

Current Transducer LF 305-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

Е	lectrical data				
I _{PN}	Primary nominal r.m.s. current		300		A
I _P	Primary current, mea	urrent, measuring range		0 ± 500	
$\dot{R}_{_{\mathrm{M}}}$	Measuring resistanc	е	\mathbf{R}_{Mmin}	R_{Mmax}	x
	with ± 12 V	@ \pm 300 A _{max}	0	39	Ω
		@ ± 500 A max	0	12	Ω
	with ± 15 V	@ ± 300 A max	0	58	Ω
		@ ± 500 A max	0	22	Ω
	with ± 20 V	@ ± 300 A max	15	93	Ω
		@ ± 500 A max	15	45	Ω
I _{SN}	Secondary nominal r	.m.s. current	150		mΑ
K	Conversion ratio		1:2000		
V _C	Supply voltage (± 5 °	%)	± 12	. 20	V
I _C	Current consumption		16 (@±20V) + I _s m		, mA
$\breve{\mathbf{V}}_{_{d}}$	R.m.s. voltage for AC	isolation test, 50 Hz, 1 mn	3		κV

Ac	Accuracy - Dynamic performance data							
X _G	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.4		%				
$\mathbf{e}_{\scriptscriptstyle \perp}$	Linearity	< 0.1		%				
		Тур	Max					
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$		Max ± 0.20	mΑ				
I _{OM}	Residual current ¹⁾ @ $I_p = 0$, after an overload of 3 x I_{pN}		± 0.08	mΑ				
I _{OT}	Thermal drift of I_0 - 10°C + 70°C	± 0.1	± 0.30	mΑ				
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns				
t,	Response time 2 @ 90 % of I _{PN}	< 1		μs				
di/dt	di/dt accurately followed	> 100		A/µs				
f	Frequency bandwidth (- 1 dB)	DC	100	kHz				

G	General data							
T _A	Ambient operating temperature	- 10 + 70	°C					
T _s	Ambient storage temperature	- 25 + 85	°C					
T _s R _s	Secondary coil resistance @ T _A = 70°C	28	Ω					
m	Mass	95	g					
	Standards 3)	EN 50178						

$I_{PN} = 300 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) The result of the coercive field of the magnetic circuit

2) With a di/dt of 100 A/µs

3) A list of corresponding tests is available

991125/1

Dimensions LF 305-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Primary through-hole

· Connection of secondary

± 0.5 mm see drawing Ø 20 mm Molex 5045-03/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.