Created Date	2012-06-11 09:14 (Korea Time)					
Requested by	최찬용 (Monitor양산팀	최찬용 (Monitor양산팀 / 주임연구원 , 82-031-610-6597)				
Subject	[Approval Formal] EAJ6	[Approval Formal] EAJ62073401(LGD_LM185WH2-TLD1 TN 200nits)				
	Retention	3 Year				
	Security Grade	Internal use (Only)				
EDMS Attributes	Tag	승인원 회람				
	Access	*LG전자;*Monitor Product Support Team				
	Permission	Read Only;Download				

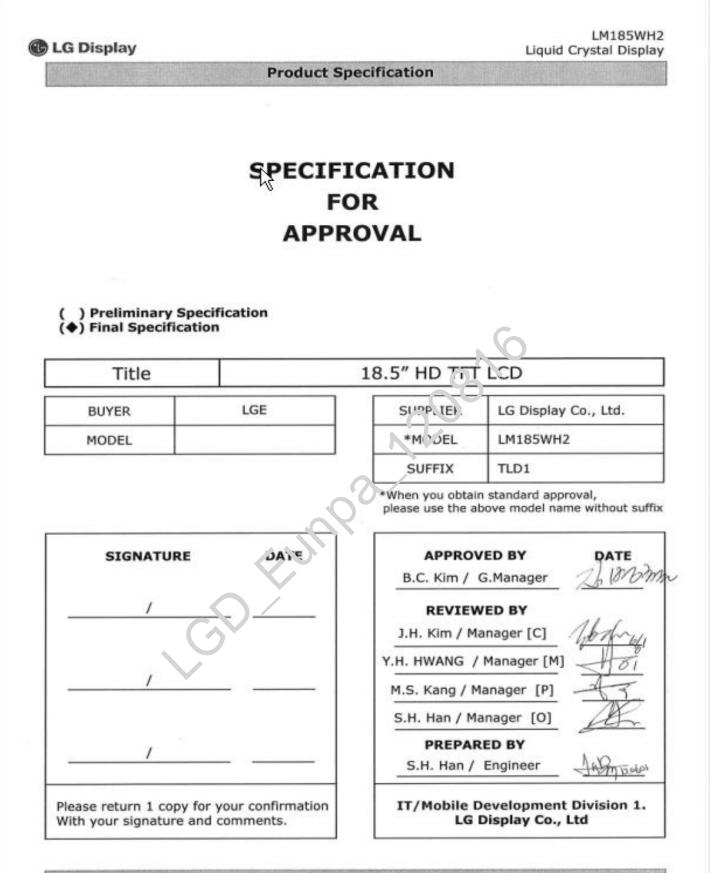
Component Development Information

Model : E1942C/E1941C/E1942TC/M1

1000EI . L 194	20/213410/2134210/0113320
Approval type	: New (•) Limit () Revision () 4M ()
HSMS (RoHS)	: Complete (•) Limit Approval () Warranty Approval ()
Reliability test	: Needless () Need (Test Report No: •)
Class Name	: LCD,Module-TFT
Part Number	: EAJ62073401
Maker	: LGD
Specification	: LM185WH2-TLD1 HD 18.5INCH 1366X768 200CD COLOR 72% 16/9 600:1 60Hz
	Inverter N LED 2D R/T:5ms,V/A:90/65
Key part list	: Pol:LGC,Fab:P6,Module assy:GM/GZ,T-con:ED Tech,S-ic:Lusem,GIP
	BL Assy:New optics,LED:Wooree/LGIT,Sheet:Diffuser 3ea
Development Hi	story : LCD 18 5" TN 200pits New module development

Development History : LGD 18.5" TN 200nits New module development

★Safety Standard Parts [안전규격부품 List]


Power Cord, Power Plug, X / Y-Capacitor, Power Switch, Fuse, SMPS Trans, Stand-3v Jrans, Photo coupler, Insulation (절연) Resistor, Discharge (방전)Resistor, Fusing Resistor, FBT,CPT, CFT Socket, DY, D-Coil, Line Filter, PCB Material, Front / Back-cover Material, Relay(1-2차간), Var .tor, Accptor, PSU(Power supply unit) ★EMC Standard Parts [전파규격 부품 List]

Power Plug, Line Filter, X-Capacitor, Y-Capacitor, SMPS Trans, Tuner, Saw-Filter, Shield Case, Oscillator, Pattern Change ★Green [유해물질 확인사항]

This item must meet the standards of LG Electronics for six majo substances as designated by RoHS for control.

	Approval Type	Status	Appr. ved Date	Approved by / Comment
	Agree	Apprc [,] ed	2012 J6-14 17:15	xiangtai jin (LGEND IT Development VP.Component Development Team.Module De / officer 1) Comment : OK
	Agree	Approver	2012-06-15 11:38	xiaodong li (LGEND IT Development VP.Component Development Team / senior manager B) Comment : OK
	Agr、۹	Approved	2012-06-16 17:48	huan chen (LGEND IT Development VP.IT Planning Team.Safety Part / assistant manager) Comment : OK
	Agree	Approved	2012-06-18 09:26	tongsuo yao (LGEND IT Development VP.IT Planning Team.Safety Part / officer 1) Comment : OK
Approval Line	Approval	Approved	2012-06-18 11:12	danyang huang (LGEND IT Development VP.IT Planning Team.Standard Part / manager b) Comment : OK,200nits,non-TCO model.
	Agree	Approved	2012-06-18 11:56	이진범 (LGEND IT Development VP.IT Mechanic Team / 선임연 구원) Comment: ok
	Agree	Approved	2012-06-18 12:12	한상석 (LGEND IT Development VP.IT Dvelopment Team / 책임 연구원) Comment: 확인합니다.
	Approval	Approved	2012-06-18 12:45	윤석재 (Monitor양산팀 / 책임연구원) Comment : 확인합니다.
	Approval	Approved	2012-06-18 15:39	배권일 (Monitor양산팀 / 수석연구원) Comment : 확인합니다

