

CMOS IC

LC67F5104A

32-BIT SINGLE CHIP MICROCONTROLLER

UnderDevelopment

Overview

The LC67F5104A is a CMOS 32-bit RISC microcontroller which is ideally suited for CD-R/RW or DVD applications. This microcontroller contains the ARM7TDMI[™] core produced by ARM, and various peripherals such as 4M-bit flash ROM, 128K-bit SRAM, DMA controller, interrupt controller, I/O ports, serial interface, 8-bit AD converter and timers all in a 100-pin package single chip.

Features

(1) Operating Power Supply Voltage	2.25 to 2.75V (I/O, ADC 3.0 to 3.6V)
(2) Operating Temperature	0 to 75°C
(3) Package Type	TQFP-100
(4) CPU Core	ARM7TDMI [™]
(5) Flash ROM	4M bits on chip
(6) SRAM	128K bits on chip

(7) Maximum Operating Frequency

Oscillator CF Oscillator/external clock input **RC** Oscillator

1MHz (Typical)

18MHz

- The system clock frequency can be selected to be 1/1, 1/2, 1/4 or 1/8 of the oscillation frequency.
- The on-chip RC is automatically selected at reset or release of the standby mode.
- The clock selection is programmable.
- (8) Write Protected Area in Flash

(Located at the end of the 4M-bit memory area) 16KB

This area cannot be written to when the microcontroller is in normal operating mode. It can only be written to in the "Flash ROM Setting" mode.

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition tanges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

This product incorporates technology licensed from Silicon Storage Technology Inc. ARM is the registered trademark of ARM Limited. ARM7TDM is the trademark of ARM Limited.

is the applying trademark of SANYO Electric Co., Ltd.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

(9) Ports

Input/output ports	56 ports
Input ports	8 ports

(10) Serial Interface (One channel)

Synchronous full duplex SIO with three lines

- Selectable 8 or 16-bit data length
- Selectable transfer bit order: LSB first or MSB first
- Transfer clock

Internal or external clock selectable

Internal clock can be selected ranging in value from $8 \times$ system clock to $1024 \times$ system clock by the on-chip 8-bit baud rate generator.

- Clock polarity selectable
 Clock pin level selectable when not transferring
 Error detection
- Overflow error Receive register over-write error

(11) UART (One channel)

Full duplex buffer enables continuous data transfer

- Selectable transfer rate

Transfer rate can be selected ranging in value from $16 \times$ system clock to $4096 \times$ system clock by the on-chip 8-bit baud rate generator.

The transfer speed ranges from 4288bps to 1070000bps at 18MHz oscillation (while the UART standard is 110bps to 1152000bps).

Table 1 shows transfer rate examples.

Operating Frequency		18MHz		17.2872MHz			
Bit Rate (Bits/s)	Set value	Transfer Rate	Difference(%)	Set value	Transfer Rate	Difference(%)	
4800	22	4808	+0.16	31	4802	+0.04	
9600	139	9615	+0.16	143	9562	-0.40	
19200	197	19068	-0.69	200	19294	+0.49	
38400	227	38793	+1.02	228	38588	+0.49	
57600	236	56250	-2.34	237	56866	-1.27	
115200	246	112500	-2.34	247	120050	+4.21	
230400	251	225000	-2.34	251	216090	-6.21	

Table 1Transfer Rate Examples

The formulae used to calculate are as follows:

Set Value	$= 256 - \{\text{Operating Frequency} / (16 \times \text{Bit Rate})\}$
Transfer Rate	= Operating Frequency / $\{16 \times (256 - \text{Set Value})\}$
Difference	= (Transfer Rate – Bit Rate) / Bit Rate × 100

- 1 or 2 stop bit(s) selectable
- 7 or 8-bit data length selectable
- Parity selection: even, odd or none
- Error detection: parity, framing and receive buffer overwrite error

(12) Plain Timer

- (i) Watchdog Timer
- 8-bit baud rate generator and 16-bit free run counter
- Reset or interrupt generation selectable on counter overflow
- The counter clock can be selected to be 1/1, 1/2, 1/4 or 1/8 of the system clock
- The maximum time until overflow is 14.4 seconds at 18MHz oscillation
- (ii) 16-Bit Free Run Counter
- The interrupt request is generated at counter overflow
- The counter clock can be selected to be 1/1, 1/2, 1/4 or 1/8 of the system clock
- Overflow interval can be selected to be 2.5, 5, 10 or 20ms at 18MHz oscillation

(13) ADC

- 8-channel 8-bit AD converter
- Successive approximation method
- Vref input (2.9 < Vref < AVcc)
- Interrupt at AD conversion completion
- Scan mode
- Conversion time : around 5.33µs at 18MHz oscillation

(14) DMA Controller

- 2 channels of independent operation
- Memory to memory transfer on the ASB bus
- Transfer between memory mapped device and memory on the ASB bus
- Transfer data size can be selected from byte, half word (2 bytes) or word (4 bytes)

(15) Interrupt Controller

- External interrupts 7 sources
- Internal interrupts 23 sources Total: 30 sources
- 2 vector addresses: FIQ and IRQ vectors FIQ has higher priority than IRQ
- Triggers for external interrupts (HPIRQ, EXT0IRQ ~ EXT5IRQ) can be selected to be rising edge/ high level or falling edge/ low level.
- Standby mode can be released by the level detection of any of external interrupts.
- Individual interrupt enabling/disabling is provided for every interrupts except HPIRQ
- Interrupt enabling/disabling of all interrupts together (except HPIRQ) is provided.
- FIQ or IRQ vector is selectable for each interrupt except HPIRQ.
- HPIRQ interrupt is fixed to FIQ vector. The vectors can be selected when all interrupts (except HPIRQ) are disabled.
- Status register indicating interrupt sources is provided.

(16) Power Save Mode

(i) Three Power Save Modes

Sleep mode, software standby mode and hardware standby mode

(ii) Module Standby Function

Clock for serial interface, UART, multiple timer, plain timer and AD converter can be stopped by program control to reduce the current consumption.

(17) Multiple Timer

5-channel 16-bit timer

- Maximum of 12 types of pulse output and 10 types of pulse input are provided.
- Counter input can be selected from the following:
 - Internal clock $\Phi, \Phi/2, \Phi/4, \Phi/8$
 - External clock TCK1, TCK2, TCK3, TCK4
- Operation mode for each channel can be selected from the following:
 - Waveform output by PCS (Phase Control Signal)
 - Low, high or toggle output is selectable NOTE: Low or high only for channel 2
 - PLS (Pulse Length Scaler) function Rising edge, falling edge or both edges detection is selectable
 - Counter clear function
 - Counter clear by PCS or PLS
 - Synchronous operation
 - Simultaneous data write to multiple timer counters
 - Simultaneous clear by PCS or PLS
 - Synchronous input and output of registers by synchronous counter operation
 - PWM mode
 - Duty programmable PWM output
 - Maximum of 5 phases PWM output is possible by synchronous operation
- The following operation modes are selectable on channels 3 and 4
 - Reset Synchronous PWM mode Three-phase output of Positive or Negative PWM is possible by combining channels 3 and 4.

