

SANYO Semiconductors DATA SHEET

CMOS IC 8K-byte FROM and 256-byte RAM integrated 8-bit 1-chip Microcontroller

Overview

The SANYO LC87F0808A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 50.0ns, integrates on a single chip a number of hardware features such as 8K-byte flash ROM (On-board-programmable), 256-byte RAM, an On-chip-debugger, sophisticated 16-bit timers/counters (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), two 8-bit timers with a prescaler, a base timer serving as a time-of-day clock, a high-speed clock counter, a synchronous SIO interface, an asynchronous/synchronous SIO interface, a UART interface (full duplex), motor control PWM , a 10/8-bit 10-channel AD converter, a system clock frequency divider, an internal reset and a 21-source 10-vector interrupt feature. This microcomputer is suitable for small motor control equipment.

Features

■Flash ROM

- Capable of On-board-programming with wide range (3.3 to 5.5V) of voltage source.
- Block-erasable in 128 byte units
- Writable in 2-byte units
- 8192×8 bits

■RAM

• 256×9 bits

■Minimum Bus Cycle

• 50.0ns (20MHz at V_{DD}=3.3V to 5.5V) Note: The bus cycle time here refers to the ROM read speed.

* This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

■Ports

- Normal withstand voltage I/O ports Ports I/O direction can be designated in 1-bit units Ports I/O direction can be designated in 4-bit units
- Dedicated oscillator ports/input ports
- Reset pin
- On-chip Debugger pin
- Power pins

■Timers

- Timer 0: 16-bit timer/counter with a capture register.
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) + 8-bit counter (with an 8-bit capture register)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3: 16-bit counter (with a 16-bit capture register)
- Timer 1: 16-bit timer/counter that supports PWM/toggle outputs
 - Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/ counter with an 8-bit prescaler (with toggle outputs)
 - Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
 - Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs) (toggle outputs also possible from the lower-order 8 bits)
 - Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)
 - (The lower-order 8 bits can be used as PWM)
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes
 - 3) The base timer is unavailable when the CF oscillator circuit is selected

■SIO

- SIO0: 8-bit Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle=4/3tCYC)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■UART

- Full Duplex
- 7/8/9 bit data bits selectable
- 1 Stop bit (2 bits in continuous data transmission)
- Built-in baudrate generator
- ■AD Converter: 10 bits/8 bits × 10 channels (internal: 2 channels)
 - 10/8 bits AD converter resolution selectable
 - Auto start function (It links an interrupt factor of MCPWM)

- 20 (P1n, P20, P21, P30 to P35, P70 to P73) 8 (P0n) 2 (CF1/XT1, CF2/XT2) 1 (RES) 1 (OWP0)
- $4 (V_{\text{SS}}1, V_{\text{SS}}2, V_{\text{DD}}1, V_{\text{DD}}2)$

- Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)
 - Noise rejection function (noise filter time constant selectable from 1 tCYC/32 tCYC/128 tCYC)
- Clock Output Function
 - Can generate clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as the system clock.
 - Can generate the source clock for the subclock
- ■Analog Comparator / Amplifier × 2 channels
 - Analog comparator / amplifier selectable (each channel)
 - Analog comparator Interrupt

■MCPWM: Motor Control 12-bit PWM × 6 channels

- Dead time is programmable.
- Forced stop is possible by the output of the analog comparator and the INT terminals.
- Edge-aligned / center-aligned selectable
- ■Watchdog Timer
 - Can generate the internal reset signal on a timer overflow monitored by the WDT-dedicated low-speed RC oscillation clock (30kHz).
 - Allows selection of continue, stop, or hold mode operation of the counter on entry into the HALT/HOLD mode.

■Interrupts

- 21 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INTO
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/Base timer
5	00023H	H or L	тон
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART1 transmit/MCPWM
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/CMP1/CMP2

• Priority levels X > H > L

• Of interrupts of the same level, the one with the smallest vector address takes precedence.

Subroutine Stack Levels: 128levels (The stack is allocated in RAM.)

■High-speed Multiplication/Division Instructions

- 16 bits \times 8 bits (5 tCYC execution time)
- 24 bits \times 16 bits (12 tCYC execution time)
- 16 bits ÷ 8 bits (8 tCYC execution time)
- 24 bits ÷ 16 bits (12 tCYC execution time)

■Oscillation Circuits

• Internal oscillation circuits	
---------------------------------	--

Medium-speed RC oscillation circuit:	For system clock (1MHz)
High-speed RC oscillation circuit:	For system clock (20MHz)
Low-speed RC oscillation circuit:	For watch dog timer (30kH

• External oscillation circuits Hi-speed CF oscillation circuit: For system clock (20MHz) For watch dog timer (30kHz)

For system clock, with internal Rf

Low speed crystal oscillation circuit: For low-speed system clock, with internal Rf

- 1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.
- 2) The CF and the crystal oscillation circuits stop operating in the system reset state and start oscillating when the oscillation is enabled with an instruction.

System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 150ns, 300ns, 600ns, 1.2µs, 2.4µs, 4.8µs, 9.6µs, 19.2µs and 38.4µs (at a main clock rate of 20MHz).
- ■Internal Reset Function
 - Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V and 4.35V) through option configuration.
 - Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use/disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, 4.28V).

Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
- 1) The CF, RC and crystal oscillators automatically stop operation.
- 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Having an interrupt source established at either INT0, INT1, INT2 or INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF and RC oscillator automatically stop operation.
- 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
- 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer or low-voltage detection.
 - (3) Having an interrupt source established at either INT0, INT1, INT2 or INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
 - (5) Having an interrupt source established in the base timer circuit.

Note: Available only when X'tal oscillation is selected.

■On-chip Debugger

• Supports software debugging with the IC mounted on the target board.

■Data Security Function (flash versions only)

• Protects the program data stored in flash memory from unauthorized read or copy. Note: This data security function does not necessarily provide absolute data security.

■Package Form

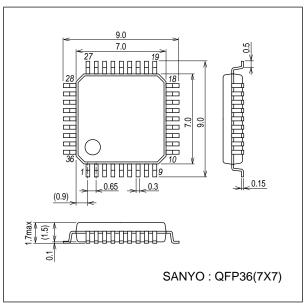
• QFP36 (7×7): Lead-/Halogen-free type

■Development Tools

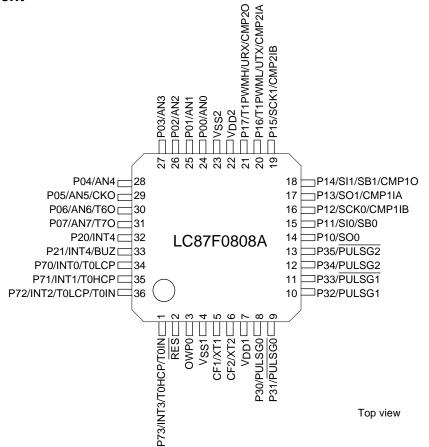
• On-chip debugger: TCB87 type C + LC87F0808A

■Programming Boards

Package	Programming boards
QFP36(7×7)	W87F24Q


■Flash ROM Programmer

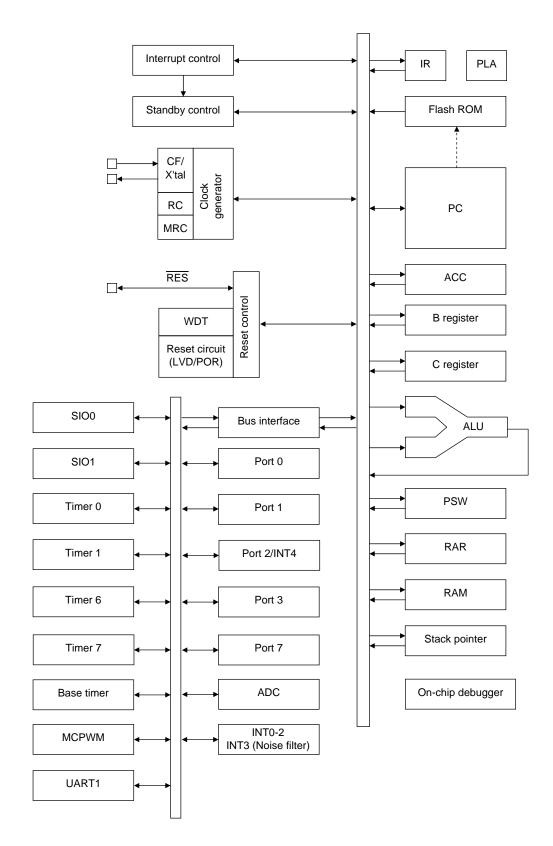
Maker		Model	Supported Version	Device
	Single	AF9709/AF9709B/AF9709C	Rev 03.28 or later	87f008SU
	Programmer	(Including Ando Electric Co., Ltd. models)	Rev 03.20 01 later	(3B247)
Flash Support Group, Inc.		AF9723/AF9723B(Main body)		
(FSG)	Gang	(Including Ando Electric Co., Ltd. models)	-	-
	Programmer	AF9833(Unit)		
		(Including Ando Electric Co., Ltd. models)	-	-
	Single/Gang	SKK/SKK Type B	Application Version	
	Programmer	(SanyoFWS)	1.06 or later	
	Gang	SKK-4G	Chip Data Version	
Sanyo	Programmer	(SanyoFWS)	2.26 or later	LC87F0808
Sanyo			Application Version	LC07F0000
	In-circuit/Gang	SKK-DBG Type C	1.06 or later	
	Programmer	(SanyoFWS)	Chip Data Version	
			2.31 or later	


For information about AF-Series: Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

Package Dimensions

unit : mm (typ) 3162C

Pin Assignment



SANYO: QFP36 (7×7) "Lead-/Halogen-free Type"

QFP36	NAME	
1	P73/INT3/T0HCP/T0IN	
2	RES	
3	OWP0	
4	V _{SS} 1	
5	CF1/XT1	
6	CF2/XT2	
7	V _{DD} 1	
8	P30/PULSG0	
9	P31/PULSG0	
10	P32/PULSG1	
11	P33/PULSG1	
12	P34/PULSG2	
13	P35/PULSG2	
14	P10/SO0	
15	P11/SI0/SB0	
16	P12/SCK0/CMP1IB(+)	
17	P13/SO1/CMP1IA(-)	
18	P14/SI1/SB1/CMP1O	