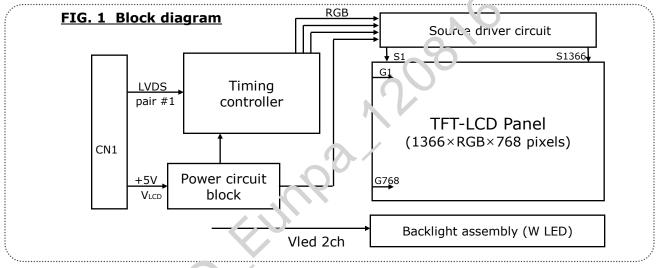
Ver. 1.0

May. 31. 2012

1/31

Contents

٢	No	ITEM	Page
		COVER	1
		CONTENTS	2
		RECORD OF REVISIONS	3
1		GENERAL DESCRIPTION	4
2		ABSOLUTE MAXIMUM RATINGS	5
3		ELECTRICAL SPECIFICATIONS	6
	1)	ELECTRICAL CHARACTERISTICS	6
	2)	INTERFACE CONNECTIONS	9
	3)	LVDS characteristics	12
	4)	SIGNAL TIMING SPECIFICATIONS	15
	5)	SIGNAL TIMING WAVEFORMS	16
	6)	COLOR INPUT DATA REFERNECE	17
	7)	POWER SEQUENCE	18
	8)	POWER DIP CONDITION	19
4		OPTICAL SFECIFICATIONS	20
5			25
6		RELIABILITY	27
7		INTERNATIONAL STAN JAGDS	28
	1)	SAFETY	28
	2)	EMC	28
8		PACKING	29
	1)	DESIGNATION OF LOT MARK	29
	2)	PACKING FORM	29
9		PRECAUTIONS	30
	1)	MOUNTING PRECAUTIONS	30
	2)	OPERATING PRECAUTIONS	30
	3)	ELECTROSTATIC DISCHARGE CONTROL	31
	4)	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	31
	5)	STROAGE	31
	6)	HANDLING PRECAUTIONS FOR PROTECTION FILM	31



Record of revisions

Revision No	Date	Page	Description
Ver 0.0	Feb.13.2012	-	Preliminary Specifications
Ver0.1	Mar.23.2012	4, 7 4, 23 10 19 22 29	Change the LED Array Electrical characteristics Updated LCM's Weight (1350g(typ), 1420g(max)) Added LED Mating CNT(SHJP-06-A-K (HF) Updated Optical Characteristics (Color Coordinates: R,G,B) Delete Notes of TCO5.0 Luminance uniformity Updated Packing information.
Ver1.0	June.01.2012	28 30 25,26	Final Specifications Update safety on International standards Change the Operating precautions → 3: (In Higher temperature, it her omes lower.) Update LCM's drawing

1. General description

LM185WH2-TLD1 is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode(LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. It has a 18.5 inch diagonally measured active display area with HD resolution (768 vertical by 1366 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M colors with Advanced-FRC(Frame Rate Control). It has been designed to apply the interface method that enables low power, high speed, low EMI. FPD Link or compatible must be used as a LVDS(Low Voltage Differential Signaling) chip. It is intended to support applications where thin thickness, wide viewing angle, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LM185WH2-TLD1 characteristics provide an excellent flat panel display for office automation products such as monitors.

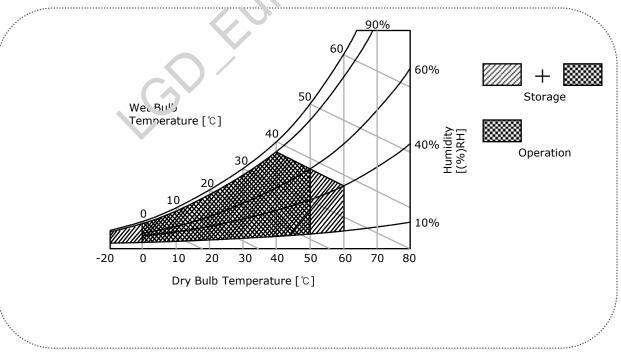
General features

<u>deficial features</u>					
Active screen size	18.51 inches (470.1mm) diagonal				
Outline Dimension	430.4(H) x 254.6(V) x 10.2(D) mm(Typ.)				
Pixel Pitch	0.10*RGB(H)mm x 0.30(V)mm				
Pixel Format	1366 horizontal By 768 vertical Pixels. RGB stripe arrangement				
Interface	LVDS 1Port				
Color depth	16.7M colors				
Luminance, white	200 cd/m ² (Center 1Point, typ)				
Viewing Angle (CR>10)	R/L 90(Typ.), U/D 50(Typ.)				
Power Consumption	Total 10.4W(Typ.), (3.60 W@V _{LCD} , 6.8W@Is = 100mA)				
Weight	1350g(Typ)				
Display operating mode	Transmissive mode, Normally White				
Surface treatments	Hard coating (3H), Anti-glare treatment of the front polarizer				

Ver. 1.0

2. Absolute maximum ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.


Table 1. Absolute maximum ratings

Parameter	Symbol	Values		Units	Notes	
	Symbol	Min	Max	011123	10000	
Power Supply Input Voltage	V_{LCD}	-0.3	+6.0	Vdc	At 25℃	
Operating Temperature	Τ _{ΟΡ}	0	50	°C		
Storage Temperature	T _{ST}	-20	60	°C	1,2,3	
Operating Ambient Humidity	H _{OP}	10	90	%RH		
LCM Surface Temperature (Operation)	T _{Surface}	0	65	с С	1,4	

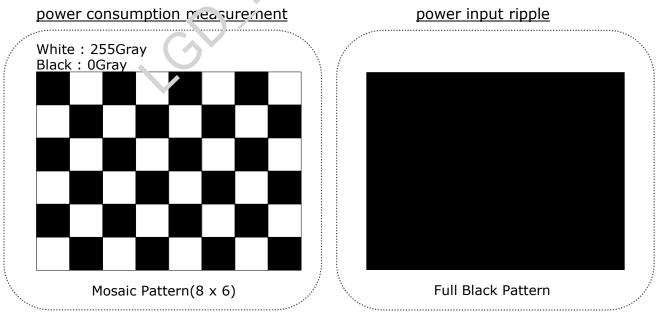
Note : 1. Temperature and relative humidity range are shown in the in ure below.

