details should be followed Green Procurement standard(B-8022).

 Especially, Part should be followed and controlled the following specifications.

 - OF Eco-hazardous substances test report should be submitted
 when Part certification test and First Mass Production.
 (2) Bon't flow Eco-hazardous substances into resin by using scrop.
 (3) Bon't flow Eco-hazardous substances into netal by using inpurities or improper stuff.

Product Specification

6. Reliability

Table 13. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition
1	High temperature storage test	Ta= 60°C 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 240h
4	Low temperature operation test	Ta= 0°C 240h
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.0Grms Bandwidth : 10-300Hz Duration : X,Y,Z, Each direction per 10 min
6	Shock test (non-operating)	Shock level : 30Grms Waveform : half sine wave, 11ms Direction : \pm X, \pm Y, \pm Z One time each direction
7	Humidity condition Operation	Ta= 40 °C ,90%RH
8	Altitude operating storage / shipment	0 - 15,000 ft 0 - 40,000 ft

Note: Before and after Reliability test, LCM should be operated with normal function.

Ver. 0.0 26 / 44

Product Specification

7. International Standards

7-1. Safety

- a) UL 60065, Seventh Edition, Underwriters Laboratories Inc.
 Audio, Video and Similar Electronic Apparatus Safety Requirements.
- b) CAN/CSA C22.2 No.60065:03, Canadian Standards Association.Audio, Video and Similar Electronic Apparatus Safety Requirements.
- c) EN 60065:2002 + A11:2008, European Committee for Electrotechnical Standardization (CENELEC). Audio, Video and Similar Electronic Apparatus Safety Requirements.
- d) IEC 60065:2005 + A1:2005, The International Electrotechnical Commission (IEC).
 Audio, Video and Similar Electronic Apparatus Safety Requirements.
 (Including report of IEC60825-1:2001 clause 8 and clause 9)

Notes

1. Laser (LED Backlight) Information

Class 1M LED Product IEC60825-1 : 2001 Embedded LED Power (Class1M)

2. Caution

: LED inside.

Class 1M laser (LEDs) radiation when open. Do not open while operating.

7-2. EMC

- a) ANSI C63.4 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." American National Standards Institute (ANSI), 2003.
- b) CISPR 22 "Information technology equipment Radio disturbance characteristics Limit and methods of measurement." International Special Committee on Radio Interference (CISPR), 2005.
- c) CISPR 13 "Sound and television broadcast receivers and associated equipment Radio disturbance characteristics – Limits and method of measurement." International Special Committee on Radio Interference (CISPR), 2006.

7-3. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

Product Specification

8. Packing

8-1. Information of LCM Label

a) Lot Mark

Α В С D Ε G

A,B,C: SIZE(INCH)

E: MONTH

D:YEAR

F~ M: SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	С	D	Е	F	G	H	J	K

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	4	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial NO. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one Pallet: 14 pcs

b) Pallet Size: 1440 mm(W) X 1140 mm(D) X 964 mm(H)

Product Specification

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- (1) You must mount a module using specified mounting holes (Details refer to the drawings).
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 mV$ (Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it can causes conductive particles and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.

Ver. 0.0 29 / 44

Product Specification

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) Storage condition is guaranteed under packing conditions.
- (4) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition

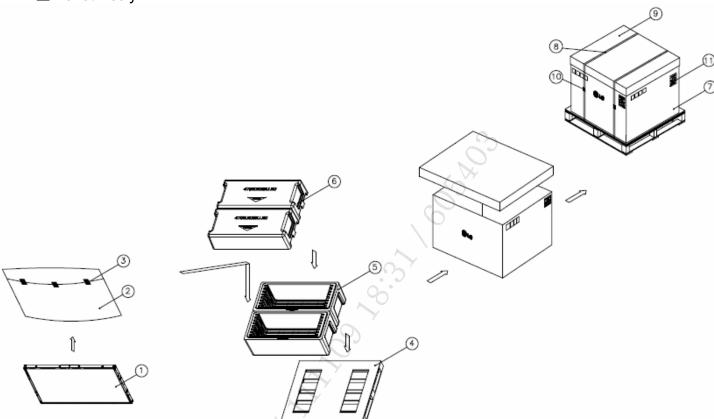
9-6. Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normalhexane.

