

Product Specification

SPECIFICATION FOR APPROVAL

() Preliminary Specificatior
() Final Specification

Title	2:	1.5" Full HD TFT	LCD
BUYER		SUPPLIER	LG Display Co., Ltd.
MODEL		*MODEL	LM215WF3
		SUFFIX	SLA2

*When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE DATE
1	
Please return 1 copy for your	confirmation with
your signature and co	omments.

APPROVED BY	SIGNATUR E DATE				
Hans. Kim / G.Manager					
REVIEWED BY					
J. K. Lee / Manager [C]					
Y. H. Hwang / Manager[M]					
D. H. Kang / Manager [P]					
PREPARED BY					
S. H. Han / Engineer					
MNT Products Engineering Dept. LG Display Co., Ltd					

Ver. 0.0 FEB. 10 . 2010 1 / 32

Product Specification

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	9
3-3	SIGNAL TIMING SPECIFICATIONS	14
3-4	SIGNAL TIMING WAVEFORMS	15
3-5	COLOR INPUT DATA REFERNECE	16
3-6	POWER SEQUENCE	17
3-7	V _{LCD} Power Dip Condition	18
4	OPTICAL SFECIFICATIONS	19
5	MECHANICAL CHARACTERISTICS	25
6	RELIABLITY	28
7	INTERNATIONAL STANDARDS	29
7-1	SAFETY	29
7-2	EMC	29
7-3	ENVIRONMENT	29
8	PACKING	30
8-1	DESIGNATION OF LOT MARK	30
8-2	PACKING FORM	30
9	PRECAUTIONS	31

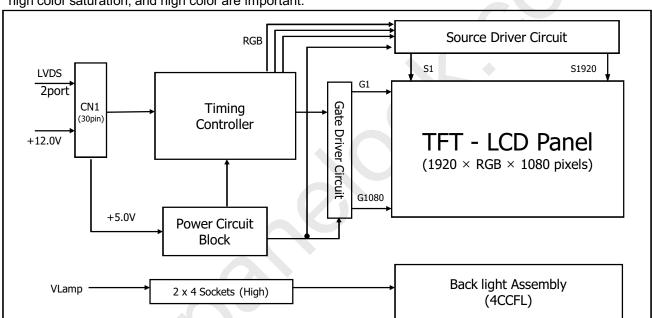
Ver. 0.0 FEB. 10 . 2010 2 / 32

Product Specification

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description
0.0	Feb. 10. 2010	-	First Draft(Preliminary)
		,	
			7

Ver. 0.0 FEB. 10 . 2010 3 / 32



Product Specification

1. General Description

LM215WF3 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 21.5 inch diagonally measured active display area with FHD resolution (1080 vertical by 1920horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M colors with A-FRC(Advanced Frame Rate Control). It has been designed to apply the 8Bit 2 port LVDS interface.

It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

General Features

[Figure 1] Block diagram

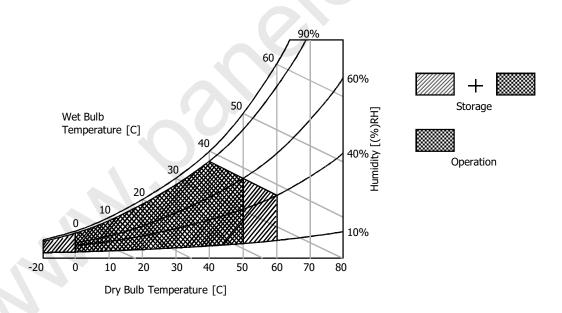
<u>General Features</u>	
Active Screen Size	21.46 inches(545.22mm) diagonal
Outline Dimension	495.6(H) x 292.2(V) x 16.5(D) mm (Typ.)
Pixel Pitch	0.2475 mm x 0.2475mm
Pixel Format	1920 horiz. By 1080 vert. Pixels RGB stripes arrangement
Color Depth	16,7M colors
Luminance, White	200 cd/m² (1point)
Viewing Angle(CR>10)	View Angle Free (R/L 178(Typ.), U/D 178(Typ.))
Power Consumption	Total 27.66 Watt (Typ.) (3.66 Watt @V∟cɒ, 24 Watt @250cd/㎡])
Weight	2450 g (typ.)
Display Operating Mode	Transmissive mode, normally black
Surface Treatment	Hard coating(3H), Anti-Glare treatment of the front polarizer

Ver. 0.0 FEB. 10 . 20	10 4 / 32
-----------------------	-----------

Product Specification

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.


Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Symbol Values		Units	Notes	
raiametei	Symbol	Min	Max	Offics	Notes	
Power Input Voltage	VLCD	-0.3	14	Vdc	at 25 ± 2°C	
Operating Temperature	Тор	0	50	°C		
Storage Temperature	Тѕт	-20	60	°C	1.2	
Operating Ambient Humidity	Нор	10	90	%RH	1, 2	
Storage Humidity	Нѕт	10	90	%RH		

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39 °C Max, and no condensation of water.

Note : 2. Maximum Storage Humidity is up to $40\,^{\circ}\mathrm{C}$, 70% RH only for 4 corner light leakage Mura.