- Wet bulb temperature should be 39 $^\circ C$ Max, and no cor densation of water.
- 2. Maximum Storage Humidity is up to 40 $^\circ$ C, 90% RH cm, tere corner light leakage Mura.
- 3. Storage condition is guaranteed under packing condition.
- 4. LCM Surface Temperature should be Min. 0℃ and 1 ax. o5℃ under the VLCD=5.0V, fV=60Hz, 25℃ ambient Temperature no humidity control and LED string current is typical value.

3. Electrical specifications

3-1. Electrical characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.


Table 2. Electrical characteristics

Parameter	Symbol		Values	Unit	Notes	
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE :						
Power Supply Input Voltage	V_{LCD}	4.5	5.0	5.5	Vdc	
Permissive Power Input Ripple	V_{LCD}	-	-	0.3	V	3
Power Supply Input Current	I _{LCD-MOSAIC}	-	720	940	mA	1
Power Supply Input Current	$I_{LCD-BLACK}$	-	900	11.70	mA	2
Power Consumption	P _{LCD}	-	3.60	4.73	Watt	1
Inrush current	I _{RUSH}	-	- 0	3.0	А	4

Note :

- 1. The specified current and power consumption are under the VLCD=5.0V, $25 \pm 2^{\circ}C$, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.
- 2. The current is specified at the maximum current pattern.
- 3. Permissive power ripple should be measured under VCC=5.0V, 25°C, f_v (frame frequency)=75Hz condition and At that time, we recommend the bandwidth configuration of oscilloscope is to be under 20MHz.
- 4. The duration of rush current is about 5ms and rising time of power Input is 500us \pm 20%.

FIG.3 pattern for Electrical characteristics

<u>Table 3.</u>	LED array E	LECTRICA	L CHARACTE	<u>RISTICS</u>
	-			

Parameter	Symbol	Condition		Unit	Note		
Parameter	Symbol		Min.	Тур.	Max.	Unit	S
LED String Current	Is		-	100	115	mA	1,2,5
LED String Voltage	Vs		31.9	34.1	36.3	V	1,5
Power Consumption	PBar		-	6.8	7.3	Watt	1,2,4
LED Life Time	LED_LT		30,000	-	-	Hrs	3

Notes) The LED Bar consists of 22LED packages, 2 strings (parallel) x 11 packages (serial)

LED driver design guide

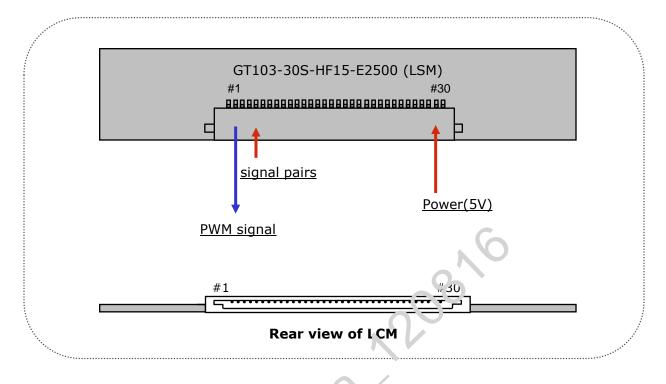
: The design of the LED driver must have specifications for the LED in LCD Assembly. The performance of the LED in LCM, for example life time of brightness, is extremely influenced by the characteristics of the LED driver.

So all the parameters of an LED driver should be carefully designed and output current should be Constant current control.

Please control feedback current of each string individually to compensate the current variation among the strings of L_Ds.

When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED driver (no lighting, flicker, etc) never occurs. When you confirm it, the LCD module should be operated in the same condition as installed in your instrument.

- 1. Specified values are for a single LED bar.
- 2. The specified current is defined as the input current for a single LED string with 100% duty cycle.
- 3. The LED life time is defined as the time when brightness of LED packages become 50% or less than the initial value under the conditions at Ta = $25\pm2^{\circ}$ C and LED string current is typical value.
- 4. The power consumption shown above does not include loss of external driver. The typical power consumption is calculated as $P_{Bar} = Vs(Typ.) \times Is(Typ.) \times No.$ of strings. The maximum power consumption is calculated as $P_{Bar} = Vs(Max.) \times Is(Typ.) \times No.$ of strings.
- 5. LED operating conditions are must not exceed Max. ratings.

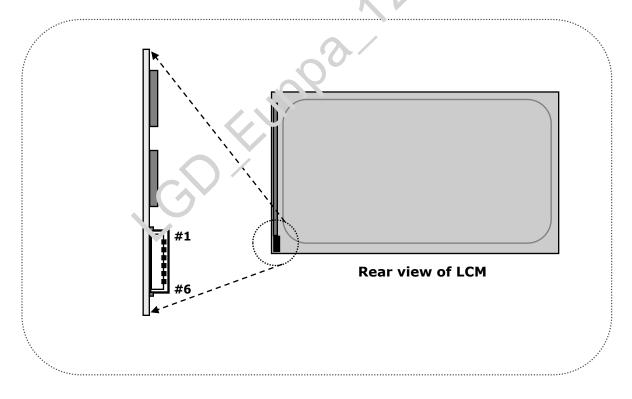

3-2. Interface connections

LCD Connector(CN1): GT103-30S-HF15-E2500(LSM) or IS100-L30O-C23 (UJU) Mating connector : FI-X30H and FI-X30HL (JAE) or Equivalent

