

SPECIFICATION FOR APPROVAL

() Preli	minary S	Specification
---	--	---------	----------	---------------

	() Final	Specification
--	---	---------	---------------

e 7.0" WSVGA (1024 x RGB x 600) TFT LC	FT LCD
--	--------

BUYER	
MODEL	

SUPPLIER	LG Display Co., Ltd.
MODEL	LD070WS2
Suffix	SL01

	SIGNATURE		DATE
	1	_	
_	1	_	
	1	_	

Please return 1 copy for your confirmation with your signature and comments.

SIGNATURE DATE							
REVIEWED BY							
PREPARED BY							
Products Engineering Dept. LG Display Co., Ltd							

Ver. 0.1 Feb. 07. 2011 1 / 29

Contents

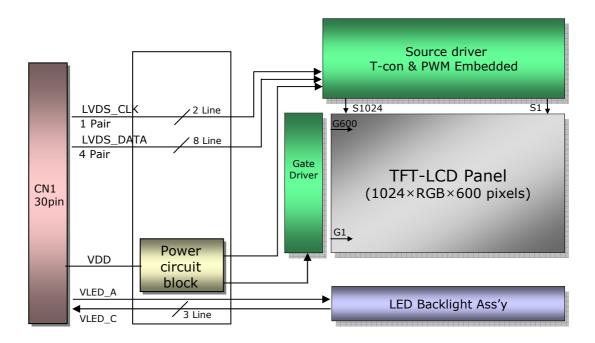
No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE (INPUT TERMINAL)	7
3-3	LVDS SIGNAL TIMING SPECIFICATIONS	8
3-4	SIGNAL TIMING SPECIFICATIONS	11
3-5	SIGNAL TIMING WAVEFORM	11
3-6	COLOR INPUT DATA REFERENCE	12
3-7	POWER SEQUENCE	13
4	OPTICAL SFECIFICATIONS	14
5	MECHANICAL CHARACTERISTICS	18
6	RELIABLITY	21
7	INTERNATIONAL STANDARDS	22
7-1	SAFETY	22
7-2	ENVIRONMENT	22
8	PACKING	23
8-1	DESIGNATION OF LOT MARK	23
8-2	PACKING FORM	23
9	PRECAUTIONS	24

Ver. 0.1 Feb. 07. 2011 2 / 29

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description
0.0	Nov. 22. 2010	-	Preliminary specification
0.1	Feb. 07. 2011	4	Update General Features (Weight)
		7	Update table 4. Module connection Pin configuration(cn1)
	•		

Ver. 0.1 Feb. 07. 2011 3 / 29



1. General Description

The LD070WS1 is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode(LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally Black mode. This TFT-LCD has 7.0 inches diagonally measured active display area with WSVGA resolution(1024 horizontal by 600 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit + 2-bit FRC gray scale signal for each dot, thus, presenting a palette of more than 16,772,216 colors.

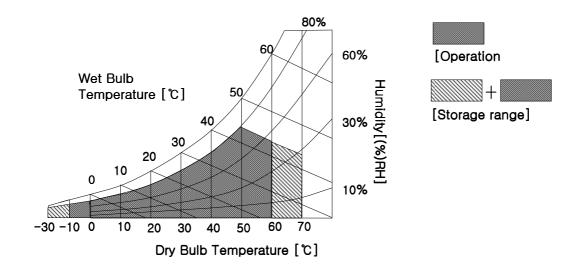
The LD070WS1 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LD070WS1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LD070WS1 characteristics provide an excellent flat display.