QFP36	NAME
19	P15/SCK1/CMP2IB(+)
20	P16/T1PWML/UTX/CMP2IA(-)
21	P17/T1PWMH/URX/CMP2O
22	V _{DD} 2
23	V _{SS} 2
24	P00/AN0
25	P01/AN1
26	P02/AN2
27	P03/AN3
28	P04/AN4
29	P05/AN5/CKO
30	P06/AN6/T6O
31	P07/AN7/T7O
32	P20/INT4
33	P21/INT4/BUZ
34	P70/INT0/T0LCP
35	P71/INT1/T0HCP
36	P72/INT2/T0LCP/T0IN

System Block Diagram

Pin Description

Pin Name	I/O	Description						
V _{SS} 1,V _{SS} 2	-	- Power supply pins						
V _{DD} 1, V _{DD} 2	-	+ Power supply pins						
Port 0	I/O	8-bit I/O port						
P00 to P07		I/O specifiable in 4-bit units						
		Pull-up resistors can be turned on and off in 4-bit units.						
		HOLD reset input						
		Port 0 interrupt input						
		Pin functions						
		P05: System clock output						
		P06: Timer 6 toggle output						
		P07: Timer 7 toggle output						
		P00 (AN0) to P07 (AN7): AD con-	verter input					
Port 1	I/O	• 8-bit I/O port						
P10 to P17		 I/O specifiable in 1-bit units 						
		Pull-up resistors can be turned or	n and off in 1	-bit units.				
		Pin functions						
		P10: SIO0 data output P14: SIO1 data input / bus I/O						
			P11: SIO0 data input/bus I/O P15: SIO1 clock I/O					
		P12: SIO0 clock I/O		ner 1 PWML outp				
		P13: SIO1 data output	P17: Tim	ner 1 PWMH outp	out / UART recei	ve	Yes	
		P12 to P17: analog comparator /						
		P12 to P17: analog comparator / amplifier I/O pins P12: CMP1(+) input / AMP1(+) input						
		P13: CMP1(-) input / AMP1(-) input						
		P14: CMP1 output / AMP1 output						
		P15: CMP2(+) input / AMP2(+) input						
		P16: CMP2(-) input / AMP2(-) input						
		P17: CMP2 output / AMP2 outp	-					
Port 2	I/O	2-bit I/O port						
P20 to P21	_	 I/O specifiable in 1-bit units 						
1 20 10 1 21		Pull-up resistors can be turned on and off in 1-bit units.						
		Pin functions						
		P21: Beeper output						
		P20 to P21: INT4 input/HOLD res	nput/					
		timer 0H capture inpu		Yes				
		Interrupt acknowledge types						
		Rising	Falling	Rising &	H level	L level		
				Falling				
		INT4 enable	enable	enable	disable	disable		
Port 3	I/O	6-bit I/O port						
P30 to P35		b-bit I/O port I/O specifiable in 1-bit units						
1 30 10 1 33		Pull-up resistors can be turned on and off in 1-bit units.						
		Pin functions						
		P30 to p35 : motor control PWM output pins						
	1	P30: PULSG0 output					Yes	
	1	P31: PULSG0 output						
	1	P32: PULSG1 output						
	1	P33: PULSG1 output						
	1	P34: PULSG2 output						
		P35: PULSG2 output						

Continued on next page.

LC87F0808A

Pin Name	I/O	Description					Option		
Port 7	I/O	• 4-bit I/O port							
P70 to P73		I/O specifiable in 1-bit units							
		Pull-up resistors can be turned on and off in 1-bit units.							
		Pin functions							
		P70: INT0 input/HOLD reset input/timer 0L capture input							
		P71: INT1 input/HOLD reset input/timer 0H capture input P72: INT2 input/HOLD reset input/timer 0 event input / timer 0L capture input							
				er)/ timer 0 event	input/timer 0H o	apture input			
		Interrupt acknowledge types						No	
			Rising	Falling	Rising & Falling	H level	L level		
		INT0	enable	enable	disable	enable	enable		
		INT1	enable	enable	disable	enable	enable		
		INT2	enable	enable	enable	disable	disable		
		INT3	enable	enable	enable	disable	disable		
OWP0	I/O	On-chip debugge	r (exclusive pin)				No	
RES	I/O	External reset input/internal reset output					No		
CF1/XT1	1	Ceramic resonator or 32.768kHz crystal oscillator input pin Pin function							
								No	
		General-purpos	e input port						
CF2/XT2	I/O	Ceramic resona	ator or 32.768kH	Iz crystal oscilla	tor output pin				
		Pin function						No	
		General-purpos	e input port						

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS Programmable	
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS Programmable	
		2	Nch-open drain	Programmable
P30 to P35	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70 to P73	-	No	CMOS	Programmable

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

User Option Table

Option name	Option to be applied on	Flash-rom version	Option selected in units of	Option selection
Port output type	P00 to P07	0	1 bit	CMOS
				Nch-open drain
	P10 to P17	0	1 bit	CMOS
				Nch-open drain
	P20 to P21	0	1 bit	CMOS
				Nch-open drain
	P30 to P35	0	1 bit	CMOS
				Nch-open drain
Program start	-	0	-	00000h
address				01E00h
Protect area	-	0	-	00000h to 01BFFh
(Note 1)				01C00h to 01EFFh
Low-voltage	Detect function	0	-	Enable: Use
detection reset function				Disable: Not Used
	Detect level	0	-	7-level
Power-on reset function	Power-On reset level	0	-	8-level

(Note 1) This option selects the area to be write protected at the time of the On-board writing.

