

Product Specification

SPECIFICATION FOR APPROVAL

(•) Preliminary Specification
() Final Specification

Title	21.5" Full HD TFT LCD

BUYER	General
MODEL	

SUPPLIER	LG Display Co., Ltd.			
*MODEL	LM215WF3			
SUFFIX	SDD1			

*When you obtain standard approval,
please use the above model name without suffix

APPROVED BY	SIGNATURE DATE
Please return 1 copy for your	confirmation with
vour signature and co	omments.

APPROVED BY	SIGNATURE DATE					
S. Y. Park / G.Manager						
REVIEWED BY						
S. J. So / Manager [C]						
D. Y. Kim/ Manager [M]						
S. H. Cho / Manager [P]						
PREPARED BY						
Y. T. YOO / Engineer						
MNT Products Engineering Dept. LG Display Co., Ltd						

Ver. 0.0 Aug. 24, 2012 1 / 29

Product Specification

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	11
3-4	SIGNAL TIMING WAVEFORMS	12
3-5	COLOR INPUT DATA REFERNECE	13
3-6	POWER SEQUENCE	14
4	OPTICAL SFECIFICATIONS	16
5	MECHANICAL CHARACTERISTICS	22
6	RELIABLITY	25
7	INTERNATIONAL STANDARDS	26
7-1	SAFETY	26
7-2	EMC	26
7-3	ENVIRONMENT	26
8	PACKING	27
8-1	DESIGNATION OF LOT MARK	27
8-2	PACKING FORM	27
9	PRECAUTIONS	28
9-1	MOUNTING PRECAUTIONS	28
9-2	OPERATING PRECAUTIONS	28
9-3	ELECTROSTATIC DISCHARGE CONTROL	29
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	29
9-5	STORAGE	29
9-6	HANDLING PRECAUTIONS FOR PROTECTION FILM	29

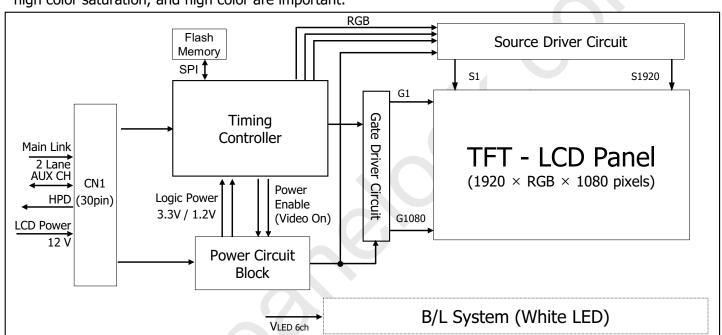
Ver. 0.0 Aug. 24, 2012 2 / 29

Product Specification

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description
0.0	Aug. 24. 2012	-	First Draft (Preliminary)
		AC	

Ver. 0.0 Aug. 24, 2012 3 / 29


Product Specification

1. General Description

LM215WF3 is a Color Active Matrix Liquid Crystal Display with Light Emitting Diode (White LED) backlight system without LED driver. The matrix employs a-Si Thin Film Transistor as the active element. It is a trans missive type display operating in the normally black mode. It has a 21.5inch diagonally measured active display area with Full HD resolution (1920 vertical by 1080 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8bit gray scale signal for each dot, thus, presenting a palette of more than 16M colors.

It has been designed to apply the 8bit 4Lane Display port interface.

It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

[Figure 1] Block diagram

General Features

General reatures	
Active Screen Size	21.46 inches(545.22mm) diagonal
Outline Dimension	528.3(H) × 318.765(V) × 10.95(T) mm (with Cover Glass)
Pixel Pitch	0.2475mm x 0.2475mm
Pixel Format	1920 horiz. By 1080 vert. Pixels RGB stripes arrangement
Color Depth	8-bit, 16,777,216 colors
Luminance, White	415 cd/m² (Center 1 Point, Typ.)
Viewing Angle (CR>10)	View Angle Free (R/L 178(Typ.), U/D 178(Typ.))
Power Consumption	Total 30.72 Watt (Max.) (8.4 Watt @VLCD, Max 22.32 Watt_ Duty 100% of DC 60 mA_ w/o driver)
Weight	2050g (Typ), 2150g (Max)
Display Operating Mode	Trans missive mode, normally black
Surface Treatment	Cover Glass with Anti-Reflection layer coated

Ver. 0.0 Aug. 24, 2012 4 / 29

Product Specification

2. Absolute Maximum Ratings

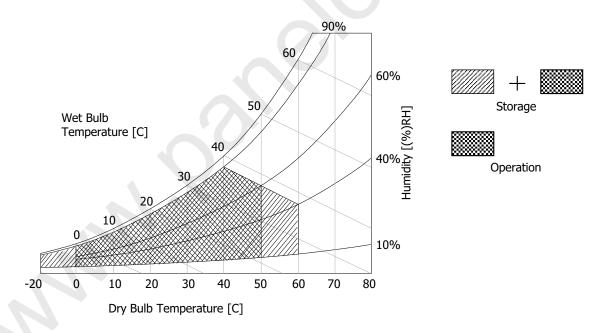

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Valu	ıes	Units	Notes	
raiametei	Symbol	Min	Max	Offics		
Power Input Voltage	VLCD	-0.3	14	Vdc	at 25 ± 2°C	
Operating Temperature	Тор	0	50	°C		
Storage Temperature	Tst	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Hst	10	90	%RH		

Note.

- 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation of water.
- 2. Storage condition is guaranteed under LCM packing condition (with Al-Bag).

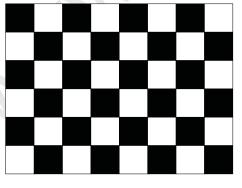
[Figure 2] Temperature and relative humidity

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the WLED.


Table 2-1. ELECTRICAL CHARACTERISTICS

Parameter	Symbol		Values	Unit	Notes	
Farantetei	Symbol	Min	Тур	Max	Offic	140663
MODULE:						
Power Supply Input Voltage	VLCD	11.4	12.0	12.6	Vdc	
Permissive Power Input Ripple	VRF	-	-	400	mV	
Dower Supply Input Current	ILCD	271	387	503	mA	1
Power Supply Input Current	ILCD	378	539	701	mA	2
Power Consumption	PLCD		4.6	6.0	Watt	1
rowei Consumption	PLCD		6.5	8.4	Watt	2
Rush current	Irush	-	-	3.0	Α	3

Note.

- 1. The specified current and power consumption are under the V_{LCD} =12.0V, 25 \pm 2°C, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.
- 2. The current is specified at the maximum current pattern.
- 3. The duration of rush current is about 2ms and rising time of power Input is 1ms(min.)

White: 255Gray Black: 0Gray

Mosaic Pattern(8 x 6)

Maximum current pattern

White Pattern

Product Specification

Table 2-2. LED Bar ELECTRICAL CHARACTERISTICS

Items	Cumbal	Spec			Unit	Remark	Notes
Items	Symbol	Min	Тур	Max	Ullic	Remark	Notes
LED String Current	I_{S}	-	60	62.5	Vrms		1,2,3, 4,7
LED String Voltage	V _S	-	59.5	62	Vrms	Ta=25 $^{\circ}$ C, 100% PWM at 60 mA	1,2,3, 7
BL Power	P _{BL}	-	21.42	22.32	W	Ta=25 $^{\circ}$ C, 100% PWM at 60 mA	1,4,6, 7
LED Life Time	LED_LT	30K	-	-	Hrs	TJ ≤ 80°C, 100% PWM at 60 mA	5,7
LED Junction Temperature	Tj	-	-	90	${\mathbb C}$	· -	5,6,7

LED driver design guide

: The design of the LED driver must have specifications for the LED in LCD Assembly.

The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED driver.

So all the parameters of an LED driver should be carefully designed and output current should be Constant current control.

Please control feedback current of each string individually to compensate the current variation among the strings of LEDs.

When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED driver (no lighting, flicker, etc) never occurs.

When you confirm it, the LCD module should be operated in the same condition as installed in your instrument.

- 1. Specified values are for a single LED bar.
- 2. The specified current is input LED chip 100% duty current.
- 3. The specified voltage is input LED string voltage at typical 60mA 100% duty current.
- 4. The specified power consumption is input LED string power consumption at typical 60mA 100% duty current.
- 5. The life is determined as the time at which luminance of the LED is 50% compared to that of initial value at the typical LED current on condition of continuous operating at 25 \pm 2°C.
- 6. The LED power consumption shown above does not include loss of external driver.