[Figure 2] Temperature and relative humidity

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCDs.

Table 2. ELECTRICAL CHARACTERISTICS

Symbol		Values		Unit	Notes
Syllibol	Min	Тур	Max		
VLCD	11.4	12	12.6	Vdc	
Vrf	-	-	100	mV	13
Tuch	258	305	352	mA	1
ILCD	314	370	426	mA	2
Zm	90	100	110	ohm	
PLCD		3.66	4.23	Watt	1
PLCD		4.45	5.12	Watt	2
Irush	-	-	3	Α	3
VBL	780 (8.0mA)	800 (7.5mA)	1000 (2.5mA)	V_{RMS}	4, 5
IBL	2.5	7.5	8.0	mA _{RMS}	4
Vs					4, 6
			1600	V_{RMS}	
			1900	V_{RMS}	
fBL	40	-	70	kHz	7
Ts			3	Min	4, 8
PBL	ĺ	24	26.4	Watt	9
	50,000			Hrs	4, 10
	VRF ILCD Zm PLCD PLCD IRUSH VBL IBL VS	Min VLCD	Symbol Min Typ VLCD 11.4 12 VRF - - ILCD 258 305 314 370 Zm 90 100 PLCD 3.66 PLCD 4.45 IRUSH - - VBL 780 (8.0mA) (7.5mA) (7.5mA) IBL 2.5 7.5 Vs - - fBL 40 - TS - - PBL 24	Symbol Min Typ Max VLCD 11.4 12 12.6 VRF - - 100 ILCD 258 305 352 314 370 426 Zm 90 100 110 PLCD 3.66 4.23 PLCD 4.45 5.12 IRUSH - - 3 VBL 780 (8.0mA) 800 (7.5mA) 1000 (2.5mA) IBL 2.5 7.5 8.0 Vs - 1600 IPDO 1900 1900 FBL 40 - 70 Ts 3 24 26.4	Symbol Min Typ Max VLCD 11.4 12 12.6 Vdc VRF - - 100 mV ILCD 258 305 352 mA 314 370 426 mA Zm 90 100 110 ohm PLCD 3.66 4.23 Watt PLCD 4.45 5.12 Watt IRUSH - - 3 A VBL 780 (8.0mA) (7.5mA) (2.5mA) V _{RMS} IBL 2.5 7.5 8.0 mA _{RMS} Vs 1900 V _{RMS} Ipuncture 1900 V _{RMS} Ipuncture 40 - 70 kHz Ts 3 Min PBL 24 26.4 Watt

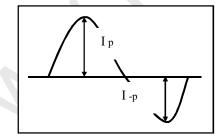
Note: The design of the inverter must have specifications for the lamp in LCD Assembly.

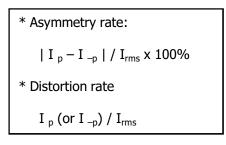
The performance of the Lamp in LCM, for example life time or brightness, is extremely influenced by the characteristics of the DC-AC inverter. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter.

When you design or order the inverter, please make sure unwanted lighting caused by the mismatch

of the lamp and the inverter (no lighting, flicker, etc) never occurs. When you confirm it, the LCD–Assembly should be operated in the same condition as installed in you instrument.

Product Specification


Note. Do not attach a conducting tape to lamp connecting wire. If the lamp wire attach to a conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action. Because leakage current is occurred between lamp wire and conducting tape.

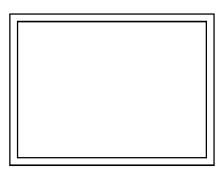

- 1. The specified current and power consumption are under the V_{LCD} =12V, 25 \pm 2°C, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.
- 2. The current is specified at the maximum current pattern. See the figure 3.
- 3. The duration of rush current is about 5ms and rising time of power Input is 500us \pm 20%.(min.).
- 4. Specified values are for a single lamp.
- 5. Operating voltage is measured at $25 \pm 2^{\circ}$ C, and follows as below condition. The variance of the voltage is \pm 10%. (Based on single Lamp.) The variance of the voltage is \pm 20%. (Based on system & Test equipment tolerance.)
- 6. The voltage above V_S should be applied to the lamps for more than 1 second for start-up. (Inverter open voltage must be more than lamp starting voltage.)

 Otherwise, the lamps may not be turned on. The used lamp current is the lamp typical.
 - Otherwise, the lamps may not be turned on. The used lamp current is the lamp typical current.
- 7. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform (Unsymmetrical ratio is less than 10%). Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
- 8. Let's define the brightness of the lamp after being lighted for 5 minutes as 100%. T_s is the time required for the brightness of the center of the lamp to be not less than 95%. The used lamp current is the lamp typical current.
- 9. The lamp power consumption shown above does not include loss of external inverter. The used lamp current is the lamp typical current. ($P_{BL} = V_{BL} \times I_{BL} \times N_{Lamp}$)
- 10. The life is determined as the time at which brightness of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at $25 \pm 2^{\circ}$ C.
- 11. Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.

It shall help increase the lamp lifetime and reduce leakage current.