9-7. Operating condition guide

- (1) The LCD product should be operated under normal conditions. Normal condition is defined as below;
 - Temperature : 5 ~ 40 °C
 - Display pattern : continually changing pattern (Not stationary)
- (2) If the product will be used in extreme conditions such as high temperature, display patterns or operation time etc..,

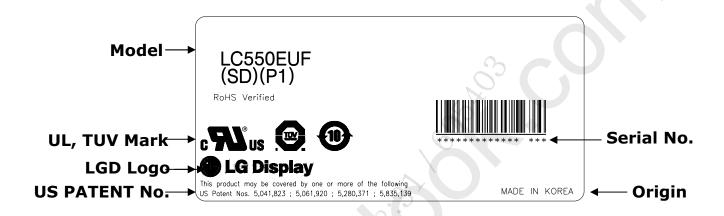
It is strongly recommended to contact LGD for Qualification engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at Airports, Transit Stations, Banks, Stock market, and Controlling systems. The LCD product should be applied by global standard environment. (refer ETSI EN 300, IEC 60721)


Ver. 0.0 30 / 44

Product Specification

APPENDIX-I

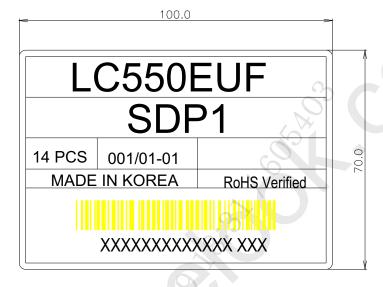
■ Pallet Ass'y


NO.	DESCRIPTION	MATERIAL
1	LCD Module	55" LCD
2	BAG	AL
3	TAPE	MASKING 20MMX50M
4	PALLET	Plywood 1440 X 1140 X 120 mm
5	PACKING,BOTTOM	EPS
6	PACKING,TOP	EPS
7	ANGLE,PACKING	PAPER
8	BAND	PP
9	ANGLE,COVER	PAPER
10	BAND CLIP	STEEL OR PP
11	LABEL	YUPO 80G 100X70