The used LED BL current is the LED typical current.

String Power Consumption is calculated with $P_S = V_S x 60 \text{mA}$

- BL Power Consumption is calculated with $P_{BL} = P_S \times 6$
- 7. LED operating DC Forward Current and Junction Temperature must not exceed LED Max Ratings.

Ver. 0.0 Aug. 24, 2012 7 / 29

Product Specification

3-2. Interface Connections

3-2-1. LCD Module

- LCD Connector(CN1): 20525-130E-01 (I-PEX) or Equivalent

Table 3. MODULE CONNECTOR(CN1) PIN CONFIGURATION

	Table 5: MODOLE COMMECTOR (CMT) I IN COMMISSION										
No	Symbol	Description	No	Symbol	Description						
1	VIN	12V for LCM Main Power	16	I2C_SCL	DDC Clock						
2	VIN	12V for LCM Main Power	17	SPDIF	Audio output from DP RX						
3	VIN	12V for LCM Main Power	18	HPD	Hot Plug Detect Signal						
4	VIN	12V for LCM Main Power	19	GND	High Speed Ground						
5	VIN	12V for LCM Main Power	20	AUX_CHN	Component Signal for Auxiliary Channel						
6	VIN	12V for LCM Main Power	21	AUX_CHP	True Signal for Auxiliary Channel						
7	GND	Ground	22	GND	High Speed Ground						
8	GND	Ground	23	Lane0P	True Signal for Main Link 0						
9	GND	Ground	24	Lane0N	Component Signal for Main Link 0						
10	GND	Ground	25	GND	High Speed Ground						
11	GND	Ground	26	Lane1P	True Signal for Main Link 1						
12	GND	Ground	27	Lane1N	Component Signal for Main Link 1						
13	DDC_SDA	DDC Data	28	GND	High Speed Ground						
14	DDC_SCL	DDC Clock	29	VIDEO_ON	Video status from DP RX						
15	I2C_SDA	DDC Data	30	VSYNC	Vertical Frame Sync.						

Note: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.

[Figure 3] User Connector diagram

Ver. 0.0 Aug. 24, 2012 8 / 29

Product Specification

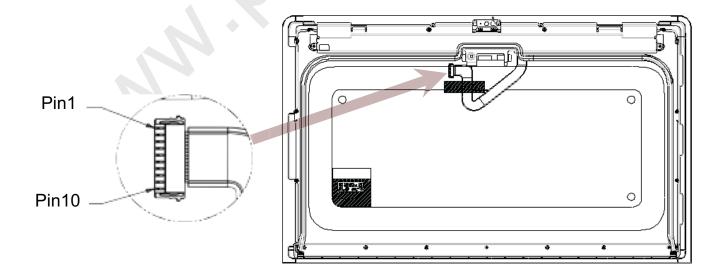
3-2-2. User Connector

- LCD Connector(CN2): 53780-8602 (Manufactured by Molex) or Equivalent

Table 4. THERMAL SENSOR CONNECTOR(CN2) PIN CONFIGURATION

Pin	Symbol	Description	NOTES
1	DXP	Positive connection to remote temperature sensor.	
2	DXN	Negative connection to remote temperature sensor.	

[Figure 3-1] Thermal Sensor Connector diagram


Product Specification

3-2-3. Backlight Interface

Driver connector: 504050-1001 (Manufactured by Molex) Mating Connector: 504050-1091 (Manufactured by Molex)

Table 5. LED DRIVER CONNECTOR PIN CONFIGURATION

Pin	Symbol	Description	NOTES
1	NC	Not connected	
2	LED6-	LED channel 6 cathode	
3	LED5-	LED channel 5 cathode	
4	LED4-	LED channel 4 cathode	
5	CA135	Channel 1,3,5 Common anode	
6	CA246	Channel 2,4,6 Common anode	
7	LED3-	LED channel 3 cathode	
8	LED2-	LED channel 2 cathode	
9	LED1-	LED channel 1 cathode	
10	NC	Not connected	

[Figure 4] LED Driver Connector Pin

Ver. 0.0 Aug. 24, 2012 10 / 29

Product Specification

3-3. Signal Timing Specifications

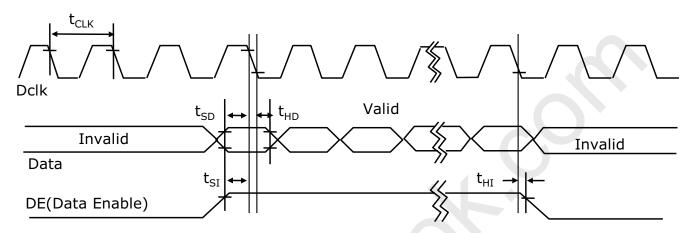
All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

Table 6. TIMING TABLE

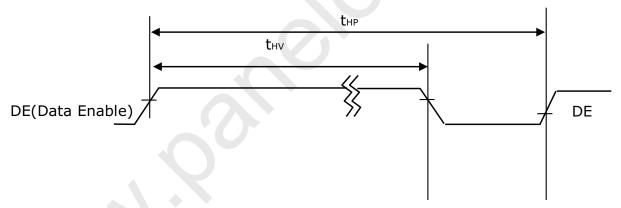
ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Period	tclk	7.22	7.22	7.22	ns	
DCLK	Frequency	-	138.5	138.5	138.5	MHz	
	total	thp	2080	2080	2080	tclk	
Horizontal	Frequency	fн	66.59	66.59	66.59	KHz	
	Blanking		160	160	160	tclk	
	valid	twн	1920	1920	1920	tclk/2	
	total	tvp	1111	1111	1111	thp	
Vertical	Frequency	fv	60	60	60	Hz	
vertical	Blanking		31	31	31	thp	
	valid	twv	1080	1080	1080	tHP	

Note: Hsync period and Hsync width-active should be even number times of tCLK. If the value is odd number times of tCLK, display control signal can be asynchronous. In order to operate this LCM a Hsync, Vsync, and DE(data enable) signals should be used.

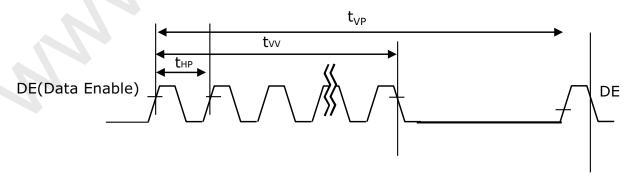
- 1. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 2. Vsync and Hsync should be keep the above specification.
- 3. Hsync Period, Hsync Width, and Horizontal Back Porch should by any times of character number(8).
- 4. The polarity of Hsync, Vsync is not restricted.


Global LCD Panel Exchange Center

LM215WF3 Liquid Crystal Display


Product Specification

3-4. Signal Timing Waveforms


1. DCLK, DE, DATA waveforms

2. Horizontal waveform

3. Vertical waveform

Product Specification

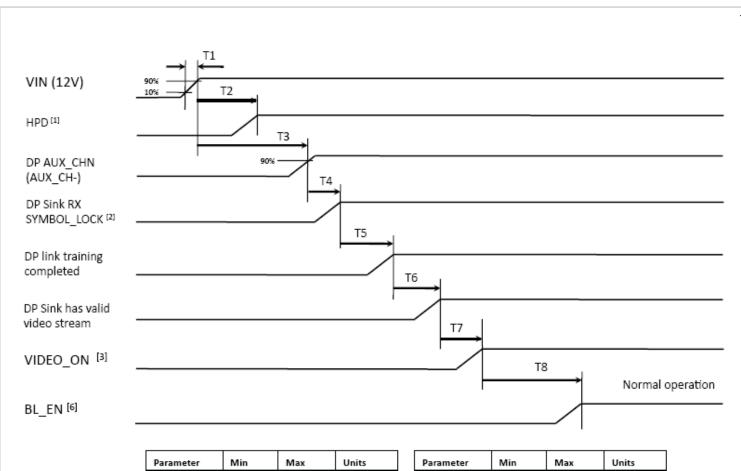
3-5. Color Input Data Reference

The Brightness of each primary color(red,green,blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

