屏库:全球液晶屏交易中心

 \oslash

		SPEC No. LD-K23628
PPROVED BY : DATE	SHARP	FILE No.
· · ·		ISSUE: JUNE, 28, 2011
	LIQUID CRYSTAL DISPLAY GROUP	APPLICABLE GROUP
	SHARP CORPORATION	LARGE LIQUID CRYSTAL
	SPECIFICATION	DISPLAY BUSINESS GROUP
I	DEVICE SPECIFICATIO	
N	IODEL No. LK600D3H	IA10
	-	
CUSTOMERS APPROVA	L	
	L	
CUSTOMERS APPROVA	L	
		.Bando
DATE	 	.Bandō
DATE	BY M. Bandoh	. Bando Beneral Manager
DATE	BY M. Bandoh DEPARTMENT G	
DATE	BY M. Bandoh DEPARTMENT O DEVELOPMENT	JENERAL MANAGER
DATE	BY M. Bandoh DEPARTMENT G DEVELOPMENT LIQUID CRYSTA	GENERAL MANAGER DEPARTMENT III
DATE	BY M. Bandoh DEPARTMENT G DEVELOPMENT LIQUID CRYSTA	GENERAL MANAGER DEPARTMENT III AL DISPLAY DIVISION CRYSTAL DISPLAY BUSINESS GROUP
DATE	BY M. Bandoh DEPARTMENT G DEVELOPMENT LIQUID CRYSTA LARGE LIQUID	GENERAL MANAGER DEPARTMENT III AL DISPLAY DIVISION CRYSTAL DISPLAY BUSINESS GROUP
DATE	BY M. Bandoh DEPARTMENT G DEVELOPMENT LIQUID CRYSTA LARGE LIQUID	GENERAL MANAGER DEPARTMENT III AL DISPLAY DIVISION CRYSTAL DISPLAY BUSINESS GROUP
DATE	BY M. Bandoh DEPARTMENT G DEVELOPMENT LIQUID CRYSTA LARGE LIQUID	GENERAL MANAGER DEPARTMENT III AL DISPLAY DIVISION CRYSTAL DISPLAY BUSINESS GROUP

RECORDS OF REVISION

Model: LK600D3HA10

SPEC No.	DATE	REVISED		SUMMARY	NOTE
		No.	PAGE		
LD- K23628	2011.6.28	-	-	-	1 st ISSUE
				~	

1. Application

This specification is applied to the color 60.0" TFT-LCD Open Cell LK600D3HA10.

* This specification is proprietary products of SHARP CORPORATION ("SHARP") and includes materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

* In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

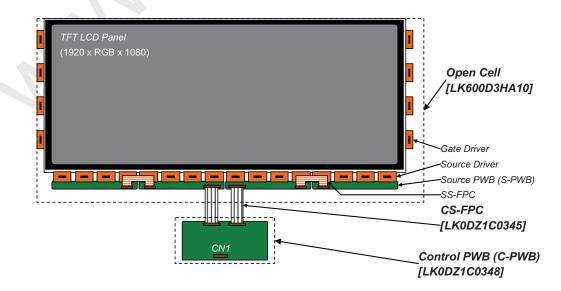
* Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

* SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these technical literature.

* Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This Open Cell is color active matrix LCD Open Cell incorporating amorphous silicon TFT (<u>Thin Film</u> <u>Transistor</u>). It is composed of a color TFT-LCD panel, driver ICs and Source PWB.


The following contents can be achieved in using LK0DZ1C0348 (C-PWB) and LK0DZ1C0345 (CS-FPC) that SHARP specifies.

Graphics and texts can be displayed on a 1920 x RGB x 1080 dots panel with one billion colors by using 10bit LVDS (Low Voltage Differential Signaling) to interface, +12V of DC supply voltages.

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

This Open Cell also adopts Double Frame Rate driving method including FRC (Frame Rate Control) function on the control circuit. Therefore the input signal to this Open Cell is Single Frame Rate, but the output is Double-Frame Rate picture(inserting the intermediate image which is generated by the FRC).

With combination of these technologies, motion blur can be reduced and clearer display performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	152.496 (Diagonal)	cm
Display size	60.0 (Diagonal)	inch
Active area	1329.12 (H) x 747.63 (V)	mm
Pixel Format	1920 (H) x 1080 (V)	nival
Fixer Format	(1pixel = R + G + B dot)	pixel
Pixel pitch	0.69225 (H) x 0.69225 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Open Cell Outline Dimensions	1364.18(H) x 806.05(V) x 3.5(D)	mm
[Note1]	1304.18(11) X 800.03(V) X 5.5(D)	
Mass	4.2 ± 0.3	kg
	- Front polarizer : Anti glare	
Surface treatment	Hard coating: 2H and more	
[Note2]	- Rear polarizer :	
	Hard coating less	

[Note1] Outline dimensions are shown in P20.

The thickest point is 80pin CN of S-PWB.

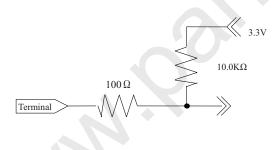
[Note2] With the protection film removed.

4. Open Cell Driving Specifications

4.1. Driving interface of C-PWB SHARP specifies [LK0DZ1C0348]

CN1 (Interface signals and +12V DC power supply)

Using connector	: FI-RE51S-HF, or FI-REN51S2-HF (Japan Aviation Electronics Ind., Ltd.)
Mating connector	: FI-RE51HL, FI-RE51CL (Japan Aviation Electronics Ind., Ltd.)


Mating LVDS transmitter : THC63LVD1023 or equivalent device

Pin No.	Symbol	Function	Remark
1	GND		
2	I2C_SDA	I2C data signal [Note 2]	Pull up 3.3V
3	I2C_SCL	I2C clock signal [Note 2]	Pull up 3.3V
4	Reserved	It is required to set non-connection(OPEN)	
5	Reserved	It is required to set non-connection(OPEN)	
6	Reserved	It is required to set non-connection(OPEN)	
7	SELLVDS	Select LVDS data order [Note 3]	Pull up 3.3V [Note 1]
8	Reserved	It is required to set non-connection(OPEN)	
9	Reserved	It is required to set non-connection(OPEN)	
10	Reserved	It is required to set non-connection(OPEN)	
11	GND		
12	AIN0-	Aport (-)LVDS CH0 differential data input	
13	AIN0+	Aport (+)LVDS CH0 differential data input	
14	AIN1-	Aport (-)LVDS CH1 differential data input	
15	AIN1+	Aport (+)LVDS CH1 differential data input	
16	AIN2-	Aport (-)LVDS CH2 differential data input	
17	AIN2+	Aport (+)LVDS CH2 differential data input	
18	GND		
19	ACK-	Aport LVDS Clock signal(-)	
20	ACK+	Aport LVDS Clock signal(+)	
21	GND		
22	AIN3-	Aport (-)LVDS CH3 differential data input	
23	AIN3+	Aport (+)LVDS CH3 differential data input	
24	AIN4-	Aport (-)LVDS CH4 differential data input	

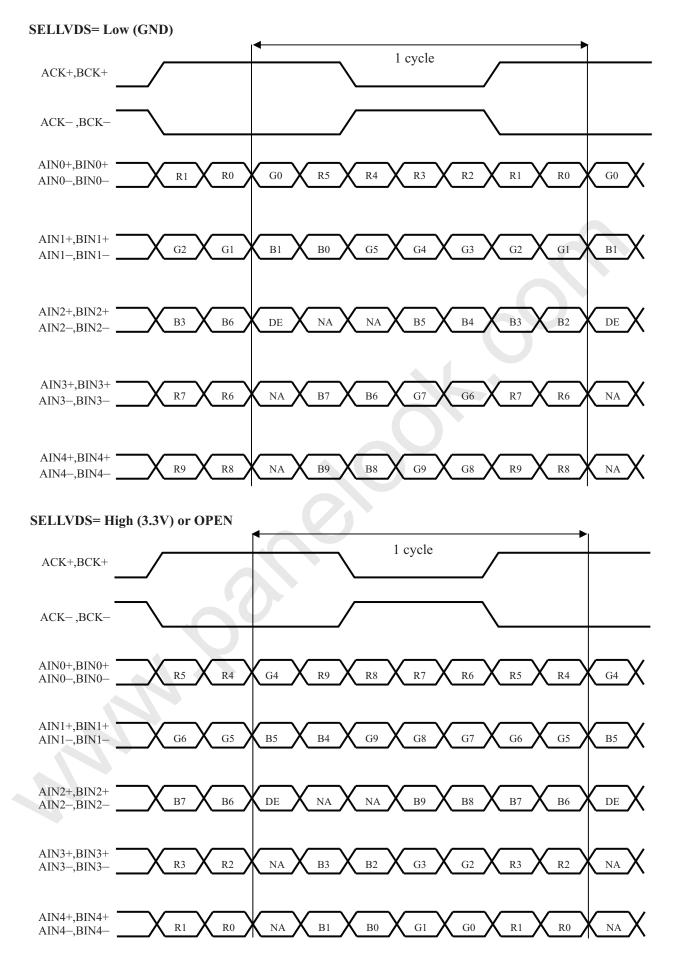
\langle	Р
	-

			LD-K23628-
25	AIN4+	Aport (+)LVDS CH4 differential data input	
26	GND		
27	GND		
28	BIN0-	Bport (-)LVDS CH0 differential data input	
29	BIN0+	Bport (+)LVDS CH0 differential data input	
30	BIN1-	Bport (-)LVDS CH1 differential data input	
31	BIN1+	Bport (+)LVDS CH1 differential data input	
32	BIN2-	Bport (-)LVDS CH2 differential data input	
33	BIN2+	Bport (+)LVDS CH2 differential data input	
34	GND		
35	BCK-	Bport LVDS Clock signal(-)	
36	BCK+	Bport LVDS Clock signal(+)	
37	GND		
38	BIN3-	Bport (-)LVDS CH3 differential data input	
39	BIN3+	Bport (+)LVDS CH3 differential data input	
40	BIN4-	Bport (-)LVDS CH4 differential data input	
41	BIN4+	Bport (+)LVDS CH4 differential data input	
42	GND		
43	GND		
44	GND		
45	GND		
46	GND		
47	VCC	+12V Power Supply	
48	VCC	+12V Power Supply	
49	VCC	+12V Power Supply	
50	VCC	+12V Power Supply	
51	VCC	+12V Power Supply	

[Note] GND of a liquid crystal panel drive part should be connected with a module chassis. [Note1] The equivalent circuit figure of the terminal

