

LM108-N/LM108AQML Operational Amplifiers

Check for Samples: LM108-N, LM108AQML

FEATURES

- Maximum Input Bias Current of 3.0 nA Over Temperature
- Offset Current Less than 400 pA Over Temperature
- Supply Current of Only 300 μA, even in Saturation
- Ensured Drift Characteristics

DESCRIPTION

The LM108-N is a precision operational amplifier having specifications a factor of ten better than FET amplifiers over a −55°C to +125°C temperature range.

The devices operate with supply voltages from ±2V to ±20V and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with, and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary.

The low current error of the LM108-N makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from 10 $M\Omega$ source resistances, introducing less error than devices like the 709 with 10 $k\Omega$ sources. Integrators with drifts less than 500 $\mu\text{V/sec}$ and analog time delays in excess of one hour can be made using capacitors no larger than 1 $\mu\text{F}.$

Connection Diagrams

*Package is connected to Pin 4 (V⁻)

^{**}Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.

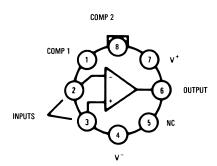


Figure 1. TO-99 Package 8 Lead CDIP Package

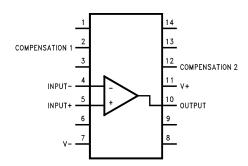


Figure 2. 14 Lead Dual-In-Line Package (Top View) See Package Number J

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

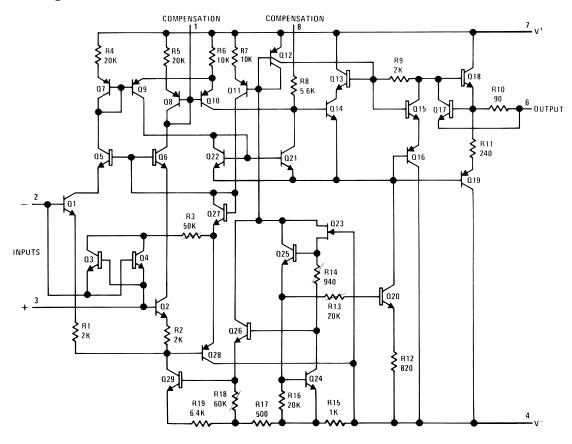
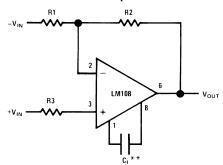
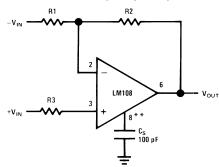



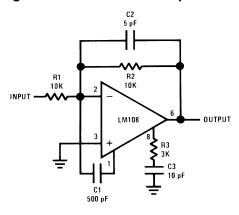
Figure 3. 8 Lead CDIP Package (Top View) See Package Number NAB0008A

Figure 4. 10 Lead CLGA Package See Package Number NAD0010A, NAC0010A


Schematic Diagram


Compensation Circuits

Standard Compensation Circuit


Alternate Frequency Compensation

^{**}Bandwidth and slew rate are proportional to $1/C_{\mbox{\scriptsize S}}$

Note: Improves rejection of power supply noise by a factor of ten.

Figure 5. Feedforward Compensation

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

 $C_f \ge \frac{H1 \ C_O}{R1 + R2} \ C_O = 30 \ pF$ **Bandwidth and slew rate are proportional to 1/ C_f

Absolute Maximum Ratings(1)(2)(3)

				LM108-NRH	LM108- N/LM108-NA
Supply Voltage				±22V	±20V
Power Dissipation (4)			TO-99 8 LD	330mW @ +125°C	
			CDIP 14LD	400mW @ +125°C	
			CDIP 8LD	400mW @ +125°C	
			CLGA 10LD	330mW @ +125°C	
			CLGA 10 LD	330mW @ +125°C	
Differential Input Currer	nt ⁽⁵⁾			±10 mA	
Differential Input Voltag	је ⁽⁶⁾			±30V	N/A
Input Voltage (7)				±20V	±15V
Output Short-Circuit Du	ration			Continuous	
Operating Temperature	Range			-55°C ≤ T _A ≤ +125°C	
Storage Temperature R	Range			-65°C ≤ T _A ≤ +150°C	
Thermal Resistance	θ_{JA}	TO-99	8 LD Still Air	150°C/W	
			500LF / Min Air Flow	86°C/W	
		CDIP	14LD Still Air	94°C/W	
			500LF / Min Air Flow	55°C/W	
		CDIP	8LD Still Air	120°C/W	
			500LF / Min Air Flow	68°C/W	
		CLGA	10LD Still Air	225°C/W	
			500LF / Min Air Flow	142°C/W	
		CLGA	10 LD Still Air	225°C/W	
			500LF / Min Air Flow	142°C/W	
	θ _{JC}		TO-99 8 LD	38°C/W	
			CDIP 14LD	13°C/W	
			CDIP 8LD	17°C/W	
			CLGA 10LD	21°C/W	
			CLGA 10 LD	21°C/W	
Package Weight (typica	al)		TO-99 8 LD	990mg	
			CDIP 14LD	2,180mg	
			CDIP 8LD	1,090mg	
			CLGA 10LD	225mg	
			CLGA 10 LD	210mg	
Maximum Junction Ten	nperature			175°C	150°C
Lead Temperature (Sol	dering, 10 sec	:)		300°C	
ESD Tolerance ⁽⁸⁾				2000V	

