
LM3S9B92 Microcontroller
DATA SHEET

Copyr ight © 2007-2009 Luminary Micro, Inc.DS-LM3S9B92-4997

PRELIMINARY

Legal Disclaimers and Trademark Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTIONWITH LUMINARYMICRO PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO
LIABILITYWHATSOEVER,ANDLUMINARYMICRODISCLAIMSANYEXPRESSOR IMPLIEDWARRANTY, RELATINGTOSALEAND/OR
USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

LuminaryMicro may make changes to specifications and product descriptions at any time, without notice. Contact your local LuminaryMicro sales office
or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2007-2009 Luminary Micro, Inc. All rights reserved. Stellaris, Luminary Micro, and the Luminary Micro logo are registered trademarks of
Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark
of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc.
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com

February 24, 20092
Preliminary

Table of Contents
About This Document .. 31
Audience .. 31
About This Manual .. 31
Related Documents ... 31
Documentation Conventions .. 31

1 Architectural Overview .. 34
1.1 Functional Overview .. 36
1.1.1 ARM Cortex™-M3 ... 36
1.1.2 On-Chip Memory ... 38
1.1.3 External Peripheral Interface ... 39
1.1.4 Serial Communications Peripherals .. 40
1.1.5 System Integration .. 46
1.1.6 Advanced Motion Control ... 51
1.1.7 Analog .. 53
1.1.8 JTAG and ARM Serial Wire Debug .. 54
1.1.9 Packaging and Temperature .. 55
1.2 Target Applications .. 55
1.3 High-Level Block Diagram ... 56
1.4 Additional Features ... 58
1.4.1 Memory Map .. 58
1.4.2 Hardware Details .. 58

2 ARM Cortex-M3 Processor Core .. 59
2.1 Block Diagram .. 60
2.2 Functional Description ... 60
2.2.1 Programming Model .. 60
2.2.2 Serial Wire and JTAG Debug ... 67
2.2.3 Embedded Trace Macrocell (ETM) ... 67
2.2.4 Trace Port Interface Unit (TPIU) ... 68
2.2.5 ROM Table ... 68
2.2.6 Memory Protection Unit (MPU) ... 68
2.2.7 Nested Vectored Interrupt Controller (NVIC) .. 68
2.2.8 System Timer (SysTick) ... 69

3 Memory Map ... 72
4 Interrupts .. 75
5 JTAG Interface .. 78
5.1 Block Diagram .. 79
5.2 Functional Description ... 79
5.2.1 JTAG Interface Pins .. 80
5.2.2 JTAG TAP Controller ... 81
5.2.3 Shift Registers .. 82
5.2.4 Operational Considerations .. 82
5.3 Initialization and Configuration ... 85
5.4 Register Descriptions .. 85
5.4.1 Instruction Register (IR) ... 85

3February 24, 2009
Preliminary

LM3S9B92 Microcontroller

5.4.2 Data Registers .. 87

6 System Control ... 90
6.1 Functional Description ... 90
6.1.1 Device Identification .. 90
6.1.2 Reset Control .. 90
6.1.3 Non-Maskable Interrupt ... 93
6.1.4 Power Control ... 94
6.1.5 Clock Control .. 94
6.1.6 System Control ... 99
6.2 Initialization and Configuration ... 99
6.3 Register Map .. 100
6.4 Register Descriptions .. 101

7 Internal Memory ... 195
7.1 Block Diagram .. 195
7.2 Functional Description ... 196
7.2.1 SRAM .. 196
7.2.2 ROM .. 196
7.2.3 Flash Memory ... 196
7.3 Flash Memory Initialization and Configuration ... 197
7.3.1 Flash Programming ... 197
7.3.2 32-Word Flash Write Buffer .. 198
7.3.3 Nonvolatile Register Programming ... 199
7.4 Register Map .. 199
7.5 Flash Register Descriptions (Flash Control Offset) ... 200
7.6 Memory Register Descriptions (System Control Offset) .. 210

8 Micro Direct Memory Access (μDMA) .. 226
8.1 Block Diagram .. 227
8.2 Functional Description ... 227
8.2.1 Channel Assignments .. 228
8.2.2 Priority .. 229
8.2.3 Arbitration Size .. 229
8.2.4 Request Types .. 229
8.2.5 Channel Configuration ... 230
8.2.6 Transfer Modes ... 232
8.2.7 Transfer Size and Increment .. 240
8.2.8 Peripheral Interface ... 240
8.2.9 Software Request .. 240
8.2.10 Interrupts and Errors .. 241
8.3 Initialization and Configuration ... 241
8.3.1 Module Initialization ... 241
8.3.2 Configuring a Memory-to-Memory Transfer ... 241
8.3.3 Configuring a Peripheral for Simple Transmit .. 243
8.3.4 Configuring a Peripheral for Ping-Pong Receive .. 244
8.3.5 Configuring Alternate Channels .. 247
8.4 Register Map .. 247
8.5 μDMA Channel Control Structure ... 248
8.6 μDMA Register Descriptions .. 255

February 24, 20094
Preliminary

Table of Contents

9 General-Purpose Input/Outputs (GPIOs) ... 291
9.1 Functional Description ... 291
9.1.1 Data Control ... 293
9.1.2 Interrupt Control .. 294
9.1.3 Mode Control .. 295
9.1.4 Commit Control ... 295
9.1.5 Pad Control ... 296
9.1.6 Identification ... 296
9.2 Initialization and Configuration ... 296
9.3 Register Map .. 297
9.4 Register Descriptions .. 300

10 External Peripheral Interface (EPI) ... 342
10.1 EPI Block Diagram .. 343
10.2 Functional Description ... 344
10.2.1 Non-blocking reads ... 344
10.2.2 DMA Operation ... 345
10.3 Initialization and Configuration ... 345
10.3.1 SDRAM mode ... 347
10.3.2 Host Bus Mode ... 348
10.3.3 General-Purpose Mode ... 350
10.4 Register Map .. 352
10.5 Register Descriptions .. 353

11 General-Purpose Timers ... 388
11.1 Block Diagram .. 388
11.2 Functional Description ... 389
11.2.1 GPTM Reset Conditions .. 390
11.2.2 32-Bit Timer Operating Modes .. 390
11.2.3 16-Bit Timer Operating Modes .. 391
11.2.4 DMA Operation ... 396
11.3 Initialization and Configuration ... 396
11.3.1 32-Bit One-Shot/Periodic Timer Mode ... 396
11.3.2 32-Bit Real-Time Clock (RTC) Mode ... 397
11.3.3 16-Bit One-Shot/Periodic Timer Mode ... 397
11.3.4 16-Bit Input Edge-Count Mode ... 398
11.3.5 16-Bit Input Edge Timing Mode .. 399
11.3.6 16-Bit PWM Mode ... 399
11.4 Register Map .. 400
11.5 Register Descriptions .. 400

12 Watchdog Timer ... 427
12.1 Block Diagram .. 428
12.2 Functional Description ... 428
12.2.1 Register Access Timing ... 429
12.3 Initialization and Configuration ... 429
12.4 Register Map .. 429
12.5 Register Descriptions .. 430

13 Analog-to-Digital Converter (ADC) ... 452
13.1 Block Diagram .. 453

5February 24, 2009
Preliminary

LM3S9B92 Microcontroller

13.2 Functional Description ... 454
13.2.1 Sample Sequencers .. 454
13.2.2 Module Control .. 455
13.2.3 Hardware Sample Averaging Circuit ... 456
13.2.4 Analog-to-Digital Converter .. 456
13.2.5 Differential Sampling ... 458
13.2.6 Internal Temperature Sensor .. 461
13.2.7 Digital Comparator Unit ... 461
13.3 Initialization and Configuration ... 465
13.3.1 Module Initialization ... 465
13.3.2 Sample Sequencer Configuration ... 465
13.4 Register Map .. 466
13.5 Register Descriptions .. 468

14 Universal Asynchronous Receivers/Transmitters (UARTs) ... 520
14.1 Block Diagram .. 521
14.2 Functional Description ... 521
14.2.1 Transmit/Receive Logic ... 521
14.2.2 Baud-Rate Generation ... 522
14.2.3 Data Transmission .. 523
14.2.4 Serial IR (SIR) ... 523
14.2.5 ISO 7816 Support ... 524
14.2.6 LIN Support .. 524
14.2.7 FIFO Operation ... 525
14.2.8 Interrupts .. 525
14.2.9 Loopback Operation .. 526
14.2.10 DMA Operation ... 526
14.2.11 IrDA SIR block .. 527
14.3 Initialization and Configuration ... 527
14.4 Register Map .. 528
14.5 Register Descriptions .. 529

15 Synchronous Serial Interface (SSI) .. 570
15.1 Block Diagram .. 571
15.2 Functional Description ... 571
15.2.1 Bit Rate Generation ... 572
15.2.2 FIFO Operation ... 572
15.2.3 Interrupts .. 572
15.2.4 Frame Formats ... 573
15.2.5 DMA Operation ... 580
15.3 Initialization and Configuration ... 581
15.4 Register Map .. 582
15.5 Register Descriptions .. 583

16 Inter-Integrated Circuit (I2C) Interface .. 610
16.1 Block Diagram .. 611
16.2 Functional Description ... 611
16.2.1 I2C Bus Functional Overview .. 611
16.2.2 Available Speed Modes ... 613
16.2.3 Interrupts .. 614
16.2.4 Loopback Operation .. 615

February 24, 20096
Preliminary

Table of Contents

16.2.5 Command Sequence Flow Charts .. 615
16.3 Initialization and Configuration ... 622
16.4 Register Map .. 623
16.5 Register Descriptions (I2C Master) ... 624
16.6 Register Descriptions (I2C Slave) ... 636

17 Inter-Integrated Circuit Sound (I2S) Interface .. 645
17.1 Block Diagram .. 646
17.2 Functional Description ... 646
17.2.1 Transmit ... 648
17.2.2 Receive .. 652
17.3 Initialization and Configuration ... 654
17.4 Register Map .. 655
17.5 Register Descriptions .. 656

18 Controller Area Network (CAN) Module ... 677
18.1 Block Diagram .. 678
18.2 Functional Description ... 678
18.2.1 Initialization ... 679
18.2.2 Operation ... 680
18.2.3 Transmitting Message Objects ... 681
18.2.4 Configuring a Transmit Message Object .. 681
18.2.5 Updating a Transmit Message Object ... 682
18.2.6 Accepting Received Message Objects .. 683
18.2.7 Receiving a Data Frame .. 683
18.2.8 Receiving a Remote Frame .. 683
18.2.9 Receive/Transmit Priority ... 684
18.2.10 Configuring a Receive Message Object .. 684
18.2.11 Handling of Received Message Objects .. 685
18.2.12 Handling of Interrupts .. 688
18.2.13 Test Mode ... 688
18.2.14 Bit Timing Configuration Error Considerations ... 690
18.2.15 Bit Time and Bit Rate ... 690
18.2.16 Calculating the Bit Timing Parameters .. 692
18.3 Register Map .. 694
18.4 CAN Register Descriptions .. 695

19 Ethernet Controller .. 723
19.1 Block Diagram .. 724
19.2 Functional Description ... 725
19.2.1 MAC Operation ... 725
19.2.2 Internal MII Operation .. 728
19.2.3 PHY Operation .. 728
19.2.4 Interrupts .. 729
19.2.5 DMA Operation ... 730
19.3 Initialization and Configuration ... 730
19.3.1 Hardware Configuration ... 730
19.3.2 Software Configuration .. 731
19.4 Ethernet Register Map ... 732
19.5 Ethernet MAC Register Descriptions ... 733

7February 24, 2009
Preliminary

LM3S9B92 Microcontroller

19.6 MII Management Register Descriptions ... 753

20 Universal Serial Bus (USB) Controller ... 771
20.1 Block Diagram .. 772
20.2 Functional Description ... 772
20.2.1 Operation as a Device ... 772
20.2.2 Operation as a Host .. 778
20.2.3 OTG Mode .. 782
20.2.4 DMA Operation ... 783
20.3 Initialization and Configuration ... 784
20.3.1 Pin Configuration ... 785
20.3.2 Endpoint Configuration .. 785
20.4 Register Map .. 785
20.5 Register Descriptions .. 789

21 Analog Comparators ... 871
21.1 Block Diagram .. 872
21.2 Functional Description ... 872
21.2.1 Internal Reference Programming .. 873
21.3 Initialization and Configuration ... 874
21.4 Register Map .. 874
21.5 Register Descriptions .. 875

22 Pulse Width Modulator (PWM) .. 883
22.1 Block Diagram .. 884
22.2 Functional Description ... 885
22.2.1 PWM Timer ... 885
22.2.2 PWM Comparators .. 885
22.2.3 PWM Signal Generator .. 886
22.2.4 Dead-Band Generator ... 887
22.2.5 Interrupt/ADC-Trigger Selector ... 887
22.2.6 Synchronization Methods .. 888
22.2.7 Fault Conditions .. 889
22.2.8 Output Control Block ... 890
22.3 Initialization and Configuration ... 890
22.4 Register Map .. 891
22.5 Register Descriptions .. 893

23 Quadrature Encoder Interface (QEI) ... 942
23.1 Block Diagram .. 942
23.2 Functional Description ... 943
23.3 Initialization and Configuration ... 945
23.4 Register Map .. 946
23.5 Register Descriptions .. 946

24 Pin Diagram .. 959
25 Signal Tables .. 960
26 Operating Characteristics ... 992
27 Electrical Characteristics .. 993
27.1 DC Characteristics .. 993
27.1.1 Maximum Ratings ... 993

February 24, 20098
Preliminary

Table of Contents

27.1.2 Recommended DC Operating Conditions .. 993
27.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics .. 994
27.1.4 Flash Memory Characteristics .. 994
27.1.5 GPIO Module Characteristics ... 994
27.1.6 USB Module Characteristics .. 995
27.1.7 Ethernet Controller Characteristics ... 995
27.1.8 Current Specifications .. 995
27.2 AC Characteristics ... 998
27.2.1 Load Conditions .. 998
27.2.2 Clocks .. 999
27.2.3 JTAG and Boundary Scan .. 1001
27.2.4 Reset .. 1002
27.2.5 General-Purpose I/O (GPIO) .. 1004
27.2.6 External Peripheral Interface (EPI) .. 1004
27.2.7 Analog-to-Digital Converter .. 1012
27.2.8 Synchronous Serial Interface (SSI) ... 1013
27.2.9 Inter-Integrated Circuit (I2C) Interface ... 1014
27.2.10 Inter-Integrated Circuit Sound (I2S) Interface ... 1015
27.2.11 Ethernet Controller .. 1016
27.2.12 Universal Serial Bus (USB) Controller ... 1018
27.2.13 Analog Comparator ... 1018

28 Package Information .. 1020
A Boot Loader .. 1022
A.1 Boot Loader .. 1022
A.2 Interfaces .. 1022
A.2.1 UART ... 1022
A.2.2 SSI ... 1023
A.2.3 I2C .. 1023
A.2.4 Ethernet .. 1023
A.3 Packet Handling .. 1023
A.3.1 Packet Format ... 1023
A.3.2 Sending Packets ... 1024
A.3.3 Receiving Packets ... 1024
A.4 Commands ... 1024
A.4.1 COMMAND_PING (0X20) .. 1024
A.4.2 COMMAND_DOWNLOAD (0x21) ... 1024
A.4.3 COMMAND_RUN (0x22) ... 1025
A.4.4 COMMAND_GET_STATUS (0x23) ... 1025
A.4.5 COMMAND_SEND_DATA (0x24) ... 1025
A.4.6 COMMAND_RESET (0x25) ... 1026

B ROM DriverLib Functions .. 1027
B.1 DriverLib Functions Included in the Integrated ROM .. 1027

C Advance Encryption Standard and Cyclic Redundancy Check Software in ROM ... 1047
C.1 Advanced Encryption Standard Software .. 1047
C.2 Cyclic Redundancy Check Software ... 1047

D Register Quick Reference ... 1048
E Ordering and Contact Information ... 1085

9February 24, 2009
Preliminary

LM3S9B92 Microcontroller

E.1 Ordering Information .. 1085
E.2 Kits ... 1085
E.3 Company Information .. 1086
E.4 Support Information ... 1086

February 24, 200910
Preliminary

Table of Contents

List of Figures
Figure 1-1. Stellaris® LM3S9B92 Microcontroller High-Level Block Diagram .. 57
Figure 2-1. CPU Block Diagram ... 60
Figure 2-2. TPIU Block Diagram .. 68
Figure 5-1. JTAG Module Block Diagram .. 79
Figure 5-2. Test Access Port State Machine ... 82
Figure 5-3. IDCODE Register Format ... 88
Figure 5-4. BYPASS Register Format .. 88
Figure 5-5. Boundary Scan Register Format ... 88
Figure 6-1. External Circuitry to Extend Reset .. 91
Figure 6-2. Power Architecture .. 94
Figure 6-3. Main Clock Tree .. 96
Figure 7-1. Flash Block Diagram .. 195
Figure 8-1. μDMA Block Diagram ... 227
Figure 8-2. Example of Ping-Pong DMA Transaction ... 233
Figure 8-3. Memory Scatter-Gather, Setup and Configuration .. 235
Figure 8-4. Memory Scatter-Gather, μDMA Copy Sequence .. 236
Figure 8-5. Peripheral Scatter-Gather, Setup and Configuration ... 238
Figure 8-6. Peripheral Scatter-Gather, μDMA Copy Sequence ... 239
Figure 9-1. Digital I/O Pads ... 292
Figure 9-2. Analog/Digital I/O Pads .. 293
Figure 9-3. GPIODATA Write Example ... 294
Figure 9-4. GPIODATA Read Example ... 294
Figure 10-1. EPI Block Diagram ... 343
Figure 11-1. GPTM Module Block Diagram .. 389
Figure 11-2. 16-Bit Input Edge-Count Mode Example .. 394
Figure 11-3. 16-Bit Input Edge-Time Mode Example ... 395
Figure 11-4. 16-Bit PWM Mode Example .. 396
Figure 12-1. WDT Module Block Diagram .. 428
Figure 13-1. Implementation of Two ADC Blocks .. 453
Figure 13-2. ADC Module Block Diagram ... 453
Figure 13-3. Internal Voltage Conversion Result ... 457
Figure 13-4. External Voltage Conversion Result .. 458
Figure 13-5. Differential Sampling Range, VIN_ODD = 1.5 V .. 459
Figure 13-6. Differential Sampling Range, VIN_ODD = 0.75 V .. 460
Figure 13-7. Differential Sampling Range, VIN_ODD = 2.25 V .. 460
Figure 13-8. Internal Temperature Sensor Characteristic ... 461
Figure 13-9. Low-Band Operation (CIC=0x0 and/or CTC=0x0) .. 463
Figure 13-10. Mid-Band Operation (CIC=0x1 and/or CTC=0x1) ... 464
Figure 13-11. High-Band Operation (CIC=0x3 and/or CTC=0x3) .. 465
Figure 14-1. UART Module Block Diagram ... 521
Figure 14-2. UART Character Frame ... 522
Figure 14-3. IrDA Data Modulation ... 524
Figure 15-1. SSI Module Block Diagram ... 571
Figure 15-2. TI Synchronous Serial Frame Format (Single Transfer) .. 574
Figure 15-3. TI Synchronous Serial Frame Format (Continuous Transfer) .. 574

11February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 15-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0 575
Figure 15-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0 575
Figure 15-6. Freescale SPI Frame Format with SPO=0 and SPH=1 ... 576
Figure 15-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0 577
Figure 15-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0 577
Figure 15-9. Freescale SPI Frame Format with SPO=1 and SPH=1 ... 578
Figure 15-10. MICROWIRE Frame Format (Single Frame) .. 579
Figure 15-11. MICROWIRE Frame Format (Continuous Transfer) ... 580
Figure 15-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements 580
Figure 16-1. I2C Block Diagram ... 611
Figure 16-2. I2C Bus Configuration .. 611
Figure 16-3. START and STOP Conditions ... 612
Figure 16-4. Complete Data Transfer with a 7-Bit Address ... 612
Figure 16-5. R/S Bit in First Byte .. 612
Figure 16-6. Data Validity During Bit Transfer on the I2C Bus ... 613
Figure 16-7. Master Single SEND .. 616
Figure 16-8. Master Single RECEIVE ... 617
Figure 16-9. Master Burst SEND ... 618
Figure 16-10. Master Burst RECEIVE .. 619
Figure 16-11. Master Burst RECEIVE after Burst SEND .. 620
Figure 16-12. Master Burst SEND after Burst RECEIVE .. 621
Figure 16-13. Slave Command Sequence .. 622
Figure 17-1. I2S Block Diagram ... 646
Figure 17-2. I2S Data Transfer ... 648
Figure 17-3. Left-Justified Data Transfer .. 648
Figure 17-4. Right-Justified Data Transfer .. 648
Figure 18-1. CAN Controller Block Diagram .. 678
Figure 18-2. CAN Data/Remote Frame .. 679
Figure 18-3. Message Objects in a FIFO Buffer .. 687
Figure 18-4. CAN Bit Time .. 691
Figure 19-1. Ethernet Controller ... 724
Figure 19-2. Ethernet Controller Block Diagram .. 724
Figure 19-3. Ethernet Frame ... 725
Figure 19-4. Interface to an Ethernet Jack .. 731
Figure 20-1. USB Module Block Diagram ... 772
Figure 21-1. Analog Comparator Module Block Diagram ... 872
Figure 21-2. Structure of Comparator Unit .. 873
Figure 21-3. Comparator Internal Reference Structure .. 873
Figure 22-1. PWM Unit Diagram .. 884
Figure 22-2. PWM Module Block Diagram .. 885
Figure 22-3. PWM Count-Down Mode .. 886
Figure 22-4. PWM Count-Up/Down Mode .. 886
Figure 22-5. PWM Generation Example In Count-Up/Down Mode ... 887
Figure 22-6. PWM Dead-Band Generator ... 887
Figure 23-1. QEI Block Diagram .. 943
Figure 23-2. Quadrature Encoder and Velocity Predivider Operation .. 944
Figure 24-1. 100-Pin LQFP Package Pin Diagram .. 959
Figure 27-1. Typical Current Across Frequency .. 997

February 24, 200912
Preliminary

Table of Contents

Figure 27-2. Typical Current Across Temperature ... 998
Figure 27-3. Load Conditions .. 999
Figure 27-4. JTAG Test Clock Input Timing ... 1001
Figure 27-5. JTAG Test Access Port (TAP) Timing .. 1002
Figure 27-6. External Reset Timing (RST) .. 1002
Figure 27-7. Power-On Reset Timing ... 1003
Figure 27-8. Brown-Out Reset Timing .. 1003
Figure 27-9. Software Reset Timing ... 1003
Figure 27-10. Watchdog Reset Timing ... 1003
Figure 27-11. MOSC Failure Reset Timing ... 1004
Figure 27-12. SDRAM Initialization and Load Mode Register Timing .. 1005
Figure 27-13. SDRAM Read Command Timing ... 1006
Figure 27-14. SDRAM Write Command Timing ... 1007
Figure 27-15. SDRAM Write Burst Timing .. 1008
Figure 27-16. SDRAM Precharge Command Timing ... 1009
Figure 27-17. SDRAM CAS Latency Timing ... 1010
Figure 27-18. SDRAM Active Row Bank Timing .. 1011
Figure 27-19. SRAM Nor Read Timing ... 1011
Figure 27-20. General-Purpose Mode Read Timing .. 1012
Figure 27-21. General-Purpose Mode Write Timing ... 1012
Figure 27-22. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement 1013
Figure 27-23. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer 1014
Figure 27-24. SSI Timing for SPI Frame Format (FRF=00), with SPH=1 ... 1014
Figure 27-25. I2C Timing ... 1014
Figure 27-26. External XTLP Oscillator Characteristics ... 1018
Figure 28-1. 100-Pin LQFP Package .. 1020

13February 24, 2009
Preliminary

LM3S9B92 Microcontroller

List of Tables
Table 1. Documentation Conventions .. 31
Table 2-1. 16-Bit Cortex-M3 Instruction Set Summary .. 61
Table 2-2. 32-Bit Cortex-M3 Instruction Set Summary .. 63
Table 3-1. Memory Map ... 72
Table 4-1. Exception Types .. 75
Table 4-2. Interrupts .. 76
Table 5-1. JTAG Port Pins State after Power-On Reset or RST assertion .. 80
Table 5-2. JTAG Instruction Register Commands ... 85
Table 6-1. Reset Sources .. 90
Table 6-2. Clock Source Options .. 95
Table 6-3. System Control Register Map ... 100
Table 6-4. Examples of Possible System Clock Frequencies .. 121
Table 7-1. Flash Protection Policy Combinations ... 197
Table 7-2. User-Programmable Flash Resident Registers .. 199
Table 7-3. Flash Register Map .. 200
Table 8-1. DMA Channel Assignments .. 228
Table 8-2. Request Type Support ... 229
Table 8-3. Control Structure Memory Map ... 231
Table 8-4. Channel Control Structure .. 231
Table 8-5. μDMA Read Example: 8-Bit Peripheral .. 240
Table 8-6. μDMA Interrupt Assignments .. 241
Table 8-7. Channel Control Structure Offsets for Channel 30 .. 242
Table 8-8. Channel Control Word Configuration for Memory Transfer Example 242
Table 8-9. Channel Control Structure Offsets for Channel 7 .. 243
Table 8-10. Channel Control Word Configuration for Peripheral Transmit Example 244
Table 8-11. Primary and Alternate Channel Control Structure Offsets for Channel 8 245
Table 8-12. Channel Control Word Configuration for Peripheral Ping-Pong Receive Example 246
Table 8-13. μDMA Register Map .. 247
Table 9-1. GPIO Pins With Non-Zero Reset Values .. 292
Table 9-2. GPIO Pad Configuration Examples ... 296
Table 9-3. GPIO Interrupt Configuration Example .. 297
Table 9-4. GPIO Pins With Non-Zero Reset Values .. 298
Table 9-5. GPIO Register Map ... 299
Table 9-6. GPIO Pins With Non-Zero Reset Values .. 311
Table 9-7. GPIO Pins With Non-Zero Reset Values .. 317
Table 9-8. GPIO Pins With Non-Zero Reset Values .. 328
Table 10-1. EPI Signal Connections .. 346
Table 10-2. External Peripheral Interface (EPI) Register Map ... 352
Table 11-1. Available CCP Pins .. 389
Table 11-2. 16-Bit Timer With Prescaler Configurations ... 392
Table 11-3. Timers Register Map .. 400
Table 12-1. Watchdog Timer Register Map .. 430
Table 13-1. Samples and FIFO Depth of Sequencers .. 454
Table 13-2. Differential Sampling Pairs ... 458
Table 13-3. ADC Register Map ... 466
Table 14-1. UART Register Map ... 528

February 24, 200914
Preliminary

Table of Contents

Table 15-1. SSI Register Map .. 582
Table 16-1. Examples of I2C Master Timer Period versus Speed Mode ... 614
Table 16-2. Inter-Integrated Circuit (I2C) Interface Register Map ... 623
Table 16-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3) .. 628
Table 17-1. I2S Transmit FIFO Interface .. 649
Table 17-2. Crystal Frequency (Values from 3.5795 MHz to 5 MHz) .. 650
Table 17-3. Crystal Frequency (Values from 5.12 MHz to 8.192 MHz) ... 650
Table 17-4. Crystal Frequency (Values from 10 MHz to 14.3181 MHz) .. 651
Table 17-5. Crystal Frequency (Values from 16 MHz to 16.384 MHz) .. 651
Table 17-6. I2S Receive FIFO Interface ... 653
Table 17-7. Audio Formats Configuration .. 655
Table 17-8. Inter-Integrated Circuit Sound (I2S) Interface Register Map ... 655
Table 18-1. CAN Protocol Ranges .. 691
Table 18-2. CAN Register Map ... 694
Table 19-1. TX & RX FIFO Organization ... 727
Table 19-2. Ethernet Register Map ... 732
Table 20-1. Remainder (RxMaxP/4) .. 784
Table 20-2. Actual Bytes Read ... 784
Table 20-3. Packet Sizes That Will Clear RXRDY .. 784
Table 20-4. Universal Serial Bus (USB) Controller Register Map .. 786
Table 21-1. Internal Reference Voltage and ACREFCTL Field Values ... 873
Table 21-2. Analog Comparators Register Map ... 875
Table 22-1. PWM Register Map .. 891
Table 23-1. QEI Register Map .. 946
Table 25-1. GPIO Pins With Default Alternate Functions .. 960
Table 25-2. Signals by Pin Number ... 960
Table 25-3. Signals by Signal Name ... 971
Table 25-4. Signals by Function, Except for GPIO ... 981
Table 25-5. GPIO Pins and Alternate Functions ... 990
Table 26-1. Temperature Characteristics ... 992
Table 26-2. Thermal Characteristics ... 992
Table 26-3. ESD Absolute Maximum Ratings .. 992
Table 27-1. Maximum Ratings .. 993
Table 27-2. Recommended DC Operating Conditions .. 993
Table 27-3. LDO Regulator Characteristics ... 994
Table 27-4. Flash Memory Characteristics .. 994
Table 27-5. GPIO Module DC Characteristics .. 994
Table 27-6. USB Controller DC Characteristics .. 995
Table 27-7. Ethernet Controller DC Characteristics .. 995
Table 27-8. Detailed Current Specifications ... 996
Table 27-9. Typical Peripheral Current Consumption ... 998
Table 27-10. Phase Locked Loop (PLL) Characteristics ... 999
Table 27-11. Actual PLL Frequency .. 999
Table 27-12. PIOSC Clock Characteristics .. 1000
Table 27-13. 30-kHz Clock Characteristics .. 1000
Table 27-14. Main Oscillator Clock Characteristics .. 1000
Table 27-15. MOSC Oscillator Input Characteristics ... 1000
Table 27-16. JTAG Characteristics ... 1001

15February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Table 27-17. Reset Characteristics ... 1002
Table 27-18. GPIO Characteristics ... 1004
Table 27-19. EPI Characteristics .. 1004
Table 27-20. ADC Characteristics ... 1012
Table 27-21. SSI Characteristics .. 1013
Table 27-22. I2S Master Clock (Receive and Transmit) .. 1015
Table 27-23. I2S Slave Clock (Receive and Transmit) .. 1015
Table 27-24. I2S Master Mode ... 1015
Table 27-25. I2S Slave Mode ... 1015
Table 27-26. 100BASE-TX Transmitter Characteristics .. 1016
Table 27-27. 100BASE-TX Transmitter Characteristics (informative) ... 1016
Table 27-28. 100BASE-TX Receiver Characteristics .. 1016
Table 27-29. 10BASE-T Transmitter Characteristics .. 1016
Table 27-30. 10BASE-T Transmitter Characteristics (informative) ... 1016
Table 27-31. 10BASE-T Receiver Characteristics .. 1017
Table 27-32. Isolation Transformers .. 1017
Table 27-33. Ethernet Reference Crystal .. 1017
Table 27-34. External XTLP Oscillator Characteristics ... 1018
Table 27-35. Analog Comparator Characteristics ... 1018
Table 27-36. Analog Comparator Voltage Reference Characteristics .. 1019
Table E-1. Part Ordering Information ... 1085

February 24, 200916
Preliminary

Table of Contents

List of Registers
System Control .. 90
Register 1: Device Identification 0 (DID0), offset 0x000 ... 102
Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030 .. 104
Register 3: Raw Interrupt Status (RIS), offset 0x050 .. 105
Register 4: Interrupt Mask Control (IMC), offset 0x054 .. 107
Register 5: Masked Interrupt Status and Clear (MISC), offset 0x058 .. 109
Register 6: Reset Cause (RESC), offset 0x05C .. 111
Register 7: Run-Mode Clock Configuration (RCC), offset 0x060 ... 113
Register 8: XTAL to PLL Translation (PLLCFG), offset 0x064 ... 118
Register 9: GPIO Host-Bus Control (GPIOHBCTL), offset 0x06C ... 119
Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 .. 121
Register 11: Main Oscillator Control (MOSCCTL), offset 0x07C ... 124
Register 12: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 .. 125
Register 13: Deep Sleep Flash Configuration (DSFLASHCFG), offset 0x14C 127
Register 14: Precision Internal Oscillator Calibration (PIOSCCAL), offset 0x150 128
Register 15: I2S MCLK Configuration (I2SMCLKCFG), offset 0x170 ... 129
Register 16: Device Identification 1 (DID1), offset 0x004 ... 131
Register 17: Device Capabilities 0 (DC0), offset 0x008 .. 133
Register 18: Device Capabilities 1 (DC1), offset 0x010 .. 134
Register 19: Device Capabilities 2 (DC2), offset 0x014 .. 137
Register 20: Device Capabilities 3 (DC3), offset 0x018 .. 140
Register 21: Device Capabilities 4 (DC4), offset 0x01C ... 143
Register 22: Device Capabilities 5 (DC5), offset 0x020 .. 145
Register 23: Device Capabilities 6 (DC6), offset 0x024 .. 147
Register 24: Device Capabilities 7 (DC7), offset 0x028 .. 148
Register 25: Device Capabilities 8 ADC Channels (DC8), offset 0x02C .. 152
Register 26: Device Capabilities 9 ADC Digital Comparators (DC9), offset 0x190 155
Register 27: Non-Volatile Memory Information (NVMSTAT), offset 0x1A0 ... 157
Register 28: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 158
Register 29: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110 161
Register 30: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 164
Register 31: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 167
Register 32: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 171
Register 33: Deep-Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 175
Register 34: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108 179
Register 35: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 182
Register 36: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 185
Register 37: Software Reset Control 0 (SRCR0), offset 0x040 ... 188
Register 38: Software Reset Control 1 (SRCR1), offset 0x044 ... 190
Register 39: Software Reset Control 2 (SRCR2), offset 0x048 ... 193