Recommended Unused Pin Connections

Port Name	Recommended unused pin connections				
Port Name	Board	Software			
P00 to P07	Open	Output low			
P10 to P17	Open	Output low			
P20 to P21	Open	Output low			
P30 to P35	Open	Output low			
P70 to P73	Open	Output low			
CF1/XT1	Pulled low with a 100k Ω resistor or less	General-purpose input port			
CF2/XT2	Pulled low with a 100k Ω resistor or less	General-purpose input port			

On-chip Debugger Pin Connection Requirements

OWP0 of the On-chip-debugger terminal must add pull-down resistor of $100k\Omega$. The connection with TCB87 Type C are OWP0/VDD/VSS

Note: Be sure to electrically short-circuit between the VSS1 and VSS2 pins and between the VDD1 and VDD2 pins.

	Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
	Falameter	Symbol	Fill/IXemaiks	Conditions	V _{DD} [V]	min	typ	max	unit
	aximum supply Itage	V _{DD} max	V _{DD} 1			-0.3		+6.5	
Inp	out voltage	VI	CF1			-0.3		V _{DD} +0.3	v
•	out/output Itage	VIO	CF2 Ports 0, 1, 2, 3 Port 7			-0.3		V _{DD} +0.3	
ent.	Peak output current	IOPH(1)	Ports 0, 1, 2, 3	CMOS output select Per 1 applicable pin		-10			
curi		IOPH(2)	Port7	Per 1 applicable pin		-5			
High level output current	Mean output current	IOMH(1)	Ports 0, 1, 2, 3	CMOS output select Per 1 applicable pin		-7.5			
leve	(Note 1-1)	IOMH(2)	Port7	Per 1 applicable pin		-3			
ligh	Total output	ΣIOAH(1)	Ports 0, 2, 7	Total of all applicable pins		-25			
т	current	ΣIOAH(2)	Ports 1, 3	Total of all applicable pins		-25			
	Peak output current Mean output current	IOPL(1)	P02 to P07 Ports 1, 2, 3	Per 1 applicable pin				20	mA
ent		IOPL(2)	P00, P01	Per 1 applicable pin				30	
curr		IOPL(3)	Port 7	Per 1 applicable pin				10	
Low level output current		IOML(1)	P02 to P07 Ports 1, 2, 3	Per 1 applicable pin				15	
eve	(Note 1-1)	IOML(2)	P00, P01	Per 1 applicable pin				20	
NO-		IOML(3)	Port 7	Per 1 applicable pin				7.5	
_	Total output	$\Sigma IOAL(1)$	Ports 0, 2, 7	Total of all applicable pins				45	
	current	$\Sigma IOAL(2)$	Ports 1, 3	Total of all applicable pins				45	
	wer ssipation	Pd max(1)	QFP36(7×7)	Ta=-40 to +85°C Package only				115	
		Pd max(2)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				244	m₩
•	erating ambient mperature	Topr				-40		+85	
	orage ambient nperature	Tstg				-55		+125	°C

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
Falameter	Symbol	FIII/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage	V _{DD}	V _{DD} 1, V _{DD} 2	$0.142 \mu s \leq t CYC \leq 200 \mu s$		3.3		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1, V _{DD} 2	RAM and register contents sustained in HOLD mode.		2.0			
High level	V _{IH} (1)	Ports 1, 2, 3, 7		3.3 to 5.5	0.3V _{DD} +0.7		V _{DD}	
input voltage	V _{IH} (2)	Ports 0		3.3 to 5.5	0.3V _{DD} +0.7		V _{DD}	v
	V _{IH} (3)	CF1, CF2, RES		3.3 to 5.5	0.75V _{DD}		V _{DD}	v
Low level	V _{IL} (1)	Ports 1, 2, 3, 7		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
input voltage				3.3 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				3.3 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	CF1, CF2, RES		3.3 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle time (Note 2-1)	tCYC			3.3 to 5.5	0.142		200	μs
External system clock frequency	FEXCF	CF1	 CF2 pin open System clock frequency division ratio=1/1 External system clock duty=50±5% 	3.3 to 5.5	0.1		20	
Oscillation frequency	FmCF(1)	CF1, CF2	20MHz ceramic oscillation See Fig. 1.	3.3 to 5.5		20		
range (Note 2-2)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation See Fig. 1.	3.3 to 5.5		10		MH
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation See Fig. 1.	3.3 to 5.5		4		
	FmMRC		Internal High-speed RC oscillation. 1/2 frequency division ration. (RCCTD=0) (Note 2-3)	3.3 to 5.5	19.0	20.0	21.0	
	FmRC		Internal medium-speed RC oscillation	3.3 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation	3.3 to 5.5	15	30	60	
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 1.	3.3 to 5.5		32.768		kHz

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Note 2-1: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-2: See Tables 1 and 2 for the oscillation constants.

