

PREPARED BY: DATE APPROVED BY: DATE

SI	HA	R	P
Statistics of the local division of the loca			

DISPLAY DEVICE DIVISION 5

SHARP CORPORATION

FILE No. ISSUE: Mar, 7, 2013 PAGE :19 pages DISPLAY DEVICE BUSINESS GROUP

SPEC No. LD-K24Z13C

DEVICE SPECIFICATION FOR

TFT-LCD Cell

MODEL No. LK315T3HB94

CUSTOMER'S APPROVAL

DATE

BY

PRESENTED anable for Bv

K. CHOHKA **DISPLAY DEVICE DIVISION 5** DISPLAY DEVICE BUSINESS GROUP SHARP CORPORATION

 \oslash

MODEL No. : LK315T3HB94

SPEC No. : LD-K24Z13C

DATE	NO.	REVISED No.	PAGE	SUMMARY	NOTE
2012.12.21	LD-K24Z13	-	-	-	1 st Issue
2013.01.15	LD-K24Z13A	А	1,17	Modify the outline dimensions of open cell	2 nd Issue
			11	Modify the Chromaticity	
			18	Modify the packing form	
2013.01.30	LD-K24Z13B	В	13	Add the Identification Code	3 rd Issue
			18	Modify the packing information	
2013.3.7	LD-K24Z13C	С	2	Modify the Used connector	4 th Issue
			14,18	Modify the packing form	
	20		14,19	Add the packing form	

1. Application

This specification applies to the color 31.5" Wide XGA TFT Open-Cell LK315T3HB94.

* These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This Open-Cell is a color active matrix LCD module incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a $1366 \times RGB \times 768$ dots panel with 16,777,216 colors by using LVDS (Low Voltage Differential Signaling) to interface, +12V of DC supply voltages.

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit .In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this Open-Cell are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

Parameter	Specifications	Unit
Display size	80.039 (Diagonal)	cm
Display size	31.5 (Diagonal)	inch
Active area	697.69 (H) × 392.26 (V)	mm
Pixel Format	$1366 (H) \times 768 (V)$ (1pixel = R + G + B dot)	pixel
Pixel pitch	0.51075(H) × 0.51075 (V)	mm
Pixel configuration	R,G, B vertical stripe	
Display mode	Normally black	
Unit Outline Dimensions [Note 2]	715.59(W) × 446.45(H) ×1.8(D)	mm
Mass	1.15±0.1	kg
Surface treatment [Note 1]	Low-Haze Anti Glare, Hard coating Surface Hardness; 2H: CF side (Front) <6B: TFT side (Rear)	

3. Mechanical Specifications

[Note 1] Without the protection film.

[Note 2] The Outline dimensions are shown in P17. $\blacktriangle A$

Č.

LD-K24Z13C-2

4. Input Terminals

4-1. TFT panel driving

CN1 (Interface signals and +12V DC power supply) (Shown in Fig.1)

Using connector : FI-X30SSL-HF-R2500 (JAE) ▲C

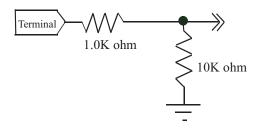
Matching connector : FI-X30H/FI-X30HL, FI-X30C/FI-X30C2L

or FI-X30M (Japan Aviation Electronics Ind., Ltd.)

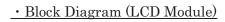
Matching LVDS transmitter : THC63LVDM83R (THine) or equivalent device