Product Specification

APPENDIX- II-1

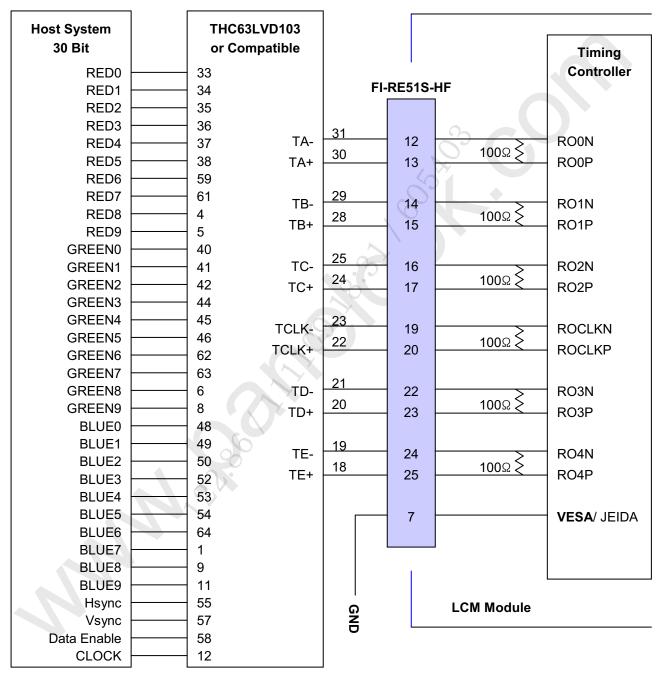
■ LCM Label



Product Specification

APPENDIX- II-2

■ Pallet Label

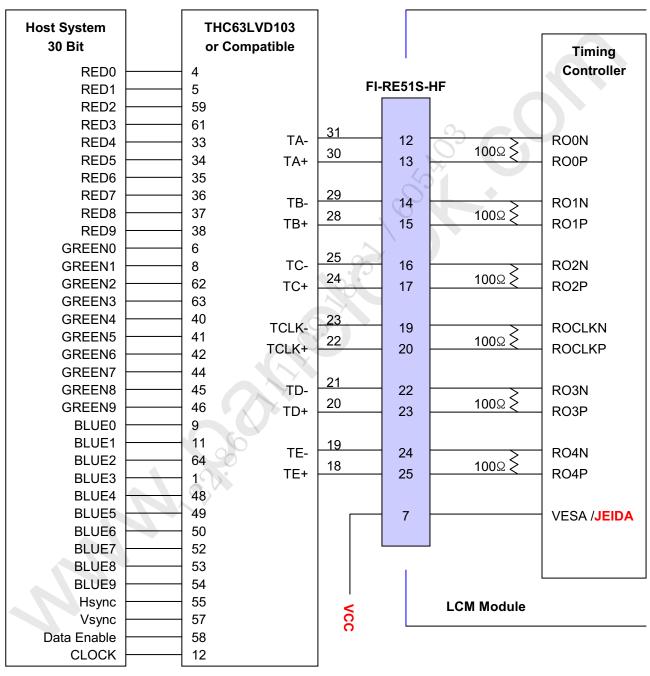


Product Specification

APPENDIX- III-1

■ Required signal assignment for Flat Link (Thine : THC63LVD103) Transmitter(Pin7="L" or "NC")

Note: 1. The LCD module uses a 100 $\mathsf{Ohm}[\Omega]$ resistor between positive and negative lines of each receiver input


- 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible)
- 3. '9' means MSB and '0' means LSB at R,G,B pixel data.

Product Specification

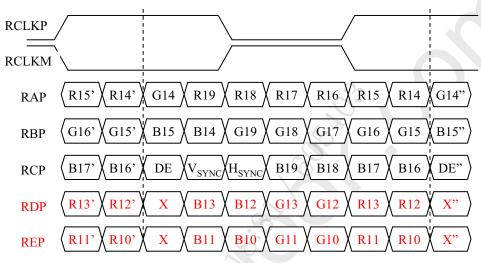
APPENDIX-III-2

■ Required signal assignment for Flat Link (Thine : THC63LVD103) Transmitter(Pin7="H")

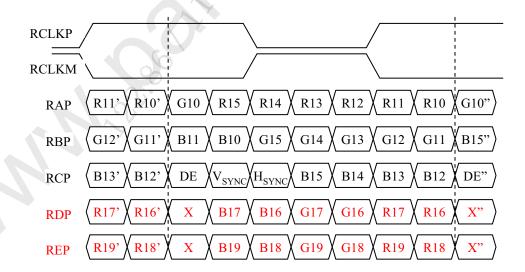
Note :1. The LCD module uses a 100 $\mathsf{Ohm}[\Omega]$ resistor between positive and negative lines of each receiver input.

- 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible)
- 3. '9' means MSB and '0' means LSB at R,G,B pixel data.

Ver. 0.0 35 / 44



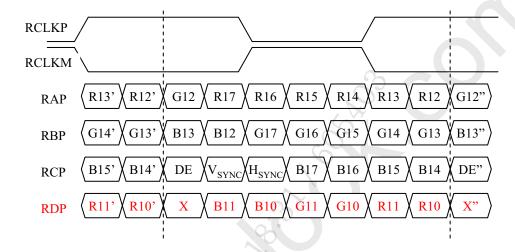
Product Specification


APPENDIX- IV-1

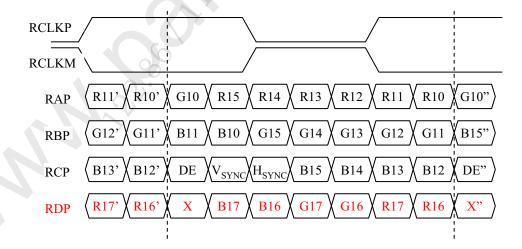
■ LVDS Data-Mapping Information (10 Bit)

1) LVDS Select : "H" Data-Mapping (**JEIDA format**)

2) LVDS Select : "L" Data-Mapping (VESA format)



Product Specification

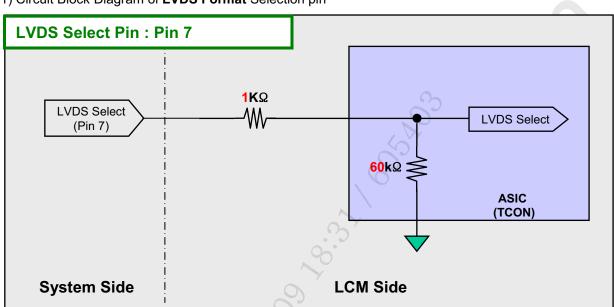

APPENDIX- IV-2

■ LVDS Data-Mapping Information (8 Bit)