Pin No	Symbol	Description
1	NC	No Connection (For LCD internal use only.)
2	PWM_OUT	Reference signal for inverter control
3	NC	No Connection (For LCD internal use only.)
4	GND	Ground
5	RX0-	Minus signal of channel 0 (LVDS)
6	RX0+	Plus signal of channel 0 (LVDS)
7	GND	Ground
8	RX1-	Minus signal of channel 1 (IVCS)
9	RX1+	Plus signal of channel 1 (L/DS)
10	GND	Ground
11	RX2-	Minus signal of channel 2 (LVDS)
12	RX2+	Plus signal of channel 2 (LVDS)
13	GND	Ground
14	RXCLK-	Minus signal of clock channel (LVDS)
15	RXCLK+	Plus signal of clock channel (LVDS)
16	GND	Ground
17	RX3-	Minus signal of channel 3 (LVDS)
18	RX3+	Plus signal of channel 3 (LVDS)
19	GND	Ground
20	NC	No Connection (For LCD internal use only.)
21	NC	No Connection (For LCD internal use only.)
22	NC	No Connection (For LCD internal use only.)
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	Vlcd	Power Supply (5.0V)
27	Vlcd	Power Supply (5.0V)
28	Vlcd	Power Supply (5.0V)
29	Vlcd	Power Supply (5.0V)
30	VLCD	Power Supply (5.0V)

Table 4. Module connector(CN1) pin configuration

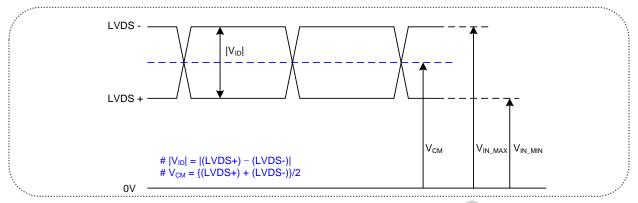
FIG. 4 Connector diagram

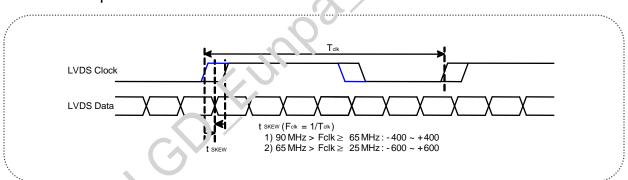

Note:

- 1. NC: No Connection.
- 2. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.
- 3. All V_{LCD} (power input) pirs should be connected together.
- 4. Input Level of LVDS signal is based on the IEA 664 Standard.
- 5. PWM_OUT is a teference signal for inverter control.
 This PWM signal is cynchronized with vertical frequency.
 Its frequency is fittimes of vertical frequency, and its duty ratio is 50%.
 If the system don't use this pin, do not connect.

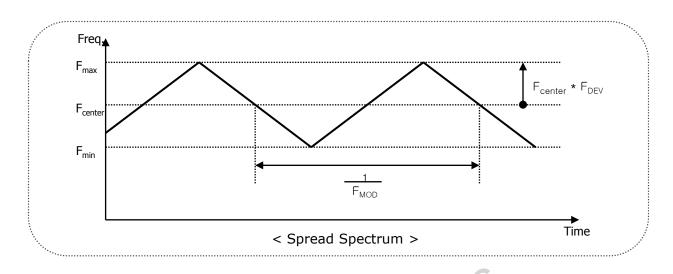
Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION

The LED interface connector is a model SM06B-SHJH(HF), Wire locking Type manufactured by JST. The mating connector is a SHJP-06V-S(HF) or or SHJP-06V-A-K(HF) and Equivalent. The pin configuration for the connector is shown in the table below.

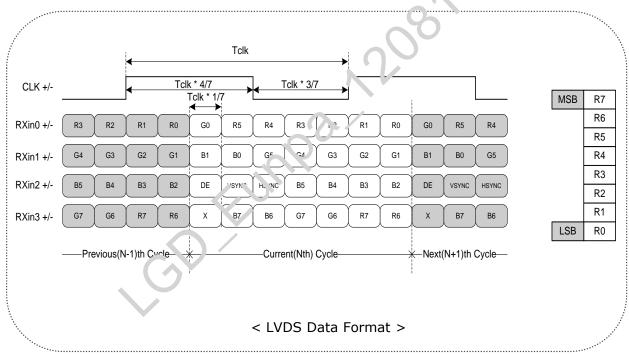

Pin	Symbol	Description	Notes
1	FB1	Channel1 Current Feedback	
2	NC	No connection	
3	VLED	LED Power Supply	
4	VLED	LED Power Supply	
5	NC	No connection	
6	FB2	Channel2 Currer ระราวอck	


3-3. LVDS characteristics

3-3-1. DC Specification


Description	Symbol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	200	FCO	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.9	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

3-3-2. AC Specification



Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skew Margin	t _{skew}	- 400	+ 400	ps	90MHz > Fclk \ge 65MHz
	t _{skew}	- 600	+ 600	ps	$65MHz > Fclk \ge 25MHz$
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-

3-3-3. LVDS Data format

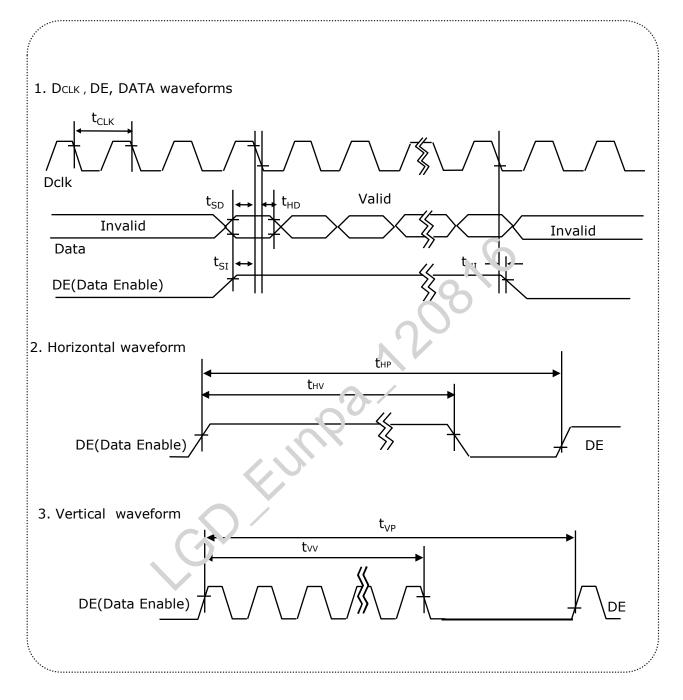
Table 6. Required signal assignment for Flat Link(NS:DS90CF383) transmitter

Pin #	Pin Name	Require Signal	Pin #	Pin Name	Require Signal
1	VCC	Power Supply for TTL Input	29	GND	Ground pin for TTL
2	D5	TTL Input (R7)	30	D26	TTL Input (DE)
3	D6	TTL Input (R5)	31	T _X CLKIN	TTL Level clock Input
4	D7	TTL Input (G0)	32	PWR DWN	Power Down Input
5	GND	Ground pin for TTL	33	PLL GND	Ground pin for PLL
6	D8	TTL Input (G1)	34	PLL VCC	Power Supply for PLL
7	D9	TTL Input (G2)	35	PLL GND	Ground pin for PLL
8	D10	TTL Input (G6)	36	LVDS GND	Ground pin for LVDS
9	VCC	Power Supply for TTL Input	37	TxOUT3+	Positive L'DS differential data output 3
10	D11	TTL Input (G7)	38	TxOUT3 –	Netative LVDS differential data output 3
11	D12	TTL Input (G3)	39	T _X CLKOUT +	°o.∵i+:ve LVDS differential clock output
12	D13	TTL Input (G4)	40	T _X CLKO' IT -	vegative LVDS differential clock output
13	GND	Ground pin for TTL	41	Τχ Ϲυ Γ2+	Positive LVDS differential data output 2
14	D14	TTL Input (G5)	42	T _X OUT2-	Negative LVDS differential data output 2
15	D15	TTL Input (B0)	43	L vDS GND	Ground pin for LVDS
16	D16	TTL Input (B6)	44	LVDS VCC	Power Supply for LVDS
17	VCC	Power Supply for TTL Input	45	T _X OUT1+	Positive LVDS differential data output 1
18	D17	TTL Input (B7)	46	T _X OUT1 –	Negative LVDS differential data output 1
19	D18	TTL Input (B1)	47	T _X OUT0+	Positive LVDS differential data output 0
20	D19	TTL Input (۲2)	48	T _X OUT0-	Negative LVDS differential data output 0
21	GND	Groun ¹ pi,1 t)r TTL Input	49	LVDS GND	Ground pin for LVDS
22	D20	TT⊾ Inprt (B3)	50	D27	TTL Input (R6)
23	D21	TTL Input (B4)	51	D0	TTL Input (R0)
24	D22	TTL Input (B5)	52	D1	TTL Input (R1)
25	D23	TTL Input (RSVD)	53	GND	Ground pin for TTL
26	VCC	Power Supply for TTL Input	54	D2	TTL Input (R2)
27	D24	TTL Input (HSYNC)	55	D3	TTL Input (R3)
28	D25	TTL Input (VSYNC)	56	D4	TTL Input (R4)

Notes : Refer to LVDS Transmitter Data Sheet for detail descriptions.

3-4. Signal timing specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

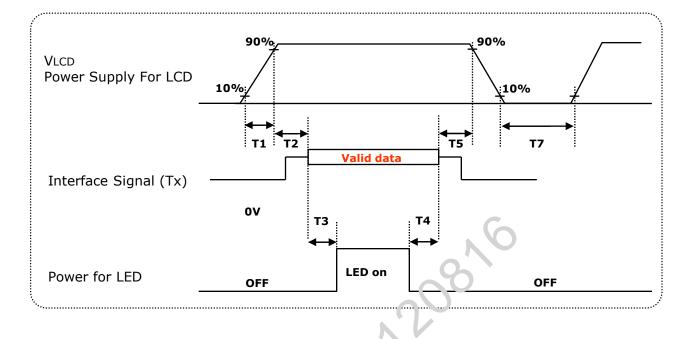

Table 7. Timing table

Par	ameter	Symbol	Min.	Тур.	Max.	Unit	Notes
	Period	t _{CLK}	11.1	13.0	16.2	ns	
D _{CLK}	Frequency	f _{CLK}	61.6	77.0	90.0	MHz	
	Horizontal Valid	t _{HV}	1366	1366	1366	L.	
Horizontal	H Period Total	t _{HP}	1430	1608	20-4	t _{CLK}	
	Hsync Frequency	f _H	38.3	47.5	62.0	kHz	
	Vertical Valid	t _{vv}	768	758	768	+	
Vertical	V Period Total	t _{vP}	776	798	1108	t _{HP}	
	Vsync Frequency	f _v	48	60	76	Hz	
DE	DE Setup Time	t _{si}	4	-	-		For D
(Data Enable)	DE Hold Time	Lh.T	4	-	- ns		For D _{CLK}
Data	Data Setup Time	t _{sD}	4	-	-	22	For D
Data	Data Hold ווי Data Hold	t _{HD}	4	-	-	ns	For D _{CLK}

Note:

- 1. LM185WH2-TLD1 is DE Only mode operation. The input of Hsync & Vsync signal does not have an effect on LCD normal operation.
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 3. Horizontal period should be even.