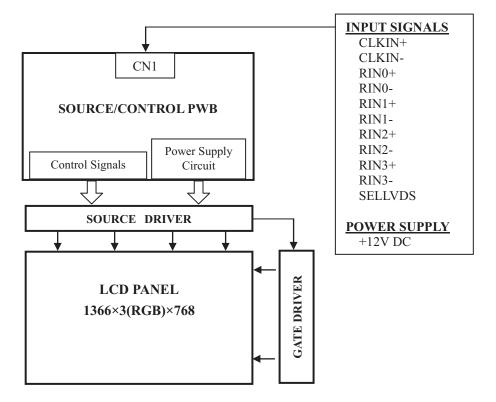
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Symbol VCC VCC VCC GND GND GND GND SELLVDS Reserved GND	Function +12V Power Supply +12V Power Supply +12V Power Supply +12V Power Supply Ground Ground Ground Ground Select LVDS data order [Note 1] Not Available	Remark Remark Default: Pull down (L:GND) [Note 2]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VCC VCC GND GND GND GND SELLVDS Reserved GND	+12V Power Supply +12V Power Supply +12V Power Supply Ground Ground Ground Ground Select LVDS data order [Note 1]	(L:GND)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VCC VCC GND GND GND GND SELLVDS Reserved GND	+12V Power Supply +12V Power Supply Ground Ground Ground Ground Select LVDS data order [Note 1]	(L:GND)
4 5 6 7 8 9 10 11 12 13 14	VCC GND GND GND GND SELLVDS Reserved GND	+12V Power Supply Ground Ground Ground Ground Select LVDS data order [Note 1]	(L:GND)
5 6 7 8 9 10 11 12 13 14	GND GND GND SELLVDS Reserved GND	Ground Ground Ground Ground Select LVDS data order [Note 1]	(L:GND)
6 7 8 9 10 11 12 13 14	GND GND GND SELLVDS Reserved GND	Ground Ground Ground Select LVDS data order [Note 1]	(L:GND)
7 8 9 10 11 12 13 14	GND GND SELLVDS Reserved GND	Ground Ground Select LVDS data order [Note 1]	(L:GND)
8 9 10 11 12 13 14 14	GND SELLVDS Reserved GND	Ground Select LVDS data order [Note 1]	(L:GND)
9 10 11 12 13 14	SELLVDS Reserved GND	Select LVDS data order [Note 1]	(L:GND)
10 11 12 13 14	Reserved GND		(L:GND)
11 12 13 14	GND	Not Available	
12 13 14			
13 14		Ground	
14	RIN0-	Negative (-) LVDS differential data input	LVDS
	RIN0+	Positive (+) LVDS differential data input	LVDS
15	GND	Ground	
	RIN1-	Negative (-) LVDS differential data input	LVDS
16	RIN1+	Positive (+) LVDS differential data input	LVDS
17	GND	Ground	
18	RIN2-	Negative (-) LVDS differential data input	LVDS
19	RIN2+	Positive (+) LVDS differential data input	LVDS
20	GND	Ground	
21	CLKIN-	Clock Signal(-)	LVDS
22	CLKIN+	Clock Signal(+)	LVDS
23	GND	Ground	
24	RIN3-	Negative (-) LVDS differential data input	LVDS
25	RIN3+	Positive (+) LVDS differential data input	LVDS
26	GND	Ground	
27	Reserved	No Connection	
28	Reserved	No Connection	
29	GND	Ground	
30	Reserved	No Connection	

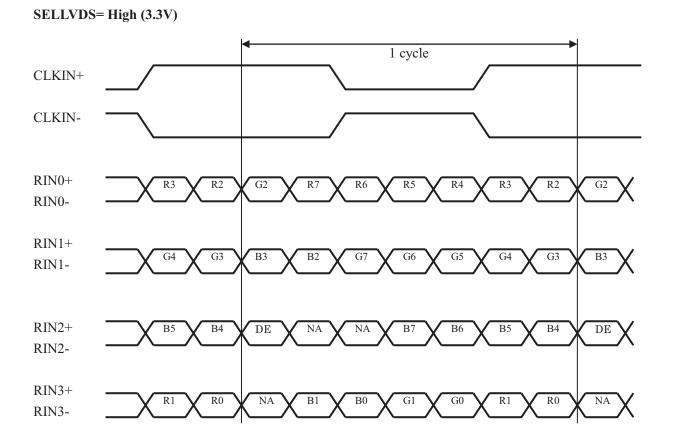
[Note] GND of a liquid crystal panel drive part has connected with a module chassis.