													Inpu	ıt Co	olor	Data	<u> </u>									
	Color					RE	ED.							GRE	EEN							BL	UE			
	Coloi		MS	В					L	SB	MS	SB					L	SB	MS	В						SB
			R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	В5	В4	В3	В2	B1	В0
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED									7																	
	RED (254)		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																										
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																										
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Ver. 0.0 Aug. 24, 2012 13 / 29



Product Specification

3-6. Power Sequence

3-6-1. Power Sequence

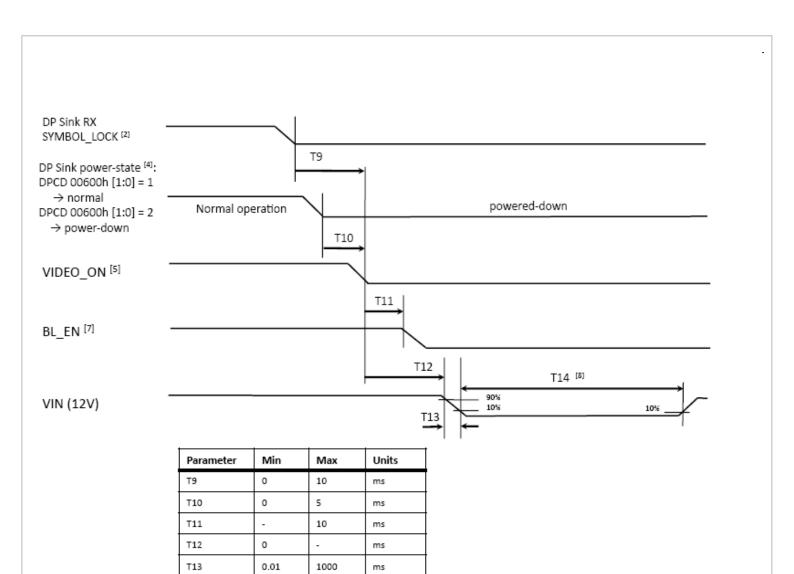
Parameter	Min	Max	Units
T1	0.4	10	ms
T2	0	-	ms
T3	-	-	ms
T4	0	-	ms
T5	0	-	ms

Parameter	Min	Max	Units
T6	0	-	ms
T7	0	200	ms
T8	200	-	ms
	•		

Notes: [1] HPD is asserted high by Sink at power-up

- [2] SYMBOL_LOCK indicated by contents of Sink DPCD registers 00202h to 00205h
- [3] VIDEO_ON asserted high by Sink when video to panel is valid
- [6] BL_EN is an active-high MLB enable signal for panel BLU

Notes: 1. Please avoid floating state of interface signal at invalid period.


- 2. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{LCD} to 0V.
- 3. LED power must be turn on after power supply for LCD and interface signal are valid.

Ver. 0.0 Aug. 24, 2012 14 / 29

Product Specification

Notes: [2] SYMBOL_LOCK indicated by contents of Sink DPCD registers 00202h to 00205h

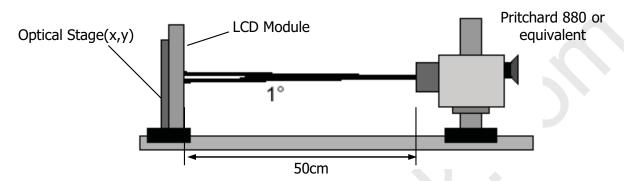
- [4] Power-state set by Source in Sink DPCD register 00600h
- [5] VIDEO_ON asserted low by Sink because of:

250

1) loss of SYMBOL_LOCK or

T14

- 2) DP Sink is powered down
- [7] BL_EN must be asserted low by system as rapidly as possible when video is invalid to avoid visible artifacts
- [8] T14 defines minimum off-time for 12V power
- [9] min. times of 0 indicate precedence ordering of events, e.g. where actual timing is TBD



Product Specification

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at 25 \pm 2°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree.

FIG. 8 presents additional information concerning the measurement equipment and method.