• Complementary PWM mode

Three-phase output of Positive or Negative PWM with no overlapping is possible by combining channels 3 and 4.

- Buffer operation
- PLS can be double buffered.
- PCS can be updated automatically.
- Interrupts

Each channel has 2 PCS or PLS interrupts and an overflow interrupt source. All interrupts can be requested independently.

(18) Memory Area

1GB of internal memory and 1GB of external memory area

The external memory area consists of 4 areas of 256MB each. (Area 0 to3)

NOTE: Only the first 16MB of each external memory area can be used.

The internal and external memory address map is shown in Table 2.

Memory Area	Address	Description	Note
	7FFF FFFFh ~ 7000 0000h	External memory (Area 3)	
External	6FFF FFFFh ~ 6000 0000h	External memory (Area 2)	
Memory	5FFF FFFFh ~ 5000 0000h	External memory (Area 1)	
,	4FFF FFFFh ~ 4000 0000h	External memory (Area 0)	
	3FFF FFFFh ~ 2200 0000h	Access forbidden (Reserved)	
	21FF FFFFh ~ 2000 0000h	Peripheral input/output registers etc.	
Internal	1FFF FFFFh ~ 1400 0000h	Access forbidden (Reserved)	
Memory	1777 1400 000011	Some registers assigned	
-	13FF FFFFh ~ 1000 0000h	On-chip RAM	
	0FFF FFFFh ~ 0000 0000h	On-chip ROM	

Table 2 Memory Address Map

• Configuration of Internal Memory Area

The memory address space 3FFF FFFF to 0000 0000 is allocated as 1GB internal memory area. This area consists of the on-chip ROM, on-chip RAM, the peripheral input/output registers, etc.

Table 3 shows the address map of the internal memory area.

Memory Area	Address	Description	Note
Reserved Area	3FFF FFFFh ~ 2001 0000h	Access forbidden (Reserved)	
Peripheral I/O Registers, etc	2000 FFFFh ~ 2000 0000h	Peripheral input/output registers etc.	
Reserved Area	1FFF FFFFh ~ 1400 4000h	Access forbidden (Reserved)	
Registers, etc	1400 3FFFh ~ 1400 3000h	Registers, etc.	
Reserved Area	1400 2FFFh ~ 1400 2000h	Access forbidden (Reserved)	
Registers, etc	1400 1FFFh ~ 1400 0000h	0000h Registers, etc.	
On ohin RAM Area	13FF FFFFh ~ 1000 4000h	Access forbidden (Reserved)	
On-chip RAM Area	1000 3FFFh ~ 1000 0000h	On-chip RAM area	16KB
On chin BOM Area	0FFF FFFFh ~ 0008 0000h	Access forbidden (Reserved)	
On-chip ROM Area	0007 FFFFh ~ 0000 0000h	On-chip Flash ROM area	512KB

 Table 3
 Internal Memory Address Map Details

• Configuration of External Memory Area

Four areas (Area 0 to 3) are allocated as the external memory area.

Area 0 is also used for the external ROM operation mode at reset.

Each area has independent select signals ($nCS0 \sim nCS3$) and the number of waits can be set independently for each area.

Table 4 shows the address map of the external memory area.

Memory Area	Address	Description	Note
Area 3	7FFF FFFFh ~ 7100 0000h	Access forbidden (Reserved)	
Alea S	70FF FFFFh ~ 7000 0000h	External memory (Area 3)	16MB
Area 2	6FFF FFFFh ~ 6100 0000h	Access forbidden (Reserved)	
Alea Z	60FF FFFFh ~ 6000 0000h	External memory (Area 2)	16MB
Area 1	5FFF FFFFh ~ 5100 0000h	Access forbidden (Reserved)	
Alea I	50FF FFFFh ~ 5000 0000h	External memory (Area 1)	16MB
Area 0	4FFF FFFFh ~ 4100 0000h	Access forbidden (Reserved)	
Alea U	40FF FFFFh ~ 4000 0000h	External memory (Area 0)	16MB

Table 4 External Memory Address Map Details

(19) External Memory Access

Wait Control

The number of wait state cycles for each area can be selected by a dedicated register.

8 wait cycles are provided: 0,1,2,3,4,5,6 or 7 (1 ~7 for write accesses)

The number of waits (set in the dedicated register) can be extended by inserting the external wait control signal.

Note: When the CF oscillation (1/1 divider) is used as the system clock, at least 1 wait cycle should be set for a read access.

External memory data accesses are shown in Tables 5, 6.

Reading from External Memory

	8		
	Data Width	Access from 8-bit Device	Access from 16-bit Device
	8 bits One 1-byte read		One 1-byte read
	16 bits	Two 1-byte reads	One 2-byte read
32 bits		Four 1-byte reads	Two 2-bytes reads
		Table 5	External Data Access (READ)

Table 5 External Data Access (READ)

Writing to External Memory

Data Width	Access to 8-bit Device	Access to 16-bit Device
8 bits	One 1-byte write	One 1-byte write
16 bits	Two 1-byte writes	One 2-byte write
32 bits	Four 1-byte writes	Two 2-byte writes

Table 6 External Data Access (WRITE)

(20) External ROM Operation Mode

The following 7 modes can be selected by setting the mode control pins (M2, M1, M0) at reset. For external ROM operation, 6 kinds of operating mode are provided with varying combinations of external data bus width and accessible memory address area.

Area 0 is always selected when external ROM operation mode is selected at reset.

Table 7 shows the details of external ROM operation mode.

Operation Mode	M1	M2	М3	External Memory Area on Boot	External Data Bus Width	Address Output
Internal ROM operation	0	0	0	-	*1	*1
External ROM operation 1	0	0	1	1MB	8 bits	A19 ~ A0
External ROM operation 2	0	1	0	8MB	8 bits	A22 ~ A0
External ROM operation 3	0	1	1	16MB	8 bits	A23 ~ A0
External ROM operation 4	1	0	0	1MB	16 bits	A19 ~ A0
External ROM operation 5	1	0	1	8MB	16 bits	A22 ~ A0
External ROM operation 6	1	1	0	16MB	16 bits	A23 ~ A0
	1	1	1	Forbidden	Forbidden	Forbidden
Table 7. Oatting of the External DOM as another seads						

Table 7 Setting of the External ROM operation mode

*1 For internal ROM operation, ports can be selected by software to be used as address lines A0 to A23 or as normal input/output ports. (The default is ports are set to input for I/O.) Also, for internal ROM operation ports can be selected by software to be used as the data bus or as normal input/output ports. (The default is ports are set to input for I/O.)

Table 8 shows data access in the external ROM operation mode

Data Width	Access to 8-bit Device	Access to 16-bit Device		
8 bits	One 1-byte read			
16 bits	Two 1-byte reads	One 2-byte read		
32 bits	Four 1-byte reads	Two 2-byte reads		
Table 9 Date Access in the External POM Operation Made				

Table 8 Data Access in the External ROM Operation Mode

Please note that even in the case where Thumb instruction are used, the ARM core always executes ARM instructions first at reset. It should switch to the Thumb instruction mode after reset. This also applies to external ROM boots. Since the RC oscillator is selected at reset, no wait cycles are inserted for the external ROM operation modes. Before switching the clock to the CF, please set the appropriate number of wait cycles by software.

(21) On Board Rewrite Function for Flash ROM

16KB boot area is provided in order to support the on board rewrite function for the internal Flash ROM. This boot program area is from address 0x7C000 to 0x7FFFF and can not be erased or written in normal CPU setting mode. Therefore the program area for the normal operation mode consists of 496 KB from $0x00000 \sim 0x7BFFF$.

On board programming

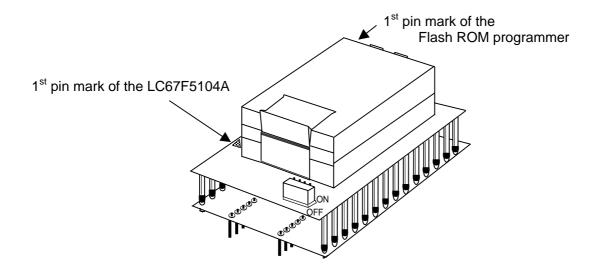
Program execution will start from address 0x7C000 if the BOOT terminal is "High" at reset. The program data to be written is received by some methods such as serial interface and stored in the internal RAM by the boot program. The boot program then jumps to the internal RAM area and rewrites the contents of Flash ROM with the program data which was stored in RAM. After the boot program jumps to RAM, and before it starts the actual rewriting of the Flash ROM, the boot control register flag should be set (in software).

In order to use the on board Flash rewrite system, software is also required for the PC. Please contact the SANYO sales office for further information.

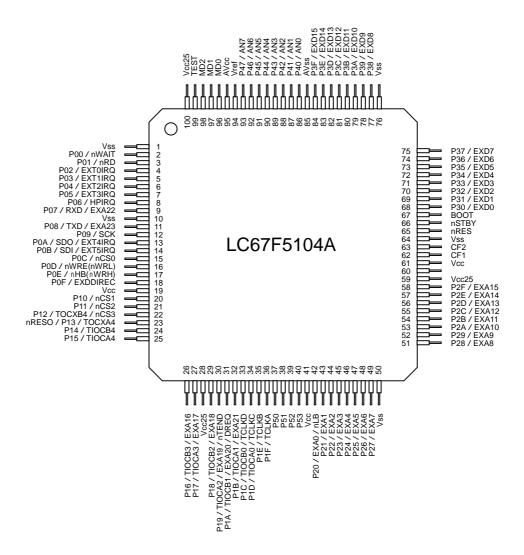
(22) Rewrite Function Using the PROM Writer

The general purpose PROM writer supports both the reading and writing of the internal Flash ROM using the dedicated conversion board.

- (i) Conversion board name : W67F5106TQ
- (ii) Available Flash ROM writer information


Maker Name	Model	Version Available	Device Code
ANDO	AF-9708	*	*

(23) Development Tools


Emulator: ADVICE (PW920) produced by Yokogawa Digital Computer Corporation

(24) Flash ROM Programming Service

SANYO will perform Flash ROM programming and sealing on die encapsulation for a charge. For details, please contact your SANYO sales office.

Pin Assignment

System Block Diagram

Pin Descriptions

Туре	Symbol	Pin Number	I/O	Name and function
	Vcc	19,41,61	-	3.3V power supply For connection to the 3.3V power supply.
Power supply	Vcc25	28, 59, 100	_	2.5V power supply
				For connection to the 2.5V power supply. Ground
	Vss	1,10,50,64,76	-	For connection to ground.
	CF1	62	Input	CF oscillator pin For connection to the CF oscillator. Can also be used as external clock input pin.
Clock	CF2	63	Output	CF oscillator pin For connection to the CF oscillator.
	Φ	60	Output	System clock Supplies the system clock to external devices.
Operating mode control	MD2 ~ MD0	98,97,96	Input	Mode pins For setting internal and external ROM modes, access area and data bus width (in external ROM modes). • Internal ROM operation Internal Flash ROM is selected after reset. • External ROM operation (1 to 6) ROM connected to the external access area 0 is selected after reset. These pin states should not be changed during operation. M2 M1 M0 Operating Mode 0 0 Internal ROM operation 1 0 1 External ROM operation 2 0 1 External ROM operation 1 0 1 External ROM operation 1 0 1 External ROM operation 2 0 1 External ROM operation 2 0 1 External ROM operation 3 1 0 1 External ROM operation 4 1 0 1 External ROM operation 5 1 1 0 External ROM operation 6
	BOOT	67	Input	BOOT pin Normally Low; High during boot mode.
	nRES	65	Input	Reset Input When driven Low, the chip is reset.
System Control	nRESO	23	Output	Reset Output Outputs a reset signal to external devices.
	nSTBY	66	Input	Standby When driven Low, the chip enters Hardware Standby mode.
Interrupts	HPIRQ	8	Input	High priority external interrupt request This pin is fixed as an FIQ interrupt.
	EXT5IRQ ~ EXT0IRQ	14,13,7,6,5,4	Input	External Interrupt requests 0 to 5 Setting as FIQ or IRQ is programmable.
	TCLKD ~ TCLKA	33 ~ 36	Input	Clock inputs A to D Inputs external clock.
	TIOCA4 ~ TIOCA0	25,27,30,32,34	Input/ output	Input capture/output compare A0 to A4 GRA0 to GRA4 output compare, input capture or PWM output pins.
Timers	TIOCB4 ~ TIOCB0	24,26,29,31,33	Input/ output	Input capture/output compare B0 to B4 GRB0 to GRB4 output compare, input capture or PWM output pins.
	TOCXA4	23	Output	Output compare XA4 PWM output pin
	TOCXB4	24	Output	Output compare XB4 PWM output pin