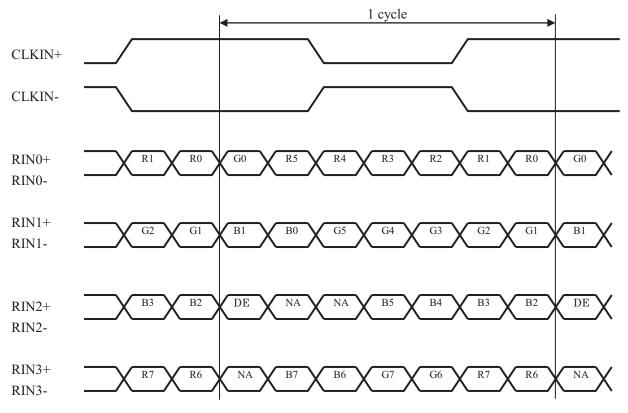

Trans	mitter	SELLV	'DS		
Pin No	Data	= L(GND) or Open	= H(3.3V)		
51	TA0	R0(LSB)	R2		
52	TA1	R1	R3		
54	TA2	R2	R4		
55	TA3	R3	R5		
56	TA4	R4	R6		
3	TA5	R5	R7(MSB)		
4	TA6	G0(LSB)	G2		
6	TB0	G1	G3		
7	TB1	G2	G4		
11	TB2	G3	G5		
12	TB3	G4	G6		
14	TB4	G5	G7(MSB)		
15	TB5	B0(LSB)	B2		
19	TB6	B1	B3		
20	TC0	B2	B4		
22	TC1	B3	B5		
23	TC2	B4	B6		
24	TC3	B5	B7(MSB)		
27	TC4	NA	NA		
28	TC5	NA	NA		
30	TC6	DE(*)	DE(*)		
50	TD0	R6	R0(LSB)		
2	TD1	R7(MSB)	R1		
8	TD2	G6	G0(LSB)		
10	TD3	G7(MSB)	G1		
16	TD4	B6	B0(LSB)		
18	TD5	B7(MSB)	B1		
25	TD6	NA	NA		

[Note1] SELLVDS


NA: Not Available


(*) Since the display position is prescribed by the rise of DE (Display Enable) signal, please do not fix DE signal during operation at "High."


[Note 2] The equivalent circuit figure of the terminal


 \oslash

SELLVDS= Low(GND) or Open

DE: Display Enable NA: Not Available (Fixed Low)

Ta=25°C

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage (for Control)	Vı	Ta=25°C	-0.3 ~ 3.6	V	[Note 1]
+12V supply voltage (for Control)	V _{CC}	Ta=25°C	0~+15	V	
Storage temperature	Tstg	-	-25 ~ +60	°C	
Operation temperature (Ambient)	Тора	-	0~+50	°C	[Note 2]

[Note 1] SELLVDS

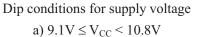
[Note 2] Humidity 95%RH Max.(Ta \leq 40°C)

Maximum wet-bulb temperature at 39°C or less.(Ta > 40°C), No condensation.

6. Electrical Characteristics

6-1. Control circuit driving

	ant unit	, mg						1a 25 C
Pa	ramet	er	Symbol	Min.	Тур.	Max.	Uniit	Remark
	Sup	oply voltage	V _{CC}	+11.4	+12.0	+13.7	V	[Note 1]
+12V supply			I _{CC}	-	350	600	mA	[Note 2]
voltage	Curre	ent dissipation	I _{RUSH}	-	1500	2500	mA	[Note 5]
			T _{RUSH}	-	0.5	-	ms	[Note 5]
Permissible i	nput r	ipple voltage	V _{RP}	-	-	100	mVP-P	Vcc = +12.0V
Differential i	nput	High	V _{TH}	-	-	100	mV	$V_{CM} = +1.2V$
threshold vol	ltage	Low	V _{TL}	-100	-	-	mV	[Note 4]
Input	Low v	oltage	V _{IL}	0	-	0.7	V	[Note 3]
Input I	High v	oltage	V_{IH}	2.6	-	3.3	V	
Input leal	Z OUTEC	ent (Low)	I_{IL}			400	۸	$V_I = 0V$
input lear	Curre	lin (LOw)	IIL	-	-	400	μA	[Note 3]
Input leak	curre	ent (High)	$I_{\rm IH}$	_	_	100	μA	$V_{I} = 3.3V$
-			τIΗ	-	_	100	μΑ	[Note 3]
Termi	inal re	sistor	R _T	-	100	-	Ω	Differential input

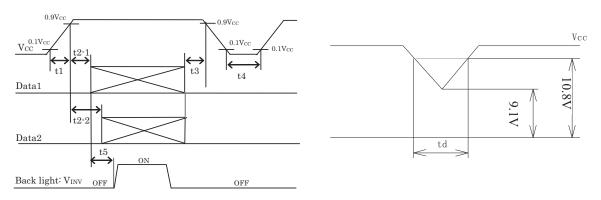

[Note] VCM: Common mode voltage of LVDS driver.

[Note 1]

Input voltage sequences

 $50\mu s < t1 \le 20ms$ $20ms < t2-1 \le 5s$ $20ms < t2-2 \le 5s$ $0 < t3 \le 1s$ $t4 \ge 1s$

t5 ≥ 300ms

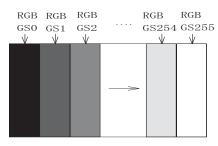


$$td \le 10ms$$

b)
$$V_{CC} < 9.1 V$$

Dip conditions for supply voltage is

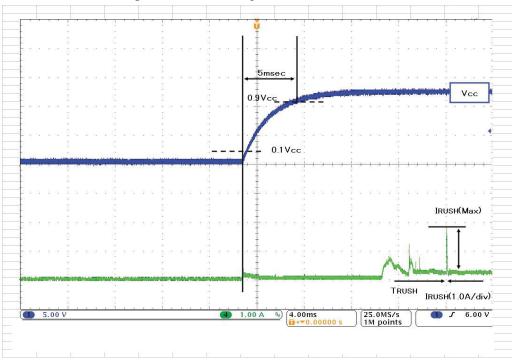
based on input voltage sequence.



- ※ Data1: CLKIN±,RIN0±,RIN1±, RIN2±, RIN3±
- ※ Data2: SELLVDS
- X About the relation between data input and back light lighting, please base on the above-mentioned input sequence.

When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note 2] Typical current situation: 256 gray-bar pattern ($V_{CC} = +12.0V$)


The explanation of RGB gray scale is seen in section 8.

 $V_{CC} = +12.0V$ CK = 82.0MHz $Th = 20.68\mu s$

[Note 3] SELLVDS

[Note 4] CLKIN+/CLKIN-, RIN0+/RIN0-, RIN1+/RIN1-, RIN2+/RIN2-, RIN3+/RIN3-[Note 5] The Rush current corrugation at the time of power on

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.2

	Parameter	Symbol	Min.	T NTSC	yp. PAL	Max.	Unit
01 1	Г	1 / T	72			0.5	MIT
Clock	Frequency	1/Tc	72	82	82	85	MHz
	Horizontal period	TH	1540	1696	1696	1940	clock
	Ĩ	111	19.84	20.68	20.68	-	μs
Data enable signal	Horizontal period (High)	THd	1366	1366	1366	1366	clock
	Vertical period	TV	778	806	967	972	line
	Vertical period (High)	TVd	768	768	768	768	line

[Note] When vertical period is very long, flicker may occur.

Please turn off the module after it shows the black screen.

Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.

As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

Vertical period must change less than 1 line each flames.

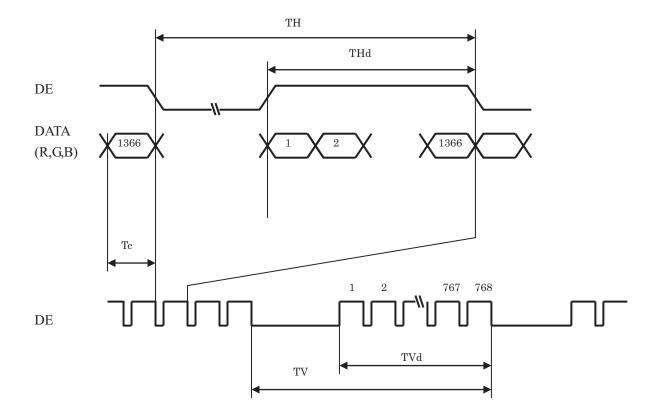
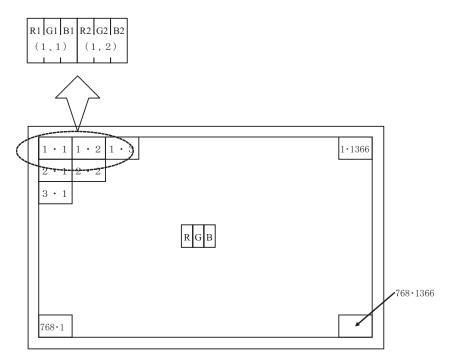



Fig.2 Timing characteristics of input signals

 \oslash

7-2. Input data signal and display position on the screen

Display Position of Data (V,H)

8. Input Signal, Basic Display Colors and Gray Scale of E

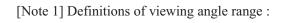
	Colors &												Data	sign	nal											
	Colors & Gray scale	Gray	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B3	B4	В5	B6	B7
	Gray scale	Scale																								
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
or	Green	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic Color	Cyan	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
asic	Red	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Magenta	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ŧ	Û	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rec	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	仓	\checkmark				1	r								r							``	r			
Sca	Û	\checkmark				1	r								r								V			
ìray	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
u	Û	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gree	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
of (仓	\checkmark				1	\mathbf{k}								r							、	r			
Gray Scale of Green	Û	\checkmark					V					\checkmark								``	r					
ray	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
G	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
e of	Û	\checkmark				1	L								r							``	r			
Scal	Û	\checkmark				1	r								r							、	r			
ray :	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
G	Ŷ	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	ow leve			2				vel			Ĭ	ÿ	2	~	5	÷	2	~	-	-	-			•	-	-

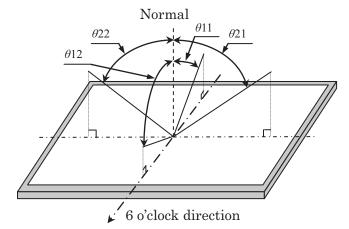
0 : Low level voltage, 1 : High level voltage.

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16,777,216 colors display can be achieved on the screen.

9. Optical characteristics

						Та	= 25°C	, Vcc = +12V	
Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Viewing angle	Horizontal	<i>θ</i> 21 <i>θ</i> 22			88	-	Deg.	[Nota1 4]	
range	Vertical	θ11 θ12	CK ≥ 10	70	88	-	Deg.	[Note1,4]	
Contra	st ratio	CRn		3750	5000	-	-	[Note2,4]	
Respon	se time	$ au_{DRV}$		-	7	-	ms	[Note3,4,5]	
01				0.246	0.276	0.306	-		
Chromaticity	of white A	у	0 0 1	0.244	0.274	0.304	-		
Charamaticity	afred A	Х	$\theta = 0$ deg.	0.603	0.633	0.663	-	[Note 4]	
Chromaticity		у		0.324	0.354	0.384	-		
Chromotiaity	of green A	Х		0.288	0.318	0.348	-		
Chromaticity		у		0.625	0.655	0.685	-		
Chromaticity	of blue A	Х		0.115	0.145	0.175	-		
Cilionationy		у		0.021	0.051	0.081	-		
Luminance of white		Y_L		320	400	-	cd/m ²	[Note 4]	
Luminance uniformity		δ_{W}		-	-	1.25	-	[Note 6]	


Measurement condition : Back Light Unit is based on SHARP standard Moudel.


*The measurement shall be executed 60 minutes after lighting at rating.

[Note] The optical characteristics are measured using the following equipment.

- Fig.3-1 Measurement of viewing angle range and response time. (Viewing angle range: EZ-CONTRAST Response time: Photo Diode)
- Fig.3-2 Measurement of Contrast, Luminance, and Chromaticity.

[Note 2] Definition of contrast ratio :

The contrast ratio is defined as the following.

Luminance (brightness) with all pixels white

Contrast Ratio=

Luminance (brightness) with all pixels black

[Note 3] Definition of response time

The response time (τ_{DRV}) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (0%, 25%, 50%, 75% and 100%)" and "any level of gray (0%, 25%, 50%, 75% and 100%)" at panel surface temperature 45°C.

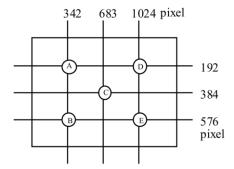
	0%	25%	50%	75%	100%
0%		tr: 0%-25%	tr: 0%-50%	tr: 0%-75%	tr: 0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr: 25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td: 100%-75%	

t*:x-y...response time from level of gray(x) to level of gray(y)

 $\tau_{DRV} = \Sigma(t^*:x-y)/20$

[Note 4] This shall be measured at center of the screen.

[Note 5] This value is valid when O/S driving is used at typical input time value .


