

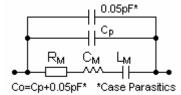
Features

- 1-port Resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators
- Surface Mounted Technology (SMT)
- Lead-free production and RoHS compliance

Package Dimensions

Ceramic Package: QCC4A

	Pin	Configuration			
	1	Input / Output			
	3	Output / Input			
	2/4	Case Ground			
Sign	Data (unit: mm)		Sign	Data (unit: mm)	
	1.2				
A	1.2		D	1.4	
A B	1.2 0.8		D E	1.4 5.0	


Marking

LGE R3001

Laser Marking

Top View, Laser Marking "LGE": Manufacturer's mark "**R**": SAW resonator "**3001**": Part number

Equivalent LC Model

Code	1	2	3	4	5	6	7	8	9	10	11	12
2009	А	В	С	D	Е	F	G	Н	J	K	L	М
2010	Ν	Р	Q	R	S	Т	U	V	W	Х	Y	Z
2011	а	b	с	d	е	f	g	h	i	j	k	m
2012	n	р	q	r	S	t	u	v	w	х	у	Z

Maximum Ratings

Rating	Value	Unit	
CW RF power dissipation	Р	0	dBm
DC voltage between any terminals	V _{DC}	±30	V
Operating temperature range	T _A	-40 ~ +85	°C
Storage temperature range	$T_{\rm stg}$	-40 ~ +85	°C

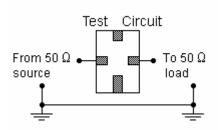
LGE R3001

SAW Resonator 315.000MHz

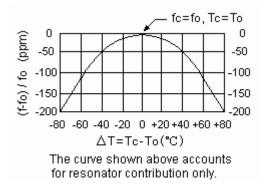
LGE R3001

SAW Resonator 315.000MHz

Electrical Characteristics

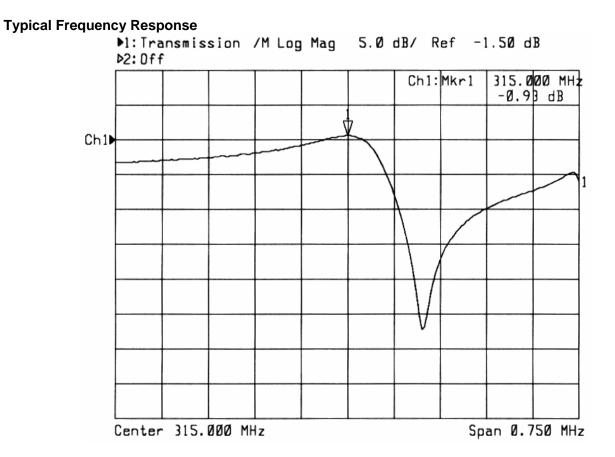

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	314.925		315.075	MHz
(+25℃)	Tolerance from 315.000MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.3	1.8	dB
Quelity Faster	Unloaded Q	Qu		11,950		
Quality Factor	50 Ω Loaded Q	QL		1,650		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
2	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
	Motional Resistance	R _M		16	23	Ω
RF Equivalent RLC Model	Motional Inductance	L _M		96.7546		μH
	Motional Capacitance	См		2.6411		fF
	Shunt Static Capacitance	C ₀	2.60	2.85	3.10	pF

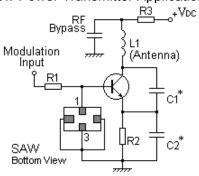
NoHS Compliant


(i) Electrostatic Sensitive Device

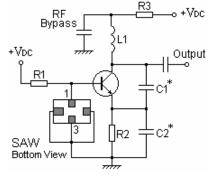
- 1. Unless noted otherwise, case temperature $T_c = +25^{\circ}C\pm 2^{\circ}C$.
- 2. The center frequency, f_c , is measured at the minimum insertion loss point with the resonator in the 50 Ω test system.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

Test Circuit


Temperature Characteristics


LGE R3001

SAW Resonator 315.000MHz



Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

SAW Resonator 315.000MHz

Stability Characteristics

	Test item	Condition of te	est
1	Mechanical shock	(a) Drops: 3 times on concrete floor (b) Height: 1.0 m	
2	Vibration resistance	(a) Frequency of vibration: 10~55Hz (c) Directions: X,Y and Z	(b) Amplitude: 1.5 mm (d) Duration: 2 hours
3	Moisture resistance	(a) Condition: 40°C, 90~95% R.H. (c) Wait 4 hours before measurement	(b) Duration: 96 hours
4	Climatic sequence		for 24 hours, 90~95% R.H. for 24 hours, 90~95% R.H.
5	High temperature exposure	(a) Temperature: 70°C (c) Wait 4 hours before measurement	(b) Duration: 250 hours
6	Thermal impact	(a) +70°C for 30 minutes \Rightarrow -25°C for 30 mi (b) Wait 4 hours before measurement	nutes repeated 3 times

Requirements: The SAW resonator shall remain within the electrical specifications after tests.

Remarks

- SAW devices should not be used in any type of fluid such as water, oil, organic solvent, etc.
- Be certain not to apply voltage exceeding the rated voltage of components.
- Do not operate outside the recommended operating temperature range of components.
- Sudden change of temperature shall be avoided, deterioration of the characteristics can occur.
- Be careful of soldering temperature and duration of components when soldering.
- Do not place soldering iron on the body of components.
- Be careful not to subject the terminals or leads of components to excessive force.
- SAW devices are electrostatic sensitive. Please avoid static voltage during operation and storage.
- Ultrasonic cleaning shall be avoided. Ultrasonic vibration may cause destruction of components.

© LGE I 2009. All Rights Reserved.

- 1. The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices or e-mail sales@luguang.cn