

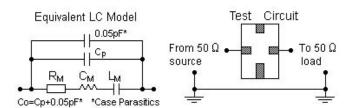



The LGE433A is a true one- port , surface- acoustic- wave( SAW) resonator in a low- profile QCC4A case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 433.92 MHz.

# 1. Package Dimension (QCC4A)

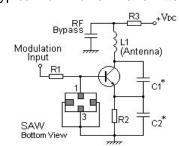


| Pin | Connection     |  |  |  |
|-----|----------------|--|--|--|
| 1   | Input / Output |  |  |  |
| 3   | Output / Input |  |  |  |
| 2/4 | Case Ground    |  |  |  |

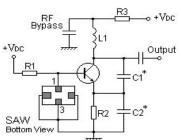

| Sign | Data(unit: mm) |  |  |  |  |
|------|----------------|--|--|--|--|
| А    | 1.2            |  |  |  |  |
| В    | 0.8            |  |  |  |  |
| С    | 0.5            |  |  |  |  |
| D    | 1.4            |  |  |  |  |
| Е    | 5.0            |  |  |  |  |
| F    | 3.5            |  |  |  |  |

# 2. Marking

# LGE R433A


Color: Black or Blue

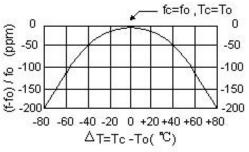
# 3. Equivalent LC Model and Test Circuit




## 4. Typical Application Circuit

# 1) Typical Low-Power Transmitter Application




# 2) Typical Local Oscillator Application



#### 5. Typical Frequency Response



# **6.Temperature Characteristics**



The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.





#### 7. Performance

## 7-1.Maximum Ratings

| Rating                       |           | Value      | Units         |
|------------------------------|-----------|------------|---------------|
| CW RF Power Dissipation      | Р         | 0          | dBm           |
| DC Voltage Between Terminals | $V_{DC}$  | ±30        | V             |
| Storage Temperature Range    | $T_{stg}$ | -40 to +85 | $^{\circ}$    |
| Operating Temperature Range  | $T_A$     | -40 to +85 | ${\mathbb C}$ |

#### 7-2. Electronic Characteristics

|                                                      | Characteristic                    | Sym              | Minimum | Typical | Maximum | Units               |
|------------------------------------------------------|-----------------------------------|------------------|---------|---------|---------|---------------------|
| Center<br>Frequency<br>(+25℃)                        | Absolute Frequency                | f <sub>C</sub>   | 433.845 |         | 433.995 | MHz                 |
|                                                      | Tolerance from 433.920 MHz        | Δ f <sub>C</sub> |         | ±75     |         | kHz                 |
| Insertion Loss                                       |                                   | IL               |         | 1.5     | 1.8     | dB                  |
| Quality Factor                                       | Unloaded Q                        | Q <sub>U</sub>   |         | 11274   |         |                     |
|                                                      | 50 Ω Loaded Q                     | $Q_L$            |         | 1800    |         |                     |
| Temperature<br>Stability                             | Turnover Temperature              | To               | 25      | 40      | 55      | $^{\circ}$          |
|                                                      | Turnover Frequency                | f <sub>O</sub>   |         | fc      |         | kHz                 |
|                                                      | Frequency Temperature Coefficient | FTC              |         | 0.037   |         | ppm/°C <sup>2</sup> |
| Frequency Aging Absolute Value during the First Year |                                   | f <sub>A</sub>   |         | ≤10     |         | ppm/yr              |
| DC Insulation Resistance Between Any Two Pins        |                                   |                  | 1.0     |         |         | ΜΩ                  |
| RF Equivalent<br>RLC Model                           | Motional Resistance               | R <sub>M</sub>   |         | 19      | 23      | Ω                   |
|                                                      | Motional Inductance               | L <sub>M</sub>   |         | 78.605  |         | μH                  |
|                                                      | Motional Capacitance              | См               |         | 1.7132  |         | fF                  |
|                                                      | Pin 1 to Pin 2 Static Capacitance | Co               |         | 1.9     |         | pF                  |

# CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

#### NOTES:

- 1. The center frequency,  $f_C$ , is measured at the minimum IL point with the resonator in the  $50\Omega$  test system.
- 2. Unless noted otherwise, case temperature  $T_C = +25^{\circ}C \pm 2^{\circ}C$ .
- 3. Frequency aging is the change in f<sub>C</sub> with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T<sub>0</sub>, is the temperature of maximum (or turnover) frequency, f<sub>0</sub>. The nominal frequency at any case temperature,  $T_C$ , may be calculated from:  $f = f_0 [1 - FTC (T_0 - T_C)^2]$ .
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C<sub>0</sub> is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: fc, IL, 3 dB bandwidth, fc versus T<sub>C</sub>, and C<sub>0</sub>.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery please contact our sales offices or E-mail: