| ETTENTED DI- | . DELIN | | 31 EC 100. LID 122001122 | |--------------|---------|----------------------------------|----------------------------| | | | SHARP | FILE No. | | APPROVED BY: | DATE | | ISSUE: July, 15, 2008 | | | • | | PAGE: 23 pages | | | | AVC LIQUID CRYSTAL DISPLAY GROUP | APPLICABLE GROUP | | | | SHARP CORPORATION | AVC LIQUID CRYSTAL DISPLAY | | | • | SPECIFICATION | GROUP | | | | | | DEVICE SPECIFICATION FOR # TFT-LCD module MODEL No. LK315T3LA31 CUSTOMER'S APPROVAL | DATE | | | | |------|-----|--|------| | | | - | | | | . • | PRESENTED | • | | BY | ٠. | BY J. Shimada | | | • | | T. SHIMADA | | | • | | GENERAL MANAGER | | | | | DOMESTIC LCD MODULE BUSINESS DEVELOPMENT CEN | NTER | AVC LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION ## RECORDS OF REVISION $MODEL\ No.: LK315T3LA31$ | SPEC No.: LD-K20511A | | | | | | | | |----------------------|-------------------------|----------------|-----------|--|-----------------------|--|-----------------------| | DATE | NO. | REVISED
No. | PAGE | SUMMARY | NOTE | | | | 2008.7.15 | LD-K20511 | - | - | - | 1 st Issue | | | | L | 2008.9.26
LD-K20511A | | 2008.9.26 | | 18 | Added JABIL production specification in 1) Lot No. Label " | 2 nd Issue | | | | | 18 | Added NSEC production specification in 1) Lot No. Label " | | | | | | | | 19 | Added JABIL production specification in in in 2) Packing Label " | | | | | | | | | Added NSEC production specification in in in 2) Packing Label " | · | | | | | | | İ | Changed Total mass of one palette in "11. Packing form -2 . For SMPL production" | | | | | | | | 18 | Added the label of "LA31A" in "1) Lot No. | | | | | | | | 19 | Added the label of "LA31A" in "2) Packing | | | | | | | | 22 | Changed the drawings of PACKING FORM | · | | | | | | | | | | | | | | | | | 1 | | | | | #### 1. Application This specification applies to the color 31.5" Wide XGA TFT-LCD module LK315T3LA31. - * These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. - * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken. - * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support. - * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets. - * Contact and consult with a SHARP sales representative for any questions about this device. #### 2. Overview This module is a color active matrix LCD module incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a 1366×RGB×768 dots panel with 16,777,216 colors by using LVDS (<u>Low Voltage Differential Signaling</u>) to interface, +12V of DC supply voltages. This module also includes the DC/AC inverter to drive the CCFT. (+24V of DC supply voltage) And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit .In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them. By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized. 3. Mechanical Specifications | Parameter | Specifications | Unit | | |------------------------------|---|---------|--| | Display size | 80.039 (Diagonal) | cm | | | Display size | 31.5 (Diagonal) | inch | | | Active area | 697.69 (H) × 392.26 (V) | mm | | | Pixel Format | 1366 (H) × 768 (V) | pixel | | | Pixel Folliat | (1pixel = R + G + B dot) | l bixei | | | Pixel pitch | 0.51075(H) × 0.51075 (V) | mm | | | Pixel configuration | R,G, B vertical stripe | | | | Display mode | Normally black | | | | Unit Outline Dimensions (*1) | $760.0(W) \times 450.0(H) \times 50.0 max(D)$ | mm | | | Mass | 5.7 | kg | | | Surface treatment | Low-Haze Anti Glare | | | | Surface treatment | Hard coating: 3H | | | ^(*1) Outline dimensions are shown in Fig.1 #### 4. Input Terminals 4-1. TFT panel driving CN1 (Interface signals and +12V DC power supply) (Shown in Fig.1) Using connector : FI-X30SSL-HF (Japan Aviation Electronics Ind., Ltd.) Mating connector : FI-X30H/FI-X30HL, FI-X30C/FI-X30C2L or FI-X30M (Japan Aviation Electronics Ind., Ltd.) $Mating\ LVDS\ transmitter: THC63LVDM83R\ (THine)\ or\ equivalent\ device$ | Pin No. | Symbol | Function | Remark | |---------|----------|---|--| | 1 | VCC | +12V Power Supply | | | 2 | VCC | +12V Power Supply | | | 3 | VCC | +12V Power Supply | | | 4 | VCC | +12V Power Supply | | | 5 | GND | Ground | | | 6 | GND | Ground | | | 7 | GND | Ground | | | 8 | GND | Ground | | | 9 | SELLVDS | Select LVDS data order [Note 1] | Default: Pull up
(H:3.3V)
[Note 2] | | 10 | Reserved | Not Available | | | 11 | GND | Ground | | | 12 | RIN0- | Negative (-) LVDS differential data input | LVDS | | 13 | RIN0+ | Positive (+) LVDS differential data input | LVDS | | 14 | GND | Ground | | | 15 | RIN1- | Negative (-) LVDS differential data input | LVDS | | 16 | RIN1+ | Positive (+) LVDS differential data input | LVDS | | 17 | GND | Ground | | | 18 | RIN2- | Negative (-) LVDS differential data input | LVDS | | 19 | RIN2+ | Positive (+) LVDS differential data input | LVDS | | 20 | GND | Ground | | | 21 | CLKIN- | Clock Signal(-) | LVDS | | 22 | CLKIN+ | Clock Signal(+) | LVDS | | 23 | GND | Ground | | | 24 | RIN3- | Negative (-) LVDS differential data input | LVDS | | 25 | RIN3+ | Positive (+) LVDS differential data input | LVDS | | 26 | GND | Ground | | | 27 | Reserved | Not Available | | | 28 | Reserved | Not Available | | | 29 | GND | Ground | | | 30 | GND | Ground | | [Note] GND of a liquid crystal panel drive part has connected with a module chassis. ## [Note1] SELLVDS | Tran | smitter | SEI | LLVDS | |--------|---------|----------|-------------------| | Pin No | Data | = L(GND) | = H(3.3V) or Open | | 51 | TA0 | R0(LSB) | R2 | | 52 | TA1 | R1 | R3 | | 54 | TA2 | R2 | R4 | | 55 | TA3 | R3 | R5 | | 56 | TA4 | R4 | R6 | | 3 | TA5 | R5 | R7(MSB) | | 4 | TA6 | G0(LSB) | G2 | | 6 | TB0 | G1 | G3 | | 7 | TB1 | G2 | G4 | | 11 | TB2 | G3 | G5 | | 12 | TB3 | G4 | G6 | | 14 | TB4 | G5 | G7(MSB) | | 15 | TB5 | B0(LSB) | B2 | | 19 | TB6 | B1 | B3 | | 20 | TC0 | B2 | B4 | | 22 | TC1 | В3 | B5 | | 23 | TC2 | B4 | B6 | | 24 | TC3 | B5 | B7(MSB) | | 27 | TC4 | NA | NA | | 28 | TC5 | NA | NA | | 30 | TC6 | DE(*) | DE(*) | | 50 | TD0 | R6 | R0(LSB) | | 2 | TD1 | R7(MSB) | R1 | | 8 | TD2 | G6 | G0(LSB) | | 10 | TD3 | G7(MSB) | G1 | | .16 | TD4 | В6 | B0(LSB) | | 18 | . TD5 | B7(MSB) | B1 | | 25 | TD6 | NA | NA | NA: Not Available [Note 2] The equivalent circuit figure of the terminal ^(*) Since the display position is prescribed by the rise of DE (Display Enable) signal, please do not fix DE signal during operation at "High." ## · Interface Block Diagram Global LCD Panel Exchange Center Corresponding Transmitter: THC63LVDM83R (THine) or equivalent device · Block Diagram (LCD Module) **②** ## SELLVDS= Low(GND) DE: Display Enable NA: Not Available (Fixed Low) ## 4-2. Backlight driving CN101 (Inverter control) Using connector: S14B-PH-SM3-TB(JST) Mating connector: PHR-14 (JST) | Pin No. | Symbol | Function | Default(OPEN) | Input Impedance | Remark | |---------|------------------|--------------------|--------------------------------------|-----------------|----------| | 1 | V _{INV} | +24V | | | | | 2 | V _{INV} | +24V | | | | | 3 | V _{INV} | +24V | | | | | 4 | V _{INV} | +24V | | | | | 5 | V_{INV} | +24V | | | | | 6 | GND | Ground | | | | | 7 | GND | Ground | | | | | 8 | GND | Ground | | | | | 9 | GND | Ground | | | | | 10 | GND | Ground | | | | | 11 | ErrDtct | Error Detection | - | - | [Note 4] | | 12 | Von/off | Inverter ON/OFF | Inverter OFF | 22 kΩ | [Note 1] | | 13 | Pdim | Brightness Control | 3.3V : pull up
Duty 100% | 100 kΩ | [Note 3] | | 14 | Pdim_sel | PWM selection | 3.3V: pull up
Selected Analog PWM | 60 kΩ | [Note 2] | #### [Note 1] Inverter ON/OFF | Input voltage | Function | |---------------|---------------| | 3.3V | Inverter: ON | | 0V | Inverter: OFF | #### [Note 2] PWM selection Pin No.14 is used for the selection of dimming control for Pdim pin (Pin No.13). | Input voltage | Pdim | | |---------------|------------|--| | 0V | Pulse PWM | | | 3.3V | Analog PWM | | ## [Note 3] Brightness Control (Pulse PWM Dimming) #### 1. Pulse PWM Dimming Pin No.13 is used for the control of the PWM duty with input pulse from 100Hz to 200Hz. High: $2.3 \sim 3.3 \text{V}$ / Low: $0 \sim 1.0 \text{V}$ Ta=25°C | | | MIN | TYP | MAX | Remark | |---------------------------|------|-----|-----|-----|--------------------| | Pulse signal | [Hz] | 100 | 160 | 200 | , | | DUTY (T _{ON} /T) | [%] | 25 | <-> | 100 | | | Dimming level | [%] | 10 | <-> | 100 | Pulse signal=160Hz | | (luminance ratio) | | | | | - | [Note] Dimming level is reference value. #### [Note 4] Error Detection Pin No.11 is used for the error detection of the inverter driving. | Output voltage | Inverter Driving | |----------------|------------------| | GND | Normal | | OPEN COLLECTOR | Abnormal | ## 2. Analog PWM Dimming Pin No.13 is used for the dimming control with input voltage from 0 to 3.3V. (when Analog PWM is selected with Pin 14.) Ta=25°C | | MIN | TYP | MAX | Function | |----------------------|-----|-----|------|--------------------------| | Input voltage [V] | 0 | <-> | 3.3V | 0V: Dark , 3.3V : Bright | | Brightness ratio [%] | 20 | <-> | 100 | Uv. Dark, 5.5 v . Bright | [Note] PWM frequency: 165±10Hz #### 4-3. The back light system characteristics The back light system is direct type with 10 CCFTs (Cold Cathode Fluorescent Tube). The characteristics of the lamp are shown in the following table. The value mentioned below is at the case of one CCFT. | Item | Symbol | Min. | Тур. | Max. | Unit | Remarks | | | | | |-----------|--------|-------|-------|------------|------|--|--|--|--|--| | | | - | 60000 | - ' | | Duty= 100%
[Note] | | | | | | Life time | TL | 25000 | - | <u>.</u> | Hour | 10% of total operation time: 10% dimming 90% of total operation time: more than 20% dimming [Note] | | | | | - [Note] Lamp life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of Ta=25°C and brightness control (V_{BRT} =3.3V). - Above value is applicable when the long side of LCD module is placed horizontally. (Landscape position). (Lamp lifetime may vary if LCD module is in portrait position due to the change of mercury density inside the lamp.) ## 5. Absolute Maximum Ratings | ADSOIDE MAXIMUM Rating | <u>. </u> | | | | | |------------------------------------|--|-----------|------------|------|----------| | Parameter | Symbol | Condition | Ratings | Unit | Remark | | Input voltage (for Control) | Vı | Ta=25°C | -0.3 ~ 5.0 | V | [Note 1] | | +12V supply voltage (for Control) | VCC | Ta=25°C | 0~+15 | V | | | Input voltage
(for Inverter) | Vbrt
Von | Ta=25°C | 0~+6 | V | | | +24V supply voltage (for Inverter) | V_{INV} | Ta=25°C | 0 ~ +29 | V | | | Storage temperature | Tstg | - | -25 ~ +60 | °C | | | Operation temperature (Ambient) | Topa | - | 0~+50 | °C | [Note 2] | [Note 1] SELLVDS [Note 2] Humidity 95%RH Max.(Ta \leq 40°C), Maximum wet-bulb temperature at 39°C or less.(Ta > 40°C) , No condensation. #### 6. Electrical Characteristics 6-1. Control circuit driving Ta=25 ℃ | Pa | Parameter | | Symbol | Min. | Typ. | Max. | Uniit | Remark | | |----------------|-------------------------------|----------------|-------------------|-------|-------|-------|-------------------|--------------------|--| | | Sup | ply voltage | Vcc | +11.4 | +12.0 | +12.6 | V | [Note 1] | | | +12V supply | | | Icc | - | 300 | 600 | mA | [Note 2] | | | voltage | Curre | nt dissipation | I _{RUSH} | | 2500 | • | mA | [Note 5] | | | | | | T_{RUSH} | - | 11 | • | ms | [Note 5] | | | Permissible i | missible input ripple voltage | | | - | • | 100 | mV _{P-P} | Vcc = +12.0V | | | Differential i | nput | High | VTH | - | 1 | 100 | mV | $V_{CM} = +1.2V$ | | | threshold vol | tage | Low | VTL | -100 | 1 | | mV | [Note 4] | | | Input I | Input Low voltage | | VIL | _ | - | 0.7 | V | [Note 3] | | | Input I | ligh v | oltage | Vih | 2.6 | 3.3 | 3.6 | V | [14016.5] | | | Imput look | | mt (I avv) | T., | | | 400 | | $V_I = 0V$ | | | Input leak | curre | ni (Low) | IIL | | - | 400 | μΑ | [Note 3] | | | Innut look | Input leak current (High) | | | | _ | 100 | | $V_{I} = 3.3V$ | | | Input leak | | | | | | 100 | μΑ | [Note 3] | | | Termi | nal res | sistor | Rт | - | 100 | • | Ω | Differential input | | [Note] Vcm: Common mode voltage of LVDS driver. ## [Note 1] Input voltage sequences $0 \le t1 \le 10 ms$ $0 < t2-1 \le 20 \text{ms}$ $t2-2 \ge 10ms$ $0 \le t3 \le 1s$ $t4 \ge 1s$ t5 ≥ 200ms Dip conditions for supply voltage a) $$9.1V \le Vcc \le 10.8V$$ $td \le 10ms$ b) Vcc < 9.1V Dip conditions for supply voltage is based on input voltage sequence. - Data1: CLKIN±,RIN0±,RIN1±,RIN2±,RIN3± - Martin - About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display. [Note 2]Typical current situation: 256 gray-bar pattern (Vcc = +12.0V) The explanation of RGB gray scale is seen in section 8. Vcc=+12.0V CK = 82 MHz Th=20.68 μs [Note 3] SELLVDS [Note~4]~CLKIN+/CLKIN-,~RIN0+/RIN0-,~RIN1+/RIN1-,~RIN2+/RIN2-,~RIN3+/RIN3-,~RIN3--,~RIN3+/RIN3-,~RIN3--, [Note 5] The Rush current corrugation at the time of power on Vcc= 12V 2ms/div ## 6-2. Inverter driving for back light Global LCD Panel Exchange Center The back light system is direct type with 10 CCFTs (Cold Cathode Fluorescent Tube). Ta=25°C | | Parameter | Symbol | Min. | Тур. | Max. | Unit | Remark | |----------------------------------|---------------------------------------|-----------|--------------|---------------|------|-------------------|--| | Current dissipation 1 | | IINV 1 | ı | 4.5 | 5.0 | Α | $V_{INV} = 24V$ $V_{BRT} = 3.3V$ | | +24V | +24V Current dissipation 2 | | - | 3.4 | 3.8 | A | V _{ON} =3.3V | | | Supply voltage | Vinv | 22.5 | 24.0 | 25.5 | V | [Note 1,2] | | Permissible input ripple voltage | | Vrf | - | | 800 | mV _{p-p} | $V_{INV} = 24V$ | | Input voltage (Low) | | V_{onl} | 0 | _ | 1.0 | V | Von | | Ir | Input voltage (High) | | 3.0 | 3.3 | 5.0 | V | Impedance = $22 k \Omega$ min | | Brig | Brightness control voltage | | 0 | \rightarrow | 3.3 | V | | | Brightness control voltage | | V_{BRT} | 0 | \rightarrow | 3.3 | v | V_{BRT} Impedance = 100 k Ω min | | | Brightness level
(Reference value) | | 20 | → | 100 | % | | [Note 1] 1) VINV-turn-on condition ## 2) Vinv-turn-off condition [Note 2] Current dissipation 1 : Definition within 60 minutes after turn on. (Rush current is excluded.) Current dissipation 2: Definition more than 60minutes after turn on. [Note] The inverter unit is driving at the following drive frequency. Lamp driving frequency: 41kHz Burst dimmer frequency: 165Hz There is possibility that the display problem of the backlights such as flicker, blinking, etc by the interference of the above inverter driving frequency and the LCD driving frequency will occur. In setting of a LCD driving frequency, we recommend to set for the no interference with the above frequency to occur. ## 7. Timing characteristics of input signals #### 7-1. Timing characteristics Timing diagrams of input signal are shown in Fig.2 | | Parameter | Symbol | Min. | Тур. | Max. | Unit | |--------------------|--------------------------|---------|------|-------|------|-------| | Clock | Frequency | 1/Tc 72 | | 82 | 85 | MHz | | | Horizontal period | TH | 1540 | 1696 | 1940 | clock | | | Horizontal period | ın | 19.8 | 20.68 | - | μs | | Data enable signal | Horizontal period (High) | THd | 1366 | 1366 | 1366 | clock | | | Vertical period | TV | 778 | 806 | 972 | line | | | Vertical period (High) | TVd | 768 | 768 | 768 | line | [Note] When vertical period is very long, flicker may occur. Please turn off the module after it shows the black screen. Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly. As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting. Fig.2 Timing characteristics of input signals ## 7-2. Input data signal and display position on the screen Display Position of Data (V, H) 8. Input Signal, Basic Display Colors and Gray Scale of Each Color | 0.1. | nput Sig | 101, 10 | 451C . | Disp | nu y | | 15 4 | nu c | ,, u _j | | | | Data | | | | | | | | | | | | | | |---------------------|------------------------|---------------|--------|------|------|----|----------|------|-------------------|----|----|-----|------|----|----------|----|----|----|----|-----|----|----|----------|----|----|----| | | Colors &
Gray scale | Gray
Scale | R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | G0 | G1 | G2 | G3 | | G5 | G6 | G7 | В0 | B1 | B2 | ВЗ | В4 | В5 | B6 | В7 | | ĺ | Black | _ | 0 | | | Blue | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | or | Green | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0_ | | Col | Cyan | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Basic Color | Red | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0_ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B | Magenta | _ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | . — | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | _ | 1 | | | Black | GS0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0_ | 0 | 0 | 0 | 0 | 0 | | | Û | GS1 | 1 | 0 | | Rec | Darker | GS2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0_ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | le of | 企 | ¥ | | | | 1 | l | | | | | | | 1 | L | | | | | | | 4 | l | | | | | Sca | û | → | | | | 1 | ا
ا | | | | | | | 1 | <u>ا</u> | | | | | | | | ا
ا | | | | | Gray Scale of Red | Brighter | GS253 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 - | 0 | 0 | 0 | 0 | 0 | 0 | | | Û | GS254 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red | GS255 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | GS0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ó | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ı, | Û | GS1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray Scale of Green | Darker | GS2 | 0 | 0 | 0 - | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | e of | បិ | Ψ | | | | 1 | L | | | | | | | 1 | L | | | | | | | 1 | L | | | | | Scal | Û. | Ψ | | | | 1 | - | | | | | | | 1 | - | | | | | | | | <u>ا</u> | | | | | ray | Brighter | GS253 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | g | û | GS254 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0_ | 0 | 0 | 0 | 0 | 0 | | | Green | GS255 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | GS0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0_ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0_ | 0 | 0 | | 9 | ि | GS1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Blu | Darker | GS2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0_ | 0 | 0 | | Gray Scale of Blue | Û | Ψ | | | | 4 | ! | | | | | | | 1 | 1 | | | | | | | 4 | L | | | | | Sca | û | + | ₩ | | | | Ψ | | | | | | | ٧ | | | | | | | | | | | | | | ìray | Brighter | GS253 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | û | GS254 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Blue | GS255 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ^{0:} Low level voltage, Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16,777,216 colors display can be achieved on the screen. ^{1:} High level voltage. ## 9. Optical characteristics | $Ta = 25^{\circ}C$, $Vcc = +12V$, $V_{INV} =$ | +24V | |---|------| |---|------| | Parai | neter | Symbol | Condition | Min. | Тур. | Max. | Unit | Remark | | |-------------------------|-----------------------|------------------|------------------|-------|-------|-------|-------------------|---------------------------------------|--| | Viewing angle Horizonta | | θ 21
θ 22 | : | 70 | 88 | - | Deg. | Distant 41 | | | range | Vertical | θ 11
θ 12 | CR≧10 | 70 | 88 | - | Deg. | [Note1,4] | | | Contra | st ratio | CRn | | 1500 | 2000 | 1 | - | [Note2,4]
V _{BRT} =3.3V | | | Respon | se time | τ _{DRV} | | - | 7 | | ms | [Note3,4,5]
V _{BRT} =3.3V | | | Charactic | Chromaticity of white | | • | 0.248 | 0.278 | 0.308 | 1 | | | | Chromatic | ity of white | у | 0 0 1 | 0.255 | 0.285 | 0.315 | 1 | | | | Channeti | -i+-, -61 | х | θ =0 deg. | 0.611 | 0.641 | 0.671 | 1 | | | | Chroman | city of red | у | | 0.307 | 0.337 | 0.367 | • | [Note 4] | | | Chromotici | ty of green | х | | 0.248 | 0.278 | 0.308 | 1 | $V_{BRT}=3.3V$ | | | Chromatici | ity of green | у | | 0.574 | 0.604 | 0.634 | 1 | | | | Chromaticity of blue | | х | | 0.113 | 0.143 | 0.173 | 1 | | | | | | y | | 0.040 | 0.070 | 0.100 | - | | | | Luminanc | Luminance of white | | | 360 | 450 | | cd/m ² | [Note 4]
V _{BRT} =3.3V | | | Luminance uniformity | | δw | | - | | 1.25 | | [Note 6] | | Measurement condition : Set the value of V_{BRT} to maximum luminance of white. [Note] The optical characteristics are measured using the following equipment: Fig.3-1 Measurement of viewing angle range and response time. (Viewing angle range: EZ-CONTRAST Response time: Photo Diode) Fig.3-2 Measurement of Contrast, Luminance, and Chromaticity. ^{*}The measurement shall be executed 60 minutes after lighting at rating. ## [Note 1] Definitions of viewing angle range: [Note 2] Definition of contrast ratio : The contrast ratio is defined as the following. #### [Note 3] Definition of response time The response time (τ_{DRV}) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (0%, 25%, 50%, 75% and 100%)" and "any level of gray (0%, 25%, 50%, 75% and 100%)". | | 0% | 25% | 50% | 75% | 100% | |------|-------------|--------------|--------------|--------------|--------------| | . 0% | | tr: 0%-25% | tr: 0%-50% | tr: 0%-75% | tr: 0%-100% | | 25% | td: 25%-0% | | tr: 25%-50% | tr: 25%-75% | tr: 25%-100% | | 50% | td: 50%-0% | td: 50%-25% | | tr: 50%-75% | tr: 50%-100% | | 75% | td: 75%-0% | td: 75%-25% | td: 75%-50% | | tr: 75%-100% | | 100% | td: 100%-0% | td: 100%-25% | td: 100%-50% | td: 100%-75% | | t*:x-y...response time from level of gray(x) to level of gray(y) $$\tau_{DRV} = \Sigma(t^*:x-y)/20$$ [Note 4] This shall be measured at center of the screen. [Note 5] This value is valid when O/S driving is used at typical input time value. [Note 6] Definition of white uniformity; White uniformity is defined as the following with five measurements. (A \sim E) #### 10. Handling Precautions of the module - a) Be sure to turn off the power supply when inserting or disconnecting the cable. - b) This product is using the parts (inverter, CCFT etc), which generate the high voltage. Therefore, during operating, please don't touch these parts. - c) Brightness control voltage is switched for "ON" and "OFF", as shown in Fig.4. Voltage difference generated by this switching, Δ VINV, may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit. Fig.4 Brightness control voltage. - d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist. - e) Since the front polarizer is easily damaged, pay attention not to scratch it. - f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately. - g) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth. - h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care. - i) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling. - j) Please consider to minimize the influence of EMI and the exogenous noise before designing the grounding of LCD module. - k) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged. - 1) Observe all other precautionary requirements in handling components. - m) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design. - n) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules. - o) Connect a module frame to GND. #### 11. Packing form - 11-1. For Domestic productions - a) Piling number of cartons: 3 maximum - b) Packing quantity in one carton: 13pcs - c) Carton size: 1130 (W) \times 870 (D) \times 676(H) - d) Total mass of one carton filled with full modules: 85 kg ## 11-2. For SMPL productions - a) Piling number (2 packages / palette) \times 2 maximum - b) Packing quantity in one package: 13 pcs - c) Total size: 1130 (W) \times 870 (D) \times 1202 (H) mm - d) Total mass of one palette filled with full modules: 167 kg #### 12. Reliability test item | | onity test reem | | | | | | | | |-----|------------------------------------|--|--|--|--|--|--|--| | No. | Test item | Condition | | | | | | | | 1 | High temperature storage test | Ta=60°C 240h | | | | | | | | 2 | Low temperature storage test | Ta=-25°C 240h | | | | | | | | 3 | High temperature and high humidity | Ta=40°C; 95%RH 240h | | | | | | | | | operation test | (No condensation) | | | | | | | | 4 | High temperature operation test | Ta=50°C 240h | | | | | | | | _ 5 | Low temperature operation test | Ta=0°C 240h | | | | | | | | | Vibration test | Frequency: 10~57Hz/Vibration width (one side): 0.075mm | | | | | | | | 6 | (non-operation) | : 58~500Hz/Acceleration: 9.8 m/s ² | | | | | | | | " | | Sweep time: 11 minutes | | | | | | | | | | Test period: 3 hours (1h for each direction of X, Y, Z) | | | | | | | | | Shock test | Maximum acceleration: 490m/s ² | | | | | | | | 7 | (non-operation) | Pulse width: 11ms, sinusoidal half wave | | | | | | | | | (Hon-operation) | Direction: +/-X, +/-Y, +/-Z, once for each direction. | | | | | | | | | | * At the following conditions, it is a thing without incorrect | | | | | | | | | | operation and destruction. | | | | | | | | | | (1)Non-operation: Contact electric discharge ±10kV | | | | | | | | 8 | ESD | Non-contact electric discharge ±20kV | | | | | | | | | | (2)Operation Contact electric discharge ±8kV | | | | | | | | | | Non-contact electric discharge ±15kV | | | | | | | | | | Conditions: 150pF, 330ohm | | | | | | | #### [Result evaluation criteria] Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function. Figure of Shock test's jig Module fixed position (M4 Bolt \times 16) (or Q,U) LD-K20511A-18 #### 13. Others 1) Lot No. Label 2D Barcode The label that displays SHARP, product model (LK315T3LA31), a product number is stuck on the back of the module. 2D Barcode (or. A) ## [LK315T3LA31Y, 31Q, 31U] SMPL PRODUCTION (LK315T3LA3131Y, 31Q, 31U) JABIL PRODUCTION - ① Management No - ② Lot No. (Date) - 3 Quantity - 3) Adjusting volume have been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied. - 4) Disassembling the module can cause permanent damage and should be strictly avoided. - 5) Please be careful since image retention may occur when a fixed pattern is displayed for a long time. - 6) The chemical compound, which causes the destruction of ozone layer, is not being used. - 7) Label of material information The optical part material has been described to the module as shown in the figure below. 8) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury. Please follow local ordinances or regulations for disposal. The below figure shows the label. - 9) When any question or issue occurs, it shall be solved by mutual discussion. - 10) Rust on the module is not taken up a problem. - 11) C-PWB must be on upper side of LCD module when it is in the TV-set. - *:Please inform SHARP if C-PWB is at bottom side of LCD module when it is in the TV-set - 12) This module is corresponded to RoHS. ## 14. Carton storage condition Temperature 0°C to 40°C Humidity 95%RH or less Reference condition : 20°C to 35°C, 85%RH or less (summer) : 5°C to 15°C, 85%RH or less (winter) • the total storage time (40°C,95%RH): 240H or less Sunlight Be sure to shelter a product from the direct sunlight. Atmosphere Harmful gas, such as acid and alkali which bites electronic components and/or wires must not be detected. Notes Be sure to put cartons on palette or base, don't put it on floor, and store them with removing from wall Please take care of ventilation in storehouse and around cartons, and control changing temperature is within limits of natural environment Storage life 1 year **②** **(** Fig.1 LK315T3LA31 OUTLINE DIMENSIONS