General Features

Active Screen Size	7.0 inches diagonal
Outline Dimension	162.8 (H) x 102.9 (V) x 2.7 (D) (Typ.)
Dot Pitch	0.050mm × 0.150mm
Pixel Format	1024 horiz. By 600 vert. Pixels RGB strip arrangement
Color Depth	6-bit + 2-bit FRC, 16,7M colors
Power consumption	Logic: 0.7W(Typ.), B/L: 1.26W(Typ.)
Luminance, White	400 cd/m ²
Weight	100g (Max.)
Display Operating Mode	Transmitting type, normally Black
Surface Treatment	Hard coat on the polarizer

Ver. 0.1 Feb. 07. 2011 4 / 29


2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
i didilictei	Symbol	Min	Max	Office		
Power Input Voltage	VCC	-0.5	5.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	-20	60	°C	[Note 2-1,2,3,4]	
Storage Temperature	Hst	-30	70	°C	[Note 2-1,2]	

- [Note 2-1] This rating applies to all parts of the module and should not be exceeded.
- [Note 2-2] Maximum wet-bulb temperature is 46 °C. Condensation of dew must be avoided as electrical current leaks will occur, causing a degradation of performance specifications.
- [Note 2-3] The operating temperature only guarantees operation of the circuit and doesn't guarantee all the contents of Electro-optical specification.
- [Note 2-4] Ambient temperature when the backlight is lit (reference value).

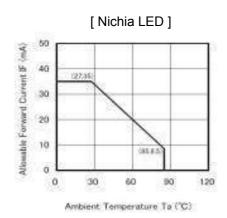
Ver. 0.1 Feb. 07. 2011 5 / 29

3. Electrical Specifications

3-1. Electrical Characteristics

The LD070WS1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED, is typically generated by an LED Driver. The LCD don't include LED Driver.

Table 2. ELECTRICAL CHARACTERISTICS


Parameter	Symbol		Values	Unit	Notes	
Farameter	Symbol	Min	Тур	Max	Ullit	Notes
LCD:						
Power Supply Input Voltage	VCC	3.0	3.3	3.6	V _{DC}	
Input High-Level Voltage	V _{IH}	0.7VCC	-	VCC	V_{DC}	
Input Low-Level Voltage	$V_{\rm IL}$	0	-	0.3VCC	V_{DC}	
Power Supply Input Current	I _{cc}	-	212	250	mA	[Note 1]
Power Consumption	Pc	-	0.7	0.9	Watt	[Note 1]

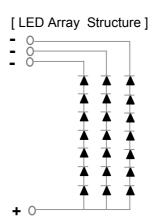

[Note 1] The specified current and power consumption are under the Vcc = 3.3V, 25° C, fv = 60Hz condition whereas "Mosaic Pattern" is displayed and fv is the frame frequency.

Table 3. Backlight Unit

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARK
LED forward Current	I _f	-	20	21	mA	Ta=25℃ (per chain)
LED forward Voltage	V _f	-	21	23.1	V	Ta=25℃ (@ 20mA)
Power Consumption	P _{BL}	-	1,260	1,386	mW	Ta=25°C (@ 20mA)

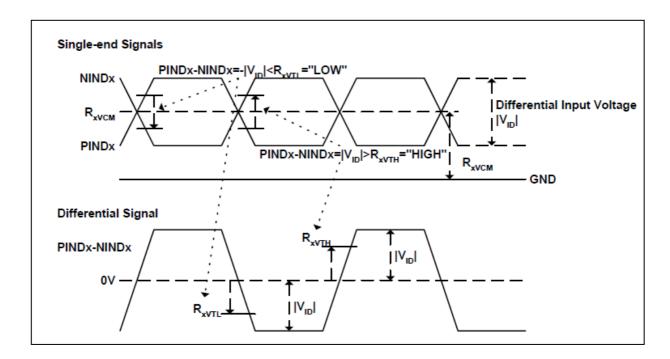
[Note 1] The permissible forward current of LED vary with environmental temperature.

Ver. 0.1 Feb. 07. 2011 6 / 29

3-2. Interface (Input Terminal)

This LCD employs one interface connections, a 30 pin connector is used for the module electronics interface. (Connector Type : 30Pin 0.5mm pitch, Matching Connector : HIROSE FH12-30S-0.5SH)

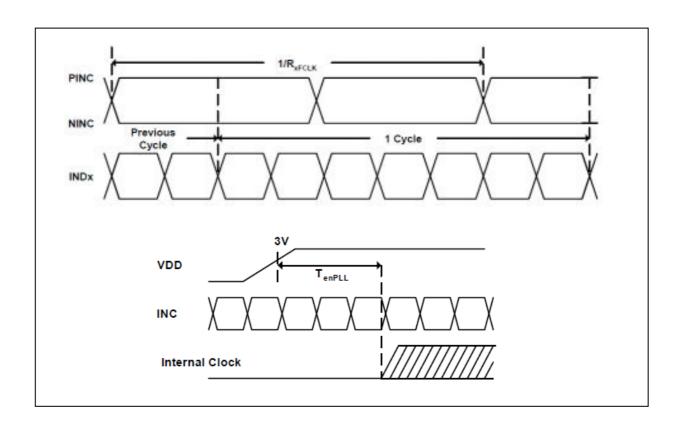
Table 4. Module Connection Pin Configuration (cn1)


No.	Symbol	Description	remark				
1	ID Pin 1	Ground	-				
2	ID Pin 2	No Connect: Normal, Ground: Improved yellowish	-				
3	VDD	Power Supply +3.3V	-				
4	VDD	Power Supply +3.3V	-				
5	VDD	Power Supply +3.3V	-				
6	VDD	Power Supply +3.3V	-				
7	GND	Ground	-				
8	RxIN0N	LVDS Differential DATA Input	R0~R5, G0				
9	RxIN0P	LVDS Differential DATA Input	- K0~K5, G0				
10	GND	Ground	-				
11	RxIN1N	LVDS Differential DATA Input	G1~G5, B0~B1				
12	RxIN1P	LVDS Differential DATA Input	91793, 60761				
13	GND	Ground	-				
14	RxIN2N	LVDS Differential DATA Input	B2~B5, Vs, Hs, DE				
15	RxIN2P	RxIN2P LVDS Differential DATA Input					
16	GND	Ground	-				
17	RxCLKN	LVDS Differential DATA Input	Clock				
18	RxCLKP	LVDS Differential DATA Input	Clock				
19	GND	Ground	-				
20	RxIN3N	LVDS Differential DATA Input	D0 D7 00 D7 D0 D7				
21	RxIN3P	LVDS Differential DATA Input	R6~R7, G6~B7, B6~B7				
22	GND	Ground	-				
23	NC	No Connect	-				
24	BKA	BLU LED Anode	-				
25	BKA	BLU LED Anode	-				
26	BKA	BLU LED Anode	-				
27	NC	No Connect	-				
28	BKK1	BLU LED Cathode1	-				
29	BKK2	BLU LED Cathode2	-				
30	BKK3	BLU LED Cathode3	-				

