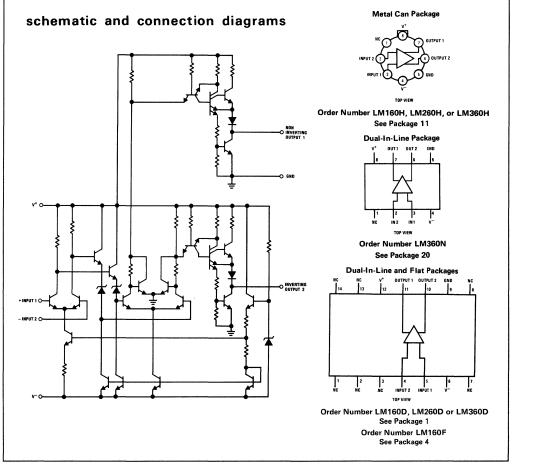
20 ns max

Voltage Comparators

LM160/LM260/LM360 high speed differential comparator

general description


The LM160/LM260/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the μ A760/ μ A760C, for which it is a pin-forpin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 500 mV.

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

features

.

- Guaranteed high speed
 - Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

absolute maximum ratings

Positive Supply Voltage Negative Supply Voltage Peak Output Current Differential Input Voltage Input Voltage

+8V	Operatin
-8V	
20 mA	
±5V	
$V^+ \ge V_{IN} \ge V^-$	Storage 1
	Local Tes

Operating Temperature Range
LM160
LM260
LM360
Storage Temperature Range
Lead Temperature (Soldering, 10 sec

-55°C to +125°C -25°C to +85°C 0°C to +70°C -65°C to +150°C 300°C

electrical characteristics $(T_{\text{MIN}} \leq T_{\text{A}} \leq T_{\text{MAX}})$

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Operating Conditions					
Supply Voltage V _{CC} ⁺		4.5	5	6.5	v
Supply Voltage V _{CC}		-4 5	5	-6 5	v
Input Offset Voltage	$R_{s} \leq 200\Omega$		2	5	mV
Input Offset Current			.5	3	μA
Input Bias Current			5	20	μA
Output Resistance (Either Output)	V _{OUT} ≖ V _{OH}		100		Ω
Response Time	T _A = 25°C, V _S = ±5V (Note 1)		13	25	ns
	T _A = 25°C, V _S = ±5V (Note 2)		12	20	ns
	T _A = 25°C, V _S = ±5V (Note 3)		14		ns
Response Time Difference Between Outputs					
$(t_{pd} \text{ of } +V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	T _A = 25°C, (Note 1)		2		ns
$(t_{pd} \text{ of } + V_{IN2}) - (t_{pd} \text{ of } - V_{IN1})$	T _A = 25°C, (Note 1)		2		ns
$(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } + V_{IN2})$	T _A = 25°C, (Note 1)		2		ns
$(t_{pd} \text{ of } -V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	T _A = 25°C, (Note 1)		2		ns
Input Resistance	f = 1 MHz		17		kΩ
Input Capacitance	f = 1 MHz		3		pF
Average Temperature Coefficient of Input Offset Voltage	$R_{S} = 50\Omega$.		8		µV/°C
Average Temperature Coefficient of Input Offset Current			7		nA/°C
Common Mode Input Voltage Range	V _S = ±6.5V	±4	±4.5		v
Differential Input Voltage Range		±5			` v
Output High Voltage (Either Output)	I _{OUT} = -320μΑ, V _S = ±4.5V	2.4	3		v
Output Low Voltage (Either Output)	I _{SINK} = 6.4 mA		.25	.4	v
Positive Supply Current	V _S = ±6.5V		18	32	mA
Negative Supply Current	V _S = ±6.5V		-9	-16	mA

Note 1: Response time measured from the 50% point of a 30 mVp_p 10 MHz sinusoidal input to the 50% point of the output. Note 2: Response time measured from the 50% point of a 2 Vp_p 10 MHz sinusoidal input to the 50% point of the output. Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.