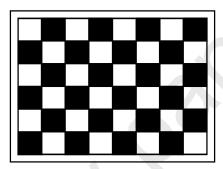
- a. The asymmetry rate of the inverter waveform should be less than 10%.
 - b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$.
 - * Inverter output waveform had better be more similar to ideal sine wave.

- 12. The inverter which is combined with this LCM, is highly recommended to connect coupling(ballast) condenser at the high voltage output side. When you use the inverter which has not coupling(ballast) condenser, it may cause abnormal lamp lighting because of biased mercury as time goes.
- 13. Permissive power ripple should be measured under V_{LCD} =12.0V, 25°C, fV(frame frequency)=MAX condition and At that time, we recommend the bandwidth configuration of oscilloscope is to be under 20Mhz. See the figure 3.
- 14. In case of edgy type back light with over 4 parallel lamps, input current and voltage wave form should be synchronized

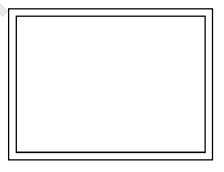

 Ver. 0.0
 FEB. 10 . 2010
 7 / 32

Product Specification

• Permissive Power input ripple (V_{LCD} =12.0V, 25°C, fV(frame frequency)=MAX condition)



White pattern



Black pattern

 \bullet Power consumption (V_{LCD} =12V, 25°C, fV (frame frequency=60Hz condition)

Typical power Pattern

Maximum power Pattern

[Figure 3] Mosaic pattern & White Pattern for power consumption measurement

Product Specification

3-2. Interface Connections

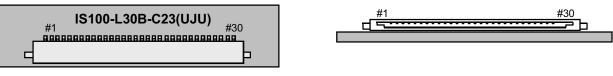
3-2-1. LCD Module

-LCD Connector(CN1). : IS100-L30B-C23(UJU), GT103-30S-H23 (LSC) - Mating Connector : FI-XC30C2L (Manufactured by JAE) or Equivalent

Table 3 MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Symbol
1	FR0M	Minus signal of odd channel 0 (LVDS)	16	SR1P	Plus signal of even channel 1 (LVDS)
2	FR0P	Plus signal of odd channel 0 (LVDS)	17	GND	Ground
3	FR1M	Minus signal of odd channel 1 (LVDS)	18	SR2M	Minus signal of even channel 2 (LVDS)
4	FR1P	Plus signal of odd channel 1 (LVDS)	19	SR2P	Plus signal of even channel 2 (LVDS)
5	FR2M	Minus signal of odd channel 2 (LVDS)	20	SCLKIN M	Minus signal of even clock channel (LVDS)
6	FR2P	Plus signal of odd channel 2 (LVDS)	21	SCLKINP	Plus signal of even clock channel (LVDS)
7	GND	Ground	22	SR3M	Minus signal of even channel 3 (LVDS)
8	FCLKINM	Minus signal of odd clock channel (LVDS)	23	SR3P	Plus signal of even channel 3 (LVDS)
9	FCLKINP	Plus signal of odd clock channel (LVDS)	24	GND	Ground
10	FR3M	Minus signal of odd channel 3 (LVDS)	25	NC	No Connection (I2C Serial interface for LCM)
11	FR3P	Plus signal of odd channel 3 (LVDS)	26	NC	No Connection.(I2C Serial interface for LCM)
12	SR0M	Minus signal of even channel 0 (LVDS)	27	PWM_OUT	For Control Burst frequency of Inverter
13	SR0P	Plus signal of even channel 0 (LVDS)	28	VLCD	Power Supply +12.0V
14	GND	Ground	29	VLCD	Power Supply +12.0V
15	SR1M	Minus signal of even channel 1 (LVDS)	30	VLCD	Power Supply +12.0V

Note: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.


- 2. All VLCD (power input) pins should be connected together.
- 3. Input Level of LVDS signal is based on the IEA 664 Standard.
- 4. PWM OUT signal controls the burst frequency of a inverter.

This signal is synchronized with vertical frequency.

It's frequency is 3 times of vertical frequency, and it's duty ratio is 50%.

If you don't use this pin, it is no connection.

[Figure 4] User Connector diagram

Product Specification

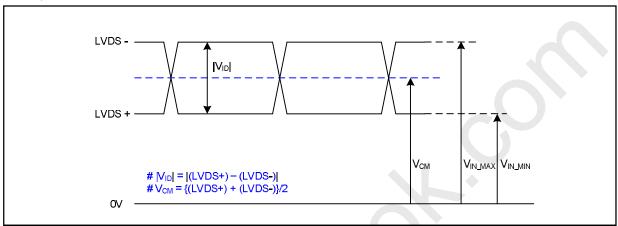
Table 4. REQUIRED SIGNAL ASSIGNMENT FOR Flat Link (TI:SN75LVDS83) Transmitter

