

LH0033-200 Fast Buffer Amplifier

General Description

The LH0033-200 is a high speed, FET input, voltage follower/buffer designed to provide high current drive at frequencies from DC to over 100 MHz. The LH0033-200 will provide \pm 10 mA into 1 k Ω loads (\pm 100 mA peak) at slew rates of 1500 V/µs. In addition, the LH0033-200 exhibits excellent phase linearity up to 20 MHz.

It is intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffer for driving reactive loads and high impedance input buffers for high speed A/D's and comparators. For additional applications information, see AN-48.

These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH0033-200 is specified for -55° C to $+200^{\circ}$ C operation and is available in a 1.5W TO-8 metal package.

Features

200°C operation	
■ Fast	1000 V/μs
Wide range single or dual supply	
Wide power bandwidth	DC to 100 MHz
 High output drive 	$\pm10V$ with 50 Ω load
Low phase linearity	2°
 Fast rise times 	2 ns
 High current gain 	120 dB
 High input resistance 	10 ¹⁰ Ω
 Expected life in operation 	160 hours

Advantages

- Only +10V supply needed for 5V p-p out
- Speed does not degrade system performance
- Wide data range for phase-encoded systems
- Output drive adequate for most loads
- Single pre-calibrate package

Connection Diagram

© 1995 National Semiconductor Corporation TL/K/8786

RRD-B30M115/Printed in U. S. A.

LH0033-200 Fast Buffer Amplifier

January 1989

Absolute Maximum Ratings				
If Military/Aerospace specified devices a	re required,	Input Voltage	Equal to Supplies	
please contact the National Semiconductor Sales		Continuous Output Current	\pm 100 mA	
Office/Distributors for availability and specifications.	ifications.	Peak Output Current	\pm 200 mA	
Supply Voltage (V $^+$ – V $^-$)	40V	Operating Temperature Range	-55°C to +125°C	
Maximum Power Dissipation	1.5W	Storage Temperature Range	-65°C to +225°C	
Maximum Junction Temperature	225°C	Lead Temperature (Soldering, 10 sec.)	260°C	
		ESD rating is to be determined.		

DC Electrical Characteristics $v_S=~\pm15V,\, T_{MIN}\leq T_A\leq T_{MAX}$ unless otherwise specified (Note 2)

0h.e.l	umb al Davanadan Oandikiana		Limits			11	
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
V _{OS}	Output Offset Voltage	$R_{S} = 100\Omega$ (Note 1)			40	mV	
Ι _Β	Input Bias Current	$V_{IN} = 0V, T_J = T_A = T_{MAX}$			50	nA	
A _V	Voltage Gain	$V_{O}=~\pm10V, R_{S}=100\Omega, R_{L}=1.0~k\Omega$	0.90	0.98		V/V	
Z _{IN}	Input Impedance	$R_L = 1 k\Omega$		10 ¹¹		Ω	
Z _{OUT}	Output Impedance	$V_{IN}=\pm$ 1.0V, $R_L=$ 1.0 k Ω		6.0		Ω	
VO	Output Voltage Swing	$V_{I} = \pm 14V, R_{L} = 1.0 \text{ k}\Omega$	±12			V	
IS	Supply Current	$V_{IN} = 0V$		20	25	mA	

Note 1: When supply voltages are \pm 15V, no load operating junction temperature may rise 40°C-60°C above ambient and more under load conditions. Accordingly, V_{OS} may change one to several mV, and I_B will change significantly during warm-up. Refer to I_B vs. temperature graph for expected values. Note 2: In order to limit maximum junction temperature to $+225^{\circ}$ C it may be necessary to operate with V_S < \pm 15 when T_A or T_C exceeds specific values depending on the P_D within the device package. Total P_D is the sum of quiescent and load-related dissipation.

AC Electrical Characteristics T	$r_{2} = 25^{\circ}C, V_{S} = \pm 15V, R_{2}$	$s = 50\Omega, R_1 = 1.0 k\Omega$
--	---	-----------------------------------

	Parameter	Conditions				
Symbol			uditions LH0033			Units
			Min	Тур	Мах	
S _R	Slew Rate	$V_{IN} = \pm 10V$	1000	1500		V/µs
BW	Bandwidth	$V_{IN} = 1.0 V_{rms}$		100		MHz

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications