Features

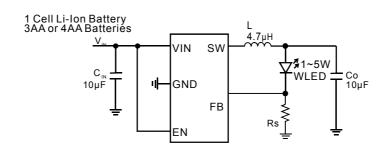
- Efficiency up to 93%
- 180µA(TYP.) Quiescent Current
- Output Current: Up to 1A
- Internal Synchronous Rectifier
- 1.5MHz Switching Frequency
- Soft Start
- Under-Voltage Lockout
- Short LED Protection
- Open LED Protection
- Thermal Shutdown
- 5-pin Small SOT23-5 Packages
- Pb-Free Package

Applications

- 3AA or 4AA Batteries Powered Flashlight
- 1 Cell Li-Ion Battery Powered Flashlight

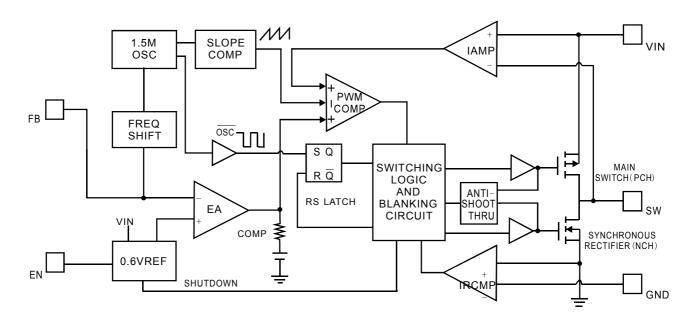
General Description

The LM3842 is a step-down constant current LED driver. When the input voltage down to lower than LED forward voltage, then LM3842 run into LDO mode.

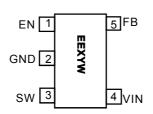

The LM3842 supports a range of input voltages from 2.5V to 6.0V, allowing the use of a single Li+/Li-polymer cell, 3AA or 4AA cell, USB, and other standard power sources.

The FB voltage is only 0.1V to achieve high efficiency.

LM3842 employ internal power switch and synchronous rectifier to minimize external part count and realize high efficiency.


During shutdown, the input is disconnected from the output and the shutdown current is less than $1\mu A$. Other key features include under-voltage lockout to prevent deep battery discharge of the Li+ battery.

Typical Application


ILED = 0.1/Rs

Block Diagram

Pin Configuration & Marking Information

Top View SOT23-5

EE: Product Code of LM3842 X: Internal Code

Y: Year W: Week

Pin Description

Name	Function Function
VIN	Chip main power supply pin
GND	Ground
FN	Enable control input. Force this pin voltage above 1.5V, enables the chip, and below
EN	0.3V shuts down the device.
FB	Feedback voltage to internal error amplifier, the threshold voltage is 0.1V.
SW	The drains of the internal main and synchronous power MOSFET.

2 10/2010

Absolute Maximum Ratings
These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

Input Voltage0.3V to 6.	5V Ju	ınction	Temperature.	150	υ°C
EN, FB Pin Voltage0.3V to	V _{IN} St	orage	Temperature F	Range65°C to 150	ງ°C
SW Pin Voltage0.3V to (V _{IN} +0.3	V) Sc	oldering	Temperature	300°C, 5	sec

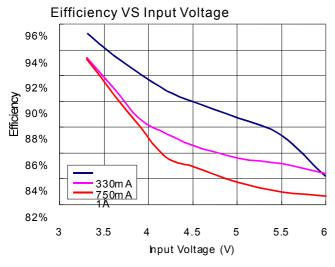
Recommended Operating Conditions

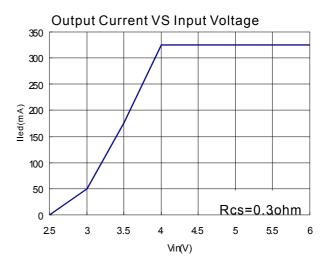
Supply Voltage2	.5V to 6.0V	Junction	Temperature	Range40	°C to 125°C
Operation Temperature Range40	0°C to 85°C				

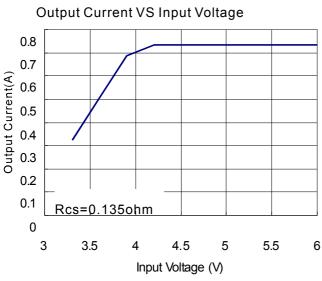
Thermal Information

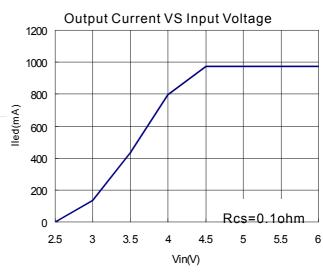
Parameter	Package	Symbol	Maximum	Unit
Thermal Resistance	SOT23-5 ^{Note}	0	400	
(Junction to Case)	SU123-5	θυς	130	°CW
Thermal Resistance	00700 5	0	050	C/VV
(Junction to Ambient)	SOT23-5	$ heta_{JA}$	250	
Internal Power Dissipation	SOT23-5	P_{D}	400	mW

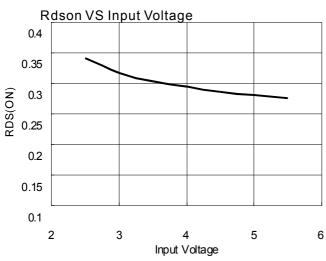
Note:

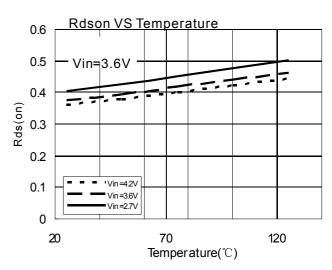

The maximun output current for SOT23-5 package is limited by internal power dissipation capacity as described in Application Information herein after.

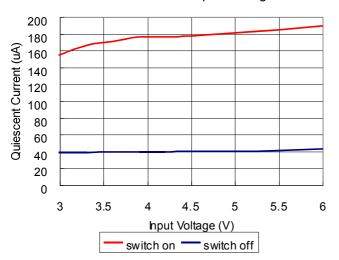

> 10/2010 3


 $\label{eq:continuous} \textbf{Electrical Characteristic} \\ \textbf{T}_{\scriptscriptstyle{A}} = 25\,^{\circ}\text{C} \,, \textbf{V}_{\scriptscriptstyle{IN}} = 4.2 \text{V}, \, \text{Real WLED load}, \, \textbf{C}_{\scriptscriptstyle{IN}} = 10 \mu\text{F}, \, \textbf{C}_{\scriptscriptstyle{O}} = 10 \mu\text{F}, \, \textbf{L} = 4.7 \mu\text{H}, \, \text{unless otherwise noted}.$


PARAMETER	SYMBOL	Test Conditions		MIN	TYP	MAX	UNITS
Input Voltage Range	V_{IN}			2.5		6.0	V
Regulated Feedback Voltage	V_{FB}			0.095	0.1	0.105	V
Peak Inductor Current	I _{PK}	V _{IN} =5V			1.5		Α
Quiescent Current	IQ	No load			180		μA
Shutdown Current	I _{SD}	V _{EN} = 0V				1	μA
Oscillator Frequency	f _{osc}	V _O = 100%		1.2	1.5	1.8	MHz
Dusin Course On Otata Dasiatas as	R _{DS(ON)}		P MOSFET		0.3	0.45	Ω
Drain-Source On-State Resistance			N MOSFET		0.35	0.5	Ω
SW Leakage Current	I _{LSW}				±0.01	1	μA
High Efficiency	η				93		%
EN Threshold High	V _{EH}			1.5			V
EN Threshold Low	V _{EL}					0.3	V
EN Leakage Current	I _{EN}				±0.01		μA
Over Temperature Protection	OTP				150		°C
OTP Hysteresis	OTH				30		°C


Typical Performance Characteristics $T_A=25\,^{\circ}C,\,C_{IN}=10\mu\,F,\,C_{o}=10\mu\,F,\,L=4.7\mu\,H,\,unless$ otherwise noted.





10/2010 5

Typical Performance Characteristics $T_{_{A}}\!=\!25\,^{\circ}\text{C},\,C_{_{IN}}\!=\!10\mu\text{F},\,C_{_{O}}\!=\!10\mu\text{F},\,L\!=\!4.7\mu\text{H},\,\text{unless otherwise noted}.$

Quiescent Current Vs Input Voltage

Start up with Enable

Application Information

The basic LM3842 application circuit is shown in Page 1. External component selection is determined by the load requirement, selecting L first and then Cin and Cout.

Inductor Selection

For most applications, the value of the inductor will fall in the range of $1\mu H$ to $4.7\mu H$. Its value is chosen based on the desired ripple current. Large value inductors lower ripple current and small value inductors result in higher ripple currents. Higher V_{IN} or Vout also increases the ripple current as shown in equation 1. A reasonable starting point for setting ripple current is $\triangle I_L = 400 \text{mA} (40\% \text{ of } 1\text{A})$.

$$\Delta I_{L} = \frac{1}{(f)(L)} V_{OUT} \left(1 - \frac{V_{OUT}}{V_{IN}} \right)$$
 (1)

The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation. Thus, a 1.4A rated inductor should be enough for most applications (1A + 400mA). For better efficiency, choose a low DC-resistance inductor.

Using Ceramic Input and Output Capacitors

Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. Using ceramic capacitors can achieve very low output ripple and small circuit size.

When choosing the input and output ceramic capacitors, choose the X5R or X7R dielectric formulations. These dielectrics have the best temperature and voltage characteristics of all the ceramics for a given value and size.

Thermal consideration

Thermal protection limits power dissipation in the LM3842. When the junction temperature exceeds 150°C, the OTP (Over Temperature Protection) starts the thermal shutdown and turns the pass transistor off. The pass transistor resumes operation after the junction temperature drops below 120°C.