Internal Memory ... 195
Register 1: Flash Memory Address (FMA), offset 0x000 .. 201
Register 2: Flash Memory Data (FMD), offset 0x004 ... 202
Register 3: Flash Memory Control (FMC), offset 0x008 ... 203
Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C .. 205

17February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010 .. 206
Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 207
Register 7: Flash Memory Control 2 (FMC2), offset 0x020 ... 208
Register 8: Flash Write Buffer Valid (FWBVAL), offset 0x030 ... 209
Register 9: Flash Write Buffer n (FWBn), offset 0x100 - 0x13C .. 210
Register 10: ROM Control (RMCTL), offset 0x0F0 .. 211
Register 11: ROM Version Register (RMVER), offset 0x0F4 .. 212
Register 12: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200 213
Register 13: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400 214
Register 14: User Debug (USER_DBG), offset 0x1D0 ... 215
Register 15: User Register 0 (USER_REG0), offset 0x1E0 .. 216
Register 16: User Register 1 (USER_REG1), offset 0x1E4 .. 217
Register 17: User Register 2 (USER_REG2), offset 0x1E8 .. 218
Register 18: User Register 3 (USER_REG3), offset 0x1EC ... 219
Register 19: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204 220
Register 20: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208 221
Register 21: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C 222
Register 22: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404 223
Register 23: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408 224
Register 24: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C 225

Micro Direct Memory Access (μDMA) .. 226
Register 1: DMA Channel Source Address End Pointer (DMASRCENDP), offset 0x000 249
Register 2: DMA Channel Destination Address End Pointer (DMADSTENDP), offset 0x004 250
Register 3: DMA Channel Control Word (DMACHCTL), offset 0x008 .. 251
Register 4: DMA Status (DMASTAT), offset 0x000 .. 256
Register 5: DMA Configuration (DMACFG), offset 0x004 ... 258
Register 6: DMA Channel Control Base Pointer (DMACTLBASE), offset 0x008 259
Register 7: DMA Alternate Channel Control Base Pointer (DMAALTBASE), offset 0x00C 260
Register 8: DMA Channel Wait-on-Request Status (DMAWAITSTAT), offset 0x010 261
Register 9: DMA Channel Software Request (DMASWREQ), offset 0x014 ... 262
Register 10: DMA Channel Useburst Set (DMAUSEBURSTSET), offset 0x018 263
Register 11: DMA Channel Useburst Clear (DMAUSEBURSTCLR), offset 0x01C 265
Register 12: DMA Channel Request Mask Set (DMAREQMASKSET), offset 0x020 266
Register 13: DMA Channel Request Mask Clear (DMAREQMASKCLR), offset 0x024 268
Register 14: DMA Channel Enable Set (DMAENASET), offset 0x028 ... 269
Register 15: DMA Channel Enable Clear (DMAENACLR), offset 0x02C ... 271
Register 16: DMA Channel Primary Alternate Set (DMAALTSET), offset 0x030 272
Register 17: DMA Channel Primary Alternate Clear (DMAALTCLR), offset 0x034 274
Register 18: DMA Channel Priority Set (DMAPRIOSET), offset 0x038 ... 275
Register 19: DMA Channel Priority Clear (DMAPRIOCLR), offset 0x03C .. 277
Register 20: DMA Bus Error Clear (DMAERRCLR), offset 0x04C .. 278
Register 21: DMA Channel Alternate Select (DMACHALT), offset 0x500 .. 280
Register 22: DMA Channel Interrupt Status (DMACHIS), offset 0x504 .. 281
Register 23: DMA Peripheral Identification 0 (DMAPeriphID0), offset 0xFE0 ... 282
Register 24: DMA Peripheral Identification 1 (DMAPeriphID1), offset 0xFE4 ... 283
Register 25: DMA Peripheral Identification 2 (DMAPeriphID2), offset 0xFE8 ... 284
Register 26: DMA Peripheral Identification 3 (DMAPeriphID3), offset 0xFEC .. 285
Register 27: DMA Peripheral Identification 4 (DMAPeriphID4), offset 0xFD0 ... 286

February 24, 200918
Preliminary

Table of Contents

Register 28: DMA PrimeCell Identification 0 (DMAPCellID0), offset 0xFF0 ... 287
Register 29: DMA PrimeCell Identification 1 (DMAPCellID1), offset 0xFF4 ... 288
Register 30: DMA PrimeCell Identification 2 (DMAPCellID2), offset 0xFF8 ... 289
Register 31: DMA PrimeCell Identification 3 (DMAPCellID3), offset 0xFFC ... 290

General-Purpose Input/Outputs (GPIOs) ... 291
Register 1: GPIO Data (GPIODATA), offset 0x000 .. 301
Register 2: GPIO Direction (GPIODIR), offset 0x400 ... 302
Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404 .. 303
Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408 .. 304
Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C .. 305
Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410 ... 306
Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414 .. 307
Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418 ... 308
Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C .. 310
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420 .. 311
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 .. 313
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504 .. 314
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508 .. 315
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C ... 316
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510 .. 317
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514 ... 319
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518 .. 320
Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C .. 321
Register 19: GPIO Lock (GPIOLOCK), offset 0x520 .. 323
Register 20: GPIO Commit (GPIOCR), offset 0x524 .. 324
Register 21: GPIO Analog Mode Select (GPIOAMSEL), offset 0x528 ... 326
Register 22: GPIO Port Control (GPIOPCTL), offset 0x52C ... 328
Register 23: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0 330
Register 24: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4 331
Register 25: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8 332
Register 26: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC 333
Register 27: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0 334
Register 28: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4 335
Register 29: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8 336
Register 30: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC 337
Register 31: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0 .. 338
Register 32: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4 .. 339
Register 33: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8 .. 340
Register 34: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC ... 341

External Peripheral Interface (EPI) ... 342
Register 1: EPI Configuration (EPICFG), offset 0x000 ... 354
Register 2: EPI Main Baud Rate (EPIBAUD), offset 0x004 ... 355
Register 3: EPI SDRAM Configuration (EPISDRAMCFG), offset 0x010 .. 356
Register 4: EPI Host-Bus 8 Configuration (EPIHB8CFG), offset 0x010 ... 358
Register 5: EPI General-Purpose Configuration (EPIGPCFG), offset 0x010 .. 362
Register 6: EPI Host-Bus 8 Configuration 2 (EPIHB8CFG2), offset 0x014 .. 366
Register 7: EPI General-Purpose Configuration 2 (EPIGPCFG2), offset 0x014 368
Register 8: EPI Address Map (EPIADDRMAP), offset 0x01C ... 369

19February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: EPI Read Size 0 (EPIRSIZE0), offset 0x020 .. 371
Register 10: EPI Read Size 1 (EPIRSIZE1), offset 0x030 .. 371
Register 11: EPI Read Address 0 (EPIRADDR0), offset 0x024 .. 372
Register 12: EPI Read Address 1 (EPIRADDR1), offset 0x034 .. 372
Register 13: EPI Non-Blocking Read Data 0 (EPIRPSTD0), offset 0x028 ... 373
Register 14: EPI Non-Blocking Read Data 1 (EPIRPSTD1), offset 0x038 ... 373
Register 15: EPI Status (EPISTAT), offset 0x060 .. 375
Register 16: EPI Read FIFO Count (EPIRFIFOCNT), offset 0x06C .. 377
Register 17: EPI Read FIFO (EPIREADFIFO), offset 0x070 .. 378
Register 18: EPI Read FIFO Alias 1 (EPIREADFIFO1), offset 0x074 .. 378
Register 19: EPI Read FIFO Alias 2 (EPIREADFIFO2), offset 0x078 .. 378
Register 20: EPI Read FIFO Alias 3 (EPIREADFIFO3), offset 0x07C ... 378
Register 21: EPI Read FIFO Alias 4 (EPIREADFIFO4), offset 0x080 .. 378
Register 22: EPI Read FIFO Alias 5 (EPIREADFIFO5), offset 0x084 .. 378
Register 23: EPI Read FIFO Alias 6 (EPIREADFIFO6), offset 0x088 .. 378
Register 24: EPI Read FIFO Alias 7 (EPIREADFIFO7), offset 0x08C ... 378
Register 25: EPI FIFO Level Selects (EPIFIFOLVL), offset 0x200 .. 379
Register 26: EPI Write FIFO Count (EPIWFIFOCNT), offset 0x204 .. 381
Register 27: EPI Interrupt Mask (EPIIM), offset 0x210 ... 382
Register 28: EPI Raw Interrupt Status (EPIRIS), offset 0x214 .. 383
Register 29: EPI Masked Interrupt Status (EPIMIS), offset 0x218 .. 385
Register 30: EPI Error Interrupt Status and Clear (EPIEISC), offset 0x21C ... 386

General-Purpose Timers ... 388
Register 1: GPTM Configuration (GPTMCFG), offset 0x000 .. 401
Register 2: GPTM Timer A Mode (GPTMTAMR), offset 0x004 ... 402
Register 3: GPTM Timer B Mode (GPTMTBMR), offset 0x008 ... 404
Register 4: GPTM Control (GPTMCTL), offset 0x00C .. 406
Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018 .. 409
Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C ... 411
Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020 .. 413
Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024 .. 415
Register 9: GPTM Timer A Interval Load (GPTMTAILR), offset 0x028 .. 417
Register 10: GPTM Timer B Interval Load (GPTMTBILR), offset 0x02C .. 418
Register 11: GPTM Timer A Match (GPTMTAMATCHR), offset 0x030 .. 419
Register 12: GPTM Timer B Match (GPTMTBMATCHR), offset 0x034 ... 420
Register 13: GPTM Timer A Prescale (GPTMTAPR), offset 0x038 ... 421
Register 14: GPTM Timer B Prescale (GPTMTBPR), offset 0x03C .. 422
Register 15: GPTM Timer A (GPTMTAR), offset 0x048 ... 423
Register 16: GPTM Timer B (GPTMTBR), offset 0x04C ... 424
Register 17: GPTM Timer A Value (GPTMTAV), offset 0x050 ... 425
Register 18: GPTM Timer B Value (GPTMTBV), offset 0x054 .. 426