- (1) Parameters have only been entered in the LM108-N / LM108-NA column if different from LM108-NRH
- (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
- (4) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_Jmax (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is P_Dmax = (T_Jmax T_A) /θ_{JA} or the number given in the Absolute Maximum Ratings, whichever is lower.
- (5) The inputs are shunted with back-to-back diodes for over voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.
- (6) This rating is ±1.0V unless resistances of 2K Ohms or greater are inserted in series with the inputs to limit current in the input shunt diodes to the maximum allowable value..
- (7) For supply voltages less than ±20V, the absolute maximum input voltage is equal to the supply voltage.
- (8) Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

Table 1. Quality Conformance Inspection⁽¹⁾

Subgroup	Description	Temp (°C)
1	Static tests at	+25°C
2	Static tests at	+125°C
3	Static tests at	−55°C
4	Dynamic tests at	+25°C
5	Dynamic tests at	+125°C
6	Dynamic tests at	−55°C
7	Functional tests at	+25°C
8A	Functional tests at	+125°C
8B	Functional tests at	−55°C
9	Switching tests at	+25°C
10	Switching tests at	+125°C
11	Switching tests at	−55°C

⁽¹⁾ Mil-Std-883, Method 5005 - Group A

LM108-N Electrical Characteristics DC Parameters

The following conditions apply to all the following parameters, unless otherwise specified. $V_{CC} = \pm 20V, \ V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{IO}	Input Offset Voltage	V _{CM} = -15V		-2.0	2.0	mV	1
				-3.0	3.0	mV	2, 3
		V _{CM} = 15V		-2.0	2.0	mV	1
				-3.0	3.0	mV	2, 3
				-2.0	2.0	mV	1
				-3.0	3.0	mV	2, 3
		$V_{CC} = \pm 5V$		-2.0	2,0	mV	1
				-3.0	3.0	mV	2, 3
I _{IO}	Input Offset Current	V _{CM} = -15V		-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
	V _{CM} = 15V		-0.2	0.2	nA	1	
			-0.4	0.4	nA	2, 3	
				-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
		V _{CC} = ±5V	-0.2	0.2	nA	1	
				-0.4	0.4	nA	2, 3
±l _{IB}	Input Bias Current	V _{CM} = -15V		-0.1	2.0	nA	1
				-1.0	3.0	nA	2,
				-0.1	3.0	nA	3
		V _{CM} = 15V		-0.1	2.0	nA	1
				-1.0	3.0	nA	2,
				-0.1	3.0	nA	3
				-0.1	2.0	nA	1
				-1.0	3.0	nA	2,
				-0.1	3.0	nA	3
		$V_{CC} = \pm 5V$		-0.1	2.0	nA	1
				-1.0	3.0	nA	2,
				-0.1	3.0	nA	3
PSRR	Power Supply Rejection ±Ratio	±20V <= Vcc <= ±5V		80		dB	1, 2, 3

Submit Documentation Feedback

LM108-N Electrical Characteristics DC Parameters (continued)

The following conditions apply to all the following parameters, unless otherwise specified.

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
CMRR	Common Mode Rejection Ratio	-15V <= V _{CM} <= 15V		85		dB	1, 2, 3
+l _{OS}	Short Circuit Current	V _{CC} = ±15V		-30	-1.0	mA	1, 2, 3
-l _{os}	Short Circuit Current	V _{CC} = ±15V		1	30	mA	1, 2, 3
I _{CC}	Power Supply Current				0.6	mA	1
					0.4	mA	2
					0.8	mA	3
R _{IN}	Input Resistance		See ⁽¹⁾	30		МΩ	1
V _{IN}	Input Voltage Range	V _{CC} = ±15V	See ⁽²⁾	14		V	1, 2
			See ⁽²⁾		-14	V	1, 2
			See ⁽²⁾	13.5		V	3
			See ⁽²⁾		-13. 5	V	3
			See ⁽²⁾	15		V	1, 2, 3
			See ⁽²⁾		-15	V	1, 2, 3
+V _{OP}	Output Voltage Swing	$V_{CC} = \pm 15V$, $R_L = 10K\Omega$		13		V	4, 5, 6
-V _{OP}	Output Voltage Swing	$V_{CC} = \pm 15V$, $R_L = 10K\Omega$			-13	V	4, 5, 6
+A _{VS}	Open Loop Voltage Gain	$V_{CC} = \pm 15V$, $R_L = 10K\Omega$,	See ⁽³⁾	50		V/mV	4
		Vout = 0 to 10V	See ⁽³⁾	25		V/mV	5, 6
-A _{VS}	Open Loop Voltage Gain	$V_{CC} = \pm 15V$, $R_L = 10K\Omega$	See ⁽³⁾	50		V/mV	4
. •		Vout = 0 to -10V	See ⁽³⁾	25		V/mV	5, 6

- (1) Ensured parameter not tested.
- (2) Parameter tested Go-No-Go
- (3) Datalog reading in K = V/mV

LM108-N Electrical Characteristics AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$.

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
TR _{TR}	Rise Time		See ⁽¹⁾		1.0	μS	7
TROS	Overshoot		See ⁽¹⁾		30	%	7

⁽¹⁾ Ensured parameter not tested.

LM108-NA Electrical Characteristics DC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{IO} In	Input Offset Voltage	V _{CM} = -15V		-0.5	0.5	mV	1
				-1.0	1.0	mV	2, 3
	V _{CM} = 15V		-0.5	0.5	mV	1	
				-1.0	1.0	mV	2, 3
				-0.5	0.5	mV	1
				-1.0	1.0	mV	2, 3
		V _{CC} =±5V		-0.5	0.5	mV	1
				-1.0	1.0	mV	2, 3

Submit Documentation Feedback

LM108-NA Electrical Characteristics DC Parameters (continued)

The following conditions apply to all the following parameters, unless otherwise specified.

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
I _{IO}	Input Offset Current	V _{CM} = -15V		-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
		V _{CM} = 15V		-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
				-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
		$V_{CC} = \pm 5V$		-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
±l _{IB}	Input Bias Current	V _{CM} = -15V		-0.1	2.0	nA	1
				-1.0	3.0	nA	2
				-0.1	3.0	nA	3
		V _{CM} = 15V		-0.1	2.0	nA	1
				-1.0	3.0	nA	2
				-0.1	3.0	nA	3
				-0.1	2.0	nA	1
				-1.0	3.0	nA	2
				-0.1	3.0	nA	3
		$V_{CC} = \pm 5V$		-0.1	2.0	nA	1
				-1.0	3.0	nA	2
				-0.1	3.0	nA	3
PSRR	Power Supply Rejection Ratio	$\pm 20V < = V_{CC} < = \pm 5V$		96		dB	1, 2, 3
CMRR	Common Mode Rejection Ratio	-15V < = V _{CM} < = 15V		96		dB	1, 2, 3
+I _{OS}	Short Circuit Current	$V_{CC} = \pm 15V$		-30	-1.0	mA	1, 2, 3
-l _{OS}	Short Circuit Current	$V_{CC} = \pm 15V$		1.0	30	mA	1, 2, 3
I _{CC}	Power Supply Current				0.6	mA	1
					0.4	mA	2
					8.0	mA	3
R _{IN}	Input Resistance		See ⁽¹⁾	30		ΜΩ	1
V _{IN}	Input Voltage Range	V _{CC} = ±15V	See ⁽²⁾	14		V	1, 2
			See ⁽²⁾		-14	V	1, 2
			See ⁽²⁾	13.5		V	3
			See ⁽²⁾		-13. 5	V	3
			See ⁽²⁾	15		V	1, 2, 3
			See ⁽²⁾		-15	V	1, 2, 3

¹⁾ Ensured parameter not tested.

⁽²⁾ Parameter tested Go-No-Go#SNOSAH42270

LM108-NA Electrical Characteristics DC Parameters (continued)

The following conditions apply to all the following parameters, unless otherwise specified.