3-5. Signal timing waveforms


3-6. Color input data reference

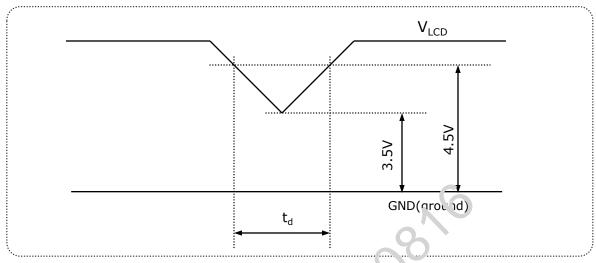
The brightness of each primary color (red,green and blue) is based on the 8bit gray scale data input for the color ; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 8. Color data reference

											In	out	Сс	olor	Da	ata									
Color					Re	ed							Gre	een							Bl	ue			
	COIOI	Μ	SB					LS	SB	Μ	SB					LS	SB	Μ	SB					LS	B
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	Β7	В6	В5	B4	B3	B2	B1	В0
Basic Color	Black Red (255) Green (255) Blue (255) Cyan Magenta Yellow White	0 1 0 0 1 1 1	0 1 0 1 0 1 1	0 1 0 1 0 1 1	0 1 0 1 0 1	0 1 0 1 0 1	0 0 1 0 1 0 1 1	0 1 0 1 0 1 1	0 1 0 1 0 1 1	0 1 0 1 0 1 1 1	0 0 1 1 1 0 1														
Red	Red(000) Dark Red(001) Red(002) Red(253) Red(254) Red(255) Bright	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - - 1 1	0 0 - 1 1 1	0 0 - - 1 1	0 0 1 - 0 1 1	0 1 0 - 1 0 1	0000000	C O O O O O	000 000	000 000	0 0 - 0 0 0	0 0 - 0 0 0	0 0 - 0 0 0	000000	0 0 - 0 0 0	0 0 - - 0 0 0	000000	000 000	000 000	000000	000 - 000	0 0 - - 0 0 0
Green	Green(000) Dark Green(001) Green(002) Green(253) Green(254) Green(255)Bright	00011000	070-1000	0 0 - - 0 0 0	0 0 - 0 0 0	000 000	0 0 - 0 0 0	000000	0 0 - 0 0 0	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 0 1 - 0 1 1	0 1 - 1 0 1	0 0 - 0 0 0	0 0 - - 0 0 0	0 0 - 0 0 0	0 0 - 0 0 0 0	000-000	0 0 - 0 0 0	0 0 - 0 0 0	0 0 - 0 0 0 0
Blue	Blue(000) Dark Blue(001) Blue(002) Blue(253) Blue(254) Blue(255) Bright	000-000	0 0 - 0 0 0	0 0 - - 0 0 0	0 0 - - 0 0 0	0 0 - - 0 0 0	0 0 - - 0 0 0	000-000	0 0 - - 0 0 0	0 0 - 0 0 0	0 0 - - 0 0 0	000-000	000-000	0 0 - 0 0 0	0 0 - 0 0 0	0 0 - 0 0 0	000-000	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 0 - 1 1 1	0 1 - 0 1 1	0 1 - - 1 0 1

3-7. Power sequence

Table 9. Power sequence


Damanahan		Values						
Parameter	Min	Тур	Max	Units				
T1	0.5	-	10	ms				
Т2	0.0	-	50	ms				
Т3	500	-	-	ms				
T4	200	-	-	ms				
Т5	0.01	-	50	ms				
Т7	1	-	_	S				

Notes :

- 1. Please avoid floating state of interface signal at invalid period.
- 2. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{LCD} to 0V.
- 3. LED power must be turn on after power supply for LCD an interface signal are valid.

3-8. V_{LCD} Power dip condition

FIG. 6 Power dip condition

1) Dip condition

 $3.5V \leq V_{LCD} \leq 4.5V$, $t_d \leq 20ms$

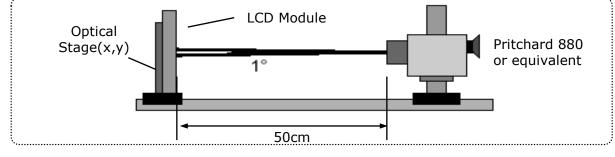
2) V_{LCD}< 3.5V

 V_{LCD} -dip conditions should also collow the Power On/Off conditions for supply voltage.

4. Optical specification

Optical characteristics are determined after the unit has been 'ON' for 30 minutes in a dark environment at 25° C.

Table 10. Optical characteristics


Ta= 25°C, V_{LCD} =5.0V, fv=60Hz f_{CLK}= 77.0MHz, Is=100mA

Parameter		Gunal			Values		l la ita	Natas	
Parame	ter	Symb	001	Min	Тур	Max	Units	Notes	
Contrast Ratio		CR		400	600	-		1 (PR-880)	
Surface Luminance	, white	L _{WH}		160	200	-	cd/m²	2 (PR-880)	
Luminance Variatio	n	δ_{WHITE}	9P			15		3 (PR-880)	
Response Time	Rise Time	Tr _R		-	1.1	2.6	ms	4	
Response fille	Decay Time	Tr _D		-	٦.১	7.4	ms	(RD80S)	
		Rx			0.07.6				
	RED	Ry			0.333				
	CDEEN	Gx		2	0.318				
Color Coordinates	GREEN	Gy		Гур	0.626	Тур			
[CIE1931]		Bx	$\overline{\mathbf{N}}$	-0.03	0.152	+0.03		(PR-650)	
	BLUE	By			0.063				
		Ŵx	(1	0.313				
	WHITE	Wy			0.329				
Viewing Angle (CR:	>1č)								
x axis, rig	ght(ø=0°)	θr		40	45		Degree		
x axis, le	x axis, left (ϕ =180°) y axis, up (ϕ =90°) y axis, down (ϕ =270°)			40	45			5 (PR-880)	
y axis, up				10	15				
y axis, do				30	35				
Crosstalk						1.5	%	(PR880)	

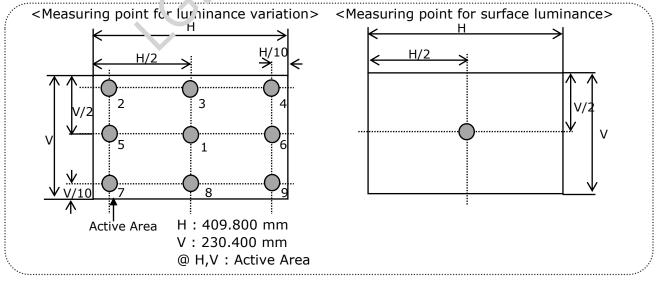
The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °.