Watchdog Timer ... 427
Register 1: Watchdog Load (WDTLOAD), offset 0x000 .. 431
Register 2: Watchdog Value (WDTVALUE), offset 0x004 ... 432
Register 3: Watchdog Control (WDTCTL), offset 0x008 ... 433
Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C .. 435
Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010 .. 436
Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014 ... 437

February 24, 200920
Preliminary

Table of Contents

Register 7: Watchdog Test (WDTTEST), offset 0x418 ... 438
Register 8: Watchdog Lock (WDTLOCK), offset 0xC00 ... 439
Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0 440
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4 441
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8 442
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC 443
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0 444
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4 445
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8 446
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC 447
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0 448
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4 449
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8 450
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC 451

Analog-to-Digital Converter (ADC) ... 452
Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000 ... 469
Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004 ... 470
Register 3: ADC Interrupt Mask (ADCIM), offset 0x008 ... 472
Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C .. 474
Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010 .. 476
Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014 ... 477
Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018 ... 481
Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020 ... 482
Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028 484
Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030 ... 486
Register 11: ADC Digital Comparator Interrupt Status and Clear (ADCDCISC), offset 0x034 487
Register 12: ADC Control (ADCCTL), offset 0x038 ... 489
Register 13: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040 490
Register 14: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044 .. 492
Register 15: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048 495
Register 16: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068 495
Register 17: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088 495
Register 18: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8 495
Register 19: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C 496
Register 20: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C 496
Register 21: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C 496
Register 22: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC 496
Register 23: ADC Sample Sequence 0 Operation (ADCSSOP0), offset 0x050 498
Register 24: ADC Sample Sequence 0 Digital Comparator Select (ADCSSDC0), offset 0x054 500
Register 25: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060 502
Register 26: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080 502
Register 27: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064 .. 503
Register 28: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084 .. 503
Register 29: ADC Sample Sequence 1 Operation (ADCSSOP1), offset 0x070 505
Register 30: ADC Sample Sequence 2 Operation (ADCSSOP2), offset 0x090 505
Register 31: ADC Sample Sequence 1 Digital Comparator Select (ADCSSDC1), offset 0x074 506
Register 32: ADC Sample Sequence 2 Digital Comparator Select (ADCSSDC2), offset 0x094 506
Register 33: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0 508

21February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 34: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4 .. 509
Register 35: ADC Sample Sequence 3 Operation (ADCSSOP3), offset 0x0B0 510
Register 36: ADC Sample Sequence 3 Digital Comparator Select (ADCSSDC3), offset 0x0B4 511
Register 37: ADC Digital Comparator Reset Initial Conditions (ADCDCRIC), offset 0xD00 512
Register 38: ADC Digital Comparator Control 0 (ADCDCCTL0), offset 0xE00 516
Register 39: ADC Digital Comparator Control 1 (ADCDCCTL1), offset 0xE04 516
Register 40: ADC Digital Comparator Control 2 (ADCDCCTL2), offset 0xE08 516
Register 41: ADC Digital Comparator Control 3 (ADCDCCTL3), offset 0xE0C 516
Register 42: ADC Digital Comparator Control 4 (ADCDCCTL4), offset 0xE10 516
Register 43: ADC Digital Comparator Control 5 (ADCDCCTL5), offset 0xE14 516
Register 44: ADC Digital Comparator Control 6 (ADCDCCTL6), offset 0xE18 516
Register 45: ADC Digital Comparator Control 7 (ADCDCCTL7), offset 0xE1C 516
Register 46: ADC Digital Comparator Range 0 (ADCDCCMP0), offset 0xE40 519
Register 47: ADC Digital Comparator Range 1 (ADCDCCMP1), offset 0xE44 519
Register 48: ADC Digital Comparator Range 2 (ADCDCCMP2), offset 0xE48 519
Register 49: ADC Digital Comparator Range 3 (ADCDCCMP3), offset 0xE4C 519
Register 50: ADC Digital Comparator Range 4 (ADCDCCMP4), offset 0xE50 519
Register 51: ADC Digital Comparator Range 5 (ADCDCCMP5), offset 0xE54 519
Register 52: ADC Digital Comparator Range 6 (ADCDCCMP6), offset 0xE58 519
Register 53: ADC Digital Comparator Range 7 (ADCDCCMP7), offset 0xE5C 519

Universal Asynchronous Receivers/Transmitters (UARTs) ... 520
Register 1: UART Data (UARTDR), offset 0x000 ... 530
Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004 532
Register 3: UART Flag (UARTFR), offset 0x018 .. 534
Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020 ... 536
Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024 .. 537
Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028 538
Register 7: UART Line Control (UARTLCRH), offset 0x02C ... 539
Register 8: UART Control (UARTCTL), offset 0x030 ... 541
Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034 ... 544
Register 10: UART Interrupt Mask (UARTIM), offset 0x038 ... 546
Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C .. 548
Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040 ... 550
Register 13: UART Interrupt Clear (UARTICR), offset 0x044 ... 552
Register 14: UART DMA Control (UARTDMACTL), offset 0x048 .. 554
Register 15: UART LIN Control (UARTLCTL), offset 0x090 ... 555
Register 16: UART LIN Snap Shot (UARTLSS), offset 0x094 ... 556
Register 17: UART LIN Timer (UARTLTIM), offset 0x098 ... 557
Register 18: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0 558
Register 19: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4 559
Register 20: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8 560
Register 21: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC 561
Register 22: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0 562
Register 23: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4 563
Register 24: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8 564
Register 25: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC 565
Register 26: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0 .. 566
Register 27: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4 .. 567

February 24, 200922
Preliminary

Table of Contents

Register 28: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8 .. 568
Register 29: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC .. 569

Synchronous Serial Interface (SSI) .. 570
Register 1: SSI Control 0 (SSICR0), offset 0x000 .. 584
Register 2: SSI Control 1 (SSICR1), offset 0x004 .. 586
Register 3: SSI Data (SSIDR), offset 0x008 .. 588
Register 4: SSI Status (SSISR), offset 0x00C ... 589
Register 5: SSI Clock Prescale (SSICPSR), offset 0x010 .. 591
Register 6: SSI Interrupt Mask (SSIIM), offset 0x014 ... 592
Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018 .. 594
Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C .. 595
Register 9: SSI Interrupt Clear (SSIICR), offset 0x020 ... 596
Register 10: SSI DMA Control (SSIDMACTL), offset 0x024 ... 597
Register 11: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0 ... 598
Register 12: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 ... 599
Register 13: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8 ... 600
Register 14: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC .. 601
Register 15: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0 ... 602
Register 16: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 ... 603
Register 17: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8 ... 604
Register 18: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC .. 605
Register 19: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0 ... 606
Register 20: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 ... 607
Register 21: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 ... 608
Register 22: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC ... 609

Inter-Integrated Circuit (I2C) Interface .. 610
Register 1: I2C Master Slave Address (I2CMSA), offset 0x000 ... 625
Register 2: I2C Master Control/Status (I2CMCS), offset 0x004 ... 626
Register 3: I2C Master Data (I2CMDR), offset 0x008 ... 630
Register 4: I2C Master Timer Period (I2CMTPR), offset 0x00C ... 631
Register 5: I2C Master Interrupt Mask (I2CMIMR), offset 0x010 ... 632
Register 6: I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014 ... 633
Register 7: I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018 ... 634
Register 8: I2C Master Interrupt Clear (I2CMICR), offset 0x01C ... 635
Register 9: I2C Master Configuration (I2CMCR), offset 0x020 .. 636
Register 10: I2C Slave Own Address (I2CSOAR), offset 0x000 .. 637
Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x004 ... 638
Register 12: I2C Slave Data (I2CSDR), offset 0x008 ... 640
Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C ... 641
Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010 ... 642
Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014 .. 643
Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x018 .. 644

Inter-Integrated Circuit Sound (I2S) Interface .. 645
Register 1: I2S Transmit FIFO Data (I2STXFIFO), offset 0x000 .. 657
Register 2: I2S Transmit FIFO Configuration (I2STXFIFOCFG), offset 0x004 658
Register 3: I2S Transmit Module Configuration (I2STXCFG), offset 0x008 .. 659
Register 4: I2S Transmit FIFO Limit (I2STXLIMIT), offset 0x00C .. 661

23February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: I2S Transmit Interrupt Status and Mask (I2STXISM), offset 0x010 662
Register 6: I2S Transmit FIFO Level (I2STXLEV), offset 0x018 .. 663
Register 7: I2S Receive FIFO Data (I2SRXFIFO), offset 0x800 .. 664
Register 8: I2S Receive FIFO Configuration (I2SRXFIFOCFG), offset 0x804 665
Register 9: I2S Receive Module Configuration (I2SRXCFG), offset 0x808 ... 666
Register 10: I2S Receive FIFO Limit (I2SRXLIMIT), offset 0x80C ... 668
Register 11: I2S Receive Interrupt Status and Mask (I2SRXISM), offset 0x810 669
Register 12: I2S Receive FIFO Level (I2SRXLEV), offset 0x818 ... 670
Register 13: I2S Module Configuration (I2SCFG), offset 0xC00 .. 671
Register 14: I2S Interrupt Mask (I2SIM), offset 0xC10 ... 672
Register 15: I2S Raw Interrupt Status (I2SRIS), offset 0xC14 ... 673
Register 16: I2S Masked Interrupt Status (I2SMIS), offset 0xC18 ... 675
Register 17: I2S Interrupt Clear (I2SIC), offset 0xC1C ... 676

Controller Area Network (CAN) Module ... 677
Register 1: CAN Control (CANCTL), offset 0x000 ... 696
Register 2: CAN Status (CANSTS), offset 0x004 ... 698
Register 3: CAN Error Counter (CANERR), offset 0x008 ... 701
Register 4: CAN Bit Timing (CANBIT), offset 0x00C .. 702
Register 5: CAN Interrupt (CANINT), offset 0x010 ... 704
Register 6: CAN Test (CANTST), offset 0x014 .. 705
Register 7: CAN Baud Rate Prescaler Extension (CANBRPE), offset 0x018 707
Register 8: CAN IF1 Command Request (CANIF1CRQ), offset 0x020 .. 708
Register 9: CAN IF2 Command Request (CANIF2CRQ), offset 0x080 .. 708
Register 10: CAN IF1 Command Mask (CANIF1CMSK), offset 0x024 .. 709
Register 11: CAN IF2 Command Mask (CANIF2CMSK), offset 0x084 .. 709
Register 12: CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028 .. 711
Register 13: CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088 .. 711
Register 14: CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C .. 712
Register 15: CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C .. 712
Register 16: CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030 ... 713
Register 17: CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090 ... 713
Register 18: CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034 ... 714
Register 19: CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094 ... 714
Register 20: CAN IF1 Message Control (CANIF1MCTL), offset 0x038 .. 716
Register 21: CAN IF2 Message Control (CANIF2MCTL), offset 0x098 .. 716
Register 22: CAN IF1 Data A1 (CANIF1DA1), offset 0x03C ... 718
Register 23: CAN IF1 Data A2 (CANIF1DA2), offset 0x040 ... 718
Register 24: CAN IF1 Data B1 (CANIF1DB1), offset 0x044 ... 718
Register 25: CAN IF1 Data B2 (CANIF1DB2), offset 0x048 ... 718
Register 26: CAN IF2 Data A1 (CANIF2DA1), offset 0x09C ... 718
Register 27: CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0 ... 718
Register 28: CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4 ... 718
Register 29: CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8 ... 718
Register 30: CAN Transmission Request 1 (CANTXRQ1), offset 0x100 .. 719
Register 31: CAN Transmission Request 2 (CANTXRQ2), offset 0x104 .. 719
Register 32: CAN New Data 1 (CANNWDA1), offset 0x120 ... 720
Register 33: CAN New Data 2 (CANNWDA2), offset 0x124 ... 720

February 24, 200924
Preliminary

Table of Contents

Register 34: CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140 721
Register 35: CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144 721
Register 36: CAN Message 1 Valid (CANMSG1VAL), offset 0x160 ... 722
Register 37: CAN Message 2 Valid (CANMSG2VAL), offset 0x164 ... 722

Ethernet Controller .. 723
Register 1: Ethernet MAC Raw Interrupt Status/Acknowledge (MACRIS/MACIACK), offset 0x000 734
Register 2: Ethernet MAC Interrupt Mask (MACIM), offset 0x004 ... 737
Register 3: Ethernet MAC Receive Control (MACRCTL), offset 0x008 .. 738
Register 4: Ethernet MAC Transmit Control (MACTCTL), offset 0x00C ... 739
Register 5: Ethernet MAC Data (MACDATA), offset 0x010 ... 740
Register 6: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014 ... 742
Register 7: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018 ... 743
Register 8: Ethernet MAC Threshold (MACTHR), offset 0x01C .. 744
Register 9: Ethernet MAC Management Control (MACMCTL), offset 0x020 .. 746
Register 10: Ethernet MAC Management Divider (MACMDV), offset 0x024 .. 747
Register 11: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C 748
Register 12: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030 749
Register 13: Ethernet MAC Number of Packets (MACNP), offset 0x034 ... 750
Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x038 ... 751
Register 15: Ethernet MAC LED Encoding (MACLED), offset 0x040 .. 752
Register 16: Ethernet PHY MDIX (MDIX), offset 0x044 ... 753
Register 17: Ethernet PHY Management Register 0 – Control (MR0), address 0x00 754
Register 18: Ethernet PHY Management Register 1 – Status (MR1), address 0x01 756
Register 19: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02 758
Register 20: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03 759
Register 21: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address

0x04 ... 760
Register 22: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability

(MR5), address 0x05 ... 762
Register 23: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address

0x06 ... 763
Register 24: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 764
Register 25: Ethernet PHY Management Register 17 – Mode Control/Status (MR17), address 0x11 765
Register 26: Ethernet PHY Management Register 27 –Special Control/Status (MR27), address 0x1B 767
Register 27: Ethernet PHY Management Register 29 – Interrupt Status (MR29), address 0x1D 768
Register 28: Ethernet PHY Management Register 30 – Interrupt Mask (MR30), address 0x1E 769
Register 29: Ethernet PHY Management Register 31 – PHY Special Control/Status (MR31), address

0x1F ... 770

Universal Serial Bus (USB) Controller ... 771
Register 1: USB Device Functional Address (USBFADDR), offset 0x000 .. 790
Register 2: USB Power (USBPOWER), offset 0x001 ... 791
Register 3: USB Transmit Interrupt Status (USBTXIS), offset 0x002 ... 793
Register 4: USB Receive Interrupt Status (USBRXIS), offset 0x004 ... 794
Register 5: USB Transmit Interrupt Enable (USBTXIE), offset 0x006 .. 795
Register 6: USB Receive Interrupt Enable (USBRXIE), offset 0x008 .. 796
Register 7: USB General Interrupt Status (USBIS), offset 0x00A .. 797
Register 8: USB Interrupt Enable (USBIE), offset 0x00B .. 799
Register 9: USB Frame Value (USBFRAME), offset 0x00C .. 801

25February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 10: USB Endpoint Index (USBEPIDX), offset 0x00E .. 802
Register 11: USB Test Mode (USBTEST), offset 0x00F ... 803
Register 12: USB FIFO Endpoint 0 (USBFIFO0), offset 0x020 ... 805
Register 13: USB FIFO Endpoint 1 (USBFIFO1), offset 0x024 ... 805
Register 14: USB FIFO Endpoint 2 (USBFIFO2), offset 0x028 ... 805
Register 15: USB FIFO Endpoint 3 (USBFIFO3), offset 0x02C .. 805
Register 16: USB Device Control (USBDEVCTL), offset 0x060 .. 806
Register 17: USB Transmit Dynamic FIFO Sizing (USBTXFIFOSZ), offset 0x062 809
Register 18: USB Receive Dynamic FIFO Sizing (USBRXFIFOSZ), offset 0x063 809
Register 19: USB Transmit FIFO Start Address (USBTXFIFOADD), offset 0x064 810
Register 20: USB Receive FIFO Start Address (USBRXFIFOADD), offset 0x066 810
Register 21: USB Connect Timing (USBCONTIM), offset 0x07A .. 811
Register 22: USB OTG VBus Pulse Timing (USBVPLEN), offset 0x07B ... 812
Register 23: USB Full-Speed Last Transaction to End of Frame Timing (USBFSEOF), offset 0x07D 813
Register 24: USB Low-Speed Last Transaction to End of Frame Timing (USBLSEOF), offset 0x07E 814
Register 25: USB Transmit Functional Address Endpoint 0 (USBTXFUNCADDR0), offset 0x080 815
Register 26: USB Transmit Functional Address Endpoint 1 (USBTXFUNCADDR1), offset 0x088 815
Register 27: USB Transmit Functional Address Endpoint 2 (USBTXFUNCADDR2), offset 0x090 815
Register 28: USB Transmit Functional Address Endpoint 3 (USBTXFUNCADDR3), offset 0x098 815
Register 29: USB Transmit Hub Address Endpoint 0 (USBTXHUBADDR0), offset 0x082 816
Register 30: USB Transmit Hub Address Endpoint 1 (USBTXHUBADDR1), offset 0x08A 816
Register 31: USB Transmit Hub Address Endpoint 2 (USBTXHUBADDR2), offset 0x092 816
Register 32: USB Transmit Hub Address Endpoint 3 (USBTXHUBADDR3), offset 0x09A 816
Register 33: USB Transmit Hub Port Endpoint 0 (USBTXHUBPORT0), offset 0x083 817
Register 34: USB Transmit Hub Port Endpoint 1 (USBTXHUBPORT1), offset 0x08B 817
Register 35: USB Transmit Hub Port Endpoint 2 (USBTXHUBPORT2), offset 0x093 817
Register 36: USB Transmit Hub Port Endpoint 3 (USBTXHUBPORT3), offset 0x09B 817
Register 37: USB Receive Functional Address Endpoint 1 (USBRXFUNCADDR1), offset 0x08C 818
Register 38: USB Receive Functional Address Endpoint 2 (USBRXFUNCADDR2), offset 0x094 818
Register 39: USB Receive Functional Address Endpoint 3 (USBRXFUNCADDR3), offset 0x09C 818
Register 40: USB Receive Hub Address Endpoint 1 (USBRXHUBADDR1), offset 0x08E 819
Register 41: USB Receive Hub Address Endpoint 2 (USBRXHUBADDR2), offset 0x096 819
Register 42: USB Receive Hub Address Endpoint 3 (USBRXHUBADDR3), offset 0x09E 819
Register 43: USB Receive Hub Port Endpoint 1 (USBRXHUBPORT1), offset 0x08F 820
Register 44: USB Receive Hub Port Endpoint 2 (USBRXHUBPORT2), offset 0x097 820
Register 45: USB Receive Hub Port Endpoint 3 (USBRXHUBPORT3), offset 0x09F 820
Register 46: USB Maximum Transmit Data Endpoint 1 (USBTXMAXP1), offset 0x110 821
Register 47: USB Maximum Transmit Data Endpoint 2 (USBTXMAXP2), offset 0x120 821
Register 48: USB Maximum Transmit Data Endpoint 3 (USBTXMAXP3), offset 0x130 821
Register 49: USB Control and Status Endpoint 0 Low (USBCSRL0), offset 0x102 822
Register 50: USB Control and Status Endpoint 0 High (USBCSRH0), offset 0x103 825
Register 51: USB Receive Byte Count Endpoint 0 (USBCOUNT0), offset 0x108 827
Register 52: USB Type Endpoint 0 (USBTYPE0), offset 0x10A .. 828
Register 53: USB NAK Limit (USBNAKLMT), offset 0x10B .. 829
Register 54: USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1), offset 0x112 830
Register 55: USB Transmit Control and Status Endpoint 2 Low (USBTXCSRL2), offset 0x122 830
Register 56: USB Transmit Control and Status Endpoint 3 Low (USBTXCSRL3), offset 0x132 830
Register 57: USB Transmit Control and Status Endpoint 1 High (USBTXCSRH1), offset 0x113 833

February 24, 200926
Preliminary

Table of Contents

Register 58: USB Transmit Control and Status Endpoint 2 High (USBTXCSRH2), offset 0x123 833
Register 59: USB Transmit Control and Status Endpoint 3 High (USBTXCSRH3), offset 0x133 833
Register 60: USB Maximum Receive Data Endpoint 1 (USBRXMAXP1), offset 0x114 836
Register 61: USB Maximum Receive Data Endpoint 2 (USBRXMAXP2), offset 0x124 836
Register 62: USB Maximum Receive Data Endpoint 3 (USBRXMAXP3), offset 0x134 836
Register 63: USB Receive Control and Status Endpoint 1 Low (USBRXCSRL1), offset 0x116 837
Register 64: USB Receive Control and Status Endpoint 2 Low (USBRXCSRL2), offset 0x126 837
Register 65: USB Receive Control and Status Endpoint 3 Low (USBRXCSRL3), offset 0x136 837
Register 66: USB Receive Control and Status Endpoint 1 High (USBRXCSRH1), offset 0x117 840
Register 67: USB Receive Control and Status Endpoint 2 High (USBRXCSRH2), offset 0x127 840
Register 68: USB Receive Control and Status Endpoint 3 High (USBRXCSRH3), offset 0x137 840
Register 69: USB Receive Byte Count Endpoint 1 (USBRXCOUNT1), offset 0x118 843
Register 70: USB Receive Byte Count Endpoint 2 (USBRXCOUNT2), offset 0x128 843
Register 71: USB Receive Byte Count Endpoint 3 (USBRXCOUNT3), offset 0x138 843
Register 72: USB Host Transmit Configure Type Endpoint 1 (USBTXTYPE1), offset 0x11A 844
Register 73: USB Host Transmit Configure Type Endpoint 2 (USBTXTYPE2), offset 0x12A 844
Register 74: USB Host Transmit Configure Type Endpoint 3 (USBTXTYPE3), offset 0x13A 844
Register 75: USB Host Transmit Interval Endpoint 1 (USBTXINTERVAL1), offset 0x11B 846
Register 76: USB Host Transmit Interval Endpoint 2 (USBTXINTERVAL2), offset 0x12B 846
Register 77: USB Host Transmit Interval Endpoint 3 (USBTXINTERVAL3), offset 0x13B 846
Register 78: USB Host Configure Receive Type Endpoint 1 (USBRXTYPE1), offset 0x11C 847
Register 79: USB Host Configure Receive Type Endpoint 2 (USBRXTYPE2), offset 0x12C 847
Register 80: USB Host Configure Receive Type Endpoint 3 (USBRXTYPE3), offset 0x13C 847
Register 81: USB Host Receive Polling Interval Endpoint 1 (USBRXINTERVAL1), offset 0x11D 849
Register 82: USB Host Receive Polling Interval Endpoint 2 (USBRXINTERVAL2), offset 0x12D 849
Register 83: USB Host Receive Polling Interval Endpoint 3 (USBRXINTERVAL3), offset 0x13D 849
Register 84: USB Request Packet Count in Block Transfer Endpoint 1 (USBRQPKTCOUNT1), offset

0x304 ... 850
Register 85: USB Request Packet Count in Block Transfer Endpoint 2 (USBRQPKTCOUNT2), offset

0x308 ... 850
Register 86: USB Request Packet Count in Block Transfer Endpoint 3 (USBRQPKTCOUNT3), offset

0x30C ... 850
Register 87: USB Receive Double Packet Buffer Disable (USBRXDPKTBUFDIS), offset 0x340 851
Register 88: USB Transmit Double Packet Buffer Disable (USBTXDPKTBUFDIS), offset 0x342 852
Register 89: USB External Power Control (USBEPC), offset 0x400 .. 853
Register 90: USB External Power Control Raw Interrupt Status (USBEPCRIS), offset 0x404 856
Register 91: USB External Power Control Interrupt Mask (USBEPCIM), offset 0x408 857
Register 92: USB External Power Control Interrupt Status and Clear (USBEPCISC), offset 0x40C 858
Register 93: USB Device Resume Raw Interrupt Status (USBDRRIS), offset 0x410 859
Register 94: USB Device Resume Interrupt Mask (USBDRIM), offset 0x414 ... 860
Register 95: USB Device Resume Interrupt Status and Clear (USBDRISC), offset 0x418 861
Register 96: USB VBUS Droop Control (USBVDC), offset 0x430 ... 862
Register 97: USB VBUS Droop Control Raw Interrupt Status (USBVDCRIS), offset 0x434 863
Register 98: USB VBUS Droop Control Interrupt Mask (USBVDCIM), offset 0x438 864
Register 99: USB VBUS Droop Control Interrupt Status and Clear (USBVDCISC), offset 0x43C 865
Register 100: USB ID Valid Detect Raw Interrupt Status (USBIDVRIS), offset 0x444 866
Register 101: USB ID Valid Detect Interrupt Mask (USBIDVIM), offset 0x448 ... 867
Register 102: USB ID Valid Detect Interrupt Status and Clear (USBIDVISC), offset 0x44C 868
Register 103: USB End-Point Select (USBEPS), offset 0x450 ... 869

27February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Analog Comparators ... 871
Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 876
Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 877
Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008 ... 878
Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 879
Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 ... 880
Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x040 ... 880
Register 7: Analog Comparator Status 2 (ACSTAT2), offset 0x060 ... 880
Register 8: Analog Comparator Control 0 (ACCTL0), offset 0x024 ... 881
Register 9: Analog Comparator Control 1 (ACCTL1), offset 0x044 ... 881
Register 10: Analog Comparator Control 2 (ACCTL2), offset 0x064 .. 881

Pulse Width Modulator (PWM) .. 883
Register 1: PWM Master Control (PWMCTL), offset 0x000 .. 894
Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004 ... 895
Register 3: PWM Output Enable (PWMENABLE), offset 0x008 .. 896
Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C ... 898
Register 5: PWM Output Fault (PWMFAULT), offset 0x010 .. 899
Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014 ... 901
Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018 .. 903
Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C .. 905
Register 9: PWM Status (PWMSTATUS), offset 0x020 .. 907
Register 10: PWM Fault Condition Value (PWMFAULTVAL), offset 0x024 .. 908
Register 11: PWM0 Control (PWM0CTL), offset 0x040 ... 910
Register 12: PWM1 Control (PWM1CTL), offset 0x080 ... 910
Register 13: PWM2 Control (PWM2CTL), offset 0x0C0 .. 910
Register 14: PWM3 Control (PWM3CTL), offset 0x100 ... 910
Register 15: PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044 915
Register 16: PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084 915
Register 17: PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4 915
Register 18: PWM3 Interrupt and Trigger Enable (PWM3INTEN), offset 0x104 915
Register 19: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 .. 917
Register 20: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088 .. 917
Register 21: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8 ... 917
Register 22: PWM3 Raw Interrupt Status (PWM3RIS), offset 0x108 ... 917
Register 23: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C ... 918
Register 24: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C ... 918
Register 25: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC ... 918
Register 26: PWM3 Interrupt Status and Clear (PWM3ISC), offset 0x10C .. 918
Register 27: PWM0 Load (PWM0LOAD), offset 0x050 ... 919
Register 28: PWM1 Load (PWM1LOAD), offset 0x090 ... 919
Register 29: PWM2 Load (PWM2LOAD), offset 0x0D0 ... 919
Register 30: PWM3 Load (PWM3LOAD), offset 0x110 .. 919
Register 31: PWM0 Counter (PWM0COUNT), offset 0x054 .. 920
Register 32: PWM1 Counter (PWM1COUNT), offset 0x094 .. 920
Register 33: PWM2 Counter (PWM2COUNT), offset 0x0D4 ... 920
Register 34: PWM3 Counter (PWM3COUNT), offset 0x114 ... 920
Register 35: PWM0 Compare A (PWM0CMPA), offset 0x058 ... 921
Register 36: PWM1 Compare A (PWM1CMPA), offset 0x098 ... 921

February 24, 200928
Preliminary

Table of Contents

Register 37: PWM2 Compare A (PWM2CMPA), offset 0x0D8 ... 921
Register 38: PWM3 Compare A (PWM3CMPA), offset 0x118 ... 921
Register 39: PWM0 Compare B (PWM0CMPB), offset 0x05C ... 922
Register 40: PWM1 Compare B (PWM1CMPB), offset 0x09C ... 922
Register 41: PWM2 Compare B (PWM2CMPB), offset 0x0DC .. 922
Register 42: PWM3 Compare B (PWM3CMPB), offset 0x11C .. 922
Register 43: PWM0 Generator A Control (PWM0GENA), offset 0x060 .. 923
Register 44: PWM1 Generator A Control (PWM1GENA), offset 0x0A0 .. 923
Register 45: PWM2 Generator A Control (PWM2GENA), offset 0x0E0 .. 923
Register 46: PWM3 Generator A Control (PWM3GENA), offset 0x120 ... 923
Register 47: PWM0 Generator B Control (PWM0GENB), offset 0x064 .. 926
Register 48: PWM1 Generator B Control (PWM1GENB), offset 0x0A4 .. 926
Register 49: PWM2 Generator B Control (PWM2GENB), offset 0x0E4 .. 926
Register 50: PWM3 Generator B Control (PWM3GENB), offset 0x124 ... 926
Register 51: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 .. 929
Register 52: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8 ... 929
Register 53: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8 .. 929
Register 54: PWM3 Dead-Band Control (PWM3DBCTL), offset 0x128 ... 929
Register 55: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C 930
Register 56: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC 930
Register 57: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC 930
Register 58: PWM3 Dead-Band Rising-Edge Delay (PWM3DBRISE), offset 0x12C 930
Register 59: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070 931
Register 60: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0 931
Register 61: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0 931
Register 62: PWM3 Dead-Band Falling-Edge-Delay (PWM3DBFALL), offset 0x130 931
Register 63: PWM0 Fault Source 0 (PWM0FLTSRC0), offset 0x074 .. 932
Register 64: PWM1 Fault Source 0 (PWM1FLTSRC0), offset 0x0B4 .. 932
Register 65: PWM2 Fault Source 0 (PWM2FLTSRC0), offset 0x0F4 .. 932
Register 66: PWM3 Fault Source 0 (PWM3FLTSRC0), offset 0x134 .. 932
Register 67: PWM0 Fault Source 1 (PWM0FLTSRC1), offset 0x078 .. 934
Register 68: PWM1 Fault Source 1 (PWM1FLTSRC1), offset 0x0B8 .. 934
Register 69: PWM2 Fault Source 1 (PWM2FLTSRC1), offset 0x0F8 .. 934
Register 70: PWM3 Fault Source 1 (PWM3FLTSRC1), offset 0x138 ... 934
Register 71: PWM0 Minimum Fault Period (PWM0MINFLTPER), offset 0x07C 936
Register 72: PWM1 Minimum Fault Period (PWM1MINFLTPER), offset 0x0BC 936
Register 73: PWM2 Minimum Fault Period (PWM2MINFLTPER), offset 0x0FC 936
Register 74: PWM3 Minimum Fault Period (PWM3MINFLTPER), offset 0x13C 936
Register 75: PWM0 Fault Pin Logic Sense (PWM0FLTSEN), offset 0x800 .. 937
Register 76: PWM1 Fault Pin Logic Sense (PWM1FLTSEN), offset 0x880 .. 937
Register 77: PWM2 Fault Pin Logic Sense (PWM2FLTSEN), offset 0x900 .. 937
Register 78: PWM3 Fault Pin Logic Sense (PWM3FLTSEN), offset 0x980 .. 937
Register 79: PWM0 Fault Status 0 (PWM0FLTSTAT0), offset 0x804 .. 938
Register 80: PWM1 Fault Status 0 (PWM1FLTSTAT0), offset 0x884 .. 938
Register 81: PWM2 Fault Status 0 (PWM2FLTSTAT0), offset 0x904 .. 938
Register 82: PWM3 Fault Status 0 (PWM3FLTSTAT0), offset 0x984 .. 938
Register 83: PWM0 Fault Status 1 (PWM0FLTSTAT1), offset 0x808 .. 940
Register 84: PWM1 Fault Status 1 (PWM1FLTSTAT1), offset 0x888 .. 940

29February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 85: PWM2 Fault Status 1 (PWM2FLTSTAT1), offset 0x908 .. 940
Register 86: PWM3 Fault Status 1 (PWM3FLTSTAT1), offset 0x988 .. 940

Quadrature Encoder Interface (QEI) .. 942
Register 1: QEI Control (QEICTL), offset 0x000 .. 947
Register 2: QEI Status (QEISTAT), offset 0x004 .. 949
Register 3: QEI Position (QEIPOS), offset 0x008 .. 950
Register 4: QEI Maximum Position (QEIMAXPOS), offset 0x00C ... 951
Register 5: QEI Timer Load (QEILOAD), offset 0x010 ... 952
Register 6: QEI Timer (QEITIME), offset 0x014 ... 953
Register 7: QEI Velocity Counter (QEICOUNT), offset 0x018 ... 954
Register 8: QEI Velocity (QEISPEED), offset 0x01C .. 955
Register 9: QEI Interrupt Enable (QEIINTEN), offset 0x020 ... 956
Register 10: QEI Raw Interrupt Status (QEIRIS), offset 0x024 ... 957
Register 11: QEI Interrupt Status and Clear (QEIISC), offset 0x028 ... 958

February 24, 200930
Preliminary

Table of Contents

About This Document
This data sheet provides reference information for the LM3S9B92 microcontroller, describing the
functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex™-M3
core.

