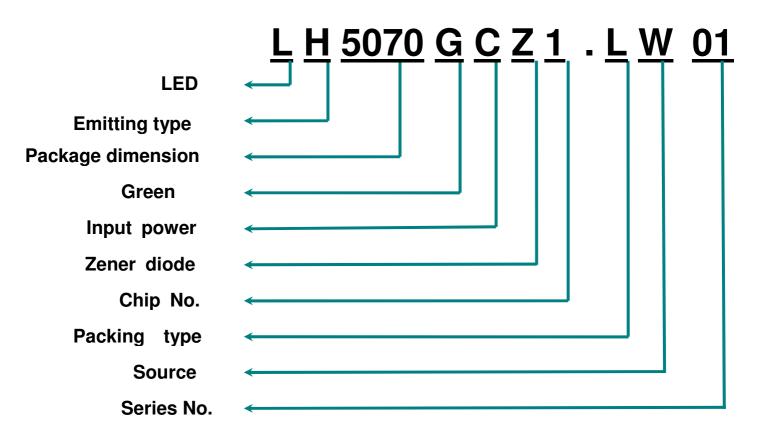


SMD Technical Data Sheet

High Power Green LED

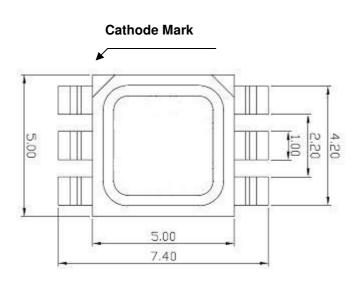
LH5070GCZ1.LW01

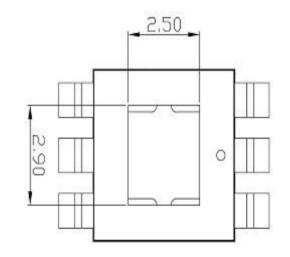
Features

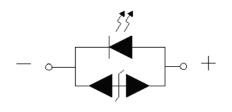

- High power green LED (7.0 x 5.0 x 1.3 mm)
- Lead frame package with individual 6 pins
- 1 chip inside
- 1 zener inside
- Wide view angle (X: 120°/Y: 120°)
- ESD protection
- Pb free
- Green product, remain within RoHS

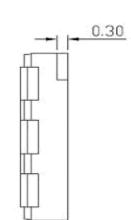
Application

- General lighting
- Decoration lighting
- Indicator
- Outdoor lighting

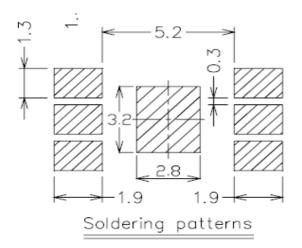


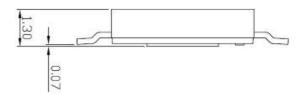

Product code





Package Dimensions





Unit : mm

Wellypower Optronics Corporation

Absolute maximum ratings

(LED Die)			(Ta=25℃		
Item	Symbol	Absolute Maximum Rating	Unit		
Forward current	I _F	350	mA		
Pulse forward current*	I _{FP}	500	mA		
Reverse voltage	V _R	5	v		
Power dissipation	PD	1225	mW		
Operating temperature	T _{opr}	-30~+85	Ĵ		
Storage temperature	T _{stg}	-40~+110	C		
Soldering temperature	T _{sld}	Reflow Soldering : 260 °C for 10secs Hand Soldering : 350 °C for 3secs			

(Zener diode)

(Ta=25℃)

Item	Symbol	Condition	Min.	Max.	Unit
Reverse leakage current	IR	VR=5V		0.5	uA
Zener voltage	Vz	lz=10mA	8	13	V
Forward voltage	Vf	IF=10mA	6	8	V

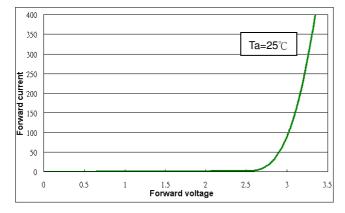
*I_{FP} Conditions : Pulse Width $\,\leq 10msec,\,and\,\,duty \leq 1/10$