Туре	Symbol	Pin Number	I/O	Name and function
	SDI	14	Input	Receive data Serial interface data input pin
Serial interface	SDO	13	Output	Transmit data Serial interface data output pin
	SCK	12	Input/ output	Serial clock Serial interface clock input/output pin
UART	TXD	11	Output	Transmit data UART data output pin
UANT	RXD	9	Input	Receive data UART data input pin
	AN7 ~AN0	93 ~ 86	Input	Analog 0 to 7 Analog input pins
AD converter	AVcc	95	Input	Power supply(+3.3V) pin for the A/D converter Connect to the system power supply(+3.3V) when not using the A/D converter.
AD conventer	AVss	85	Input	Ground pin for the A/D converter Connect to system ground(0V).
	Vref	94	Input	Reference voltage input pin for the A/D converter Connect to the system power supply(+3.3V) when not using the A/D converter.
Address bus	EXA23 ~ EXA0	11,9,32~29,27,26 58~51, 49~42	Output	External address bus Output address signals for external memory access.
Data bus	EXD15 ~ EXD0	84~77,75~68	Input/ output	External data bus Bi-directional data bus for external memory devices.
	nCS3 ~ nCS0	22,21,20,15	Output	Chip selection Signals for selecting external memory areas 0 to 3.
	EXDDIREC	18	Output	External data bus direction Indicates whether the access to the selected external memory area is read or write.
	nRD	3	Output	Read When Low, indicates reading from the selected external memory area.
Bus control	nWRE	16	Output	Write enable When Low, indicates writing to the external memory area selected.
	nWRL	16	Output	Write enable low signal Enables lower byte write of external device.
	nWRH	17	Output	Write enable high signal Enables upper byte write of external device.
	nLB	42	Output	Low byte selection Selects lower byte of external memory device.
	nHB	17	Output	High byte selection Selects upper byte of external memory device.
	nWAIT	2	Input	Wait Requests the insertion of wait state(s) (in the number of bus cycles) when accessing an external memory area.
DMAC	nTEND	30	Output	DMA transfer end
	DREQ	31	Input	DMA request

Туре	Symbol	Pin Number	I/O	Name and function
	P00 ~ P0F	2~9,11~18	Input/ output	Port 0 16-bit input/output pins The direction of each pin is programmable.
	P10 ~ P1F	20~27,29~36	Input/ output	Port 1 16-bit input/output pins The direction of each pin is programmable.
I/O ports	P20 ~ P2F	42~49, 51~58	Input/ output	Port 2 16-bit input/output pins The direction of each pin is programmable.
	P30 ~ P3F	68~75, 77~84	Input/ output	Port 3 16-bit input/output pins The direction of each pin is programmable.
	P40 ~ P47	86 ~ 93	Input	Port 4 8-bit input pins
	P50 ~ P53	37 ~ 40	Input/ output	Port 5 4-bit input/output pins The direction of each pin is programmable.
TEST	TEST	99	Input	Test pin High in Test mode (otherwise Low).

Electrical Characteristics

1. Absolute Maximum Ratings / Ta=25°C, VSS=0V

Parameter	Symbol	Applicable Pins / Notes	Conditions	Ratings	Unit
Max. supply voltage	Vccmax	Vcc		-0.3 ~ +4.0	V
Max. supply vollage	Vcc25max	Vcc25		-0.3 ~ +3.0	V
Input voltage	Vi	All input only pins		-0.3 ~ Vcc+0.3	V
I/O voltage	Vio	All I/O pins		-0.3 ~ Vcc+0.3	V
High level output peak current	Іорн	All output and I/O pins	per pin value	10	mA
High level total output current	Σιοαή	Total of all output and I/O pins	total pins value	80	mA
Low level output peak current	IOPL	All output and I/O pins	per pin value	10	mA
	Σ ioal	Total of all output and I/O pins	total pins value	120	mA
Low level total	Σ IOAL1	P00~P0F, P10~P17	total pins value	60	mA
output current	Σ ioal2	P18~P1F, P50~P53, P20~P2F	total pins value	60	mA
	Σ ioal3	P30~P3F	total pins value	60	mA
Reference voltage	Vref	Vref *NOTE 1		-0.3 ~ AVcc+0.3	V
Analog supply voltage	AVccmax	AVcc *NOTE1		-0.3 ~ +4.0	V
Analog input voltage	Van	Each analog input pin		-0.3 ~ AVcc+0.3	V
Allowable power dissipation	Pdmax	TQFP100	Ta=0 ~ +75°C	500	mW
Operating temperature	Topg			0 ~ +75	°C
Storage temperature	Tstg			-55 ~ +125	°C

*NOTE 1 AVcc and Vref should be connected to the supply voltage (Vcc) when the A/D converter is not in use or when in Standby mode

2. DC Characteristics (preliminary specifications) / Ta=0 ~ 75°C, VSS=0V

Parameter	Symbol	Appliaghla Ding / Natag	Conditions		Rating		Unit
Parameter	Symbol	Applicable Pins / Notes	Conditions	Min.	Typical	Max.	Unit
Operating supply voltage (I/O, ADC)	Vcc	Vcc, AVcc		3.0	3.3	3.6	V
Operating supply voltage (internal)	Vcc25	Vcc25		2.25	2.5	2.75	V
High level input voltage	VIH1	P00~P0F, P10~P1F, P20~P2F P30~P3F, P40~P47, P50~P53 CF1 (External clock input)		0.75Vcc		Vcc	V
	VIH2	nRES, nSTBY, TEST, MD0, MD1, MD2		0.80Vcc		Vcc	V
Low level input voltage	Vı∟	All input and I/O pins CF1 (External clock input)		Vss		0.15Vc c	V
Schmitt trigger voltage	Vsн	All input and I/O pins			0.08Vcc		V
High level output voltage	Voh1	All output and I/O pins (except for Φ , P50~P53)	Iон = -4mA	Vcc-0.8			V
•	Voh2	Φ, P50~P53	lон = -4mA	Vcc-0.4			V
Low level output voltage	Vol	All output and I/O pins	lo∟= 4mA			0.4	V
High level input current	Ін	All input and I/O pins (output off for I/O pins)	Vin = Vcc	-10		+10	μΑ
Low level input current	lı.	All input and I/O pins (output off for I/O pins)	Vin = Vss	-10		+10	μΑ
Input pin capacitance	CIN	All input pins	f=1MHz, Ta=25°C, Vin = 0V			15	pF
Output pin capacitance	Соит	All output pins	f=1MHz, Ta=25°C, Vin=0V			15	pF
I/O pin capacitance	Ci/o	All I/O pins	f=1MHz, Ta=25°C, Vin = 0V			15	pF

3. Sample Current Dissipation Characteristics (preliminary specifications) / Ta=0 ~ 75°C, VSS=0V

The sample current dissipation characteristics were measured with Sanyo's evaluation board using the recommended circuit values indicated in Sample Oscillation Circuit Characteristics externally. The current through the LSI output transistor is not included.