FIG. 7 presents additional information concerning the measurement equipment and method.

FIG. 7 Optical characteristic measurement equipment and method

Notes :

1. Contrast ratio(CR) is defined mathematically as : It is measured at center point(1)

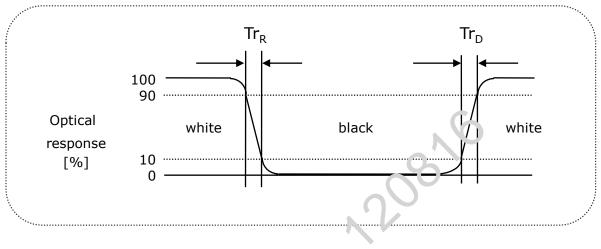

Surface luminance with all white rix :'s

```
Contrast ratio = Surface luminance with all black pixels
```

- 2. Surface luminance is the luminance value at center 1 (sint(1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 8.
- 3. The variation in surface luminance , $\delta_{\text{ WH}_{a}\text{TE}}$ s defined as

For more information see Figure 8.

FIG. 8 Luminance n.92 suring point



Notes :

4. Response time is the time required for the display to transition from black to white (Decay Time, Tr_D) and from white to black (Rise Time, Tr_R) The sampling rate is 2,500 sample/sec. For additional information see FIG. 9.

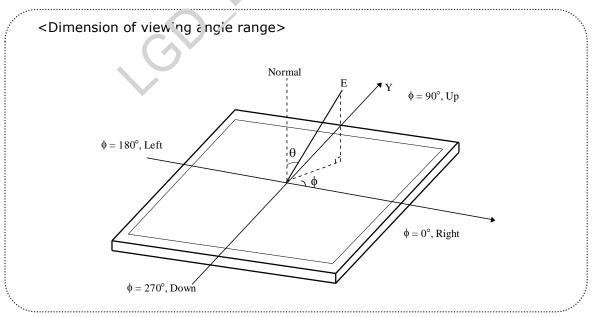

The response time is defined as the following figure and shall be measured by switching the input signal for each gray to gray.

FIG. 9 Response time

5. Viewing angle is the angle at which the contrast ratio is greater than 10 or 5. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG. 10.

FIG. 10 Viewing angle

Notes :

- 6. Gray scale specification
 - Table 11. Gray scale

Gray level	Luminance [%] (Typ)
LO	0.10
L31	0.97
L63	4.43
L95	11.06
L127	21.13
L159	34.88
L191	54.53
L223	77.00
L255	100

7. Color grayscale linearity , $\Delta u'v'$ is defined as

$$\sqrt{(u'_{A} - u'_{B})^{2} + (v'_{A} - v'_{z})^{2}}$$

Where indices A and B are the two gray levels found to have the largest color differences between them.

i.e. get the largest $\Delta u'$ and $\Delta \iota'$ of each 6pairs of u' and v' and calculate $\Delta u'v'$.

-Test pattern :

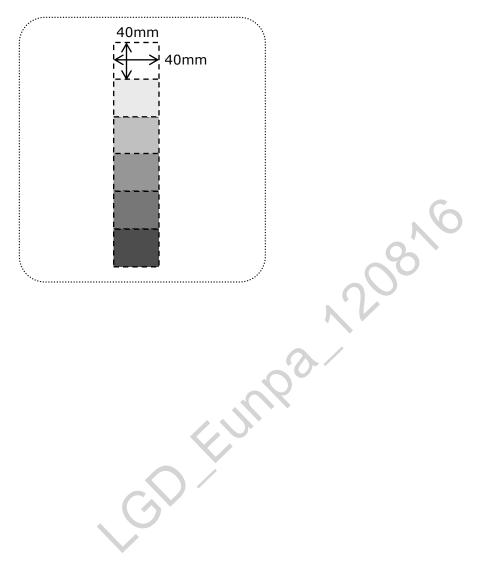
100% full white pattern with a test pattern as shown FIG.12 Squares of 40 nm by 40mm in size, filled with 255, 225, 195, 165, 135 and 105 grayscale steps should be arranged in the center of the screen.

-Test method :

First gray step :

Move a square of 255 gray level should be moved into the center of the screen and measure luminance and u' and v' coordinates.

Next gray step :

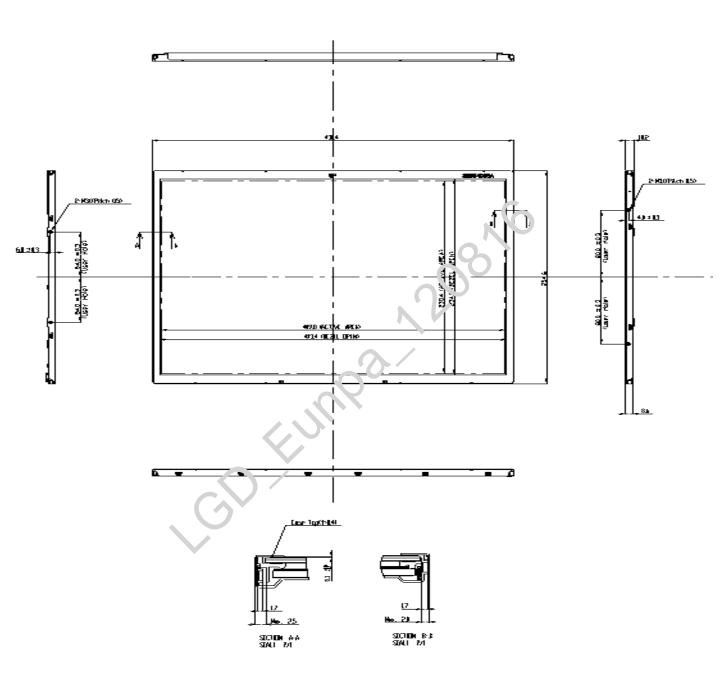

Move a 255 gray square into the center and measure both luminance and u' and v' coordinates.