[Figure 5] Optical characteristic measurement equipment and method

Table 8. OPTICAL CHARACTERISTICS (Ta=25 °C, V_{LCD} =12.0V, f_V =60Hz Dclk=138.5MHz)

	Parame	tor	Symbol		Values	Units	Notes		
	raiaiiie	itei	Symbol	Min	Тур	Max	Utilits	Notes	
Contrast Ratio			CR	700	1000	-		1	
Surface Lun	ninance, v	white	L _{WH}	330	415	-	cd/m ²	2	
Luminance \	Variation		δ white	75			%	3	
D T	·	Rise Time	Tr _R	-	6.5	14	ms	4.1	
Response T	ime	Decay Time	Tr _D	-	7.5	14	ms	4.1	
		RED	Rx		0.655				
			Ry		0.332	Тур +0.03			
		GREEN	Gx		0.296				
Color Coord	inates		Gy	Тур	0.625				
[CIE1931]		BLUE	Bx	-0.03	0.149				
			Ву	Ì	0.048				
		WHITE	Wx	1	0.313				
			Wy	1	0.329				
Color Shift		Horizontal	θ_{CST_H}	-	178	-	Dogwoo	5	
Color Stillt		Vertical	$\theta_{\text{CST_V}}$	-	178	-	Degree)	
Viewing Ang	gle (CR>1	.0)							
Cananal	Horizo	ntal	θ_{H}	170	178	-	Danuar	_	
General	Vertica	I	$\theta_{\sf V}$	170	178	-	Degree	6	
Cff octive	Horizon	tal	θ_{GMA_H}		178	-	Dogwoo		
Effective	Vertical		θ_{GMA_V}		178	-	Degree	7	
Gray Scale					2.2			8	

Ver. 0.0 Aug. 24, 2012 16 / 29

Product Specification

Notes 1. Contrast Ratio(CR) is defined mathematically as :

$$Contrast \ Ratio = \frac{Surface \ Luminance \ with \ all \ white \ pixels}{Surface \ Luminance \ with \ all \ black \ pixels}$$

It is measured at center point(Location P1)

- 2. Surface luminance(Lwh)is luminance value at Center of the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 9.
- 3. The variation in surface luminance , δ WHITE is defined as :

$$\delta_{\textit{WHITE}} = \frac{\text{Minimum}(L_{P1}, L_{P2}, \dots, L_{P9})}{\text{Maximum}(L_{P1}, L_{P2}, \dots, L_{P9})} \times 100$$

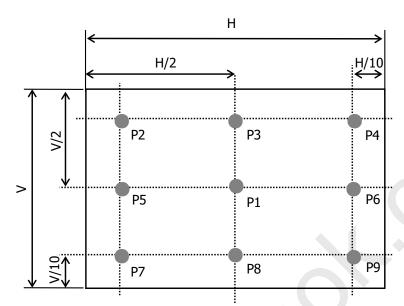
Where L1 to L9 are the luminance with all pixels displaying white at 9 locations. For more information see FIG 6.

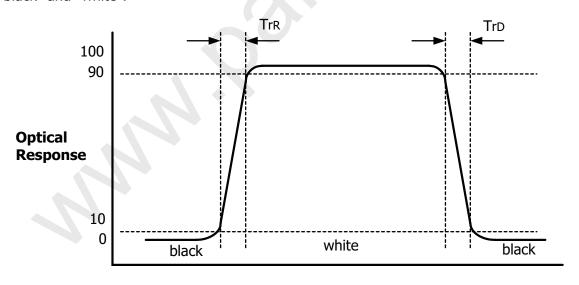
- 4. Response time is the time required for the display to transition from black to white (Rise Time, Tr_R) and from white to black (Decay Time, Tr_D). For additional information see FIG 10
- 5. Color shift is the angle at which the color difference is lower than 0.04. For more information see FIG 11.
 - Color difference (Δu'v')

$$u' = \frac{4x}{-2x + 12y + 3} \qquad v' = \frac{9y}{-2x + 12y + 3}$$

$$\Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2} \qquad u'1, v'1 : u'v' \text{ value at viewing angle direction}$$

$$u'2, v'2 : u'v' \text{ value at front } (\theta = 0)$$

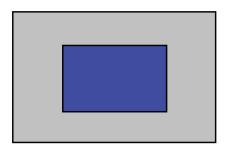

- Pattern size: 25% Box size
- Viewing angle direction of color shift: Horizontal, Vertical
- 6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 12.
- 7. Effective viewing angle is the angle at which the gamma shift of gray scale is lower than 0.3. For more information see FIG 13 and FIG 14.
- 8. Gray scale specification Gamma Value is approximately 2.2. For more information see Table 10.