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
Delta V _{IO} / Delta T	Temperature Coefficient of Input Offset Voltage		See ⁽³⁾		5.0	μV/°C	1, 2, 3
Delta I _{IO} / Delta T	Temperature Coefficient of Input Offset Current		See ⁽³⁾		2.5	pA/°C	1, 2, 3
+V _{OP}	Output Voltage Swing	$V_{CC} = \pm 15V$, $R_L = 10K\Omega$		13		V	4, 5, 6
-V _{OP}	Output Voltage Swing	$V_{CC} = \pm 15V$, $R_L = 10K\Omega$			-13	V	4, 5, 6
+A _{VS}	Open Loop Voltage Gain	$V_{CC} = \pm 15V$, $R_L = 10K\Omega$,	See (4)	80		V/mV	4
		Vout = 0 to 10V	See ⁽⁴⁾	40		V/mV	5, 6
-A _{VS}	Open Loop Voltage Gain	$V_{CC} = \pm 15V$, $R_L = 10K\Omega$, Vout = 0 to -10V	See ⁽⁴⁾	80		V/mV	4
			See ⁽⁴⁾	40		V/mV	5, 6

⁽³⁾ Ensured parameter not tested.

LM108-NA Electrical Characteristics AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
TR _{TR}	Transient Response Rise Time		See ⁽¹⁾		1.0	μS	7

⁽¹⁾ Ensured parameter not tested.

LM108-NA Rad Hard — Electrical Characteristics DC Parameters

The following conditions apply to all the following parameters, unless otherwise specified. $\pm V_{CC} = \pm 20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
		$+V_{CC} = 35V, -V_{CC} = -5V,$		-0.5	0.5	mV	1
		$V_{CM} = -15V$		-1.0	1.0	mV	2, 3
		$+V_{CC} = 5V$, $-V_{CC} = -35V$,		-0.5	0.5	mV	1
V	Input Offact Voltage	$V_{CM} = 15V$		-1.0	1.0	mV	2, 3
V _{IO}	Input Offset Voltage			-0.5	0.5	mV	1
				-1.0	1.0	mV	2, 3
		$+V_{CC} = +5V, -V_{CC} = -5V$		-0.5	0.5	mV	1
				-1.0	1.0	mV	2, 3
Delta V _{IO} /	Temperature Coefficient of Input Offset Voltage	25°C ≤ T _A ≤ +125°C	See ⁽¹⁾	-5.0	5.0	μV/°C	2
Delta T		-55°C ≤ T _A ≤ 25°C	See ⁽¹⁾	-5.0	5.0	μV/°C	3
I _{IO}	Input Offset Current	$+V_{CC} = 35V, -V_{CC} = -5V,$ $V_{CM} = -15V$		-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
		+V _{CC} = 5V, -V _{CC} = -35V,		-0.2	0.2	nA	1
		$V_{CM} = 15V$		-0.4	0.4	nA	2, 3
				-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
		+V _{CC} = +5V, -V _{CC} = -5V		-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
Delta I _{IO} /	Temperature Coefficient of Input	25°C ≤ T _A ≤ +125°C	See ⁽¹⁾	-2.5	2.5	pA/°C	2
Delta T	ffoot Current	-55°C ≤ T _A ≤ 25°C	See ⁽¹⁾	-2.5	2.5	pA/°C	3

(1) Calculated Parameter

⁽⁴⁾ Datalog reading in K = V/mV

LM108-NA Rad Hard — Electrical Characteristics DC Parameters (continued)

The following conditions apply to all the following parameters, unless otherwise specified.