Pin#	Pin Name	Require Signal	Pin#	Pin Name	Require Signal
1	Vcc	Power Supply for TTL Input	29	GND	Ground pin for TTL
2	D5	TTL Input (R7)	30	D26	TTL Input (DE)
3	D6	TTL Input (R5)	31	T _X CLKIN	TTL Level clock Input
4	D7	TTL Input (G0)	32	PWR DWN	Power Down Input
5	GND	Ground pin for TTL	33	PLL GND	Ground pin for PLL
6	D8	TTL Input (G1)	34	PLL Vcc	Power Supply for PLL
7	D9	TTL Input (G2)	35	PLL GND	Ground pin for PLL
8	D10	TTL Input (G6)	36	LVDS GND	Ground pin for LVDS
9	Vcc	Power Supply for TTL Input	37	TxOUT3+	Positive LVDS differential data output 3
10	D11	TTL Input (G7)	38	TxOUT3 -	Negative LVDS differential data output 3
11	D12	TTL Input (G3)	39	T _X CLKOUT +	Positive LVDS differential clock output
12	D13	TTL Input (G4)	40	T _X CLKOUT -	Negative LVDS differential clock output
13	GND	Ground pin for TTL	41	T _X OUT2+	Positive LVDS differential data output 2
14	D14	TTL Input (G5)	42	T _X OUT2 –	Negative LVDS differential data output 2
15	D15	TTL Input (B0)	43	LVDS GND	Ground pin for LVDS
16	D16	TTL Input (B6)	44	LVDS Vcc	Power Supply for LVDS
17	Vcc	Power Supply for TTL Input	45	T _X OUT1+	Positive LVDS differential data output 1
18	D17	TTL Input (B7)	46	T _X OUT1 –	Negative LVDS differential data output 1
19	D18	TTL Input (B1)	47	T _X OUT0+	Positive LVDS differential data output 0
20	D19	TTL Input (B2)	48	T _X OUT0 -	Negative LVDS differential data output 0
21	GND	Ground pin for TTL Input	49	LVDS GND	Ground pin for LVDS
22	D20	TTL Input (B3)	50	D27	TTL Input (R6)
23	D21	TTL Input (B4)	51	D0	TTL Input (R0)
24	D22	TTL Input (B5)	52	D1	TTL Input (R1)
25	D23	TTL Input (RSVD)	53	GND	Ground pin for TTL
26	Vcc	Power Supply for TTL Input	54	D2	TTL Input (R2)
27	D24	TTL Input (HSYNC)	55	D3	TTL Input (R3)
28	D25	TTL Input (VSYNC)	56	D4	TTL Input (R4)

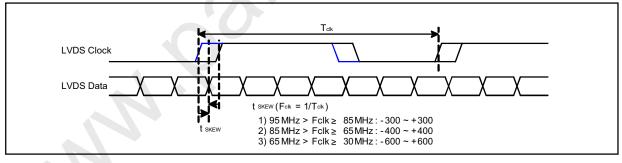
Notes: 1. Refer to LVDS Transmitter Data Sheet for detail descriptions.

2. 7 means MSB and 0 means LSB at R,G,B pixel data

Ver. 0.0 FEB. 10 . 2010 10 / 32



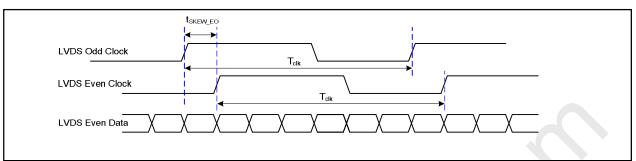
Product Specification


LVDS Input characteristics

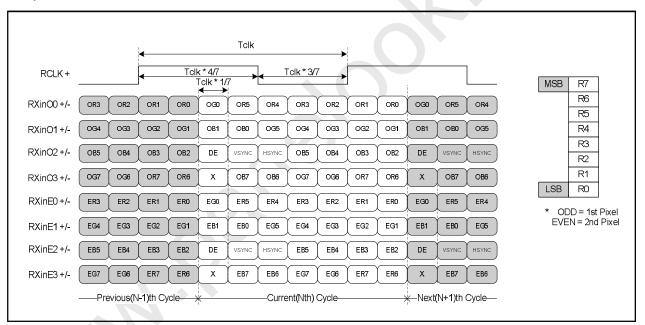
1. DC Specification

Description	Symbo I	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

2. AC Specification



Description	Symbol	Min	Max	Unit	Notes
	t _{SKEW}	- 300	+ 300	ps	95MHz > Fclk ≥ 85MHz
LVDS Clock to Data Skew Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
	t _{skew}	- 600	+ 600	ps	65MHz > Fclk ≥ 30MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T_{clk}	-


Product Specification

< Clock skew margin between channel >

3. Data Format

1) LVDS 2 Port

< LVDS Data Format >

Product Specification

Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION(CN2,CN3,CN4,CN5)

The backlight interface connector is a model 35001HS-02LD manufactured by Yeonho. The mating connector part number are 35001WR-02L or equivalent. The pin configuration for the connector is shown in the table below.

Pin	Symbol	Description	NOTES
1	HV	High Voltage for Lamp	1
2	LV	Low Voltage for Lamp	1, 2

Note: 1. The high voltage power terminal is colored Sky blue, Gray.

The low voltage pin color is Black, Blue.

