

## **Bias Resistor Transistor**

# **NPN Silicon Surface Mount Transistor** with Monolithic Bias Resistor Network

## • Applications

Inverter, Interface, Driver

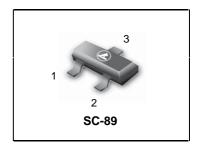
#### Features

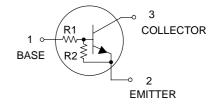
- Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see equivalent circuit).
- 2) The bias resistors consist of thin-film resistors with complete isolation to allow positive biasing of the input. They also have the advantage of almost completely eliminating parasitic effects.
- 3) Only the on/off conditions need to be set for operation, making the device design easy.
- We declare that the material of product compliance with RoHS requirements.

## ● Absolute maximum ratings (Ta=25°C)

| Parameter                   | Commando and | Limits(DTD123T□) |     | Unit  |  |  |  |
|-----------------------------|--------------|------------------|-----|-------|--|--|--|
| Parameter                   | Symbol       | К                | S   | Uniil |  |  |  |
| Collector-base voltage      | Vсво         | 50               |     | V     |  |  |  |
| Collector-emitter voltage   | VCEO         | 40               |     | V     |  |  |  |
| Emitter-base voltage        | VEBO         | 5                |     | V     |  |  |  |
| Collector current           | lc           | 500              |     | mA    |  |  |  |
| Collector power dissipation | Pc           | 200              | 300 | mW    |  |  |  |
| Junction temperature        | Tj           | 150              |     | °C    |  |  |  |
| Storage temperature         | Tstg         | <b>−55~+150</b>  |     | ℃     |  |  |  |

## **DEVICE MARKING AND RESISTOR VALUES**


| Device       | Marking | R1 (K) | R2 (K) | Shipping          |
|--------------|---------|--------|--------|-------------------|
| LDTD123TET1G | E1      | 2.2    | -      | 3000/Tape & Reel  |
| LDTD123TET1G | E1      | 2.2    | -      | 10000/Tape & Reel |


### ●Electrical characteristics (Ta=25°C)

| Parameter                            | Symbol                | Min. | Тур. | Max. | Unit | Conditions                   |
|--------------------------------------|-----------------------|------|------|------|------|------------------------------|
| Collector-base breakdown voltage     | ВУсво                 | 50   | _    | _    | ٧    | Ic=50 μ A                    |
| Collector-emitter breakdown voltage  | BVCEO                 | 40   | _    | _    | ٧    | Ic=1mA                       |
| Emitter-base breakdown voltage       | ВУЕВО                 | 5    |      | _    | ٧    | I <sub>E</sub> =50 μ A       |
| Collector cutoff current             | Ісво                  | _    |      | 0.5  | μΑ   | V <sub>CB</sub> =50V         |
| Emitter cutoff current               | ІЕВО                  | _    | _    | 0.5  | μΑ   | V <sub>EB</sub> =4V          |
| Collector-emitter saturation voltage | V <sub>CE</sub> (sat) | _    | _    | 0.3  | ٧    | Ic/I <sub>B</sub> =50m/2.5mA |
| DC current transfer ratio            | hfe                   | 100  | 250  | 600  | _    | VcE=5V, lc=50mA              |
| Input resistance                     | R <sub>1</sub>        | 1.54 | 2.2  | 2.86 | kΩ   | _                            |
| Transition frequency                 | f⊤                    | _    | 200  | _    | MHz  | Vc=10V, I=-50mA, f=100MHz*   |

<sup>\*</sup> Transition frequency of the device

## LDTD123TET1G







## LDTD123TET1G

## •Electrical characteristic curves

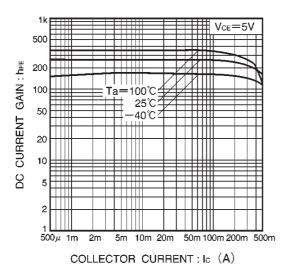



Fig.1 DC current gain vs. collector current

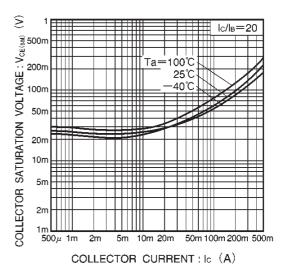
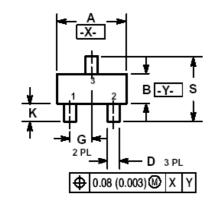
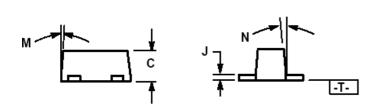




Fig.2 Collector-emitter saturation voltage vs. collector current

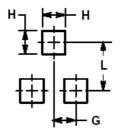


## LDTD123TET1G

## **SC-89**




## NOTES:


1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2.CONTROLLING DIMENSION: MILLIMETERS
3.MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE
MATERIAL.

4.463C-01 OBSOLETE, NEW STANDARD 463C-02.



| П   | MI       | LLIMETE  | RS   | INCHES    |       |       |  |
|-----|----------|----------|------|-----------|-------|-------|--|
| DIM | MIN      | NOM      | MAX  | MIN       | NOM   | MAX   |  |
| Α   | 1.50     | 1.60     | 1.70 | 0.059     | 0.063 | 0.067 |  |
| В   | 0.75     | 0.85     | 0.95 | 0.030     | 0.034 | 0.040 |  |
| С   | 0.60     | 0.70     | 0.80 | 0.024     | 0.028 | 0.031 |  |
| D   | 0.23     | 0.28     | 0.33 | 0.009     | 0.011 | 0.013 |  |
| G   |          | 0.50 BSC |      | 0.020 BSC |       |       |  |
| Н   | 0.53 REF |          |      | 0.021 REF |       |       |  |
| J   | 0.10     | 0.15     | 0.20 | 0.004     | 0.006 | 0.008 |  |
| K   | 0.30     | 0.40     | 0.50 | 0.012     | 0.016 | 0.020 |  |
| L   | 1.10 REF |          |      | 0.043 REF |       |       |  |
| M   |          |          | 10 ° | -         |       | 10°   |  |
| N   |          |          | 10 ° |           | -     | 10°   |  |
| S   | 1.50     | 1.60     | 1.70 | 0.059     | 0.063 | 0.067 |  |