	Parameter	Symbol	Applicable	Conditions	Rating			Unit
	Falameter	Symbol	Pins / Notes	Conditions	Min.	Typical	Max.	Unit
	Normal operation 1 *NOTE 1	IDDRUN1				23	34	mA
tion	Normal operation 2 *NOTE 2	IDDRUN2		 System clock: CF17.28MHz (1/1 divider) Internal RC oscillation stopped 		19	29	mA
ssipat	Sleep mode *NOTE 3	IDDslp				9	16	mA
nt Dis	Module Standby mode *NOTE 4	IDDMSTBY	Vcc			6	13	mA
rer	Standby mode	IDD STBY		All oscillation stopped		4	400	μA
Currei	External clock operation 1 *NOTE 1	IDDEXCLC1		External clock: 36MHz		23	34	mA
	External clock operation 2 *NOTE 2	eration 2 IDDEXCLC2		(System clock: 1/2 divider)		19	29	mA

*NOTE 1: These values are for when the program is fetched from the internal Flash ROM and ADC is operating.

*NOTE 2: These values are for when the program is fetched from the internal SRAM and ADC is operating. Writing to the internal Flash ROM is not included.

*NOTE 3: These values are for when ADC is halted.

*NOTE 4: These values are for sleep mode with all modules halted.

4. AC Characteristics(preliminary specifications) Figure 5 Load

Parameter	Symbol	Applicable Pins / Notes	Conditions		Ratir	ng	
Farameter	Symbol	Applicable Fills / Notes	Conditions	Min.	Typical	Max.	Unit
CF oscillator frequency range	fcfck	Ceramic resonator oscillation at 17.28MHz	Figure 1		17.28		MHz
RC oscillator frequency range	frcck	Internal RC clock		0.4		2.0	MHz
External clock frequency range	fexck	External clock input *NOTE 1	Figure 4	0.4		36.0	MHz
Extornal clock pulse width	tскь	CF1: 0.5MHz~18MHz input	Figure 4	17			nS
External clock pulse width	tскн	CF1: 18MHz~36MHz input	Figure 4	10			nS
External clock rising / falling edge time	texr texf	CF1: 18MHz input	Figure 4			10	nS
System clock frequency	fsysck	*NOTE 2		0.05		18	MHz

4-1 Allowable operation clock / Ta= $0 \sim 75^{\circ}$ C, VSS=0V

*NOTE 1: For external clock operation, if the external oscillator frequency is more than 18MHz, set the oscillation divider ratio to at least 1/2 before switching the system clock from internal RC to external clock.

*NOTE 2: The system clock frequency is selectable from 1/1~1/8 division of the main clock. The divider is provided in the OSC module.

4-2 Control signal timing (preliminary specifications) / Ta= $0 \sim +75^{\circ}$ C, VSS=0V

Parameter	Symbol	Applicable Pins / Notes	Conditions		Ratir	ng	
i arameter	Symbol	Applicable 1 lins / Notes	Conditions	Min.	Typical	Max.	Unit
nRES pulse width (when supplying power)	tresw1	nRES	Figure 3	10			ms
nRES pulse width (during normal operation)	tresw2	nRES		40			μS
nRESO output delay time	tresd	nRESO	Figure 6a			20	ns
nRESO output pulse width (WDT reset)	tresow	nRESO	Figure 6a	50			Тсус
Reset release time	tresrel	nRES	Figure 6b			30	μS
External interrupt pulse width *NOTE 1	t exintw	HPIRQ, EXT5IRQ~ EXT0IRQ	Figure 7	4			Тсус
Oscillation stabilizing time (CF)	tmsCF		Figure 2	10			ms

*NOTE 1: Regarding the external interrupt pulse width when using a noise filter, please refer to the manual.

4-3 Multiple timer input/output timing (preliminary specifications) / $Ta=0 \sim +75^{\circ}C$, VSS=0V

Para	Parameter		Symbol Applicable Pins / Notes		Rating			
T arameter		Symbol	Applicable 1 IIIs / Notes	Conditions	Min.	Typical	Max.	Unit
Timer output	delay time	t тоср	TIOCA0~TIOCA4, TIOCB0~TIOCB4 TOCXA4, TOCXB4	Figure 8			20	ns
Timer clock	Single edge detection	tтскwн	TCLKA~TCLKD	Figure 9	1.5			Тсус
pulse width	Both edges detection	t TCKWL	TIOCA0~TIOCA4 TIOCB0~TIOCB4	Figure 9	2.5			Тсус

Parameter	Symbol	Applicable Pins / Notes	Conditions	Rating				
Falailletei	Symbol	Applicable Fills / Notes	Conditions	Min.	Typical	Max.	Unit	
Input clock cycle	Тѕск	SCK	Figure 10	8			Тсус	
Input clock low pulse width	TSCKL	SCK	Figure 10	4			Тсус	
Input clock high pulse width	Тѕскн	SCK	Figure 10	4			Тсус	
Output clock cycle	Тѕско	SCK	Figure 10	8			Тсус	
Output clock low pulse width	TSCKOL	SCK	Figure 10	4			Тсус	
Output clock high pulse width	Тѕскон	SCK	Figure 10	4			Тсус	
Input data setup time	tsdi	SCK(input), SDI	Figure 10	2			Тсус	
Input data hold time	Тны	SCK(input), SDI	Figure 10	2			Тсус	
Output delay time	Tddo	SCK(output), SDO	Figure 10		2		Тсус	

4-4 Serial input/output timing (preliminary specifications) / Ta=0 ~ +75°C, VSS=0V

4-5 DMAC input/output timing (preliminary specifications) / $Ta=0 \sim +75^{\circ}C$, VSS=0V

Parameter	Symbol Ap	Applicable Pins / Notes	Conditions	Rating			
				Min.	Typical	Max.	Unit
nTEND delay time 1	t _{TEC1}	nTEND	Figure 11			20	ns
nTEND delay time 2	t _{TEC2}	nTEND	Figure 11			20	ns
DREQ set up time	t dreq		Figure 12	35			ns