Note 2-3: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the high-speed RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

LC87F0808A

Deremeter	Symbol	Pin/Remarks	Conditions			Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3 Port 7 RES	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	3.3 to 5.5			1	
	I _{IH} (2)	CF1, CF2	V _{IN} =V _{DD}	3.3 to 5.5			15	Ι.
Low level input current	I _{IL} (1)	Ports 0, 1, 2, 3 Port 7 RES	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	3.3 to 5.5	-1			μA
	I _{IL} (2)	CF1, CF2	V _{IN} =V _{SS}	3.3 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2, 7	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)		I _{OH} =-0.35mA	3.3 to 5.5	V _{DD} -0.4			
	V _{OH} (3)	Port 3	I _{OH} =-6mA	4.5 to 5.5	V _{DD} -1			1
	V _{OH} (4)		I _{OH} =-1.4mA	3.3 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1, 2, 3	I _{OL} =10mA	4.5 to 5.5			1.5	V
voltage	V _{OL} (2)		I _{OL} =1.4mA	3.3 to 5.5			0.4	
	V _{OL} (3)	Port 7	I _{OL} =1.4mA	3.3 to 5.5			0.4	
	V _{OL} (4)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5	
	V _{OL} (5)		I _{OL} =4mA	3.3 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3 Port 7	V _{OH} =0.9V _{DD} When Port 0 selected low-impedance pull-up.	4.5 to 5.5	15	35	80	kΩ
	Rpu(2)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	3.3 to 5.5	100	210	400	K22
Hysteresis voltage	VHYS	Ports 1, 2, 3, 7 RES	When Port 2 selected INT4.	3.3 to 5.5		0.1V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	3.3 to 5.5		10		pF

Electrical Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, VSS1 = VSS2 = 0V

Serial I/O Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$ SIO0 Serial I/O Characteristics (Note 4-1-1)

		D	Quarteral	Pin/	Conditions			Speci	fication	
	F	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	• See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(1)			3.3 to 5.5	1			tCYC
Serial clock	lnp	High level pulse width	tSCKH(1)				1			ICTC
erial	k	Frequency	tSCK(2)	SCK0(P12)	CMOS output selected		4/3			
S	Do Low level		tSCKL(2)		• See Fig. 5.	3.3 to 5.5	1/2			tSCK
	Outl	High level pulse width	tSCKH(2)				1/2			ISCK
Serial input	Da	Data setup time tsDI(1)		SB0(P11), SI0(P11)	 Must be specified with respect to rising edge of 	3.3 to 5.5	0.05			
Serial	Da	ta hold time	thDI(1)		SIOCLK. • See Fig. 5.	3.3 10 5.5	0.05			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-2)				(1/3)tCYC +0.08	μs
Serial output	Inpu		tdD0(2)		Synchronous 8-bit mode (Note 4-1-2)	3.3 to 5.5			1tCYC +0.08	μο
Serial	Output clock		tdD0(3)		(Note 4-1-2)	5.5 10 5.5			(1/3)tCYC +0.08	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.

SIO1 Serial I/O Characteristics (Note 4-2-1)

		Parameter	Symbol	Pin/	Conditions			Spec	ification	
		Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	×	Frequency	tSCK(3)	SCK1(P15)	See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(3)			3.3 to 5.5	1			
clock	μ	High level	tSCKH(3)				1			tCYC
Serial clock	сk Сk	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 5.		2			
	Output clock	Low level pulse width	tSCKL(4)			3.3 to 5.5		1/2		10.01/
		High level pulse width	tSCKH(4)					1/2		tSCK
input	Da	ata setup time	tsDI(2)	SB1(P14), SI1(P14)	 Must be specified with respect to rising edge of SIOCLK. See Fig. 5. 		0.05			
Serial input	Da	ata hold time	thDI(2)			3.3 to 5.5	0.05			
Serial output	0	utput delay time	tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5. 	3.3 to 5.5			(1/3)tCYC +0.08	μs

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Parameter	Cumb al	Pin/Remarks	Conditions			Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P21)	 Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 	3.3 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	3.3 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P73) when noise filter time constant is 1/32	 Interrupt source flag can be set. Event inputs for timer 0 are nabled. 	3.3 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	3.3 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	3.3 to 5.5	200			μs

AD Converter Characteristics at $V_{SS1} = V_{SS2} = 0V$

10bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C

Parameter	Sumbol	Pin/Remarks	Conditions			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		3.3 to 5.5		10		bit
Absolute accuracy	ET	AN7(P07) AN8(AMP1O)	(Note 6-1)	3.3 to 5.5			±16	LSB
Conversion time	TCAD	AN9(AMP2O)	See Conversion time calculation formulas. (Note 6-2)	3.3 to 5.5	8.5		59.5	μs
Analog input voltage range	VAIN			3.3 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH		VAIN=V _{DD}	3.3 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	3.3 to 5.5	-1			μA

8bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C

Parameter	Cumbal	Pin/Remarks	Conditions			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		3.3 to 5.5		8		bit
Absolute accuracy	ET	AN7(P07) AN8(AMP1O)	(Note 6-1)	3.3 to 5.5			±1.5	LSB
Conversion time	TCAD	AN9(AMP2O)	See Conversion time calculation formulas. (Note 6-2)	3.3 to 5.5	2.9		20	μs
Analog input voltage range	VAIN			3.3 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH		VAIN=V _{DD}	3.3 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	3.3 to 5.5	-1			μA

Conversion time calculation formulas:

10bits AD Converter Mode: TCAD (Conversion time) = $((42/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD (Conversion time) = $((28/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio (ADDIV)		AD conversion time (TCAD)	
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	10bit AD	8bit AD	10bit AD	8bit AD
CF-20MHz	3.3V to 5.5V	1/1	150ns	1/4	1/2	8.5µs	2.9µs
CF-10MHz	3.3V to 5.5V	1/1	300ns	1/4	1/2	17µs	5.8µs
CF-4MHz	3.3V to 5.5V	1/1	750ns	1/4	1/2	42.5µs	14.5µs

Note 6-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 10-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 10-bit conversion mode.

Power-on Reset (POR) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1=V_{SS}2=0V$

		,				Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
POR release	PORRL		Select from option.	1.67V	1.55	1.67	1.79	
voltage			(Note 7-1)	1.97V	1.85	1.97	2.09	
				2.07V	1.95	2.07	2.19	
				2.37V	2.25	2.37	2.49	
				2.57V	2.45	2.57	2.69	
				2.87V	2.75	2.87	2.99	V
				3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		Power supply rise time from 0V to 1.6V.				100	ms

Note7-1: The POR release level can be selected out of 8 levels only when the LVD reset function is disabled. Note7-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1=V_{SS}2=0V$

						Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET		Select from option.	1.91V	1.81	1.91	2.01	
(Note 8-2)			(Note 8-1)	2.01V	1.91	2.01	2.11	
			(Note 8-3) • See Fig. 8.	2.31V	2.21	2.31	2.41	
			• See Fig. 6.	2.51V	2.41	2.51	2.61	V
				2.81V	2.71	2.81	2.91	
				3.79V	3.69	3.79	3.89	
				4.28V	4.18	4.28	4.38	
LVD hysteresys	LVHYS			1.91V		55		
width				2.01V		55		
				2.31V		55		mV
				2.51V		55		
				2.81V		60		
				3.79V		65		
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity)	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms

Note8-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

Comparator, Operational Amplifiers Characteristics at Ta=-40 to +85°C, VSS1=VSS2=0V

Function	Parameter	Symbol	Pin/Remarks	Conditions		Specificatio			n	
Function	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
CMP1, 2	Input common- mode voltage (Note9-1)	VCMIN	CMP1IA, CMP1IB CMP2IA, CMP2IB		3.3 to 5.5	VSS		V _{DD} - 1.5V	V	
	Offset voltage	VOFF(1)	CMP1IA, CMP1IB CMP2IA, CMP2IB	Input common-mode voltage range	3.3 to 5.5			20	mV	
	CMP response speed	tCRT	CMP10 CMP20	 Input common-mode voltage range Input amplitude=100mV Over drive=50mV 	3.3 to 5.5		200		ns	
AMP1, 2	AMP input voltage (Note9-1)	VAMIN	CMP1IA, CPM2IA		3.3 to 5.5	V _{SS}		V _{DD} - 1.5V	V	
	Input offset voltage	VOPOFF	CMP1IA, CMP1IB CMP2IA, CMP2IB	Input common-mode voltage range	3.3 to 5.5			20	mV	
	Slew rate	SR	CMP1O CMP2O	50pF	5.0		3		V/µs	
	Output current	Source	loSource	CMP1IA,CMP1IB(+)=1V CMP2IA,CMP2IB(-)=0V CMP10,CMP2O=V _{DD} -1.5V	5.0	2.5	3.5		mA	
		Sink	loSink	CMP1IA,CMP1IB(+)=0V CMP2IA,CMP2IB(-)=1V CMP10,CMP2O=V _{DD} +0.5V	5.0	0.3	0.35		mA	

Note9-1: When V_{DD}=5V, input voltage is effective from 0 to 3.5V.

