National Semiconductor

Amplifiers

LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier

General Description

The LH0061/LH0061C is a wide band, high speed, operational amplifier capable of supplying currents in excess of 0.5 ampere at voltage levels of ±12V. Output short circuit protection is set by external resistors, and compensation is accomplished with a single external capacitor. With a suitable heat sink the device is rated at 20 Watts.

The wide bandwidth and high output power capabilities of the LH0061/LH0061C make it ideal for such applications as AC servos, deflection yoke drivers, capstan drivers, and audio amplifiers. The

LH0061 is guaranteed over the temperature range -55°C to +125°C; whereas, the LH0061C is guaranteed from -25°C to +85°C.

Features

■ Output current 0.5 Amp
■ Wide large signal bandwidth 1 MHz
■ High slew rate 70V/µs
■ Low standby power 240 mW
■ Low input current 300 nA Max

Schematic and Connection Diagrams

TO-3 Package

· Order Numbers:

LH0061K (-55°C to +125°C) LH0061CK (-25°C to +85°C) See Package K08A

Absolute Maximum Ratings

Supply Voltage
Power Dissipation
Differential Input Current (Note 2)
Input Voltage (Note 3)
Peak Output Current
Output Short Circuit Duration (Note 4)
Operating Temperature Range LH0061
LH0061C

±10 mA ±15V 2A Continuous -55°C to +125°C -25°C to +85°C -65°C to +150°C

±18V

300°C

See Curve

Storage Temperature Range Lead Temperature (Soldering, 10 sec)

DC Electrical Characteristics (Note 1)

	CONDITIONS	LIMITS						
PARAMETER		LH0061			LH0061C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$R_S < 10 \text{ k}\Omega$, $T_C = 25^{\circ}\text{C}$, $V_S = ±15V$ $R_S < 10 \text{ k}\Omega$, $V_S = ±15V$		1.0	4.0 6.0		3.0	10 15	mV mV
Voltage Drift with Temperature	R _S < 10 kΩ		5			5		μV/°C
Offset Voltage Change with Output Power			5		i	5		μV/watt
Input Offset Current	T _C = 25 C		30	100 300		50	200 500	nA nA
Offset Current Drift with Temperature			1			1		nA/°C
Input Bias Current	T _C = 25 'C		100	300 . 1.0		200	500 1.0	nA ΄ μA
Input Resistance	T _C = 25 C	0.3	1.0		0.3	1.0		МΩ
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$R_S < 10 \text{ k}\Omega$, $\Delta V_{CM} = 10V$	70	90		60	80		dB
Input Voltage Range	V _S = +15V	211			±11			v
Power Supply Rejection Ratio	$B_S < 10 \text{ k}\Omega$, $\Delta V_S = \pm 10 \text{ V}$	70	80		50	70		dВ
Voltage Gain	V _S = ±15V, V _O = ±10V R _L = 1 kΩ, T _C = 25°C V _S = ±15V, V _O = ±10V R _L = 20Ω	50 5	100		25 2.5	50	,	V/mV V/mV
Output Voltage Swing	V _S = ±15V, R _L = 20Ω	±10	112		±10	±12		v
Output Short Circuit Current	V _S = ±15V, T _C = 25 °C, R _{SC} = 1:0Ω		600			600		mA
Power Supply Current	V _S = ±15V, V _{OUT} = 0		7	10		10	15	mA
Power Consumption	V _S = ±15V, V _{OUT} = 0		210	300		300	450	mW

AC Electrical Characteristics ($T_C = 25^{\circ}C$, $V_S = \pm 15V$, $C_C = 3000 pF$)

Slew Rate	A _V = +1, R _L = 100Ω	25	70		25	70		V/µs
Power Bandwidth	R _L = 100Ω	1	1			1		MHz
Small Signal Transient Response			30			30		ns
Small Signal Overshoot			5	20		10	30	%
Settling Time (0.1%)	$\Delta V_{IN} = 10V$, $A_V = +1$		0.8			0.8	'	μς
Overload Recovery Time	· ·	, ,	1			1		μς
Harmonic Distortion	f = 1 kHz, P _O = 0.5W		0.2			0.2	ľ	%

Note 1: Specifications apply for $\pm 5V \le V_S \le \pm 18V$, $C_C = 3000$ pF, and $-55^{\circ}C \le T_C \le +125^{\circ}C$ for the LH0061K and $-25^{\circ}C \le T_C \le +85^{\circ}C$ for the LH0061CK. Typical values are for $T_C = 25^{\circ}C$.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Excessive current will flow if a differential voltage in excess of 1V is applied between the inputs without limiting resistors.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Rating applies as long as package power rating is not exceeded.

Typical Performance Characteristics

Typical Applications

AC Servo Amplifier