4-6 Bus timing (preliminary specifications) / Ta= $0 \sim +75^{\circ}$ C, VSS=0V

	· ·	Applicable Pins /	Conditions		Ratin	g	
Parameter	Symbol	Notes	Conditions	Min.	Typical	Max.	Unit
Clock cycle time	t cyc	Φ	Figures 14 a,b,c	55		20000	
Clock pulse width low level time	tc∟	Φ	Figures 14 a,b,c	15			
Clock pulse width high level time	tсн	Φ	Figures 14 a,b,c	15			
Clock rising time	t CR	Φ	Figures 14 a,b,c			10	
Clock falling time	t CF	Φ	Figures 14 a,b,c			10	
Address delay time 1	tad	EXA23~0, Φ	Figures 14 a,b,c			25	
Address delay time 2	t ada	EXA23~0, Φ	Figures 14 a,b,c	-13			
Address hold time	tан	EXA23~0, NRD	Figures 14 b,c	5			
Address strobe delay time	tasd	Φ, NRD	Figures 14 a,b			25	
Write strobe delay time	twsp	Φ, NWRE, NWRL, NWRH	Figure 14 c			25	
Strobe delay time	tsd	Φ, NRD, NWRE, NWRL, NWRH	Figures 14 a,b,c			25	
Write data strobe pulse width	twsw	NWRE, NWRL, NWRH	Figure14 c	35			ns
Address setup time	t _{AS}	EXA23~0, NRD, NWRE NWRL, NWRH	Figures 14 b,c	5			
Read data setup time	trds	EXD15~0, Φ	Figures 14 a,b	20			
Read data hold time	t rdh	EXD15~0, NRD	Figures 14 a,b	0			
Write data delay time	twdd	EXD15~0, Φ	Figure 14 c			25	
Write data set up time	twos	EXD15~0, NWRE, NWRL, NWRH	Figure 14 c	20			
Write data hold time	t wdh	EXD15~0, NWRE, NWRL, NWRH	Figure 14 c	15			
Read data access time 1	tACC1	EXD15~0, EXA23~0	Figure 14 a			10	
Read data access time 2	t _{ACC2}	EXD15~0, NRD	Figure 14 a			10	
Read data access time 3	t _{ACC3}	EXD15~0, EXA23~0	Figure 14 b			15	
Read data access time 4	tACC4	EXD15~0, NRD	Figure 14 b			7	
Wait setup time	t wrs	Φ, NWAIT	Figure 14 d	15			
Wait hold time	twтн	Φ, NWAIT	Figure 14 d	0			

Parameter	Symbol	Applicable Dina / Natas	Conditions		1.1		
Parameter		Applicable Pins / Notes	Conditions	Min.	Typical	Max.	Unit
ADC Resolution	N	AN0~AN7			8		bit
ADC Differential linear	Edef1	AN0~AN7	Vref =AVcc			±1	LSB
error	Edef2	ANO~AN7	Vref =2.90V			±1	LSB
ADC Linear error	Elin1	AN0~AN7	Vref =AVcc			±1	LSB
	Elin2	AN0~AN7	Vref =2.90V			±1	LSB
ADC Conversion time *NOTE 1	Tcad	AN0~AN7	When system clock is 18MHz	5.33			μS
ADC Reference resistance	RAVref	Resistance value between Vref and AVss			25		kΩ
Input reference voltage	VAVref	Vref		2.90		AVcc	V
Analog input voltage range	VAin	AN0~AN7		AVss		Vref	V
0 scale offset voltage	VOoff					60	mV
Full scale offset voltage	Vfulloff			Vref - 60			mV
ADC Operating clock	ADCCLK			0.1		2.25	MHz

5. ADC Characteristics (preliminary specifications) / $Ta=0 \sim 75^{\circ}C$, VSS=0V

*NOTE 1: The conversion time is for normal single mode operation with 18MHz system clock.

*NOTE 2: Please note that when the ADC returns from Standby mode, about 5µs is required for the internal ladder resistors to become stable.

6. Flash ROM Characteristics / Ta= $0 \sim 75^{\circ}$ C, VSS=0V

Parameter	Symbol	Applicable Pins / Notes	Conditions		Unit		
Falallietei			Conditions	Min.	Typical	Max.	Unit
On-board rewriting current	FICCW		VCC25=2.25~2.75V VCC=3.0~3.6V			10	mA
Erase time (Sector erase)	FTSE		1 sector is 2K bytes.	20			ms
Rewrite time	FTWP		32 bits			42	μs
Number of Sector rewrites	FSECWRT		*NOTE 1			1000	times

*NOTE 1: Definition of Flash ROM rewriting

- The data in the Flash ROM is rewritten in sector units (2K bytes).

- A pair of one erase and one write together of a sector unit is considered to be one rewrite. (The 2K bytes in one sector are assumed to be rewritten contiguously as one unit.)

- The same address cannot be written to more than twice (with respect to one erase).

- Cumulative writing time: A sector consists of 8 sub-blocks (each of 256K bytes) and the cumulative writing time for one of these sub-blocks should be 8ms at most.

Recommended Oscillation Circuit and Sample Characteristics

The oscillation circuit sample characteristics in the table below are based on the following:

- The recommended circuit parameters were verified by an oscillator manufacturer using Sanyo's oscillation evaluation board; and
- The sample characteristics provided are the result of evaluation performed with these recommended circuit parameters connected externally.

Frequency	Manufacturer	Oscillator	Recommended circuit parameters					supply voltage	Time for Oscillation to Stabilize *NOTE	
			C1	C2	Rf	Rd		Typical	Min.	
17.28MHz	MURATA	CSACV17M2X55J01-R0	10pF	10pF	Open	0Ω	3.0 ~ 3.6V		10ms	
18.00MHz	MURATA	CSACV18MOX55J-R0	10pF	10pF	Open	0Ω	3.0 ~ 3.6V		10ms	

Recommended oscillation circuit and sample characteristics (Ta= $0 \sim +75^{\circ}$ C)

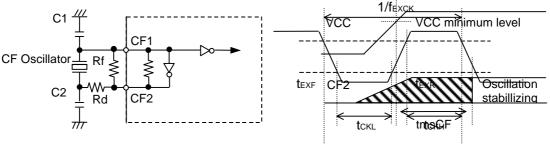
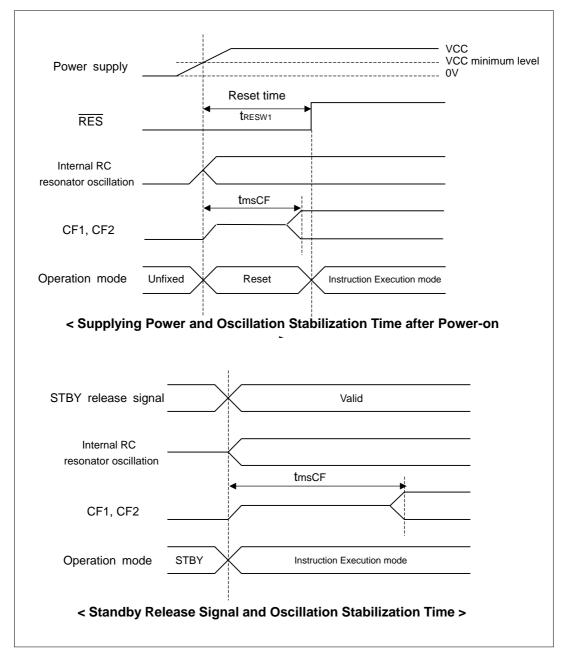
*NOTE The time for oscillation to stabilize is the period of time required for the CF oscillator to stabilize either from the point when VCC reaches the minimum voltage level after power-on or from when standby mode is released. (Refer to Figure 2)

The values of the oscillation circuit sample characteristics may differ depending on the application board. For further assistance, please contact your oscillator manufacturer while taking note of the following.

- Since the precision of the oscillation frequency is affected by the amount of wiring on the application board etc., the oscillation frequency should be appropriately adjusted on the mass production board.
- •The oscillation frequencies and operating supply voltage ranges in the above table are for an operating temperature range of 0 to $+75^{\circ}$ C. In the case the oscillation circuit is used out of this range or used for products requiring high reliability such as automotive products, please contact your oscillator manufacturer.
- When using an oscillator which is not mentioned in the oscillation circuit sample characteristics, please contact the Sanyo sales office.

Since the recommended oscillation circuit is easily affected by such things as noise and the amount of wiring please refer to the following points when performing wiring and layout. (As the circuit is designed to have low oscillation gain in order to reduce power dissipation, noise etc. will easily affect the circuit. Therefore, special care should be taken when putting together the recommended oscillation circuit.)

- The distance between the clock I/O pins (CF1, CF2 terminals) and external parts should be as short as possible.
- The capacitors' (C1 and C2) VSS pattern should be allocated as close as possible to the microcontroller's GND (Vss) pin and be used only for the oscillator.
- Signal lines which have rapid state changes or large current should be allocated away from the oscillation circuit as much as possible, and should not cross each other.

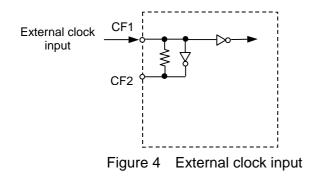

Figure 1 Recommended oscillation circuit

Figure 2 Time for Oscillation to Stabilize

NOTE: 10ms or more is required for the reset time at power-on.

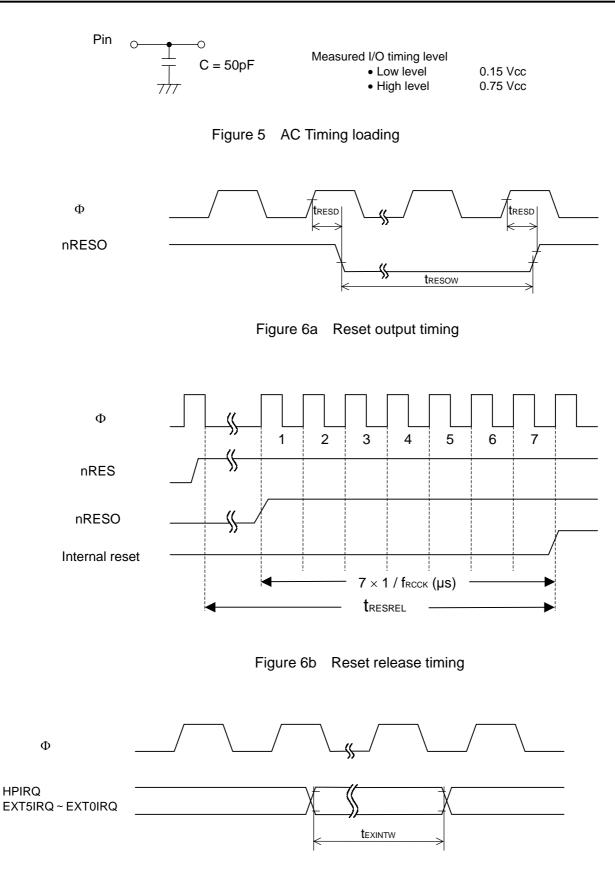
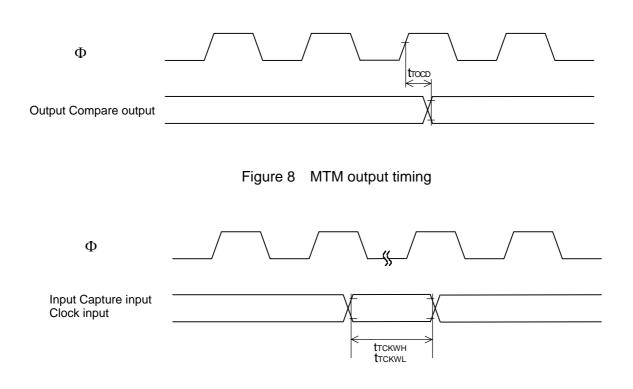
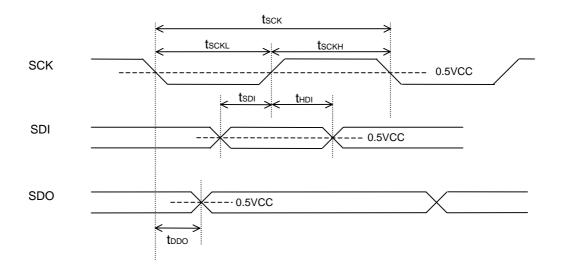
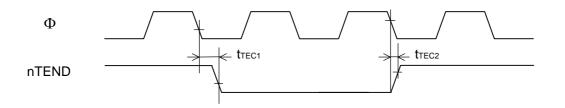
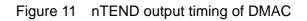




Figure 7 Interrupt input timing





NOTE: If the polarity of SCK is inverted, the SCK waveform (shown above) turns upside down.

Figure 10 Serial I/O timing

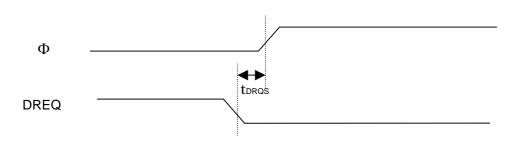


Figure 12 DREQ input timing of DMAC

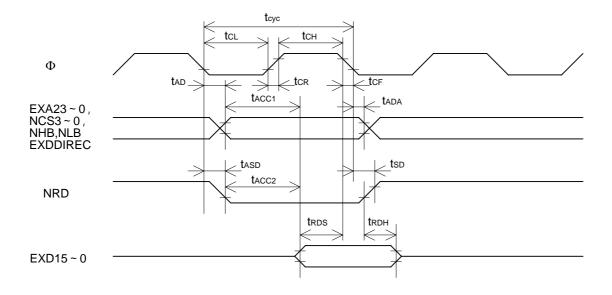


Figure 13a Read timing of the external bus (No wait, RTCR=0)