Ver. 0.1 Feb. 07. 2011 7 / 29

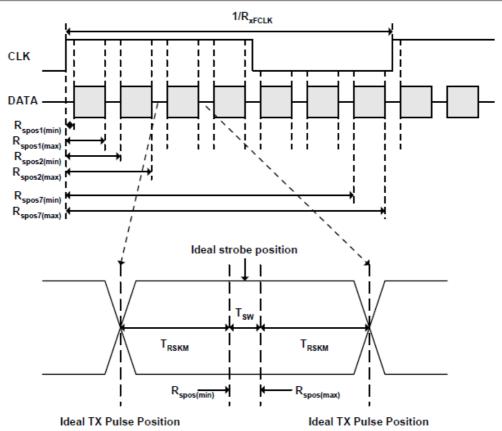
3-3. LVDS Signal Timing Specification

3-3-1. DC Specification



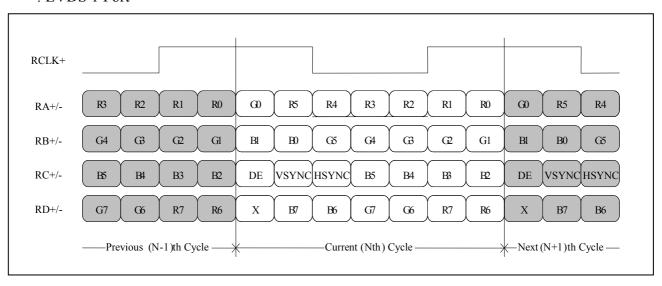
Description	Symbol	Min	Max	Unit	Notes
Differential input high threshold voltage	R _{xVTH}		0.1	V	D -4.0V
Differential input low threshold voltage	R _{xVTL}	-0.1		V	R _{xVCM} =1.2V
Input voltage range (singled-end)	R _{XVIN}	0	2.4	V	
Differential input common mode voltage	R _{xVCM}	VID /2	2.4- VID /2	V	
Differential input voltage	VID	0.2	0.6	V	
Differential input leakage current	RV _{xliz}	-10	10	uA	

Ver. 0.1 Feb. 07. 2011 8 / 29


3-3-2. AC Specification

Description	Symbol	Min	Тур	Max	Unit	Notes
Clock Frequency	R _{XFCLK}	45.9	-	59.1	MHz	
Input Data Skew Margin	T _{RSKM}	500			ps	VID = 400mV RxVCM = 1.2V RxFCLK = 71 MHz
Clock high time	T _{LVCH}	-	4/(7* R _{xFCLK})		ns	-
Clock low time	T _{LVCL}	-	3/(7* R _{xFCLK})		ns	-
PLL wake-up time	T _{enPLL}	-		150	us	-

Ver. 0.1 Feb. 07. 2011 9 / 29



T_{RSKM}: Receiver strobe margin

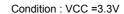
R_{SPOS}: Receiver strobe position T_{SW}: Strobe width (Internal data sampling window)

3-3-3. Data Format

-. LVDS 1 Port

< LVDS Data Format >

3-4. Signal Timing Specifications


This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

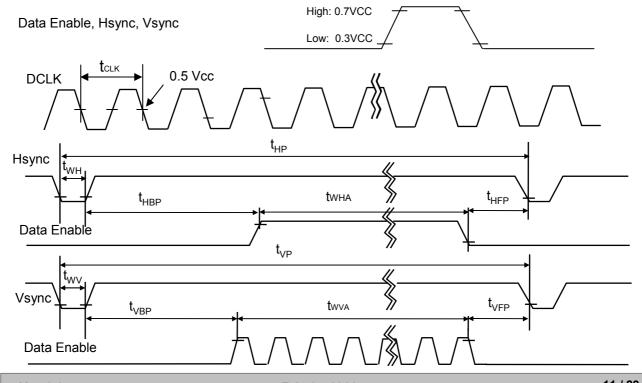

* HV Mode

Table 5. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f _{CLK}	45.9	51.2	59.1	MHz	
	Period	Thp	1229	1344	1372		
Hsync	Width	t _{WH}	1	-	140	tCLK	
	Width-Active	t _{WHA}	1024	1024	1024		
	Period		623	635	718		
Vsync	Width	t _{wv}	1	1	10	tHP	
	Width-Active	t _{WVA}	600	600	600		
	Horizontal back porch	t _{HBP}	160	160	160	+CL K	
Data	Horizontal front porch	t _{HFP}	16	160	216	tCLK	
Enable	Vertical back porch	t _{VBP}	23	23	23	tHP	
	Vertical front porch	t _{VFP}	1	12	127	INP	

3-5. Signal Timing Waveform

Ver. 0.1 Feb. 07. 2011 11 / 29

3-6. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

Colors	Gray												Data :	Signa	l										
& Gray Scale	Scale Levels				RI	ΞD				GREEN					BLUE										
		R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	ВО	B1	B2	ВЗ	B4	B5	B6	B7
Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blue		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	Ψ-	1	1	1	1	Ψ-	1
Green		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Red		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Black	R0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Darker	R2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Brighter	R253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	R255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Black	G0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Darker	G2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		• •	:	•	:	• •	:	:		• •			-:-	:	•	• •		:	• •	:	• •	:	:	•	:
		• •	:	:	:	:	:	:		:				:		• •	:	:	:	:	• •	:	:	:	:
Brighter	G253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	G254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Green	G255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Black	В0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	B1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Darker	B2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Brighter	B253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	B254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Blue	B255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Ver. 0.1 Feb. 07. 2011 12 / 29

3-7. Power Sequence

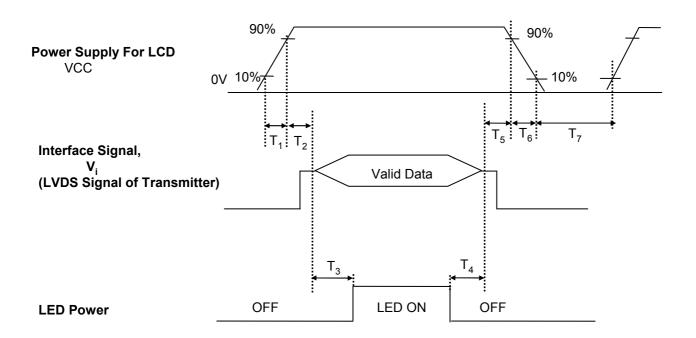


Table 7. POWER SEQUENCE TABLE

Parameter		Value		Units	Remark
	Min.	Тур.	Max.		
T ₁	0.5	-	10	(ms)	-
T ₂	0	-	50	(ms)	-
T ₃	200	-	-	(ms)	-
T ₄	200	-	-	(ms)	-
T ₅	0	-	50	(ms)	-
T ₆	3	-	10	(ms)	-
T ₇	400	-	-	(ms)	-

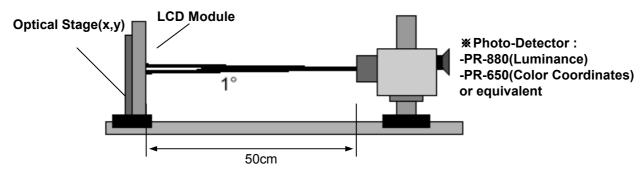
[Note 1] Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"

[Note 2] Please avoid floating state of interface signal at invalid period.

[Note 3] When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.

[Note 4] LED power must be turn on after power supply for LCD and interface signal are valid.

Ver. 0.1 Feb. 07. 2011 13 / 29



4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 5 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 8. OPTICAL CHARACTERISTICS

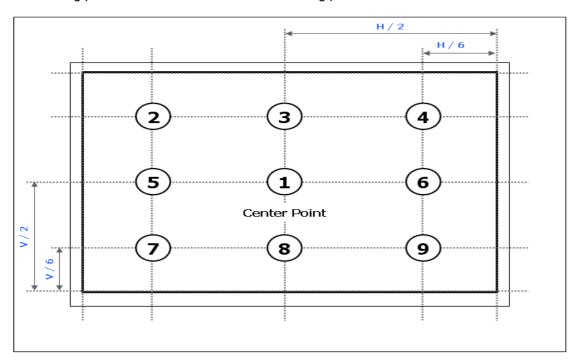
Ta=25°C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 51.2MHz

_	Na	0		Values		11	Natas
P	Parameter	Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio		CR	640	800	-		1
Surface Luminan	Surface Luminance, white			400	-	cd/m ²	@20mA, 2
Luminance Variat	tion	δ_{WHITE}		1.18	1.34		3
Response Time(F	Rise Time + Decay Time)	Tr _R + Tr _D	-	-	40	ms	4
Color Coordinate	S]					2
	Red	RX	0.572	0.607	0.642		
	· · · · · · · · · · · · · · · · · · ·	RY	0.317	0.352	0.387		
	Green	GX	0.294	0.329	0.364		
		GY	0.539	0.574	0.609		
	: Blue	ВХ	0.121	0.156	0.191		
	·	BY	0.102	0.137	0.172		
	: White	WX	0.270	0.310	0.350		
	· · · · · · · · · · · · · · · · · · ·	WY	0.300	0.340	0.380		
Viewing Angle							5
	x axis, right(Φ=0°)	Θr	75	85	-	degree	3 o'clock
	x axis, left (Φ=180°)	Θl	75	85	-	degree	9 o'clock
	y axis, up (Φ=90°)	Θu	75	85	-	degree	12 o'clock
	: y axis, down (Φ=270°)	Θd	75	85	-	degree	6 o'clock