LC87F0808A

Parameter	Symbol	Pin/	Conditions	Specification					
Faidillelei	Symbol	Remarks	Conditions	min	typ	max	unit		
Normal mode consumption current (Note 10-1) (Note 10-2)	IDDOP(1)	V _{DD} 1, V _{DD} 2	 FmCF=20MHz ceramic oscillation mode System clock set to 20MHz side All internal RC oscillation stopped. 1/1 frequency division ratio 	V _{DD} [V] 3.3 to 5.5		10	12.5		
	IDDOP(2)		FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side All internal RC oscillation stopped. 1/1 frequency division ratio		3	4.1			
	IDDOP(3)		 FsX'tal=32.768kHz crystal oscillation mode Internal medium speed RC oscillation stopped. System clock set to internal high speed RC oscillation (20MHz). 1/1 frequency division ratio 	3.3 to 5.5		9.2	11	mA	
	IDDOP(4)		 FsX'tal=32.768kHz crystal oscillation mode Internal high speed RC oscillation stopped. System clock set to internal medium speed RC oscillation. 1/2 frequency division ratio 	3.3 to 5.5		0.5	0.7		
	IDDOP(5)		 FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz crystal oscillation. All internal RC oscillation stopped. 1/1 frequency division ratio 	3.3 to 5.5		32	74	μΑ	
HALT mode consumption current (Note 10-1) (Note 10-2)	IDDHALT(1)	V _{DD} 1, V _{DD} 2	 HALT mode FmCF=20MHz ceramic oscillation mode System clock set to 20MHz side All internal RC oscillation stopped. 1/1 frequency division ratio 	3.3 to 5.5		4.7	5.8		
	IDDHALT(2)		HALT mode FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side All internal RC oscillation stopped. 1/1 frequency division ratio	3.3 to 5.5		1.5	2.3		
	IDDHALT(3)		 HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal medium speed RC oscillation stopped. System clock set to internal high speed RC oscillation (20MHz). 1/1 frequency division ratio 	3.3 to 5.5		4	5	mA	
	IDDHALT(4)		 HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal high speed RC oscillation stopped. System clock set to internal medium speed RC oscillation. 1/2 frequency division ratio 	3.3 to 5.5		0.3	0.45		
	IDDHALT(5)		 HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz crystal oscillation. All internal RC oscillation stopped. 1/1 frequency division ratio 	3.3 to 5.5		16	60	μΑ	

Note10-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note10-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

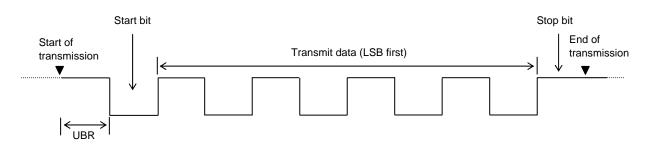
Parameter	Sumbol	Pin/	Conditions		Specification				
	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
HOLD mode	IDDHOLD(1)	V _{DD} 1,	HOLD mode						
consumption		V _{DD} 2	 CF1=V_{DD} or open 	3.3 to 5.5		0.03	32		
current			(External clock mode)						
(Note 10-1)	IDDHOLD(2)		HOLD mode					μΑ	
(Note 10-2)			• CF1=V _{DD} or open	2.2 to 5.5		3	35		
(Note 10-3)		(External clock mode)		3.3 to 5.5		3	30		
			 LVD option selected 						

Note10-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

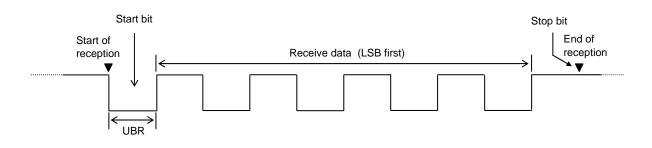
Note10-2: The consumption current values do not include operational current of LVD function if not specified. Note10-3: The amplifier / comparator circuit operates in the HOLD mode.

F-ROM Programming Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

	Parameter	Cumbal	Pin/Remarks	Conditions		Specification				
	Parameter	Symbol Pin/Remarks		Conditions	V _{DD} [V]	min	typ	max	unit	
pro	nboard ogramming rrent	IDDFW(1)	V _{DD} 1, V _{DD} 2	Only current of the flash block.	3.3 to 5.5		5	10	mA	
Pro	ogramming	tFW(1)		 Erasing time 	2.2.40 E E		20	30	ms	
tim	ne	tFW(2)		 Programming time 	3.3 to 5.5		40	60	μs	


UART (Full Duplex) Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Deremeter	Cumbol	Din/Domorko	Conditions		Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer rate	UBR	UTX(P16)		3.3 to 5.5	16/3		8192/3	tCYC	
		URX(P17)		3.3 10 5.5	10/3		6192/3		
Data length	: 7/8/9 bit	s (LSB first)							


Stop bits Parity bits

: 1 bit (2-bit in continuous data transmission) : None

Example of Continuous 8-bit Data Transmission Mode Processing (First Transmit Data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (First Receive Data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator
■MURATA

Nominal . Frequency	_		Circuit Constant				Operating	Oscillation Stabilization Time		Damarka	
	Туре	Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage Range [V]	typ [ms]	max [ms]	Remarks	
20MHz	SMD	CSTCE20M0G51-R0	(5)	(5)	Open	470	3.3 to 5.5	0.02			
	LEAD	CSTLS20M0G52-B0	(5)	(5)	Open	330	3.3 to 5.5	0.06			
	SMD	CSTCE10M0G52-R0	(10)	(10)	Open	470	3.3 to 5.5	0.02		Internal	
10MHz	LEAD	CSTLS10M0G53-B0	(15)	(15)	Open	680	3.3 to 5.5	0.02		C1,C2	
4MHz	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1.5k	3.3 to 5.5	0.04			
	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	1.5k	3.3 to 5.5	0.03			