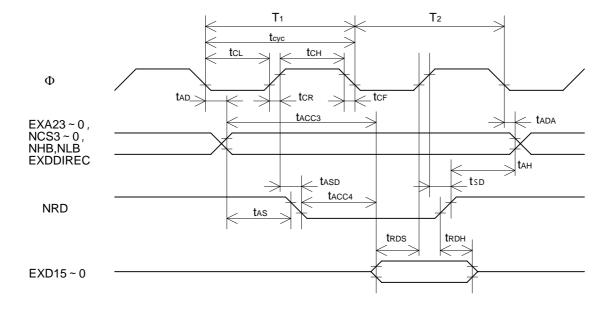


Figure 13b Read timing of the external bus (1 wait, RTCR=1)

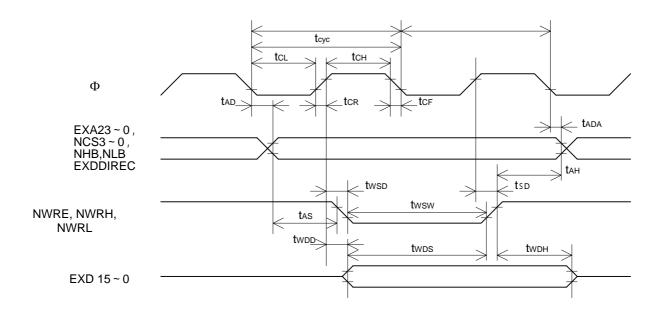


Figure 13c Write timing of the external bus (1 wait)

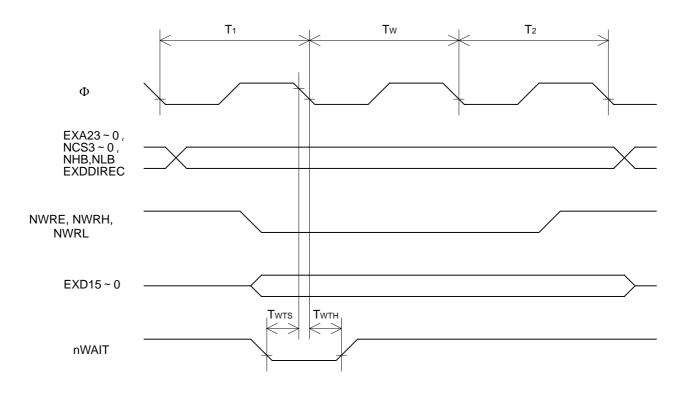


Figure 13d Wait timing of the external bus (external 1 wait)

Points to take into consideration when designing your system

Points to be aware of in the design of systems (which use this microcontroller) and measures that can be taken to reduce noise are outlined below. These are useful in avoiding operation failure due to noise such as erroneous operation or system crashes.

1. VDD,VSS: power supply pins

The capacitors should be connected in accordance with the following design rules.

- The distances from the VDD, VSS pins to the capacitors C1 and C2 should be as similar (to each other) (L1=L1', L2=L2') and as short as possible.
- C1 (having a large capacitance) and C2 (having a small capacitance) should be connected in parallel. *C2 should have a capacitance of at least 4400pf.
- The VDD and VSS patterns should be wider than those of others.

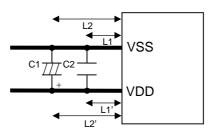


Figure 15 Sample power supply circuit

2. CF1,CF2: clock input/output pins

Oscillation by a ceramic resonator (Refer to figure 16)

- The distance between the clock I/O pins (C1 is for input and C2 for output) and external parts (Losc) should be as short as possible. (1cm maximum)
- The distance between the VSS side of the capacitors connected to the ceramic oscillator and the microcontroller's VSS pin (Lvss+L1[L2]) should be as short as possible.
- The VSS of the oscillation circuit (and other VSSs) should be placed away from the terminals.
- The values for the oscillation parameters such as capacitors C1, C2 and resistor Rd recommended in this document may need to be changed depending on the amount of wiring in your system board in order to attain the desired clock frequency. For further information, please contact your oscillator manufacturer.

External Oscillation (Refer to figure 17)

- The distance between the clock input pin (CF1) and the external oscillator (Losc) should be as short as possible.
- Please leave the clock output pin open (CF2).
- The distance between the external oscillator and its VDD, VSS (Losc) should also be as short as possible.

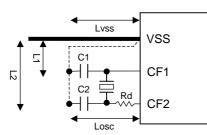


Figure 16 Sample oscillation circuit 1 (using a ceramic resonator)

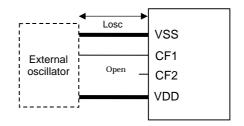


Figure 17 Sample oscillation circuit 2 (using an external oscillator)

Additional notes

Signal lines with rapid state changes, large amplitude or through which large current flows should be allocated away from the oscillation circuit and should not cross over any lines which are related to the clock.

- 3. nRES: Reset pin
 - The distance between the nRES pin and the external circuit (Lres) should be as short as possible.
 - The capacitor connected between VSS and nRES (Cres) should be as close as possible to the VSS and nRES pins.

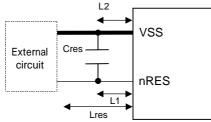


Figure 18 Sample of the nRES pin wiring

- 4. TEST: Test pin
 - The distance between the TEST pin and VSS line (L) should be as short as possible.
 - The line connecting the TEST pin and VSS pin should be connected as close as possible to the VSS pin.

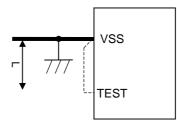


Figure 19 Sample of the TEST pin wiring

5. AN0 to AN7: Analog input pins

The wiring of analog input pins such as the AD converter input pins should be conducted with respect to the following design rules.

- The distance between the limiting resistor (R1) and the analog input pins (L1) should be as short as possible.
- The capacitor between the analog input pins and AVSS pin (C) should be connected as close as possible to the AVSS pin. ((L1 + L2) should be as short as possible.)

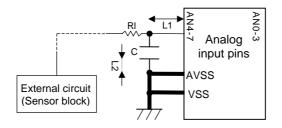


Figure 20 Sample of the analog pins wiring

6. Input and I/O pins

If a pin is to be used for input, a limiting resistor should be connected to it and the distance between the pin and resistor should be made as short as possible.

[Supplement] Aside from the hardware design rules, so as to prevent the microcontroller from behaving unpredictably, we also recommend that the following design rules be implemented with respect to the software:

- When an external signal is input from a pin, debouncing of the signal should be performed.
- When outputting data from a pin, the data should be re-output periodically.

7. Unused pins

For details, please refer to the relevant user's manual or the "Pin Descriptions" section of this document.

Specifications of any all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

No part of this publication may be reproduced or transmitted in any from or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of Jul,2002. Specifications and information herein are subject to change without notice