 $\pm V_{CC} = \pm 20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
±l _{IB}	Input Bias Current	+V _{CC} = 35V, -V _{CC} = -5V,		-0.1	2.0	nA	1
		$V_{CM} = -15V$		-1.0	2.0	nA	2
				-0.1	3.0	nA	3
		+V _{CC} = 5V, -V _{CC} = -35V,		-0.1	2.0	nA	1
		$V_{CM} = 15V$		-1.0	2.0	nA	2
				-0.1	3.0	nA	3
				-0.1	2.0	nA	1
				-1.0	2.0	nA	2
				-0.1	3.0	nA	3
		+V _{CC} = +5V, -V _{CC} = -5V		-0.1	2.0	nA	1
				-1.0	2.0	nA	2
				-0.1	3.0	nA	3
+PSRR	Power Supply Rejection Ratio	+V _{CC} = 10V, -V _{CC} = -20V		-16	16	μV/V	1, 2, 3
-PSRR	Power Supply Rejection Ratio	+V _{CC} = 20V, -V _{CC} = -10V		-16	16	μV/V	1, 2, 3
CMRR	Common Mode Rejection Ratio	V _{CM} = ± 15V		96		dB	1, 2, 3
+l _{OS}	Short Circuit Current	$+V_{CC} = +15V,$ $-V_{CC} = -15V, t \le 25mS$		-20		mA	1, 2, 3
-l _{OS}	Short Circuit Current	+V _{CC} = +15V, -V _{CC} = -15V, t ≤ 25mS			20	mA	1, 2, 3
lcc	Power Supply Current	+V _{CC} = +15V,			0.6	mA mA	1, 2
+V _{OP}	Output Voltage Swing	$-V_{CC} = -15V$ $R_L = 10K\Omega$		16	0.8	V	3 4, 5, 6
-V _{OP}	Output Voltage Swing Output Voltage Swing	$R_L = 10K\Omega$ $R_L = 10K\Omega$		10	-16	V	4, 5, 6
+A _{VS}	Open Loop Voltage Gain	$R_L = 10K\Omega$ $R_L = 10K\Omega$, Vout = +15V	See ⁽²⁾	80	-10	V/mV	4, 5, 6
rays	Open Loop vollage Galli	NL = 10N22, VOUL = +13V	See (2)	40		V/mV	5, 6
٨	Open Lean Voltage Cain	$R_1 = 10K\Omega$, Vout = -15V	See (2)	80		V/mV	4
-A _{VS}	Open Loop Voltage Gain	KL = 10K22, VOUL = -15V	See (2)	40		V/mV	5, 6
A _{VS}	Open Loop Voltage Gain	$\pm V_{CC} = \pm 5V$, $R_L = 10K\Omega$, Vout = $\pm 2V$	See ⁽²⁾	20		V/mV V/mV	4, 5, 6

⁽²⁾ Datalog reading in K = V/mV

LM108-NA Rad Hard — Electrical Characteristics DC Drift Parameters

The following conditions apply to all the following parameters, unless otherwise specified. $\pm V_{CC} = \pm 20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Delta calculations performed on JAN S and QMLV devices at group B, subgroup 5 only.

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V_{IO}	Input Offset Voltage			-0.25	0.25	mV	1
$\pm I_{IB}$	Input Bias Current			-0.5	0.5	nA	1

LM108-NA Rad Hard — Electrical Characteristics AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified. AC $\pm V_{CC} = \pm 20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
TR _{TR}	Transient Response Rise Time	$R_L = 10K\Omega$, $C_L = 100pF$, $f < 1KHz$, $Vin = +50mV$			1,00 0	nS	9, 10, 11

LM108-NA Rad Hard — Electrical Characteristics AC Parameters (continued)

The following conditions apply to all the following parameters, unless otherwise specified.

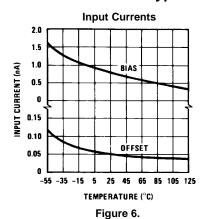
AC $\pm V_{CC} = \pm 20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

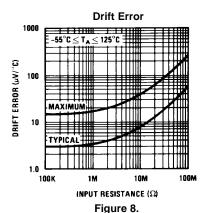
Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
TR _{OS}	Transient Response Overshoot	$R_L = 10K\Omega$, $C_L = 100pF$, $f < 1KHz$, $Vin = +50mV$			50	%	9, 10, 11
+S _R	Slew Rate	$A_V = 1,$ $V_{IN} = -5V \text{ to } +5V$		0.05		V/µS	9, 10, 11
-S _R	Slew Rate	$A_V = 1,$ $V_{IN} = +5V \text{ to } -5V$		0.05		V/µS	9, 10, 11
NI _{BB}	Noise Broadband	BW = 10Hz to 5KHz, R _S = 0 Ω			15	μV_{RMS}	9
NI _{PC}	Noise Popcorn	BW = 10Hz to 5KHz, R _S = $100K\Omega$			40	μV _{PK}	9

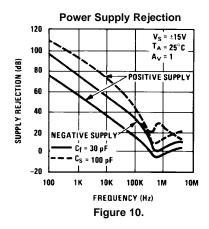
LM108-NA Rad Hard — Electrical Characteristics Post Radiation Parameters @ +25°C (1)(2)

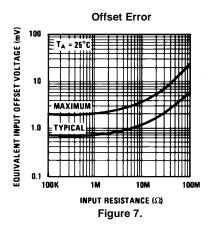
The following conditions apply to all the following parameters, unless otherwise specified.

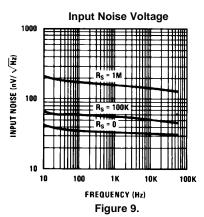
DC: $\pm V_{CC} = \pm 20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

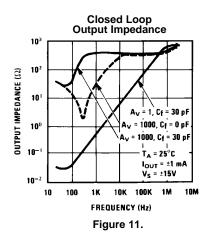

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
±l _{IB}	Input Bias Current	$+V_{CC} = 35V, -V_{CC} = -5V,$ $V_{CM} = -15V$	See ⁽¹⁾		5.0	nA	1
		$+V_{CC} = 5V$, $-V_{CC} = -35V$, $V_{CM} = -15V$	See ⁽¹⁾		5.0	nA	1
			See ⁽¹⁾		5.0	nA	1
		$+V_{CC} = +5V, -V_{CC} = -5V$	See ⁽¹⁾		5.0	nA	1
I _{IO}	Input Offset Current	$+V_{CC} = 35V, -V_{CC} = -5V,$ $V_{CM} = -15V$	See ⁽¹⁾		0.5	nA	1
		$+V_{CC} = 5V$, $-V_{CC} = -35V$, $V_{CM} = -15V$	See ⁽¹⁾		0.5	nA	1
			See ⁽¹⁾		0.5	nA	1
		+V _{CC} = +5V, -V _{CC} = -5V	See ⁽¹⁾		0.5	nA	1

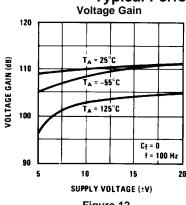

⁽¹⁾ Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are specified only for the conditions as specified in MIL-STD-883, Method 1019.5.

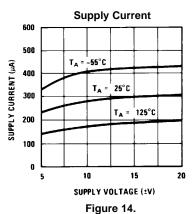

(2) Calculated parameter for Class "S" only

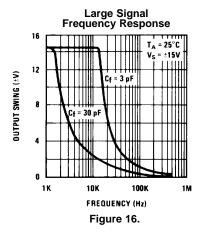


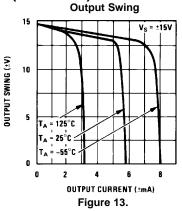

Typical Performance Characteristics

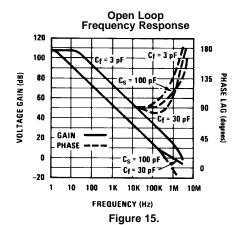


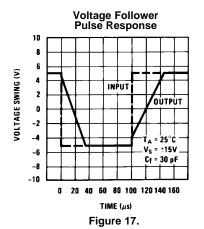







Typical Performance Characteristics (continued)





TYPICAL APPLICATIONS

Figure 18. Sample and Hold

†Teflon polyethylene or polycarbonate dielectric capacitor Worst case drift less than 2.5 mV/sec

Figure 19. High Speed Amplifier with Low Drift and Low Input Current

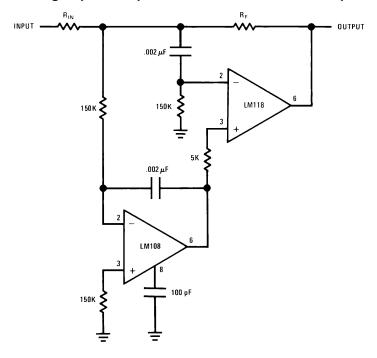
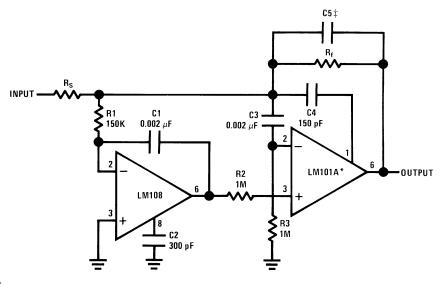