- 2. The backlight ground should be common with LCD metal frame.
- 3. 35001HS-02LD (Locking type)

Lamp1 CN2 Lamp2 CN3 Down Side Lamp3 CN4

[Figure 5] Backlight connector diagram

Product Specification

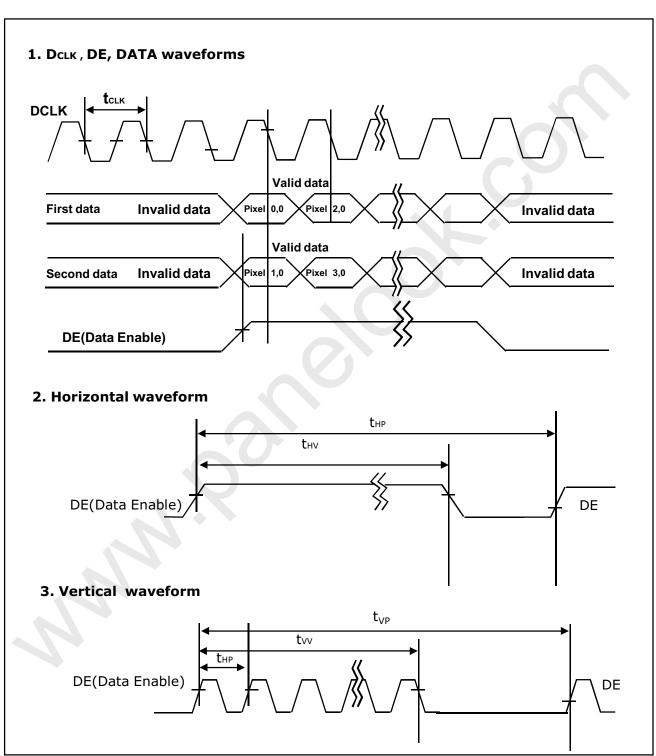
3-3. Signal Timing Specifications

This is signal timing required at the input of the TMDS transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

Table 6. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Period	tclk	11.76	13.89	15.38	ns	
DCLK	Frequency	-	60	72	87.5	MHz	
	total	thp	1000	1088	1120	tclk	
	Frequency	fн	64	66	83	KHz	
Horizontal	Blanking		40	128	160	tclk	
	valid	twн	960	960	960	tclk/2	
	total	tvp	1090	1100	1160	thp	
Vertical	Frequency	fv	50	60	75	Hz	
vertical	Blanking		10	20	80	thp	
	valid	twv	1080	1080	1080	thp	

Note:


- 1. DE Only mode operation. The input of Hsync & Vsync signal does not have an effect on LCD normal operation.
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 3. Horizontal period should be even.

Product Specification

3-4. Signal Timing Waveforms

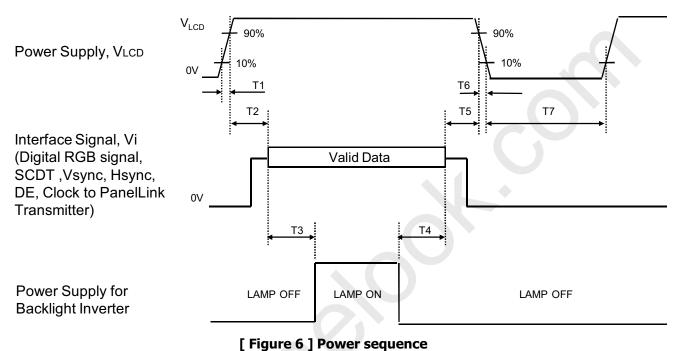
Product Specification

3-5. Color Input Data Reference

The Brightness of each primary color(red,green,blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

													Inp	ut Co	olor	Dat	а									
	Color					RE	ED							GRI	EEN							BL	UE			
			MS								MS								MS							LSB
	1								R1					G4												
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED							.)																			
	RED (254)		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN			İ																							
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																										
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1


Ver. 0.0 FEB. 10 . 2010 16 / 32

Product Specification

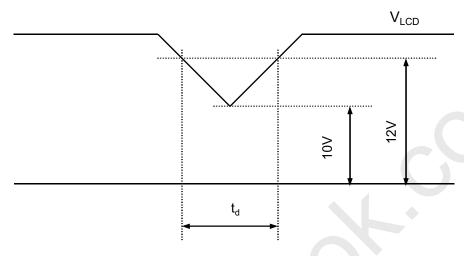
3-6. Power Sequence

Table 8. POWER SEQUENCE

Parameter	.00	Values						
raiametei	Min	Тур	Max	Units				
T1	0.5	-	10	ms				
T2	0.01	-	50	ms				
T3	500	-	-	ms				
T4	200	-	-	ms				
T5	0.01	-	50	ms				
Т7	1000		-	ms				

Notes: 1. Please avoid floating state of interface signal at invalid period.

- 2. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{LCD} to 0V.
- 3. Lamp power must be turn on after power supply for LCD and interface signal are valid.


Ver. 0.0	FEB. 10 . 2010	17 / 32
----------	----------------	---------

Product Specification

3-7. V_{LCD} Power Dip Condition

[Figure 7] Power dip condition

1) Dip condition

$$10V \le V_{LCD} \le 11V$$
 , $t_d \le 20ms$

2) V_{LCD} < 10V

 $\ensuremath{V_{\text{LCD}}}\xspace$ -dip conditions should also follow the Power On/Off conditions for supply voltage.

Product Specification

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at 25 \pm 2°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree.

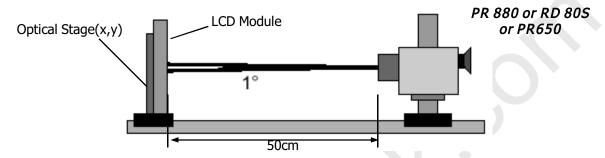


FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 9. OPTICAL CHARACTERISTICS (Ta=25 °C, V_{LCD} =12V, f_V =60Hz Dclk=144MHz, IBL=7.5mA)

Table 9. OPT	ICAL	CHARACTE	RISTICS	(Ta=25 °C	$V_{LCD} = 12V$	f _v =60Hz Dcl	k=144MHz, I	BL=7.5mA)
Pa	ramete	٥٢	Symbol		Values		Units	Notes
Pai	ameu	= 1	Зуппоп	Min	Тур	Max	Offics	Notes
Contrast Ratio			CR	600	1000	-		1
Surface Luminar	nce, w	hite	L_{WH}	150	200	-	cd/m ²	2
Luminance Varia	ation		δ white	75	-	-	%	3
	G	ray To Gray	T_{GTG_AVR}	-	14	25	ms	4
Response Time	Gray	-to-Gray (BW)	G to G _{BW}		6	10	ms	Reference 10
	RED)	Rx		0.643			
			Ry]	0.335			
Color Coordinates	GRE	EN	Gx]	0.303			
			Gy	Тур	0.608	Тур		
[CIE1931]	BLU	E	Bx	-0.03	0.145	+0.03		
(By PR650)			Ву]	0.055			
	WH	ITE	Wx]	0.343			
			Wy		0.359			
Color Shift	Hori	izontal	$\theta_{\text{CST_H}}$	-	140	-	Danuar	
(Avg. Δu'v' < 0.2))	Vert	ical	$\theta_{\text{CST}_{V}}$	-	100	-	Degree	5
Viewing Angle (0	CR>10))						
General		Horizontal	θ_{H}	170	178	-	Degree	6
Gerierai		Vertical	$\theta_{\sf V}$	170	178	-	Degree	0
GSR @ 60dgre	_	Horizontal	$\delta_{\text{Gamma_H}}$	-	-	20	%	7
(Gamma shift	rate)	Vertical	$\delta_{Gamma_{-V}}$	-	-	20	70	
WPT (White Po			-	-300	G255 CCT	+700	K	8
Color gamut (CG, CIE1976)				-	82	-	%	
Gray Scale			-		2.2			9

Ver. 0.0 FEB. 10 . 2010 19 / 32

Product Specification

Notes 1. Contrast Ratio(CR) is defined mathematically as: (By PR880)

$$Contrast\ Ratio = \frac{Surface\ Luminance\ with\ all\ white\ pixels}{Surface\ Luminance\ with\ all\ black\ pixels}$$

It is measured at center point(Location P1)

- 2. Surface luminance(LwH)is luminance value at Center 1 point(P1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2. (By PR880)
- 3. The variation in surface luminance, δ WHITE is defined as : (By PR880)

$$\delta_{\textit{WHITE}} = \frac{\text{Minimum}(L_{\text{P1}}, L_{\text{P2}}, \dots, L_{\text{P9}})}{\text{Maximum}(L_{\text{P1}}, L_{\text{P2}}, \dots, L_{\text{P9}})} \times 100$$
 Where L1 to L9 are the luminance with all pixels displaying white at 9 locations.

For more information see FIG 2.

- 4. Gray to gray response time is the time required for the display to transition from gray to gray. For additional information see Table 10. (By RD80S)
- 5. Color shift is the angle at which the average color difference for all Macbeth is lower than 0.02. For more information see FIG 3 and FIG 4. (By EZ Contrast)
 - Color difference (Δu'v')

$$u' = \frac{4x}{-2x + 12y + 3} \qquad v' = \frac{9y}{-2x + 12y + 3} \qquad \Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2}$$

$$u'1, v'1 : u'v' \text{ value at viewing angle direction}$$

$$u'2, v'2 : u'v' \text{ value at front } (\theta = 0)$$

$$i : \text{Macbeth chart number (Define 23 page)}$$

- Pattern size: 25% Box size
- Viewing angle direction of color shift: Horizontal, Vertical
- 6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4. (By PR880)
- 7. GSR is the rate of gamma shift at up, down, left and right 60 degree viewing angle compare with center gamma. For more information see FIG 5 and FIG 6 (By EZ Contrast) - GSR (δ_{Gamma}) is defined as :

$$GSR = \frac{\text{View angle Gamma Value (Up, Down, Reft, Light 60 Degree})}{\text{Center Gamma Value (0 Degree)}} \times 100$$

8. WPT (White Point Tracking) is the variation of color temperature between G255 and G63. (By PR650)

20 / 32 Ver. 0.0 FEB. 10. 2010

Product Specification

Notes 9. Gamma Value is approximately 2.2. For more information see Table 11.