For continuous operation, the junction

temperature should be maintained below 125°C. The power dissipation is defined as:

$$P_{D} = I_{O}^{2} \frac{V_{O} R_{DSONH} + (V_{IN} - V_{O}) R_{DSONL}}{V_{IN}} + (t_{SW} F_{S} I_{O} + I_{Q}) V_{IN}$$

 I_{Q} is the step-down converter quiescent current. The term tsw is used to estimate the full load step-down converter switching losses.

7

Application Information

For the condition where the step-down converter is in dropout at 100% duty cycle, the total device dissipation reduces to:

$$P_D = I_O^2 R_{DSONH} + I_Q V_{IN}$$

Since $R_{\text{DS(ON)}}$, quiescent current, and switching losses all vary with input voltage, the total losses should be investigated over the complete input voltage range. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surrounding airflow and temperature difference between junction and ambient. The maximum power dissipation can be calculated by the following formula:

$$P_{D} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$

Where TJ(max) is the maximum allowable junction temperature 125°C.T_A is the ambient temperature and θ_{JA} is the thermal resistance from the junction to the ambient. Based on the standard JEDEC for a two layers thermal test board, the thermal resistance θ_{JA} of SOT23-5 package is 250°C/W. The maximum power dissipation at T_A = 25°C can be calculated by following formula:

$$P_D = (125^{\circ}C - 25^{\circ}C)/250^{\circ}C/W = 0.4W$$

Setting the Output Current

The internal feedback(FB) voltage is 0.1V (Typical). The output current is calculated as below:

The output Current is given by the following table.

Rs(Ω)	ILED(mA)
0.286	350
0.143	700
0.1	1000

As the input voltage approaches the LED forward voltage, the LM3842 turns the P-channel transistor continuously on. In this mode the Voltage drop on LED is equal to the input voltage minus the voltage drop across the P - channel transistor. Inductor and current resistor:

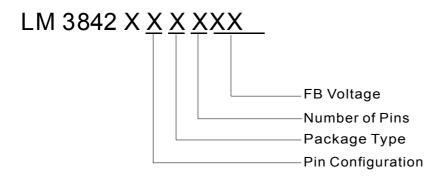
$$V_{IEDDROP} = V_{IN} - ILED (R_{dson} + R_I + R_S)$$

where R_{dson} = P-channel switch ON resistance, ILED = LED current, R_L = Inductor DC resistance, R_s = Inductor DC resistance.

Thermal Shutdown

When the die temperature exceeds 150°C, a reset occurs and the reset remains until the temperature decrease to 120°C, at which time the circuit can be restarted.

Application Information

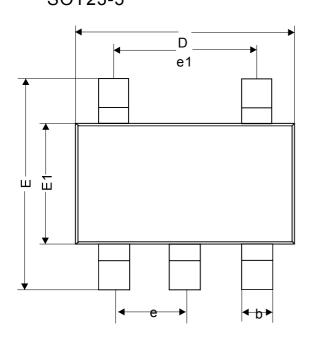

PCB Layout Check List

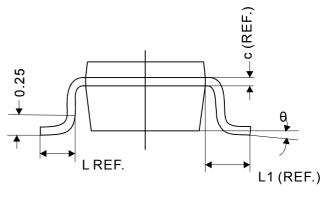
When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the LM3842. These items are also illustrated graphically in Figure 1. Check the following in your layout:

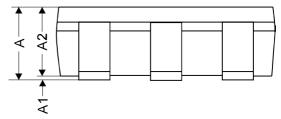
- 1. The power traces, consisting of the GND trace, the SW trace and the VIN trace should be kept short, direct and wide.
- 2. Does the $V_{\mbox{\tiny FB}}$ pin connect directly to the current sense resistor? The current sense resistor to GND trace should be kept short, direct and wide.
- 3. Does the (+) plate of CIN connect to VIN as closely as possible? This capacitor provides the AC current to the internal power MOSFETs.
- 4. Keep the switching node, SW, away from the sensitive VFB node.
- 5. Keep the (–) plates of C_{IN} and C_{OUT} as close as possible.

9 10/2010

Ordering Information




Pin Configuration	Package Type	Number of Pins	FB Voltage
A Type	A: SOT-23	B: 5	010: 0.1V
1. EN			
2. GND			
3. SW			
4. VIN			
5. FB			


Part Number	Marking	Package Type	Standard Package
LM3842AAB010	Refer to P2	SOT-23-5	3,000Units/Tape&Reel

Outline Dimensions

SOT23-5

555	Millimeter			
REF.	Min	Max		
Α	1.10 MAX			
A1	0	0.10		
A2	0.70	1		
С	0.12F	REF.		
D	2.70	3.10		
Е	2.60	3.00		
E1	1.40	1.80		
L	0.45 REF.			
L1	0.60 F	REF.		
θ	0°	10°		
b	0.30	0.50		
е	0.95 REF.			
e1	1.90 REF.			

10/2010