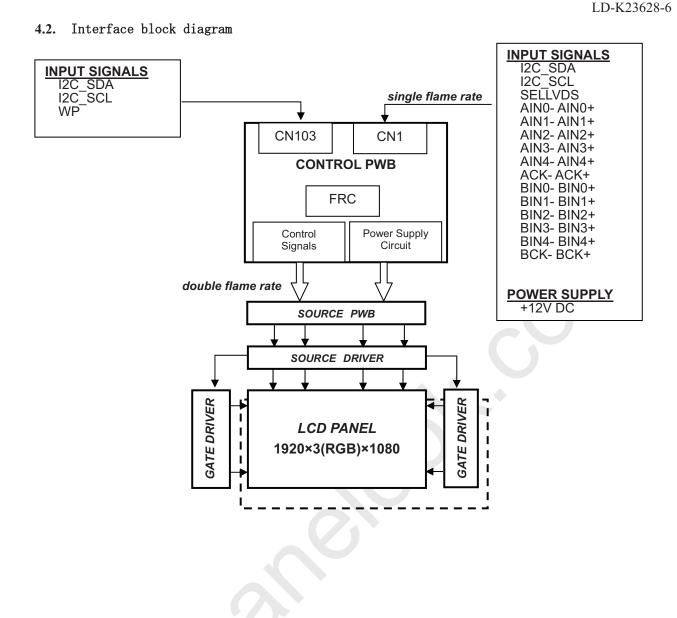
[Note 2] The equivalent circuit figure of the terminal for I2C controlPlease refrain from the use of the device that the slave address overlaps.Slave address used for this LCD module: B4, B5, D4, D5, 9E, 9F.

 \oslash


LD-K23628-4

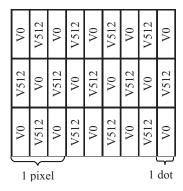
	SELLVDS	
Data	L(GND)	H(3.3V) or Open
	[VESA]	[JEIDA]
TA0	R0(LSB)	R4
TA1	R1	R5
TA2	R2	R6
TA3	R3	R7
TA4	R4	R8
TA5	R5	R9(MSB)
TA6	G0(LSB)	G4
TB0	G1	G5
TB1	G2	G6
TB2	G3	G7
TB3	G4	G8
TB4	G5	G9(MSB)
TB5	B0(LSB)	B4
TB6	B1	B5
TC0	B2	B6
TC1	B3	B7
TC2	B4	B8
TC3	B5	B9(MSB)
TC4	NA	NA
TC5	NA	NA
TC6	DE(*)	DE(*)
TD0	R6	R2
TD1	R7	R3
TD2	G6	G2
TD3	G7	G3
TD4	B6	B2
TD5	B7	B3
TD6	N/A	N/A
TE0	R8	R0(LSB)
TE1	R9(MSB)	R1
TE2	G8	G0(LSB)
TE3	G9(MSB)	G1
TE4	B8	B0(LSB)
TE5	B9(MSB)	B1
TE6	N/A	N/A

[Note 3] LVDS Data order


NA: Not Available

(*)Since the display position is prescribed by the rise of DE(Display Enable)signal, please do not fix DE signal during operation at "High".

DE: Display Enable, NA: Not Available (Fixed Low)


 \oslash

4.3. Vcom adjustment interface of Control PWB SHARP specifies. [LK0DZ1C0348]

For the prevention of long-time image sticking of TFT-LCD panel, be sure to adjust Vcom in such as a way that flicker is minimum on the center of display by flicker meter.

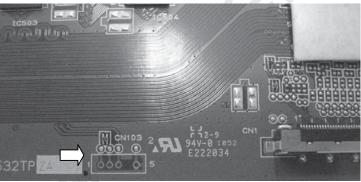
[Note 1] Adjust VCOM voltage at below pattern:

[Note 2] VCOM voltage can be adjusted through via holes (CN103). Potentiometer IC and via holes are as follows:

IC for adjusting VCOM	
Using Via Hole	
Mating connector	

: ISL45041 (Intersil)

: 1.5mm Pitch (φ 0.7mm)


.

: (housing) 5P-SZN,

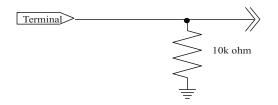
: I2C

(contact) SZN-002T-P0.7K (JST Co.,Ltd.)

Communication method



Pin No.	symbol	Function	Remark
1	I2C_SDA	I2C DATA	Pull up:3.3V[Note3]
2	I2C_SCL	I2C CLK	Pull up:3.3V[Note3]
3	WP	L:disable, H:enable	Pull down [Note4]
4	NC	No via hole	
5	GND		


Ø

LD-K23628-8

[Note3] The equivalent circuit figure of the terminal

[Note4] The equivalent circuit figure of the terminal

5. Absolute maximum ratings

Parameter	Symbol	Condition Ratings		Unit	Remark
Input voltage (for Control)	VI Ta=25 °C		-0.3 ~ 3.6	V	[Note 1]
12V supply voltage (for Control)	VCC	Ta=25 °C	0~+14	V	
Storage temperature	Tstg	-	-25 ~ +60	°C	
Operation temperature (Ambient)	Тора	-	0~+50	°C	[Note 2]

[Note 1] I2C_SDA、I2C_SCL、SELLVDS、WP

[Note 2] Humidity 95%RH Max.(Ta≦40°C)

Maximum wet-bulb temperature at 39 °C or less.(Ta>40°C)

No condensation.

6. Electrical characteristics of input signals

Control circuit driving 6.1.

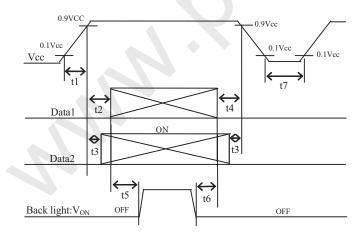
Control circuit driving Ta=25 °C							
Parameter		Symbol	Min.	Тур.	Max.	Uniit	Remark
	Supply voltage	Vcc	11.4	12	12.6	V	[Note 1]
+ 1 2 3 7 1	Current dissipation	Icc	-	1.4	3.5	А	[Note 2]
+12V supply voltage	Inrush current	I _{RUSH} 1	-	8.2	-	А	t1=500us [Note 7]
		$I_{RUSH}2$	-	1.2	-	А	t1>5ms
Permissible	input ripple voltage	Vrp	-	-	100	mVP-P	Vcc = +12.0V
Input	Low voltage	Vil	0	-	1.0	V	[Nata 2]
Input	High voltage	Vih	2.3	-	3.3	V	[Note 3]
		IIL1	-	-	400	μΑ	$V_I = 0V$ [Note 5]
Input lea	ık current (Low)	IIL2	-	-	100	μΑ	$V_{I} = 0V$ [Note 4]
		IIH1	-	-	100	μΑ	$V_{I} = 3.3V$ [Note 5]
Input leak current (High)		IIH2	-	-	400	μΑ	V _I = 3.3V [Note 4]
Terminal resistor		Rт	-	100		Ω	Differential input
Input Differential voltage		VID	200	400	600	mV	[Note 6]
Differential input common mode voltage		VCM	VID /2	1.2	2.4- VID /2	V	[Note 6]

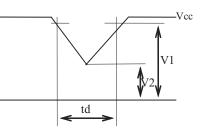
[Note]VCM: Common mode voltage of LVDS driver.

[Note 1]

Input voltage sequences

 $50 \,\mu\,\mathrm{s} < \mathrm{t1} \leq 20\mathrm{ms}$ $20 \text{ms} < \text{t2} \leq 50 \text{ms}$ $20\text{ms} < t3 \leq 50\text{ms}$ $0 < t4 \leq 1s$ t5 \geq 950ms t6 \geq 0 $t7 \ge 300 ms$


Dip conditions for supply voltage


a) $V_2 \leq Vcc < V_1$

td \leq 10ms

b) Vcc < V₂

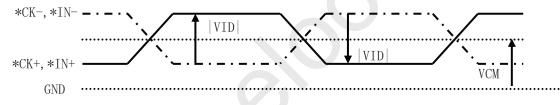
Dip conditions for supply voltage is based on input voltage sequence.

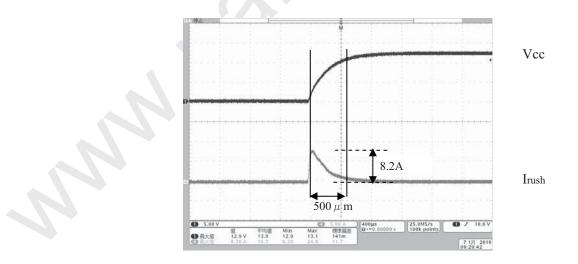
V1:10.8V V2:9.1V

- X Data1: ACK±, AIN0±, AIN1±, AIN2±, AIN3±, AIN4±,BCK±, BIN0±, BIN1±, BIN2±, BIN3±, BIN4± *V_{CM} voltage pursues the sequence mentioned above
- * Data2: I2C SDA 、I2C SCL、SELLVDS、WP

[Note]About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note 2] Typical current situation: 1024 gray-bar patterns. (Vcc = +12.0V)


The explanation of RGB gray scale is seen in section 8.


Vcc=+12.0V CK=74.25MHz Th=14.8µs

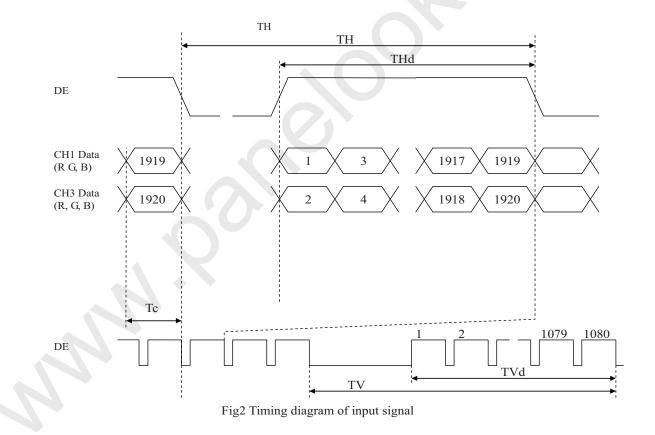
[Note 3] I2C_SDA 、I2C_SCL、SELLVDS、WP [Note 4] I2C_SDA 、I2C_SCL、SELLVDS [Note 5] WP

[Note 6] ACK±, AIN0±, AIN1±, AIN2±, AIN3±, AIN4±,BCK±, BIN0±, BIN1±, BIN2±, BIN3±, BIN4±

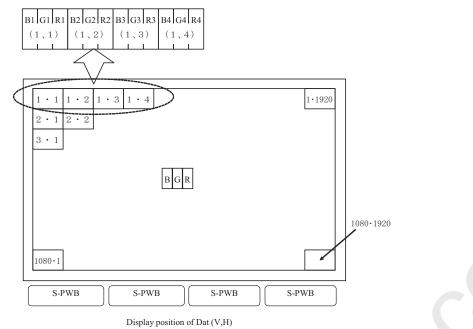
[Note 7] Vcc12V inrush current waveform

7. Timing characteristics of input signals

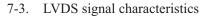
- 7.1. Timing characteristics
 - Timing diagrams of input signal are shown in Fig.2.

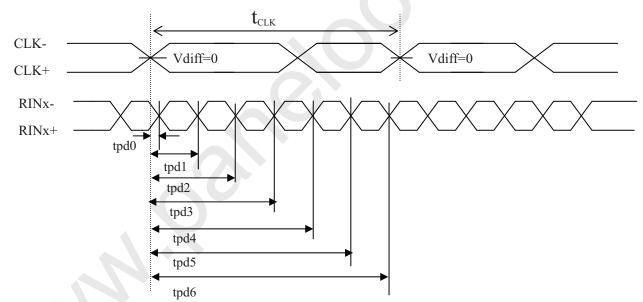

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	67	74.25	76	MHz	
	Horizontal period	TH	1050	1100	1300	clock	
	Horizontai period	111	14.2	14.8	16.1	μs	
Data enable	Horizontal period (High)	THd	960	960	960	clock	
signal	Vertical period	TV	1109	1125	1400	line	
-	vertiear period	1 V	47	60	61	Hz	
	Vertical period (High)	TVd	1080	1080	1080	line	

[Note]-When vertical period is very long, flicker and etc. may occur.


-Please turn off the module after it shows the black screen.

-Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.


-As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.



7.2. Input data signal and display position on the screen

[Note] Scan direction is setting for using S-PWBs' side down.

	The item	Symbol	min.	typ.	max.	unit
	Delay time, CLK rising edge to serial bit position 0	tpd0	-0.25	0	0.25	
	Delay time, CLK rising edge to serial bit position 1	tpd1	1*t _{CLK} /7-0.25	1* t _{CLK} /7	$1* t_{\rm CLK}$ /7+0.25	
	Delay time, CLK rising edge to serial bit position 2	tpd2	2* t _{CLK} /7-0.25	2* t _{CLK} /7	$2* t_{\rm CLK}$ /7+0.25	
Data position	Delay time, CLK rising edge to serial bit position 3	tpd3	3* t _{CLK} /7-0.25	3* t _{CLK} /7	$3* t_{\rm CLK}$ /7+0.25	ns
	Delay time, CLK rising edge to serial bit position 4	tpd4	4* t _{CLK} /7-0.25	4* t _{CLK} /7	4* $t_{\rm CLK}$ /7+0.25	
	Delay time, CLK rising edge to serial bit position 5	tpd5	5* t _{CLK} /7-0.25	5* t _{CLK} /7	5* $t_{\rm CLK}$ /7+0.25	
	Delay time, CLK rising edge to serial bit position 6	tpd6	6* t _{CLK} 7-0.25	6* t _{clk} /7	6* $t_{\rm CLK}$ /7+0.25	

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

	Colors &														Da	ita s	sign	al														
	Gray	Gray	R0	R1	R2	R3	R4	R5	R6	R7	R8	R9	G0	G1	G2	G3	G4	G5	G6	G7	G8	G9	B0	B1	B2	В3	вВ	B5	B6	Β7	B8	B9
	scale	Scale																														
	Black	-	0	0	0	0	0	0 0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0 0	0	0		0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
or	Green	-	0	0	0	0	0	0 0	0	0		0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Color	Cyan	-	0	0	0	0	0	0 0	0	0		0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Basic (Red	-	1	1	1	1	1	1 1	1	1		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Magenta	-	1	1	1	1	1	1 1	1	1		1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1 1	1	1		1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	-	1	1	1	1	1	1 1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0 0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ч	Û	GS1	1	0	0	0	0	0 0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Re	Darker	GS2	0	1	0	0	0	0 0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	仓	\downarrow					\downarrow										\downarrow											\downarrow				
Scal	Û	\downarrow					\downarrow										\downarrow											\downarrow				
ray	Brighter	GS1021	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Û	GS1022	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	Û	GS1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gree	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
of (仓	\downarrow					\downarrow										\downarrow											\downarrow				
Gray Scale of Green	Û	\downarrow					\downarrow										\downarrow											\downarrow				
ay S	Brighter	GS1021	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
G	Û	GS1022	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Green	GS1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e	Û	GS1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Blu	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
s of	Û	\downarrow					4										↓											\downarrow				
Scale	Û	\downarrow					\downarrow										\downarrow											\downarrow				
Gray Scale of Blue	Brighter	GS1021	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0	0	1	0	1	1	1	1	1	1	1	1
G	g	GS1022	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1		1
	Blue	GS1022	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	0: Low		_	_				Hig					<u> </u>		-	-		-				2			-			-	-			-

0: Low level voltage, 1: High level voltage.

Each basic color can be displayed in 1021 gray scales from 10 bits data signals. According to the combination of total 30 bits data signals, one billion-color display can be achieved on the screen.

9. Optical characteristics

Ta=25°C, Vcc=12.0V, Timing:60Hz(typ. value)

Param	eter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark		
Viewing angle	Horizontal	θ21 θ22	CR≧10	70	88	-	Deg.	[Nistal 4]		
range	Vertical	θ11 θ12	CK≦10	70	88	-	Deg.	[Note1,4]		
Contrast	ratio	CRn		3,500	5,000	-	-	[Note2,4]		
Response	e time	τ_{DRV}			4		ms	[Note3,4,5]		
	White	Х		Тур0.03	0.280	Typ.+0.03	-			
	white	у		Тур0.03	0.285	Тур.+0.03	-			
	Red	Х		Тур0.03	0.646	Тур.+0.03	-			
Luminance		у	$\theta = 0 \text{ deg.}$	Тур0.03	0.337	Typ.+0.03	- ~	[Note4]		
Lummance	Green	Х	0 0 deg.	Тур0.03	0.281	Typ.+0.03	-			
	Green	у		Тур0.03	0.607	Typ.+0.03	-			
	Blue	Х		Тур0.03	0.143	Typ.+0.03	-			
	Diue	у		Тур0.03	0.071	Typ.+0.03	-			
Luminance	White	Y_L		400	500		cd/m ²			
Luminance uniformity	White	δw				1.25		[Note 6]		

Optical characteristics are based on SHARP standard module LK600D3LA38.

*The measurement shall be executed 60 minutes after lighting at rating.

[Note]The optical characteristics are measured using the following equipment.

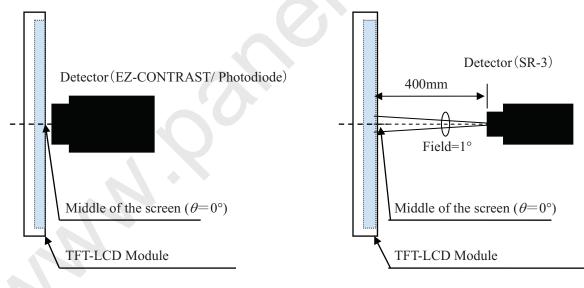
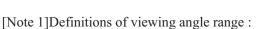
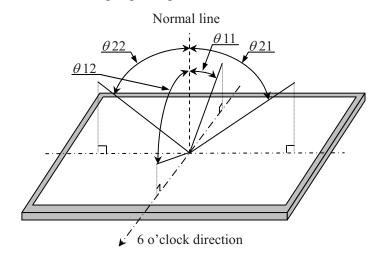




Fig.4-1 Measurement of viewing angle range and Response time.

Viewing angle range: EZ-CONTRAST Response time: Photodiode Fig.4-2 Measurement of Contrast, Luminance, Chromaticity.

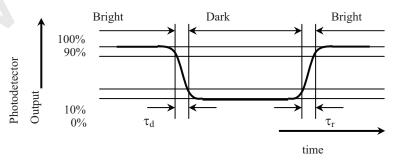
[Note 2]Definition of contrast ratio :

The contrast ratio is defined as the following.

Luminance (brightness) with all pixels white

Contrast Ratio=

Luminance (brightness) with all pixels black


[Note 3]Definition of response time

The response time (τ_d and τ_r) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (0%, 25%, 50%, 75% and 100%)" and "any level of gray (0%, 25%, 50%, 75% and 100%)".

	0%	25%	50%	75%	100%
0%		tr:0%-25%	tr:0%-50%	tr:0%-75%	tr:0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td:100%-75%	

t*:x-y...response time from level of gray(x) to level of gray(y)

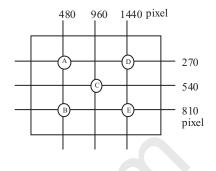
 $\tau_r = \Sigma(tr:x-y)/10$, $\tau_d = \Sigma(td:x-y)/10$

[Note 4]This shall be measured at center of the screen.

[Note 5] This value is valid when O/S driving is used at typical input time value.

Ø

LD-K23628-16


[Note 6]Definition of white uniformity;

White uniformity is defined as the following with five measurements. (A~E)

Maximum luminance of five points (brightness)

 $\delta_W =$

Minimum luminance of five points (brightness)

10. Packing for shipping

10.1. Packing form

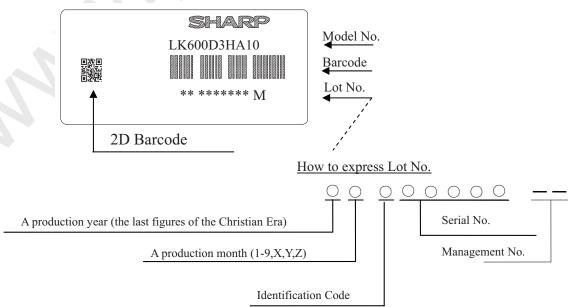
Type A

- a) Open Cell quantity in 1 cell box
- b) Piling number of cell box
- c) 1 palette size
- d) Total mass of 1 palette filled with full open cells

Type B

- e) Open Cell quantity in 1 cell box
- f) Piling number of cell box
- g) 1 palette size
- h) Total mass of 1 palette filled with full open cells

- : 18 cells
- : 4 Maximum
- : 1600(W) x 1000(D) x 889(H) [mm]
- : 380kg Maximum
- : 20 cells
- : 4 Maximum
- : 1600(W) x 1000(D) x 889(H) [mm]
- : 420kg Maximum

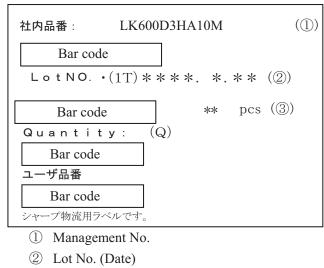

10.2. Label

a) Cell label

This label is stuck on the protection film of front polarizer. (Please trace the Cell lot number after the film is peeled off.)

Cell label:LK600D3HA10 or LK600D3HA10M [Japan production]

ex)[LK600D3HA10M]



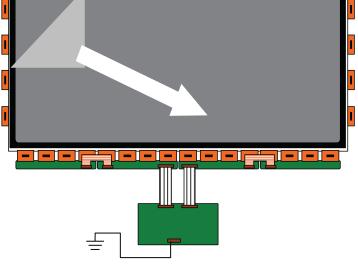
b) Packing Label

This label is stuck on the packing case (cell box) and carton.

Packing Label: LK600D3HA10 or LK600D3HA10M [Japan production]

Ex) [LK600D3HA10M]

③ Quantity


11. Reliability test item

No.	Test item (Test sample form)	Condition						
1	High temperature storage test	Ta=60°C 240h						
2	Low temperature storage test	Ta=-25°C 240h						
3	High temperature and	$Ta = 40^{\circ}C$; 95%RH 240h						
	high humidity operation test	(No condensation)						
4	High temperature operation test	$Ta = 50^{\circ}C 240h$						
5	Low temperature operation test	$Ta = 0^{\circ}C$ 240h						
	Vibration test	X and Y direction: 15min, Z direction: 60min.						
6	(Cell Box with full Open Cells)	5Hz to 50Hz acceleration velocity: 1.0G						
		Sweeping ratio: 3min						
	Drop test	Height: 25cm (corner and edge), 32cm (surface)						
7	(Cell Box with full Open Cells)	Number: 8times						
		(corner 1time and edge 3times and surface 4times)						

Above tests are executed under the CCFL module conditions.

12. Precautions

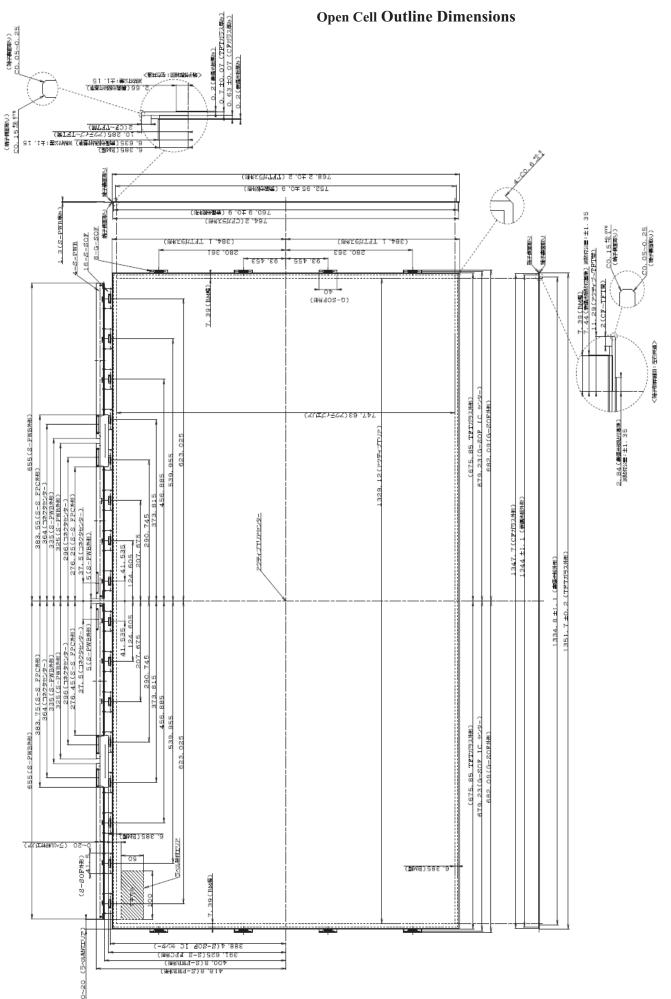
- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the module and cabinet so that the Open Cell can be installed without any extra stress such as warp or twist.
- c) Since the polarizer is easily damaged, pay attention not to scratch it.
- d) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- e) When the polarizer is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Precautions of peeling off the protection film.

- Be sure to peel off slowly (recommended more than 15sec) and constant speed.
- Peeling direction shows Fig.
- Be sure to ground person with adequate methods such as the anti-static wrist band.
- Be sure to ground S-PWB while peeling of the protection film.
- Ionized air should be blown over during peeling action.
- The protection film must not touch drivers and S-PWBs.
- If adhesive may remain on the polarizer after the protection film peeling off, please remove with isopropyl-alcohol.
- h) Since the Open Cell consists of TFT and electronic circuits with CMOS-ICs, which are very weak to electrostatic discharges, persons who are handling the Open Cell should be grounded through adequate methods such as the anti-static wrist band. Connector pins should not be touched directly with bare hands.

Reference . I focess control standard of sharp						
Item	Management standard value and performance standard					
Anti-static mat (shelf)	1 to 50 [M ohm]					
Anti-static mat (floor, desk)	1 to 100 [M ohm]					
Ionizer	Attenuate from ± 1000 V to ± 100 V within 2 sec					
Anti-static wrist band	0.8 to 10 [M ohm]					
Anti-static wrist band entry and	Below 1000 [ohm]					
ground resistance						
Temperature	22 to 26 [°C]					
Humidity	60 to 70 [%RH]					
	Item Anti-static mat (shelf) Anti-static mat (floor, desk) Ionizer Anti-static wrist band Anti-static wrist band entry and ground resistance Temperature					

Reference : Process control standard of sharp

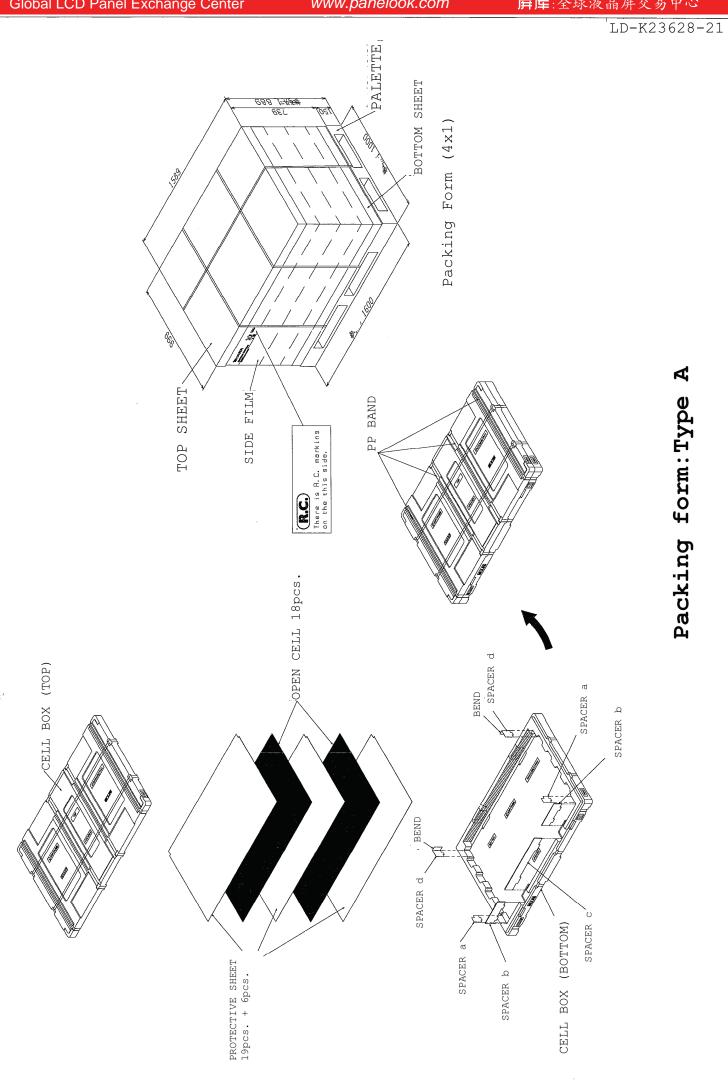
- i) The Open Cell has some PWBs, take care to keep them from any stress or pressure when handling or installing the Open Cell, otherwise some of electronic parts on the PWBs may be damaged.
- j) When handling the Open Cell and assembling them into module and cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the Open Cell.
- k) Applying too much force and stress to PWB and driver (COF) may cause a malfunction electrically and mechanically.
- The Open Cell has high frequency circuits. Sufficient suppression to EMI should be done by system manufacturers.
- m) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- n) The chemical compound, which causes the destruction of ozone layer, is not used.
- o) This Open Cell is corresponded to RoHS. "R.C." label on the side of palette shows it.
- p) When any question or issue occurs, it shall be solved by mutual discussion.

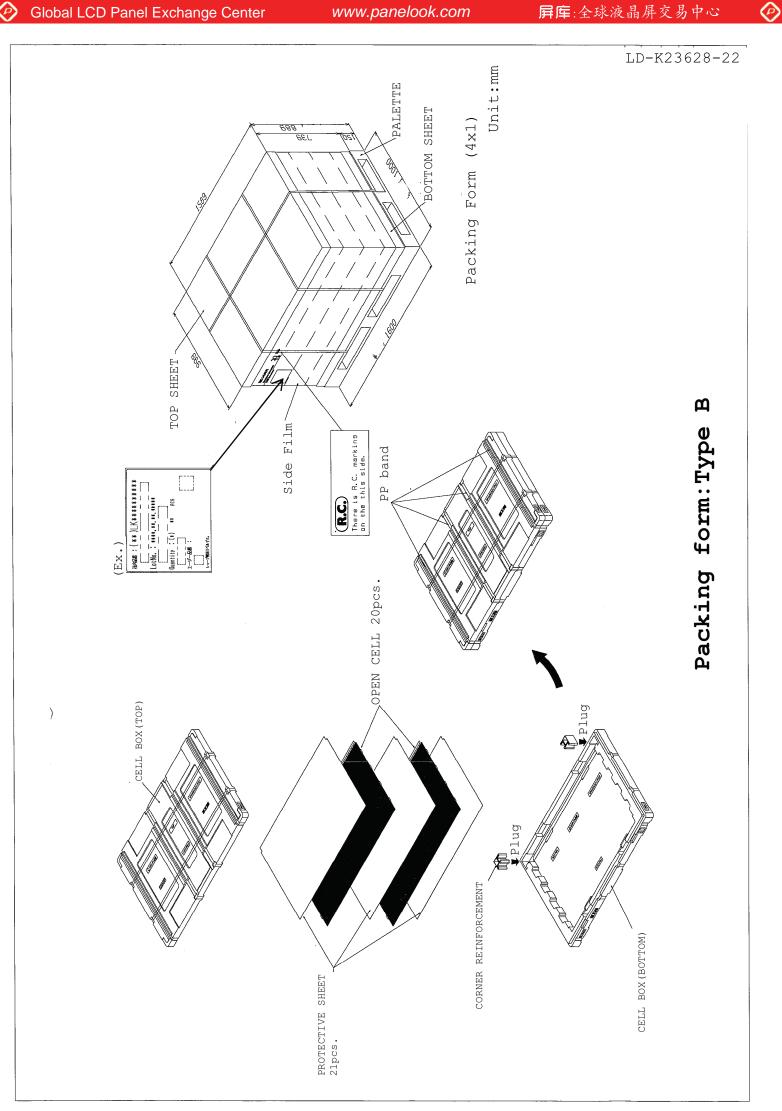

 \oslash

LD-K23628-19

13. Cell Box condition

Temperature	0°C to 40°C
Humidity	95% RH or less
Reference condition	20°C to 35°C, 85% RH or less (summer)
	5°C to 15°C, 85% RH or less (winter)
	the total storage time $(40^{\circ}C, 95\% \text{ RH})$: 240h or less
Sunlight	Be sure to shelter a production from the direct sunlight.
Atmosphere	Harmful gas, such as acid and alkali which bites electronic components and/or wires must not be detected.
Notes	Be sure to put cartons on palette or base, don't put it on floor, and store them with removing from wall.
	Please take care of ventilation in storehouse and around cartons, and control
	changing temperature is within limits of natural environment.
Storage life	1 year.




One step solution

www.panelook.com

 \oslash