Notes 10. Response time is the time required for the display to transit from any gray to white (Rise Time, TrR) and from any gray to black (Decay time, TrD).

G to GBW Spec stands for average value of all measured points. (By RD80S)

Measuring point for surface luminance & measuring point for luminance variation.

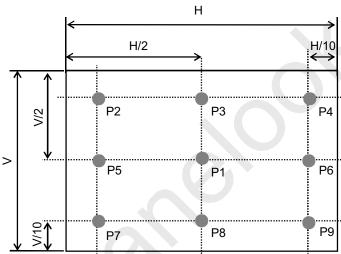


FIG. 2 Measure Point for Luminance

The Gray to Gray response time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray".

- Gray step: 5 Step
- TGTG_AVR is the total average time at rising time and falling time for "Gray To Gray ".
- if system use ODC (Over Driving Circuit) function, Gray to Gary response time may be 5ms~8ms GtG * it depends on Overshoot rate.

Table. 10 GTG Gray Table

Croy to C	rov		Rising Time								
Gray to G	Gray to Gray		G191	G127	G63	G0					
Falling Time	G255										
	G191										
	G127										
	G63										
	G0										

21 / 32 Ver. 0.0 FEB. 10. 2010

Product Specification

Color shift is defined as the following test pattern and color.

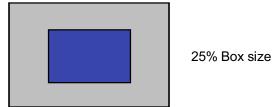
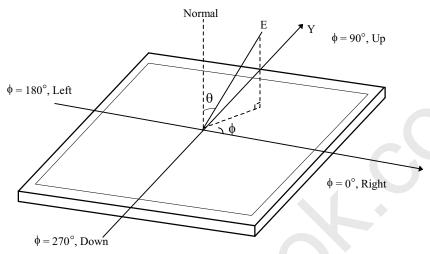


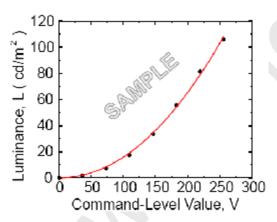
FIG. 3 Color Shift Test Pattern

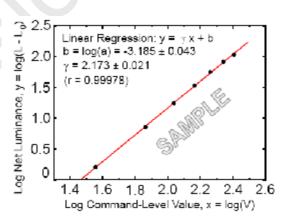
Average RGB values in Bruce RGB for Macbeth Chart

	Dark skin (i=1)	Light skin	Blue sky	Foliage	Blue flower	Bluish green
R	98	206	85	77	129	114
G	56	142	112	102	118	199
В	45	123	161	46	185	178
	Orange	Purplish blue	Moderate red	Purple	Yellow green	Orange yellow
R	219	56	211	76	160	230
G	104	69	67	39	193	162
В	24	174	87	86	58	29
	Blue	Green	Red	Yellow	Magenta	Cyan
R	26	72	197	241	207	35
G	32	148	27	212	62	126
В	145	65	37	36	151	172
	White	Neutral 8	Neutral 6.5	Neutral 5	Neutral 3.5	Black
R	240	206	155	110	63	22
G	240	206	155	110	63	22
В	240	206	155	110	63	22



Global LCD Panel Exchange Center


LM215WF3 Liquid Crystal Display


Product Specification

Dimension of viewing angle range.

[FIG 12] Viewing angle

[FIG 13] Sample Luminance vs. gray scale [FIG 14] Sample Log-log plot of (using a 256 bit gray scale) luminance vs. gray scale

$$L = aV^r + L_b$$

$$\log(L - L_b) = r\log(V) + \log(a)$$

Here the Parameter α and γ relate the signal level V to the luminance L. The GAMMA we calculate from the log-log representation (FIG. 7)

Product Specification

Table 10. Gray Scale Specification

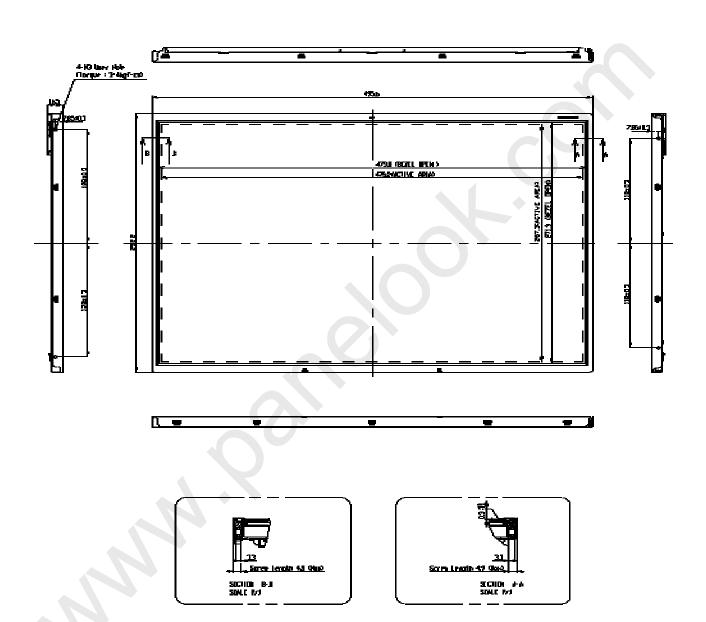
Gray Level	Relative Luminance [%] (Typ.)
0	0.11
31	1.08
63	4.72
95	11.49
127	21.66
159	35.45
191	53.00
223	74.48
255	100