Product Specification

Measuring point for surface luminance & measuring point for luminance variation.

[FIG 6] Measure Point for Luminance

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".


[FIG 7] Response Time

Product Specification

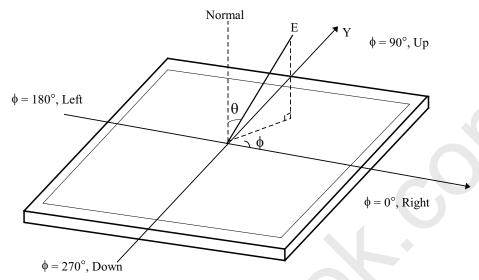
Color shift is defined as the following test pattern and color.

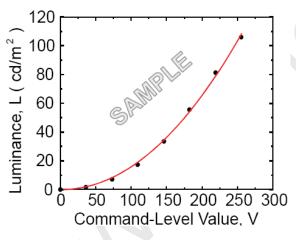
25% Box size

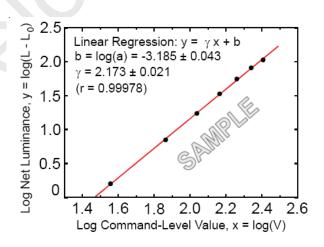
[FIG 8] Test Pattern

Average RGB values in Bruce RGB for Macbeth Chart

	Dark skin	Light skin	Blue sky	Foliage	Blue flower	Bluish green
R	98	206	85	77	129	114
G	56	142	112	102	118	199
В	45	123	161	46	185	178
	Orange	Purplish blue	Moderate red	Purple	Yellow green	Orange yellow
R	219	56	211	76	160	230
G	104	69	67	39	193	162
В	24	174	87	86	58	29
	Blue	Green	Red	Yellow	Magenta	cyan
R	26	72	197	241	207	35
G	32	148	27	212	62	126
В	145	65	37	36	151	172
	White	Neutral 8	Neutral 6.5	Neutral 5	Neutral 3.5	black
R	240	206	155	110	63	22
G	240	206	155	110	63	22
В	240	206	155	110	63	22




Product Specification


Dimension of viewing angle range.

Global LCD Panel Exchange Center

[FIG 9] Viewing angle

[FIG 10] Sample Luminance vs. gray scale (using a 256 bit gray scale)

$$L = aV^r + L_b$$

$$\log(L - L_b) = r \log(V) + \log(a)$$

Here the Parameter a and y relate the signal level V to the luminance L. The GAMMA we calculate from the log-log representation (FIG. 11)

Product Specification

Table 9. Gray Scale Specification

Gray Level	Relative Luminance [%] (Typ.)
0	0.10
31	1.08
63	4.71
95	11.5
127	21.7
159	35.5
191	53.1
223	74.5
255	100