[Note 6] Definition of white uniformity;

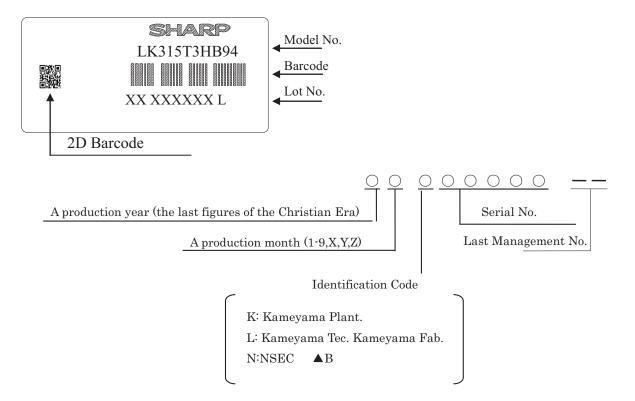
White uniformity is defined as the following with five measurements. (A \sim E)

 $\delta_{W} =$

Maximum luminance of five points (brightness)

Minimum luminance of five points (brightness)

10. Reliability


Reliability test item

No.	Test item	Condition
1	High temperature storage test	Ta=60°C 500h
2	Low temperature storage test	Ta=-25°C 500h
3	High temperature and high humidity	Ta=40°C ; 95%RH 500h
	operation test	(No condensation)
4	High temperature operation test	Ta=50°C 500h
		(The panel surface temperature of this time is MAX60°C)
5	Low temperature operation test	Ta=0°C 500h
		(The panel surface temperature of this time is MIN0°C)
	Vibration test	X and Y direction: 15min, Z direction: 60min.
6	(Cell Box with Open-Cells)	5Hz to 50Hz acceleration velocity: 1.0G
	(non-operation)	Sweeping ratio: 3min
7	Shock test	Maximum acceleration: 490m/s ²
	(Cell Box with Open-Cells)	Pulse width: 11ms, sinusoidal half wave
	(non-operation)	Direction: +/-X, +/-Y, +/-Z, once for each direction.

11. Label

1. Lot No. label

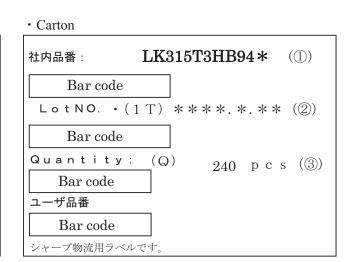
The label stuck on a cell surface displays SHARP, product model (LK315T3HB94) and a product Lot No. (ex.) [LK315T3HB94] JAPAN PRODUCTION

\oslash

2. Packing label

• Cell box

 社内品番:
 LK315T3HB94* (①)


 Bar code
 LotNO. • (1 T) ****.**(②)

 Bar code
 Quantity: (Q)

 Bar code
 15 pcs (③)

 Bar code
 ユーザ品番

 Bar code
 シャープ物流用ラベルです。

- ① Management No
- 2 Lot No. (Date)
- ③ Quantity

12. Packing form **A**C

- a) Piling number of cartons: 16 cell box / 1 palette.
- b) Packing quantity in one cell box: 15 pcs
- c) Carton size①: 1200(W) × 1000(D) × 1127(H)
 Carton size②: 1200(W) × 1000(D) × 1157(H)
- d) Total mass of one carton filled with full modules: 330 kg(Max)

13. Carton storage condition

- a) Temperature: 0° C to 40° C
- b) Humidity: 95%RH or less

Reference condition: 20°C to 35°C, 85%RH or less (summer)

: 5°C to 15°C, 85%RH or less (winter)

The total storage time (40°C, 95%RH): 240H or less

c) Sunlight:

Be sure to shelter a product from the direct sunlight.

d) Atmosphere:

Do not store in a place where exists the risk of corrosive gas (such as acid and alkali) or volatile solvents.

e) Prevent condensation:

Be sure to put cartons on a palette or base, don't put it on the floor, and store them keeping off the wall. Please take care of ventilation in storehouse and around cartons, and control temperature not to change abruptly beyond the natural environment.

f) Storage life: 6 months

\oslash

14. Precautions

- a) Because the Open-Cell is weak to static electricity, please do not touch the terminal with bare hands.
- b) Since the front polarizer is easily damaged, pay attention not to scratch it.
- c) Since long contact with drops of water may cause discoloration or spots, please wipe off them as soon as put on the screen.
- d) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- e) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- f) Precautions of peeling off the protection film:
 - Be sure to peel off slowly (recommended more than 7sec) and constant speed.
 - Peeling direction shown in Fig. 5.
 - Be sure to ground person with adequate methods such as the anti-static wrist band.
 - Be sure to ground S-PWBs while peeling off the protection film.
 - Ionized air should be blown to the surface while peeling off.
 - The protection film must not touch drivers and S-PWBs.
 - If adhesive may remain on the polarizer after the protection film peeled off, please remove with isopropyl-alcohol.