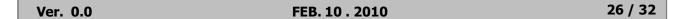
Product Specification

5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

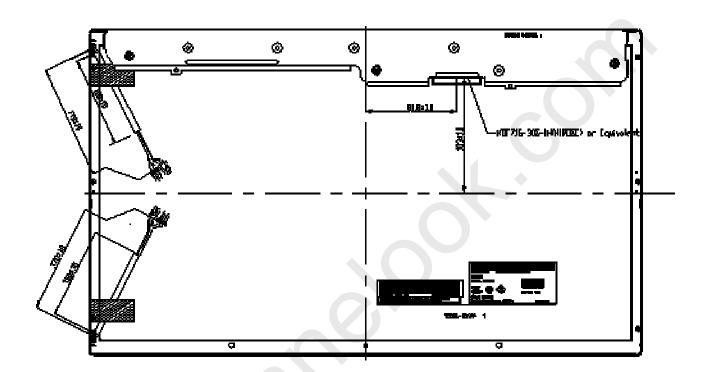
	Horizontal	495.6mm				
Outline Dimension	Vertical	292.2mm				
	Depth	16.5mm				
Dozel Aven	Horizontal	479.8mm				
Bezel Area	Vertical	271.3mm				
Activo Dienlay Area	Horizontal	475.2mm				
Active Display Area	Vertical	267.3mm				
Weight	Typ : 2450 g , Max : 2600 g					
Surface Treatment	Hard coating(3H) Anti-glare treatment of the front polarizer					

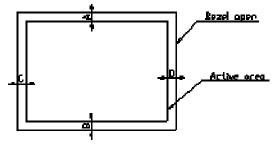

Notes: Please refer to a mechanic drawing in terms of tolerance at the next page.



Product Specification

<FRONT VIEW>




Product Specification

<REAR VIEW>

Hotes

- I. Urspecified taleronces to be # 0.5m E. Bocklynt : 4 Cold Cathode Fluorescent Longs. 1. I/F Convertor Specification : KDF716-305-3H or Equivalent 4. Tarque of user hole : 3D-414 kgf-rn 3. T/t and partial disposition tale rance of display area as Following (3) Y-Direction : IA-B 4= 1.0 (2) 3-Direction : IC-01 4: 10

- 7 Do not aird conductive tape around the backlight aires 8. Sop between Bezel and Ponel Noo Oden

Product Specification

6. Reliability

Environment test condition

No	Test Item	Condition						
1	High temperature storage test	Ta= 60°C 240h						
2	Low temperature storage test	Ta= -20°C 240h						
3	High temperature operation test	Ta= 50°C 50%RH 240h						
4	Low temperature operation test	Ta= 0°C 240h						
5	Vibration test (non-operating)	Wave form: random Vibration level: 1.00G RMS Bandwidth: 10-300Hz Duration: X, Y, Z, 10 min One time each direction						
6	Shock test (non-operating)	Shock level : $100G$ Waveform : half sine wave, $2ms$ Direction : $\pm X$, $\pm Y$, $\pm Z$ One time each direction						
7	Humidity condition Operation	Ta= 40 °C ,90%RH						
8	Altitude storage / shipment	0 - 40,000 feet(12192m)						
9	Maximum Storage Humidity for 4 corner light leakage Mura.	Max 70%RH , Ta=40°C						

Product Specification

7. International Standards

7-1. Safety

- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1: General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment Safety Part 1: General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment Safety Part 1 : General Requirements.
- d) IEC 60950-1:2005, Second Edition, The International Electrotechnical Commission (IEC). Information Technology Equipment Safety Part 1: General Requirements.

7-2. EMC

- a) ANSI C63.4 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." American National Standards Institute (ANSI), 2003.
- b) CISPR 22 "Information technology equipment Radio disturbance characteristics Limit and methods of measurement." International Special Committee on Radio Interference (CISPR), 2005.
- c) CISPR 13 "Sound and television broadcast receivers and associated equipment Radio disturbance characteristics Limits and method of measurement." International Special Committee on Radio Interference (CISPR), 2006.

7-3. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

Ver. 0.0 FEB. 10 . 2010 29 / 32

Product Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A B C D E F G H I J K L	М
-------------------------	---

 $A,B,C: SIZE(INCH) \\ D: YEAR$

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box : TBD

b) Box Size: TBD

Product Specification

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) When LCMs are used for public display defects such as Yogure, image sticking can not be guarantee.

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.