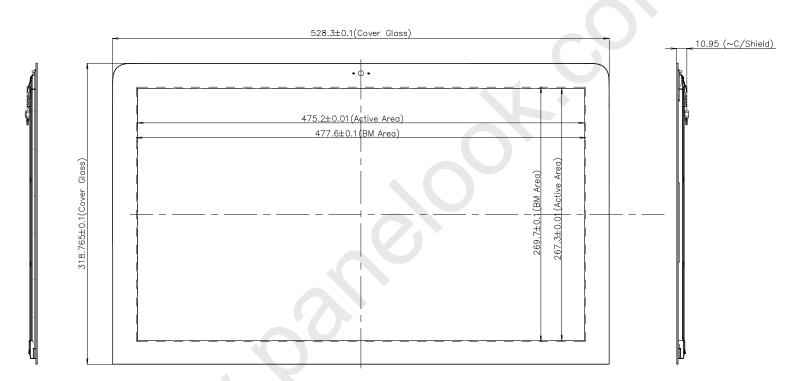
Product Specification

5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

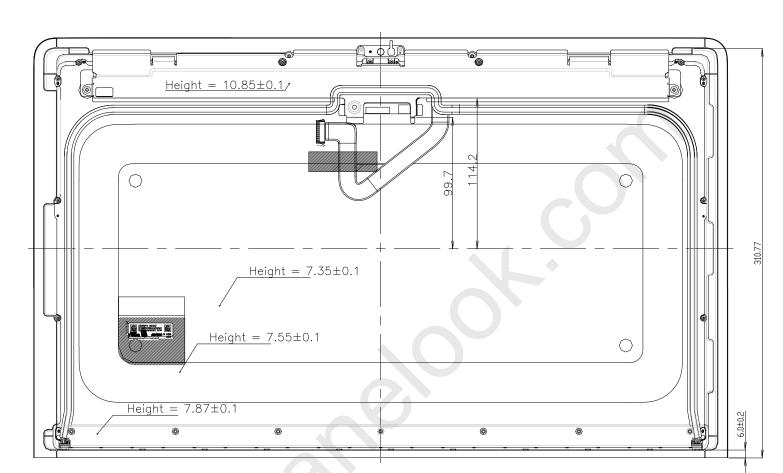
	Horizontal	528.3mm				
Outline Dimension	Vertical	318.765mm				
	Depth	10.95mm (with Cover Shield)				
Bezel Area	Horizontal	477.6mm				
bezei Area	Vertical	269.7mm				
Active Display Avec	Horizontal	475.2mm				
Active Display Area	Vertical	267.3mm				
Weight	2050g (Typ.), 2150g(Max.)					
Surface Treatment	Cover Glass with Anti-Reflection layer	Cover Glass with Anti-Reflection layer coated				

Notes: Please refer to a mechanic drawing in terms of tolerance at the next page.


Ver. 0.0 Aug. 24, 2012 22 / 29

Product Specification

<FRONT VIEW>


Ver. 0.0 Aug. 24, 2012 23 / 29

Product Specification

<REAR VIEW>

- 1. Unspecified tolerances are to be ± 0.1 mm.
- 2. Unspecified contents have to be discussed with designer
- 3. LCM Weight: 2000g (Typ.), 2100g (Max.)
- 4. The ass'y should have no defect in appearance.
- 5. LCM Flatness spec : Max 0.5mm(Cup)

 Measuring method : LCM Flatness of 153pts can be mea
 6. In case of FAI/cpk data in detail, refer to (3/3) drawing

Product Specification

6. Reliability

Environment test condition

No	Test Item	Condition
1	High temperature storage test	Ta= 60°C 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 240h
4	Low temperature operation test	Ta= 0°C 240h
5	Vibration test (non-operating)	Wave form: random Vibration level: 1.0G RMS Bandwidth: 10-300Hz Duration: X,Y,Z, 20 min One time each direction
6	Shock test (non-operating)	Shock level : 120G Waveform : half sine wave, 2ms Direction : \pm X, \pm Y, \pm Z One time each direction
7	Humidity condition Operation	Ta= 40 °C ,90%RH
8	Altitude storage / shipment	0 - 40,000 feet(12,192m)

Ver. 0.0 Aug. 24, 2012 25 / 29

Product Specification

7. International Standards

7-1. Safety

- a) UL 60950-1, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- c) EN 60950-1, European Committee for Electrotechnical Standardization (CENELEC) Information Technology Equipment Safety Part 1 : General Requirements.
- d) IEC 60950-1, The International Electrotechnical Commission (IEC).
 Information Technology Equipment Safety Part 1 : General Requirements.

7-2. EMC

- a) ANSI C63.4 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." American National Standards Institute (ANSI), 2003.
- b) CISPR 22 "Information technology equipment Radio disturbance characteristics Limit and methods of measurement." International Special Committee on Radio Interference (CISPR), 2005.
- c) CISPR 13 "Sound and television broadcast receivers and associated equipment Radio disturbance characteristics Limits and method of measurement." International Special Committee on Radio Interference (CISPR), 2006.

7-3. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

Ver. 0.0 Aug. 24, 2012 26 / 29

Product Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

А	В	С	D	E	F	G	Н	I	J	К	L	М	
---	---	---	---	---	---	---	---	---	---	---	---	---	--

A,B,C : SIZE(INCH)

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	С	D	Е	F	G	Н	J	K

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

D: YEAR

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 11pcs

b) Box Size: 408 X 355 X 600 (mm)

Product Specification

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200$ mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In higher temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Ver. 0.0 Aug. 24, 2012 29 / 29