Electro-optical characteristics

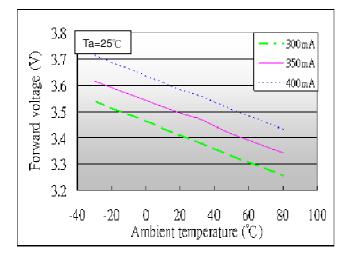
(Ta=25℃)

ltem		Symbol	Condition	Min.	Тур.	Max.	Unit
	Rank E7	Vf	l _F =350mA	3.0	-	3.2	Volt
Forward Voltage*	Rank E9			3.2		3.4	
	Rank E11			3.4		3.6	
	Rank F4			3.6	1	3.8	
Luminous Flux**	Rank L1	Lm	I _F =350mA	47		54	
	Rank L2			54		62	
	Rank M1			62		72	Lm
	Rank M2			72		82	
	Rank N11			82		91	
Dominant Wavelength	Rank G4	Wd	I _F =350mA	520		525	
	Rank G5			525		530	nm
Thermal resistar	nce	Rth			10		°C/W

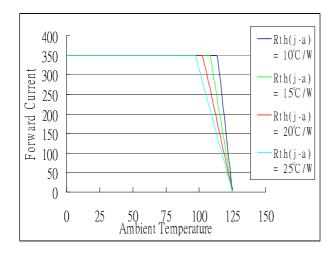
 * Forward Voltage is measured with an accuracy of $\pm 0.05 V.$


**Luminous flux is measured with an accuracy of $\pm 10\%$.

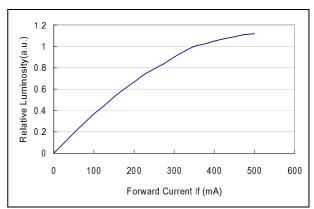
Relative Spectral Power Distribution



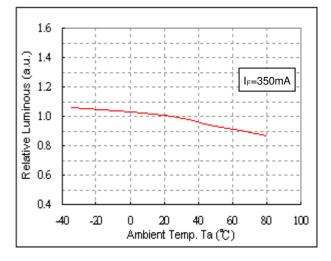
Typical electro-optical characteristics curves


Forward voltage vs. Forward current

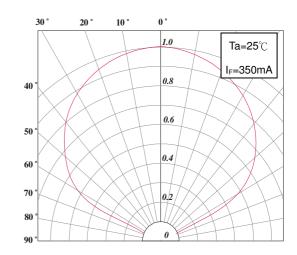
Ambient temperature vs. Forward voltage



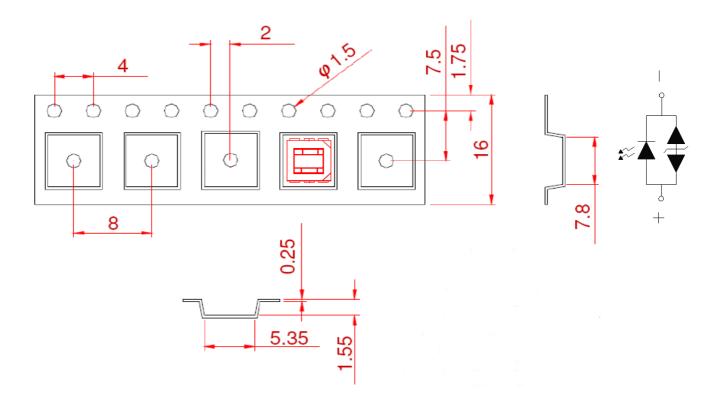
Ambient temp. vs. Allowable forward current