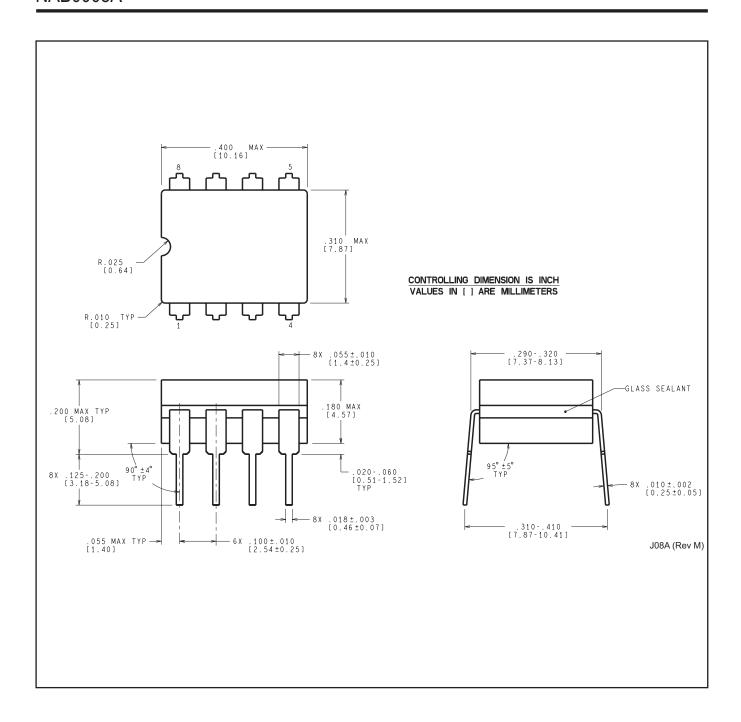
Figure 20. Fast Summing Amplifier

 $\ddagger C5 = \frac{6 \times 10^{-8}}{B_4}$

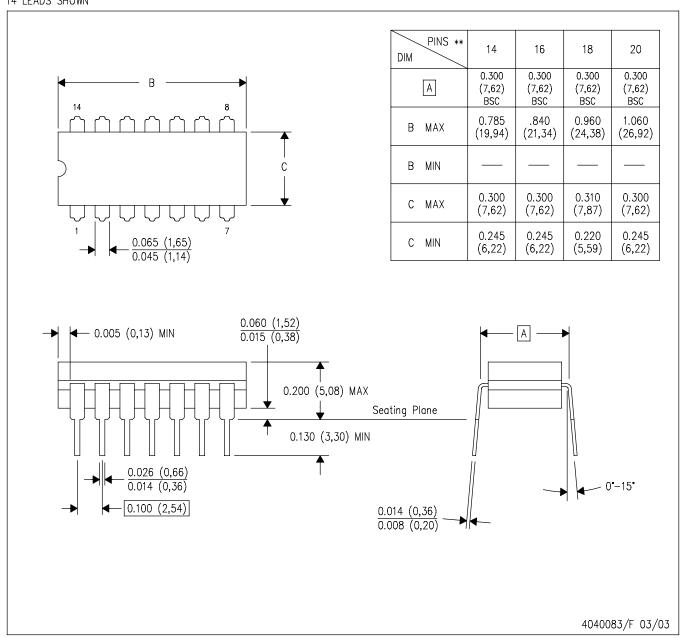
*In addition to increasing speed, the LM101A raises high and low frequency gain, increases output drive capability and eliminates thermal feedback.

