DNSemi

AF Control LSI

LC898249XH

Overview

This LSI is Closed-Auto Focus control LSI equipped with hall sensor. It consists of 1 system of feedback circuit and constant current driver. It has also a built-in EEPROM and temperature sensor.

Features

- Built-in Equalizer Circuit Using Digital Operation
 - ◆ AF Control Equalizer Circuit
 - Any Coefficient can be Specified by 2-wire Serial I/F (TWIF)
- 2-wire Serial Interface
 - (The Communication Protocol is Compatible with I^2C)
 - 4 Selectable Slave Addresses
 - -50h(W)/51h(R), 53h(R)
 - -74h(W)/75h(R), 77h(R)
 - E8h(W)/E9h(R), EBh(R)
 - E4h(W)/E5h(R), E7h(R) factory-configured
 - Right Side Addresses are Used at the Access of Built-in EEPROM

N KEUNTA

ATIVE

- Built-in A/D Converter
- Built-in D/A Converter
 - Hall Offset
 - Constant Current Bias
- Built-in Hall Sensor
 - Si Hall Sensor
- Built-in EEPROM
 - ◆ 64 Byte (16 Byte / Page)
- Built-in OSC
- Built-in Constant Current Driver ◆ 150 mA
- Package
 - WLCSP 6-pin (2 x 3 Pin), Thickness Max 0.29 mm, with Backside Coat
- Supply Voltage
 - VDD (2.6 V to 3.3 V)
- This Device is Pb-Free, Halogen Free/BFR Free and is RoHS Compliant

WLCSP6, 0.86x1.75x0.265 CASE 567XD

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
LC898249XHTBG	WLCSP6	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1

PIN DESCRIPTION

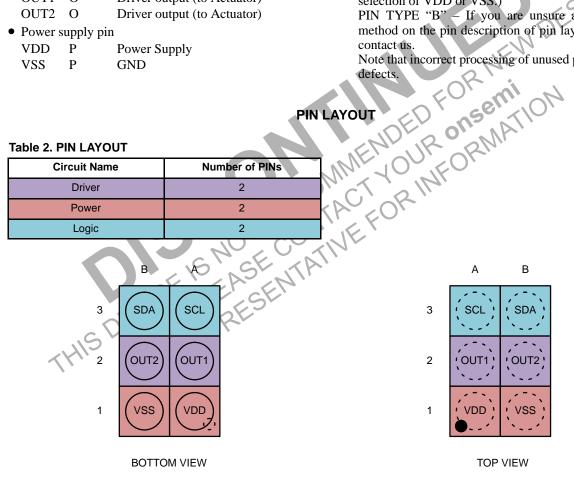
Table 1. PIN DESCRIPTION

Pin Name	Description
I	Input
Р	Power Supply, GND
NC	Not Connect
0	Output
В	Bidirection

• 2-wire serial interface

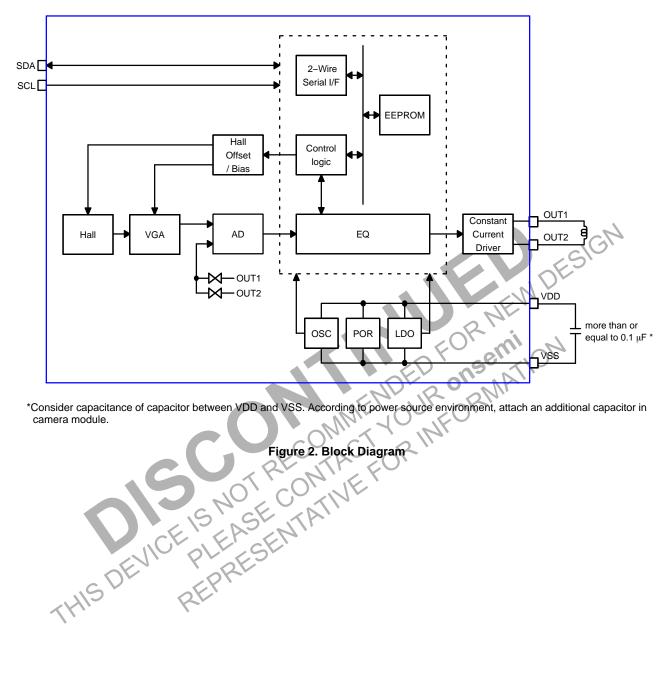
SCL	Ι	2-wire serial interface clock pin
SDA	В	2-wire serial interface data pin

- Driver interface OUT1 O Driver output (to Actuator)
- OUT2 O Driver output (to Actuator)
- Power supply pin

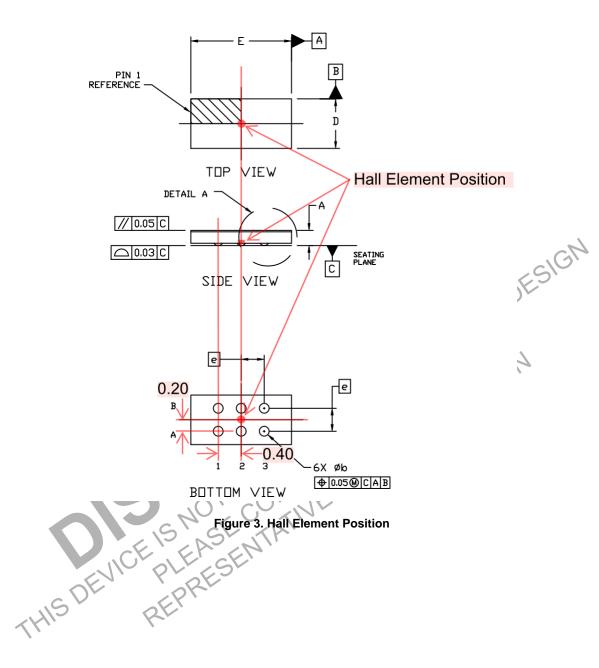

	11 2 1	
VDD	Р	Power Supply

VSS Ρ GND

*Process when pins are not used


PIN TYPE "O" – Ensure that it is set to OPEN. PIN TYPE "I" - OPEN is inhibited. Ensure that it is connected to the VDD or VSS even when it is unused. (Please contact onsemi for more information about selection of VDD or VSS.) PIN TYPE "B" – If you are unsure about processing method on the pin description of pin layout table, please

Note that incorrect processing of unused pins may result in



BLOCK DIAGRAM

*Consider capacitance of capacitor between VDD and VSS. According to power source environment, attach an additional capacitor in

HALL ELEMENT POSITION

ELECTRICAL CHARACTERISTICS

Table 3. ABSOLUTE MAXIMUM RATINGS (VSS = 0 V)

Symbol	Item	Condition	Rating	Unit
V _{DD} 33 max	Supply voltage	Ta ≤ 25°C	-0.3~4.6	V
V _I 33,V _O 33	Input/output voltage	Ta ≤ 25°C	-0.3~V _{DD} 33 + 0.3	V
Tstg	Storage ambient temperature		-55~125	°C
Topr	Operating ambient temperature		-30~70	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. ACCEPTABLE OPERATION RANGE (Ta = -30~70°C, VSS = 0 V, 3 V power supply (VDD))

Symbol	Item	Min	Тур	Max	Unit
V _{DD} 33	Supply voltage	2.6	2.8	3.3	V
V _{IN}	Input voltage range	0		V _{DD} 33	V

Table 5. DC CHARACTERISTICS (Input / output level at VSS = 0 V, VDD = 2.6 V~3.3V, Ta = -30~70°C)

Symbol	Item	Condition	Min	Тур	Max	Unit	Applicable Pins		
VIH	High-level input voltage	CMOS compliant schmitt	1.4			V	SCL, SDA		
VIL	Low-level input voltage			×-	0.4				
VOL	Low-level output voltage	IOL = 2 mA			0.2	V	SDA		
	IENUR ORM								

Table 6. DRIVER OUTPUT (OUT1, OUT2) (VSS = 0 V, VDD = 2.8 V, Ta = 25°C)

Symbol	ltem		Condition	5	Min	Тур	Max	Unit	Applicable Pins
lfull	Maximum current		25 3	A V	142.5	150	157.5	mA	OUT1, OUT2

Table 7. NON-VOLATILE MEMORY CHARACTERISTICS

Symbol	Item Condition	Min	Тур	Max	Unit	Applicable Circuit
EN	Endurance	-	-	1000	Cycles	EEPROM
RT	Data retention	10	-	-	Years	
tWT	Write time	-	-	20	ms	

AC CHARACTERISTICS

VDD Supply Timing t2 t3 VDD VSS Vbot t1 SCL/SDA

Figure 4. VDD Supply Timing

Table 8. VDD SUPPLY TIMING

Figure 4. VDD Supply Timing It is available to use 2-wire serial interface 5 ms later for Power On Reset of VDD. Table 8. VDD SUPPLY TIMING										
Symbol	ltem Min Typ	Max	Unit							
t1	VDD turn on time	3	ms							
t2	2-wire serial interface start time from VDD on 5.0 +0	_	ms							
t3	VDD off time	-	ms							
Vbot	Bottom Voltage -	0.1	V							

AC Specification

Figure 5 shows interface timing definition and Table 9 shows electric characteristics.

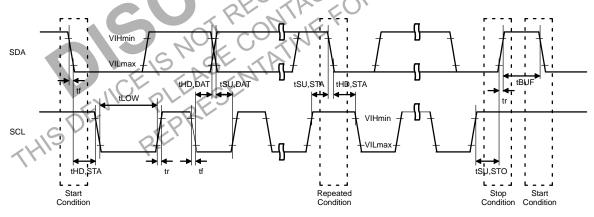
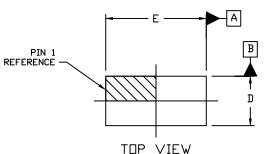
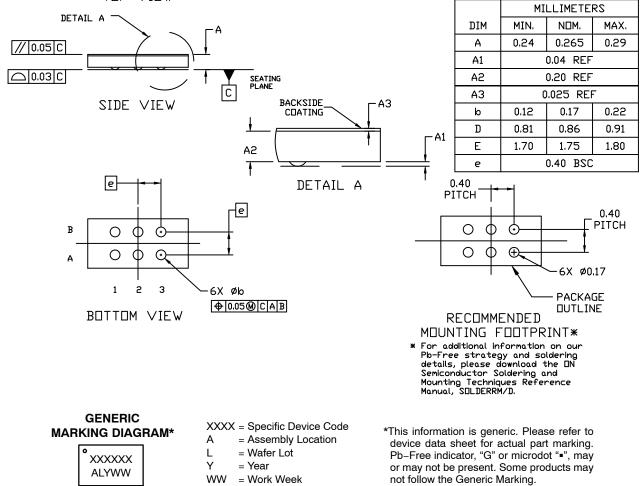


Figure 5. 2–wire Serial Interface Timing Definition

		Pin	Fast-mode			Fas	st-mode P	lus	
Symbol	Item	Name	Min	Тур	Max	Min	Тур	Max	Uni
FSCL	SCL clock frequency	SCL	-	-	400	-	-	1000	kHz
tHD,STA	START condition hold time	SCL SDA	0.6	-	-	0.26	-	-	μs
tLOW	SCL clock Low period	SCL	1.3	-	_	0.5	-	-	μs
tHIGH	SCL clock High period	SCL	0.6	-	-	0.26	-	-	μs
tSU,STA	Setup time for repetition START condition	SCL SDA	0.6	-	-	0.26	-	-	μS
tHD,DAT	Data hold time	SCL SDA	0 (Note 1)	-	0.9	0 (Note 1)	-	-	μS
tSU,DAT	Data setup time	SCL SDA	100	-	-	50	-	-	ns
tr	SDA, SCL rising time	SCL SDA	-	-	300		-	120	ns
tf	SDA, SCL falling time	SCL SDA	-	-	300	-	DE	120	ns
tSU,STO	STOP condition setup time	SCL SDA	0.6	-	5	0.26	_	-	μs
tBUF	Bus free time between STOP and START is designed for a condition with typ. 20 ns of ho opriate treatment on board, such as inserting a	SCL SDA	1.3		FO	0.5	1	-	μS
anappi	phate treatment on board, such as inserting			NV.	R	2Mr			


Table 9. ELECTRICAL CHARACTERISTICS FOR 2-WIRE SERIAL INTERFACE (AC CHARACTERISTICS)

WLCSP6, 0.86x1.75x0.265 CASE 567XD


ISSUE O

DATE 23 OCT 2018

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPERICAL CROWNS OF THE CONTACT BALLS.
- 4. COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE CONTACT BALLS.
- 5. DIMENSION 6 IS MEASURED AT THE MAXIMUM CONTACT BALL DIAMETER PARALLEL TO DATUM C.

DOCUMENT NUMBER:	98AON99381G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.							
DESCRIPTION:	WLCSP6, 0.86x1.75x0.265		PAGE 1 OF 1						
ON Semiconductor reserves the right the suitability of its products for any pa									

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>