The same procedure shall then be repeated for gray steps 195, 165, 135 and 105.

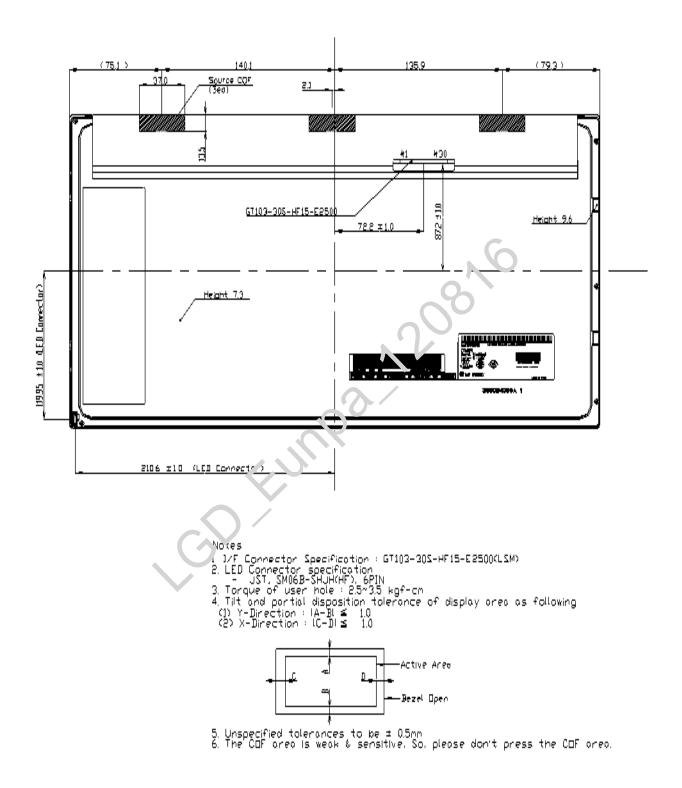
Notes :

FIG. 12 Color grayscale linearity

5. Mechanical characteristics


The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	430.4 mm		
Outline dimension	Vertical	254.6 mm		
	Depth	10.20 mm		
Bezel area	Horizontal	413.4 mm		
Dezel alea	Vertical	234.0 mm		
Active display area	Horizontal	202.800 mm		
Active display area	Vertical	230.400 mm		
Weight	1350g(Typ), 1420g(Max)			
Surface treatment	Hard coating(3H) Anti-glare treatment cf the front	: polarizer		


Notes : Please refer to a mechanic drawing in terms of tolerance at the next page.

3D FUR

<FRONT VIEW>

<REAR VIEW>

6. Reliability

Table 13. Environment test conditions

No	Test Item	Condition				
1	High temperature storage test	Ta= 60°C 240hrs				
2	Low temperature storage test	Ta= -20°C 240hrs				
3	High temperature operation test	Ta= 50°C 50%RH 240hrs				
4	Low temperature operation test	Ta= 0°C 240hrs				
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.0GRMS Bandwidth : 10-300Hz Duration : X,Y Z, 30 min On 3 come each direction				
6	Shock test (non-operating)	Shock level . $12\overline{\nu}G$ Waveform · half sine wave, 2msec Direction · $\pm X$, $\pm Y$, $\pm Z$ One time each direction				
7	Altitude operating storage / shipment	ပဲ - 10,000 feet(3,048m) 0 - 40,000 feet(12,192m)				

{ Result evaluation criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International standards

7-1. Safety

- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc. Information Technology Equipment - Safety - Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electrotechnical Standardization (CENELEC).

Information Technology Equipment - Safety - Part 1 : General Requirements.

 d) IEC 60950-1:2005, Second Edition, The International Electrotechnical Commission (IEC). Information Technology Equipment - Safety - Part 1 : General Requirements. (Including report of IEC60825-1:2001 clause 8 and clause 9)

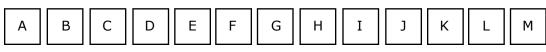
Notes

1. Laser (LED Backlight) Information

Class 1M LED Product IEC60825-1 : 2001 Embedded LED Power (Class1M)

- 2. Caution
 - : LED inside. Class 1M laser (LEDs) radiation when open. Do not open while operating.

7-2. EMC


- a) ANSI C63.4 "Methor's on Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(FNSI),1992
- b) C.I.S.P.R "Linits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electro-technical Standardization.(CENELEC), 1998 (Including A1: 2000)

8. Packing

8-1. Designation of lot mark

a) Lot mark

A,B,C : Size (Inch) E : Month D : Year F ~ M : Serial No.

C

Note:

1. Year

	1. 1641		N O								
I	Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	Mark	А	В	С	D	E	F	5	Ол	J	К

2. Month

Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

b) Location of lot mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change with out prior notice.

8-2. Packing form

- a) Package quantity in one box : 12 pcs
- b) Box size : 350 mm X 300 mm X 470 mm

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the Module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, twe zets or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or grease, cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum bennene Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}($ ver and under shoot voltage)
- (2) Response time depends or the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In higher temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can not be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw (if not, it causes metal foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.

9-3. Electrostatic discharge control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for strong light exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunl ght or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. Handling precautions for protection film

- (1) The protection film is attached to the bezc' with a small masking tape. When the protection film is peeled off, sustic electricity is generated between the film and polarizer. This should be beeled off slowly and carefully by people who are electrically grounded and with we' ich-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.