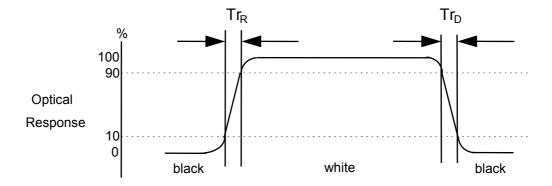
Ver. 0.1 Feb. 07. 2011 14 / 29

[Note 4-1] Contrast Ratio(CR) is defined mathematically as

Contrast Ratio = Surface Luminance with all white pixels
Surface Luminance with all black pixels


- [Note 4-2] Surface luminance is measured at the center point(L₁) of the LCD with all pixels displaying white at the distance of 50cm by PR-880. Color Coordinates are measured at the center point(L₁) of the LCD with all pixels displaying red, green, blue and white at the distance of 50cm by PR-650. For more information, refer to the FIG 1 and FIG 2.
- [Note 4-3] Luminance uniformity is measured for 9 point For more information see FIG 2. δ_{WHITF} = Maximum(L1,L2, L9) \div Minimum(L1,L2, L9)
- [Note 4-4] Response time is the time required for the display to transition from white to black (Rise Time, Tr_{R}) and from black to white(Decay Time, Tr_{D}). For additional information see FIG 3.
- [Note 4-5] Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

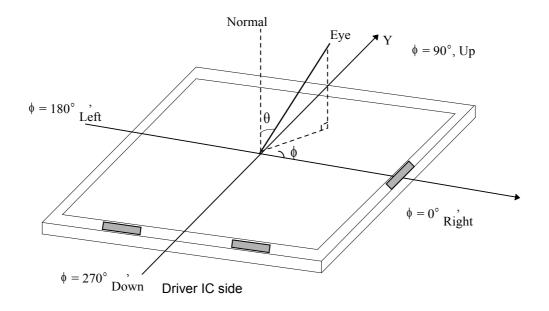
Ver. 0.1 Feb. 07. 2011 15 / 29


FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".`



Ver. 0.1 Feb. 07. 2011 16 / 29

FIG. 4 Viewing angle

<Dimension of viewing angle range>

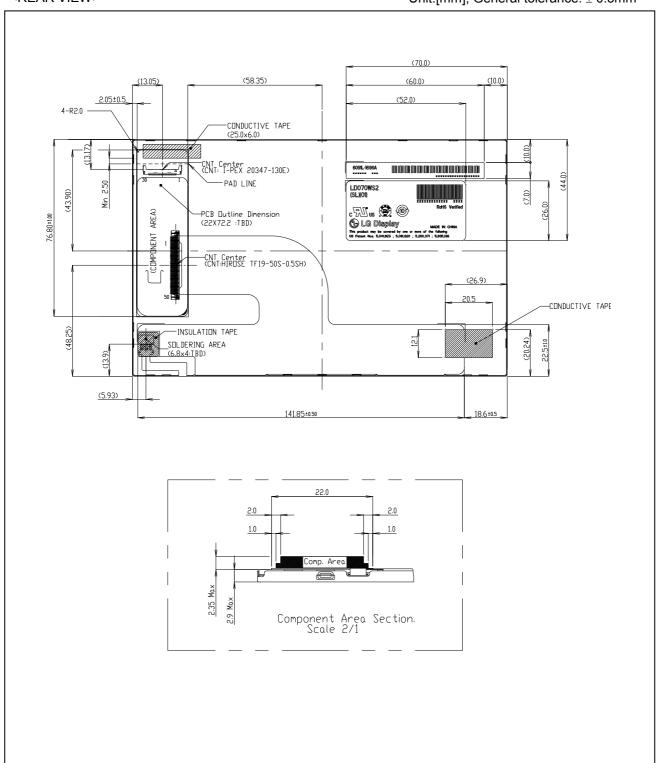
Ver. 0.1 Feb. 07. 2011 17 / 29

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LD070WS1. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	162.8 \pm 0.3 mm				
Outline Dimension	Vertical	102.9 ± 0.3 mm				
	Depth	2.70 \pm 0.2 mm				
Bezel Area	Horizontal	156.1 ± 0.3 mm				
bezer Area	Vertical	92.5 \pm 0.3 mm				
Activo Diaplay Area	Horizontal	153.6 \pm 0.3 mm				
Active Display Area	Vertical	90.0 \pm 0.3 mm				
Weight	100g (Max.)					
Surface Treatment	Hard coat on the polarizer					