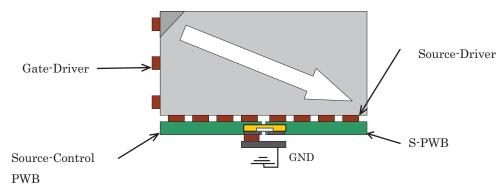
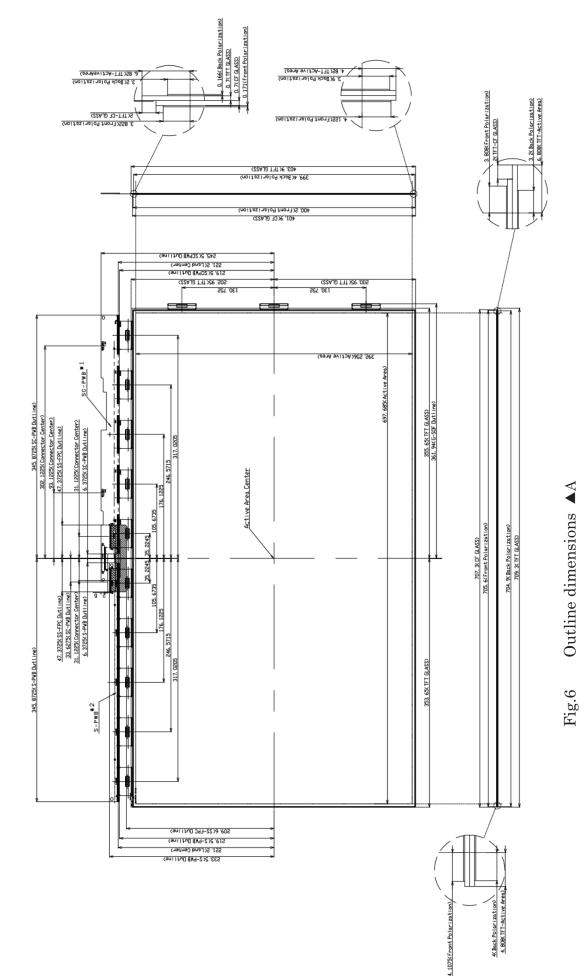


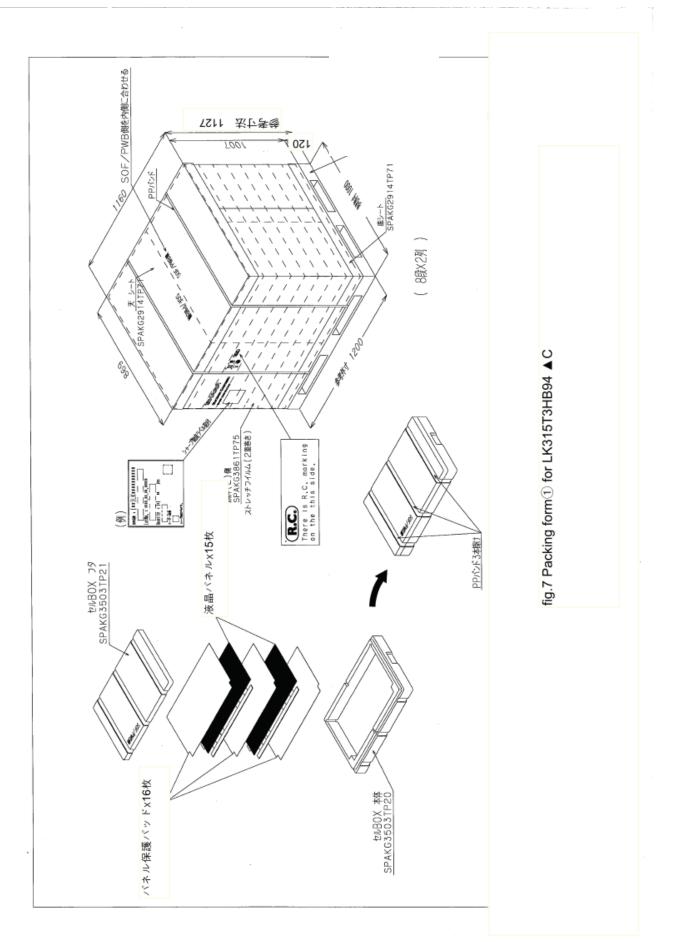
Fig.5 Direction of peeling off

g) Since the Open-Cell consists of TFT and electronic circuits with CMOS-ICs, which are very weak to electrostatic discharge, persons who are handling a Open-Cell should be grounded through adequate methods such as an anti-static wrist band. Connector pins should not be touched directly with bare hands.