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 3).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

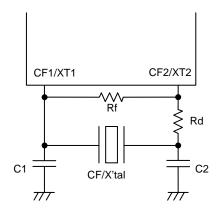
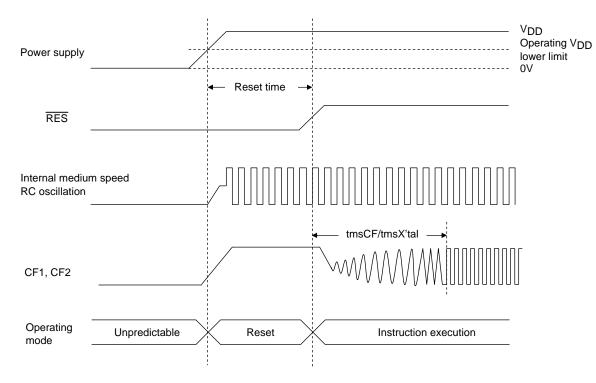
Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a SANYOdesignated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

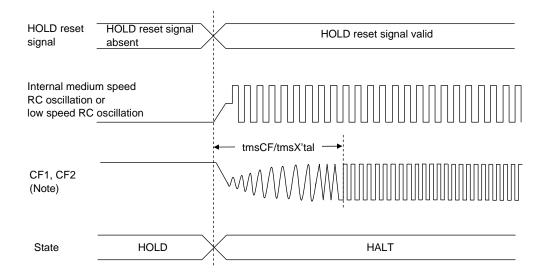
Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator ■EPSON TOYOCOM

Nominal Type Frequency	Turne	Type Oscillator Name	Circuit Constant				Operating	Oscillation Stabilization Time		Demedia
	Туре		C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage Range [V]	typ [s]	max [s]	Remarks
32.768kHz	SMD	MC-306	8	8	Open	330k	3.3 to 5.5	1.0	4.0	Applicable CL value = 7.0pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 3).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.


Figure 1 CF and XT Oscillator Circuit

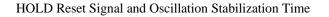


Figure 2 AC Timing Measurement Point

Reset Time and Oscillation Stabilization Time

Note: External oscillation circuit is selected.

Figure 3 Oscillation Stabilization Times

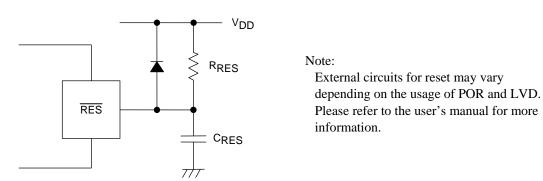


Figure 4 Reset Circuit

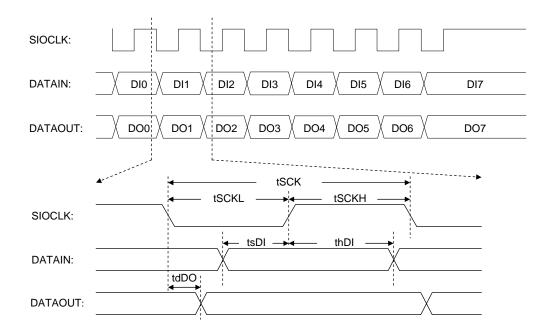


Figure 5 Serial I/O Output Waveforms

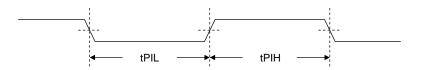
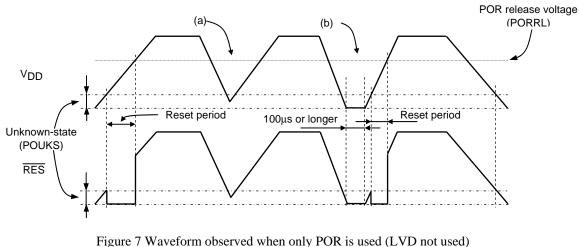



Figure 6 Pulse Input Timing Signal Waveform

(RESET pin: Pull-up resistor R_{RES} only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.

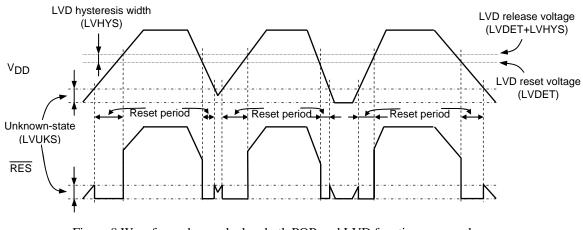


Figure 8 Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

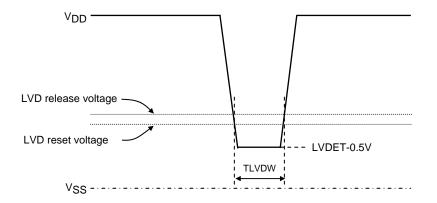


Figure 9 Low voltage detection minimum width (Example of momentary power loss/Voltage variation waveform)

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of August, 2010. Specifications and information herein are subject to change without notice.