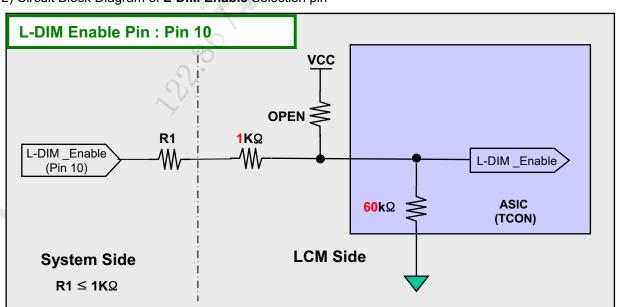
1) LVDS Select : " \mathbf{H} " Data-Mapping (\mathbf{JEIDA} \mathbf{format})

2) LVDS Select: "L" Data-Mapping (VESA format)

Ver. 0.0 37 / 44



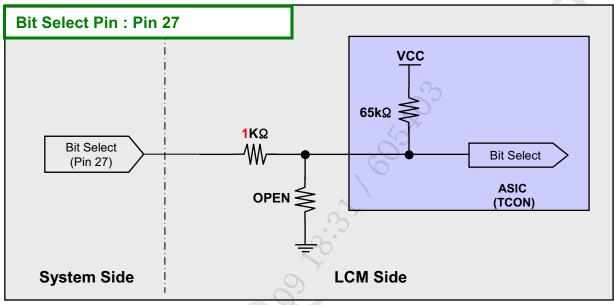
Product Specification


APPENDIX- V-1

■ Option Pin Circuit Block Diagram

1) Circuit Block Diagram of **LVDS Format** Selection pin

2) Circuit Block Diagram of L-DIM Enable Selection pin

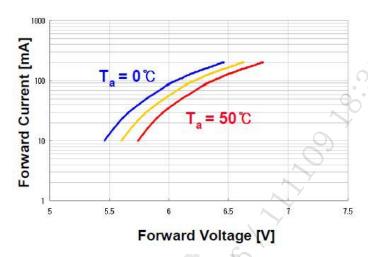


Product Specification

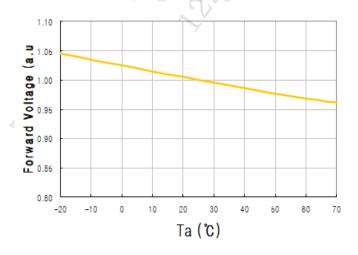
APPENDIX- V-2

■ Option Pin Circuit Block Diagram

3) Circuit Block Diagram of ${\bf Bit}$ Selection pin


Product Specification

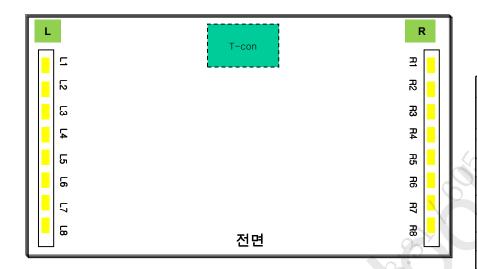
APPENDIX-VII


■ LED Array Electrical Spec

Item	Symbol		Condition	Min	Тур	Max	Unit
Array Operating Voltage	VF	0℃	IF=400mA	60.4	66.5	72.7	V
		25℃	IF=400mA	58.9	64.9	70.9	V
	ΔVop		IF=400mA	-	1	1.7	V

■ Forward Current vs. Forward Voltage

■ Ambient Temperature vs. Forward Voltage


Ver. 0.0 40 / 44

Product Specification

APPENDIX- VII

■ Local Dimming Block Pin Matching

L8 L7 L6 L5 L4 L3 L2 L1	8	
	R7	
	78	
<mark> </mark> ភ	28	
<u> </u>	7	
<mark> </mark>	3	
[E2	R2	
	T-con 포	
	배면	ш

	LED Driver C	NT						
Pin No	CN_201	CN_202						
1	Anode_L1 (1~4Cathode)	Anode_R2 (5~8Cathode)						
2	N.C	N.C						
3	L1 Cathode	R8Cathode						
4	L2 Cathode	R7 Cathode						
5	L3 Cathode	R6 Cathode						
6	L4 Cathode	R5 Cathode						
7	N.C	R4 Cathode						
8	L5 Cathode	R3 Cathode						
9	L6 Cathode	R2 Cathode						
10	L7 Cathode	R1 Cathode						
11	L8 Cathode	N.C						
12	N.C	Anode_R1 (1~4Cathode)						
13	Anode_L2 (5~8Cathode)	-						

Ver. 0.0 41 / 44

Product Specification

APPENDIX- VIII-1

Gray to Gray Response Time Uniformity

This is only the reference data of G to G and uniformity for LC550EUF-SDF1 model.