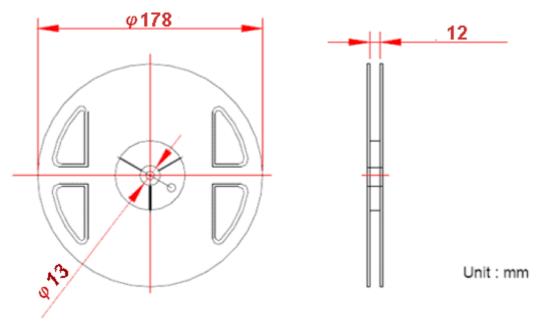


Wellypower Optronics Corporation

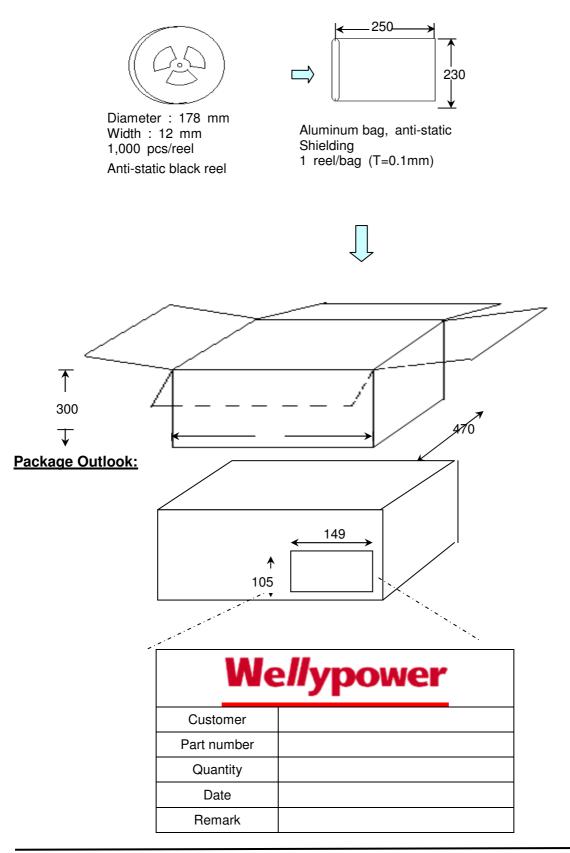

Forward current vs. Relative luminosity

Ambient temp. vs. Relative luminosity


Radiation pattern


Package model

• Taping and Package Spec :



Package Dimensions of Reel:

1 Reel 1000ea

Packing formation

Reliability

Test Items and results

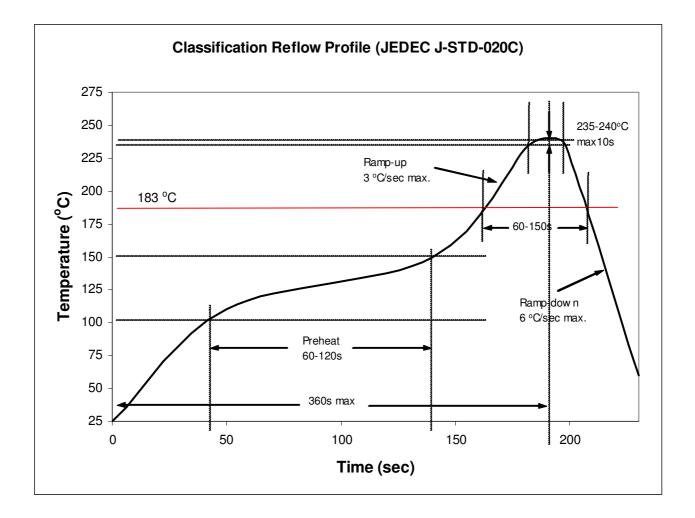
20 pcs

No.	Test item	Test condition	Notes Equipmen		# of damaged
1	Temperature cycle	-40℃~25℃~100℃~25℃	100 cycles	T/H chamber	0/20
		30min~5min~30min~5min	Too cycles		
2	High temperature storage	Ta=110℃	1000 hrs	Oven	0/20
3	Thermal shock	-40℃~100℃	100 cycles	T/S chamber	0/20
		1min~1min 10sec			
4	Steady state operating life condition	Ta=25℃,I⊧=350mA	1000 hrs	Life test sys.	0/20
5	Steady state operating life of high temperature 1	Ta=55℃,I⊧=350mA	1000 hrs	Oven	0/20
6	Steady state operating life of high temperature 2	Ta=85℃,I⊧=225mA	1000 hrs	Oven	0/20
7	Steady state operating life of high humidity heat	Ta=85℃,RH=60%,I⊧=225mA	1000 hrs	T/H chamber	0/20
8	Resistance to solding heat	Tsld=260℃ ,10sec	2 times	Reflow	0/20