Ver. 0.1 Feb. 07. 2011 18 / 29



<FRONT VIEW> Unit:[mm], General tolerance: \pm 0.3mm 162.8±0.3 (DUTLINE DIMENSION) (159.6 :TFT) (155.2 :Pol Up) (2.35) 156.1±0.3 (BEZEL DPEN) (4.35) (3.6) 153.6 (ACTIVE AREA) (5.6) 2.7±0.2 (Without Label) MAX2.35 (PCB & Component) (80.4) (3.5) (0.67) 102.9±0.3 (DUTLINE DIMENSION) (92.3 :(Pol Down)

<REAR VIEW>

Unit:[mm], General tolerance: \pm 0.3mm

6. Reliability

No.	Test Items	Test Condition	Remark
1	High Temperature Storage Test	Ta=70℃ 240h	[Note 6-1,2,3]
2	Low Temperature Storage Test	Ta=-30℃ 240h	[Note 6-1,2,3]
3	High Temperature Operation Test	Ta=60℃ 240h	[Note 6-1,2,3]
4	Low Temperature Operation Test	Ta =-10℃ 240h	[Note 6-1,2,3]
5	High Temperature and High Humidity Operation Test	Ta=40℃ 95%RH 240h	[Note 6-1,2,3]
6	Thermal Shock Test (non-operating)	-30 °C (0.5h) ~ 70 °C (0.5h) / 50 cycles	
7	Electro Static Discharge Test	-Panel Surface/Top_Case $: 150 pF, 150 \Omega \\ (Air: \pm 15 kV, Contact: \pm 8 kV)$ -FPC input terminal: $100 pF \pm 200 V 0 \Omega$	
8	Mechanical Shock Test (non-operating)	Half sine wave, 180G, 2ms 1 time shock of each six faces (OK) $(\pm X/\pm Y/\pm Z)$	
9	Mechanical Vibration Test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis	
10	Packing Drop	60cm, 1 corner, 3 edge, 6 surfaces, 1Box	
11	Packing vibration	1) Random Truck & Air 1.5Grms ,1hr, 1box (3~300Hz, 1.5Grms, Z axis)	

[Note 6-1] T_a = Ambient Temperature

[Note 6-2] In the Reliability Test, Confirm performance after leaving in room temp.

[Note 6-3] In the standard condition, there shall be no practical problems that may affect the display function 24 hours later after reliability test. After the reliability test, we can guarantee the product only when the corrosion is causing its malfunction. The corrosion causing no functional defect can not be guaranteed.

※ Ta= Ambient Temperature

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

Ver. 0.1 Feb. 07. 2011 21 / 29

7. International Standards

7-1. Safety

- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1: General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment Safety Part 1 : General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electrotechnical Standardization(CENELEC). Information Technology Equipment Safety Part 1 : General Requirements.

7-2. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

Ver. 0.1 Feb. 07. 2011 22 / 29

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A B C D E F G H I J K L

A,B,C: SIZE(INCH) D: YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	С	D	Е	F	G	Н	J	K

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

Ver. 0.1 Feb. 07. 2011 23 / 29

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting precautions

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 mV$ (Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) This module is not designed to attach TSP(touch screen panels). If TSP is applied, LPL can't guarantee the 'Ripple' related problems.

Ver. 0.1 Feb. 07. 2011 24 / 29

9-3. Electrostatic discharge control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for strong light exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. Handling precautions for protection film

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Ver. 0.1 Feb. 07. 2011 25 / 29