1. G to G Response Time :

Response time is defined as Figures and snall be measured by switching the input signal for "Gray (N)" and "Gray (M)".(32Gray Step at 8bit)

2. G to G Uniformity
The variation of G to G Unifo ty , δ G G Trined:

G to G Trined:

G to G Trined: $\frac{Max}{T}$ $\frac{n(GtoG)}{T} \leq 1$

*Maximum (GtoG) neans maximum value of measured time (N, 1/1 = 0 (Black) ~ 1023(White), 128 gray step).

	0Gray	127ray	255Gray	O	895Gray	1023Gray
0Gray		TrR:0G→127G	TrR:0G→255G		TrR:0G→895G	TrR:0G→1023G
127Gray	TrD:127G→0G		TrR:127G→255G		TrR:127G→895G	TrR:127G→1023G
255Gray	TrD:255G→0G	TrD:255G→127G			TrR:255G→895G	TrR:255G→1023G
			90			
895Gray	TrD:895G→0G	TrD:895G→127G	TrD:895G→255G			TrR:895G→1023G
1023Gray	TrD:1023G→0G	TrD:1023G→127G	TrD:1023G→255G		TrD:1023G→895G	

3. Sampling Size: 2 pcs

4. Measurement Method: Follow the same rule as optical characteristics measurement.

5. Current Status

Below table is actual data of production on

Ver. 0.0 42 / 44

Product Specification

APPENDIX- VIII-2

lacktriangleq MPRT Response Time Uniformity ($\delta_{ ext{MPRT}}$)

This is only the reference data of MPRT and uniformity for LC550EUF-SDF1 model.

MPRT Response Time:
 Response time is defined as Figure3
 MPRT Uniformity
 The variation of MPRT Uniformity
 ity, δ is in the continuous interest in the continuous interest in the continuous interest into the continuous interest interest into the continuous interest interest into the continuous interest interest interest interest into the continuous interest interest

- 3. Sampling Size: 2 pcs
- 4. Measurement Method: Follow the same rule as optical characteristics measurement.
- 5. Current Status

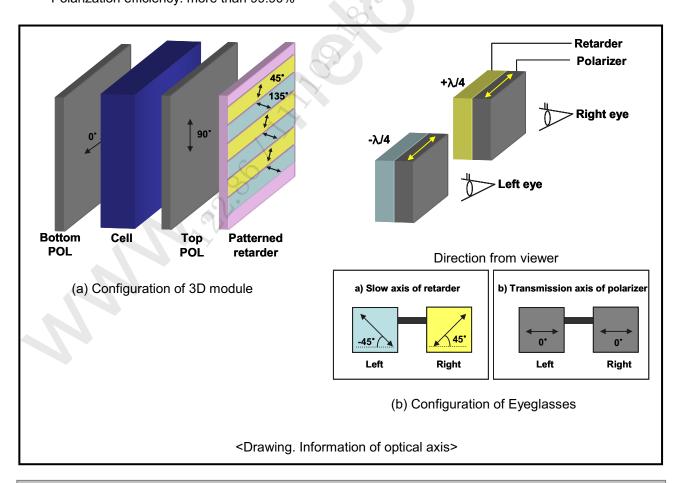
Below table is actual data of production on

Product Specification

APPENDIX- IX

Global LCD Panel Exchange Center

■ Standard specification of Eyeglasses


This is recommended data of Eyeglasses for LC550EUF-SDF2 model. (details refer to table)

For each item, depending on the eyeglass manufacturer tolerances may occur, this tolerance can affect 3D performance. (3D Crosstalk, 3D luminance, 3D viewing angle)

<Table. Standard specification of Eyeglasses>

De	sign item of Eyeglasses	Left	Right	Remark
Optical axis	a) Slow axis of retarder	135°	45°	Refer to
	b) Transmission axis of polarizer	0°	0°	drawing
Retardation value	Retarder	125	@550nm	

 Recommended polarizer Polarization efficiency: more than 99.90%