	item	Management standard value and performance standard
1	Anti-static mat(shelf)	1 to 50 [Mega ohm]
2	Anti-static mat(floor, desk)	1 to 100 [Mega ohm]
3	Ionizer	Attenuate from ± 1000 V to ± 100 V within two seconds.
4	Anti-static wrist band	0.8 to 10 [Mega ohm]
5	Anti-static wrist band entry and	Below 1000 [ohm]
	ground resistance	
6	Temperature	22 to 26 [°C]
7	Humidity	60 to 70 [%]

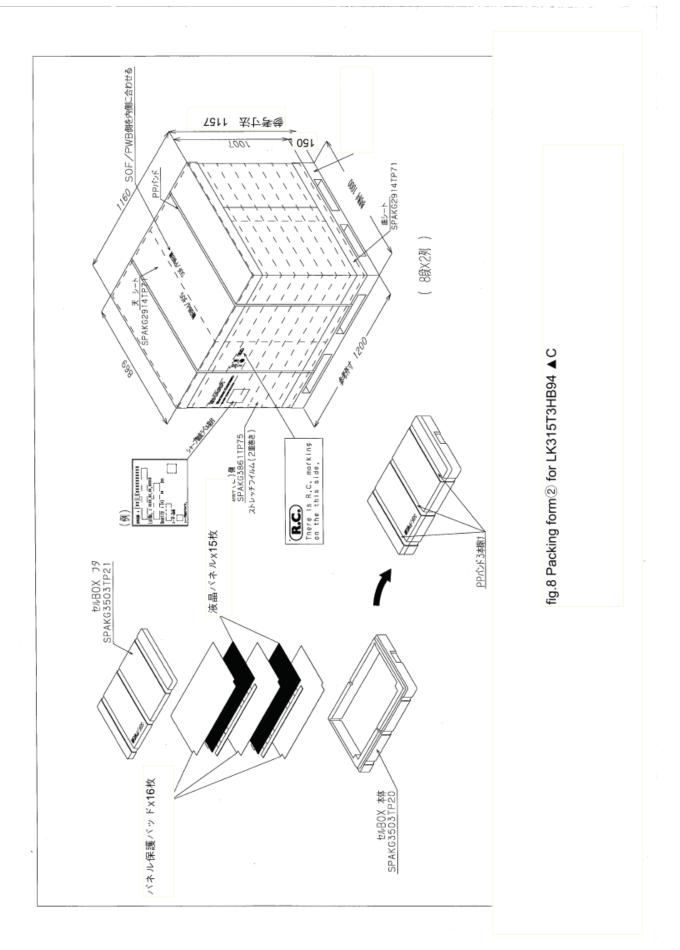
·Reference: Process control standard of sharp


- h) Since the Open-Cell has some PWBs, please take care to keep them off any stress or pressure when handling or installing the Open-Cell, otherwise some of electronic parts on them may be damaged.
- i) Be sure to turn off the power supply when inserting or disconnecting the cable.
- j) Be sure to design the module and cabinet so that the Open-Cell can be installed without any extra stress such as warp or twist.


Ċ

LD-K24Z13C-16

- k) When handling and assembling Open-Cells into module and cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of materials such as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the Open-Cell.
- Applying too much force and stress to PWBs and drivers may cause a malfunction electrically and mechanically.
- m) The Open-Cell has high frequency circuits. Sufficient suppression to EMI should be done by system manufactures.
- n) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- o) The chemical compound, which causes the destruction of ozone layer, is not being used.
- p) This Open-Cell module is corresponded to RoHS.
- q) Please design the heat dissipation of the module with enough care for SC-PWB, Source-driver and Gate-driver's IC.
- r) When any question or issue occurs, it shall be solved by mutual discussion.


 \oslash

www.panelook.com

LD-K24Z13C-19