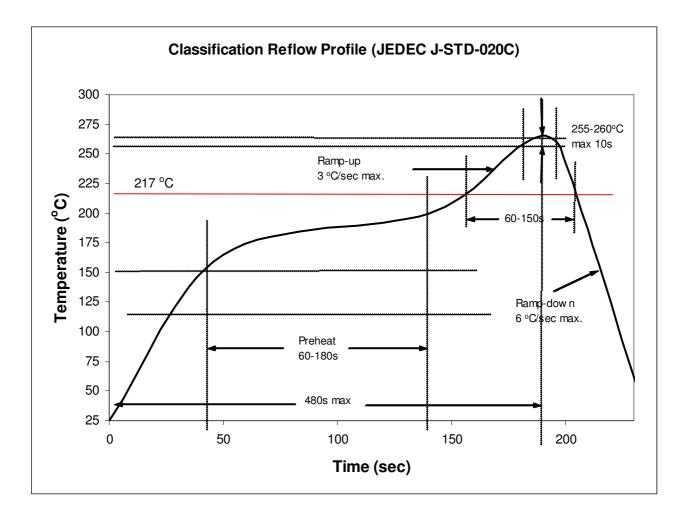
Recommend reflow soldering profile

Surface mounting condition

In automatic mounting of the SMD LEDs on printed circuit boards, any bending, expanding and pulling forces or shock against the SMD LEDs should be kept min. to prevent them from electrical failures and mechanical damages of the devices.


Soldering reflow

-Soldering of the SMD LEDs should conform to the soldering condition in the individual specifications. -SMD LEDs are designed for reflow soldering.


-In the reflow soldering, too high temperature and too large temperature gradient such as rapid heating/cooling may cause electrical & optical failures and damages of the devices.

-Wellypower can't guarantee the LEDs after they have been assembled using the solder dipping method.

1) Lead solder

2) Lead-free solder (JEDEC J-STD-020B).

3) Manual soldering.

- Lead solder

Max. 300 $^\circ\!\mathrm{C}$ for max. 3sec, and only one time.

- Lead-free solder

Max. 350 $^\circ\!\!\!\mathrm{C}$ for max. 3sec, and only one time.

- There is possibility that the brightness of LEDs is decreased, which is influenced by heat or ambient atmosphere during reflow. It is recommended to use the nitrogen reflow method use the nitrogen reflow method.
- After LEDs have been soldered, repairs should not be done. As repairs is unavoidable, a doublehead soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will be damaged by repairing or not.
- Reflow soldering should not be done more than two times.

Cautions

(1) Moisture proof package

The moisture proof package should be used to prevent moisture in the package as the moisture may cause damage to optical characteristics of the LEDs.

The aluminum bag with zipper is used for moisture proof package. And, the moisture absorbent material, silica gel, is inserted into aluminum bag.

(2) Storage:

Storage conditions

Before opening the package:

The LEDs should be kept at 30° C or less than 90%RH or less. The LEDs should be used within a year. When storing the LEDs, moisture proof packaging with absorbent material is recommended.

After opening the package:

After open the package, the LED should be kept at 30°C, 60%RH or less. The LED should be soldered within 168 hours (7 days) after opening the package.

If unused LEDs remain, it should be stored in moisture proof condition.

If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

Baking treatment: more than 24 hours at 65±5°C.

(3) Heat generation

Thermal design of the end products is of paramount importance. The heat generation must be taken into design consideration when using the LED. The coefficient of the temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components.

(4) Static electricity

Static electricity or surge voltage damages the LEDs. All equipment and machinery must be properly grounded. It is recommended to use a wristband or anti-electrostatic glove when handing the LEDs. When inspecting the final products in which LEDs were assembled, it is recommended to check whether the assembled LEDs are damaged by static electricity or not. It is easy to find static-damaged LEDs by a light-on test or a Vf test at a lower current. (below 1mA is recommended).

Criteria: Vf >2.0V at IF=0.01 mA

(5) Cleaning

Use isopropyl alcohol as a solvent for cleaning the LEDs. The other solvent may dissolve the LEDs package and the epoxy.

Ultrasonic cleaning should not be done.

(6) Others

When using the LEDs, it must care that the reverse voltage will not exceed the absolute maximum rating. The LED light is enough to injure human eyes, so it should avoid looking at LED light directly.

Note

All the information published is considered to be reliable. However, Wellypower does not assume any liability arising out of the application or use of any product described herein.

Wellypower reserves the right to make changes at any time without notice to any products in order to improve reliability, function or design.