Note: Power Bandwidth: 250 KHzSmall

Signal Bandwidth: 3.5 MHz

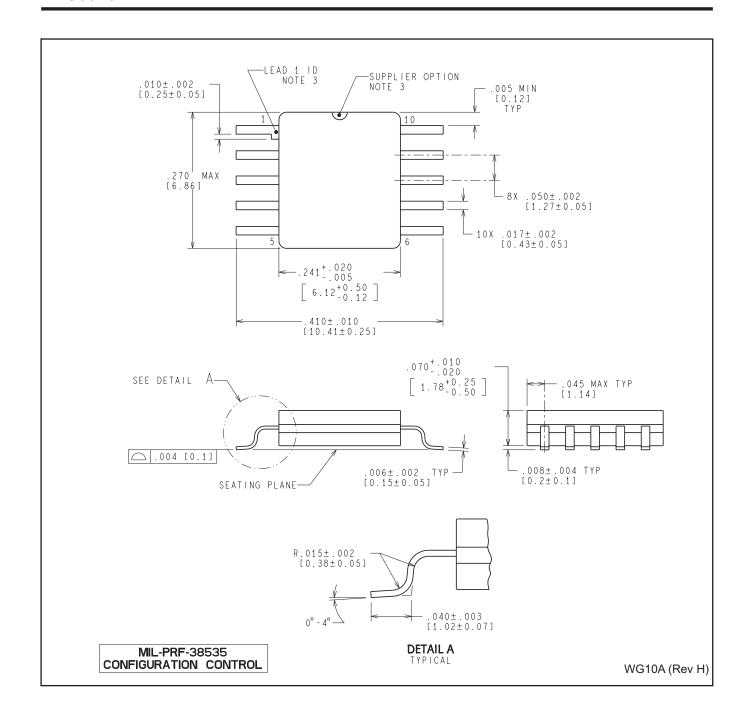

Slew Rate: 10V/µS

www.ti.com

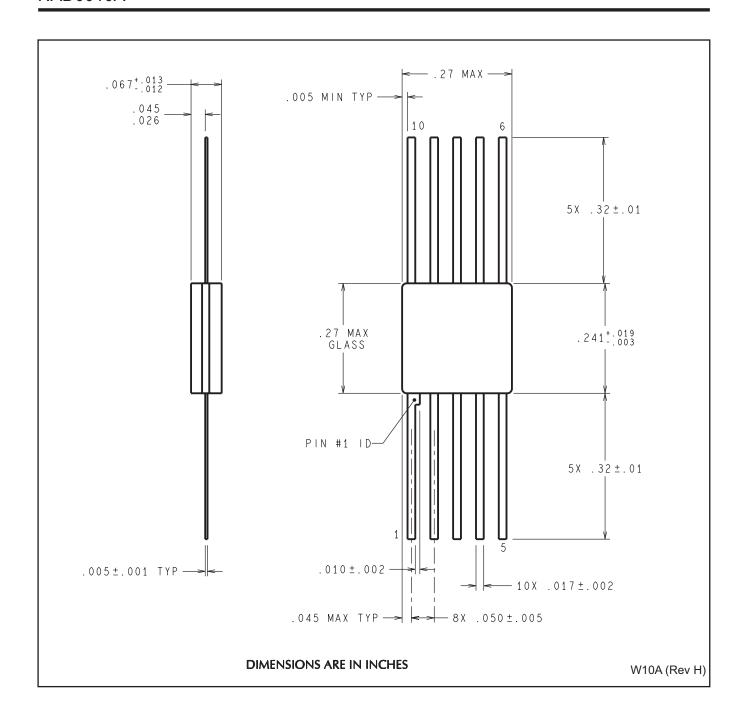

Table 2. Revision History

Date Released	Revision	Section	Originator	Changes
03/23/05	A	New release, corporate format. Ordering information table, Electrical sections for the LM108-N and LM108-NA.	L. Lytle	3 MDS data sheets converted into one Corp. datasheet format. MRLM108-NA-X-RH rev. 1A0, MNLM108-NA-X rev 1A1, MNLM108-N-X rev 0BL. Deleted following: NSID LM108-NAW/883 and LM108-NAJ-8RQML, no longer offered; from LM108-N electrical's Delta V _{IO} /Delta T, Delta I _{IO} /Delta T, Drift Parameters; from LM108-NA electrical's Drift Parameters. Reason: referenced products are 883 only.
12/14/05	В	Rad Hard Electricals, DC Parameters	R. Malone	$+l_{OS}$ from -15 mA min to -20 mA min and - l_{OS} from +15 mA max to +20 mA max. Reason: To reflect SMD update. Revision A will be archived.
03/26/2013	В	All Sections		Changed layout of National Data Sheet to TI format

Submit Documentation Feedback

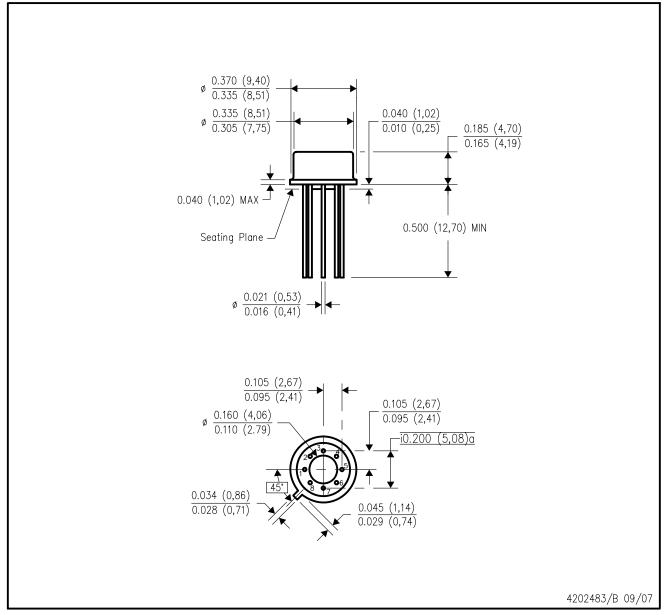


14 LEADS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.



LMC (O-MBCY-W8)

METAL CYLINDRICAL PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
- D. Pin numbers shown for reference only. Numbers may not be marked on package.
- E. Falls within JEDEC MO-002/TO-99.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>