Audience
This manual is intended for system software developers, hardware designers, and application
developers.

About This Manual
This document is organized into sections that correspond to each major feature.

Related Documents
The following documents are referenced by the data sheet, and available on the documentation CD
or from the Luminary Micro web site at www.luminarymicro.com:

■ ARM® Cortex™-M3 Technical Reference Manual

■ ARM® CoreSight Technical Reference Manual

■ ARM® v7-M Architecture Application Level Reference Manual

■ Stellaris® Peripheral Driver Library User's Guide

■ Stellaris® ROM User’s Guide

The following related documents are also referenced:

■ IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web
site for additional documentation, including application notes and white papers.

Documentation Conventions
This document uses the conventions shown in Table 1 on page 31.

Table 1. Documentation Conventions

MeaningNotation

General Register Notation

APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and
Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more
than one register. For example, SRCRn represents any (or all) of the three Software Reset Control
registers: SRCR0, SRCR1 , and SRCR2.

REGISTER

A single bit in a register.bit

Two or more consecutive and related bits.bit field

A hexadecimal increment to a register's address, relative to that module's base address as specified
in “Memory Map” on page 72.

offset 0xnnn

31February 24, 2009
Preliminary

LM3S9B92 Microcontroller

MeaningNotation

Registers are numbered consecutively throughout the document to aid in referencing them. The
register number has no meaning to software.

Register N

Register bits marked reserved are reserved for future use. In most cases, reserved bits are set to
0; however, user software should not rely on the value of a reserved bit. To provide software
compatibility with future products, the value of a reserved bit should be preserved across a
read-modify-write operation.

reserved

The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in
that register.

yy:xx

This value in the register bit diagram indicates whether software running on the controller can
change the value of the bit field.

Register Bit/Field
Types

Software can read this field. The bit or field is cleared by hardware after reading the bit/field.RC

Software can read this field. Always write the chip reset value.RO

Software can read or write this field.R/W

Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the
register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.

This register type is primarily used for clearing interrupt status bits where the read operation
provides the interrupt status and the write of the read value clears only the interrupts being reported
at the time the register was read.

R/W1C

Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit
value in the register.

R/W1S

Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register.
A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A
read of the register returns no meaningful data.

This register is typically used to clear the corresponding bit in an interrupt register.

W1C

Only a write by software is valid; a read of the register returns no meaningful data.WO

This value in the register bit diagram shows the bit/field value after any reset, unless noted.Register Bit/Field
Reset Value

Bit cleared to 0 on chip reset.0

Bit set to 1 on chip reset.1

Nondeterministic.-

Pin/Signal Notation

Pin alternate function; a pin defaults to the signal without the brackets.[]

Refers to the physical connection on the package.pin

Refers to the electrical signal encoding of a pin.signal

Change the value of the signal from the logically False state to the logically True state. For active
High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value
is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL
below).

assert a signal

Change the value of the signal from the logically True state to the logically False state.deassert a signal

Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that
it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.

SIGNAL

Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To
assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.

SIGNAL

Numbers

An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For
example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and
so on.

X

February 24, 200932
Preliminary

About This Document

MeaningNotation

Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.

All other numbers within register tables are assumed to be binary. Within conceptual information,
binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written
without a prefix or suffix.

0x

33February 24, 2009
Preliminary

LM3S9B92 Microcontroller

1 Architectural Overview
Luminary Micro is the industry leader in bringing 32-bit capabilities and the full benefits of ARM®
Cortex-M3™-based microcontrollers to the broadest reach of the microcontroller market. For current
users of 8- and 16-bit MCUs, Stellaris® with Cortex-M3 offers a direct path to the strongest ecosystem
of development tools, software and knowledge in the industry. Designers who migrate to Stellaris®

benefit from great tools, small code footprint and outstanding performance. Even more important,
designers can enter the ARM ecosystem with full confidence in a compatible roadmap from $1 to
1 GHz. For users of current 32-bit MCUs, the Stellaris® family offers the industry’s first implementation
of Cortex-M3 and the Thumb-2 instruction set. With blazingly-fast responsiveness, Thumb-2
technology combines both 16-bit and 32-bit instructions to deliver the best balance of code density
and performance. Thumb-2 uses 26 percent less memory than pure 32-bit code to reduce system
cost while delivering 25 percent better performance. The Luminary Micro Stellaris® family of
microcontrollers—the first ARM® Cortex™-M3 based controllers—brings high-performance 32-bit
computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver
customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package
with a small footprint.

The LM3S9B92 microcontroller has the following features:

■ ARM® Cortex™-M3 Processor Core

– 80-MHz operation; 100 DMIPS performance

– ARM Cortex SysTick Timer

– Nested Vectored Interrupt Controller (NVIC)

■ On-Chip Memory

– 256 KB single-cycle Flash

– 96 KB single-cycle SRAM

– Internal ROM loaded with StellarisWare software:

• Stellaris® Peripheral Driver Library

• Stellaris® Boot Loader

• Advanced Encryption Standard (AES) cryptography tables

• Cyclic Redundancy Check (CRC) error detection functionality

■ External Peripheral Interface (EPI)

– 8/16/32-bit dedicated parallel bus for external peripherals

– Supports SDRAM, SRAM/Flash, FPGAs, CPLDs

■ Advanced Serial Integration

– 10/100 Ethernet MAC and PHY

– Two CAN 2.0 A/B controllers

February 24, 200934
Preliminary

Architectural Overview

– USB 2.0 OTG/Host/Device

– Three UARTs with IrDA and ISO 7816 support (one UART with full modem controls)

– Two I2C modules

– Two Synchronous Serial Interface modules (SSI)

– Integrated Interchip Sound (I2S) module

■ System Integration

– Direct Memory Access Controller (DMA)

– System control and clocks including on-chip precision 16-MHz oscillator

– Four 32-bit timers (up to eight 16-bit)

– Eight Capture Compare PWM pins (CCP)

– Real-Time Clock

– Two Watchdog Timers

• One timer runs off the main oscillator

• One timer runs off the precision internal oscillator

– 0-65 GPIOs, depending on configuration

• Highly flexible pin muxing allows use as GPIO or one of several peripheral functions

• Independently configurable to 2, 4 or 8 mA drive capability

• Up to 4 GPIOs can have 18 mA drive capability

■ Advanced Motion Control

– Eight advanced PWM outputs for motion and energy applications

– Four fault inputs to promote low-latency shutdown

– Two Quadrature Encoder Inputs (QEI)

■ Analog

– Two 10-bit Analog-to-Digital Converters (ADC) with sixteen analog input channels and sample
rate of one million samples/second

– Three Analog Comparators

– 16 Digital Comparators

– On-chip voltage regulator

■ JTAG and ARM Serial Wire Debug (SWD)

35February 24, 2009
Preliminary

LM3S9B92 Microcontroller

■ 100-pin LQFP package

■ Industrial (-40°C to 85°C) Temperature Range

The LM3S9B92 microcontroller is targeted for industrial applications, including remote monitoring,
electronic point-of-sale machines, test and measurement equipment, network appliances and
switches, factory automation, HVAC and building control, gaming equipment, motion control, medical
instrumentation, and fire and security.

In addition, the LM3S9B92 microcontroller offers the advantages of ARM's widely available
development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community.
Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce
memory requirements and, thereby, cost. Finally, the LM3S9B92microcontroller is code-compatible
to all members of the extensive Stellaris® family; providing flexibility to fit our customers' precise
needs.

Luminary Micro offers a complete solution to get to market quickly, with evaluation and development
boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong
support, sales, and distributor network. See “Ordering and Contact Information” on page 1085 for
ordering information for Stellaris® family devices.

1.1 Functional Overview
The following sections provide an overview of the features of the LM3S9B92 microcontroller. The
page number in parentheses indicates where that feature is discussed in detail. Ordering and support
information can be found in “Ordering and Contact Information” on page 1085.

1.1.1 ARM Cortex™-M3
The following sections provide an overview of the ARM Cortex™-M3 processor core and instruction
set, the integrated System Timer (SysTick) and the Nested Vectored Interrupt Controller.

1.1.1.1 Processor Core (see page 59)
All members of the Stellaris® product family, including the LM3S9B92 microcontroller, are designed
around an ARM Cortex™-M3 processor core. The ARM Cortex-M3 processor provides the core for
a high-performance, low-cost platform that meets the needs of minimal memory implementation,
reduced pin count, and low power consumption, while delivering outstanding computational
performance and exceptional system response to interrupts.

■ 32-bit ARM®Cortex™-M3 v7M architecture optimized for small-footprint embedded applications

■ Thumb-2 mixed 16-/32-bit instruction set, delivers the high performance expected of from a 32-bit
ARM core in a compact memory size usually associated with 8- and 16-bit devices; typically in
the range of a few kilobytes of memory for microcontroller-class applications

– Single-cycle multiply instruction and hardware divide

– Atomic bit manipulation (bit-banding), delivering maximummemory utilization and streamlined
peripheral control

– Unaligned data access, enabling data to be efficiently packed into memory

■ Harvard architecture characterized by separate buses for instruction and data

February 24, 200936
Preliminary

Architectural Overview

■ Memory protection unit (MPU) to provide a privileged mode for protected operating system
functionality

■ Migration from the ARM7™ processor family for better performance and power efficiency

■ Optimized for single-cycle Flash usage

■ 80-MHz operation

■ 1.25 DMIPS/MHz

“ARM Cortex-M3 Processor Core” on page 59 provides an overview of the ARM core; the core is
detailed in the ARM® Cortex™-M3 Technical Reference Manual.

1.1.1.2 System Timer (SysTick) (see page 69)
ARM Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit,
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter
can be used in several different ways, for example:

■ An RTOS tick timer that fires at a programmable rate (for example, 100 Hz) and invokes a SysTick
routine

■ A high-speed alarm timer using the system clock

■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock
used and the dynamic range of the counter

■ A simple counter used to measure time to completion and time used

■ An internal clock-source control based on missing/meeting durations. The COUNTFLAG field in
the SysTick Control and Status register can be used to determine if an action completed within
a set duration, as part of a dynamic clock management control loop

1.1.1.3 Nested Vectored Interrupt Controller (NVIC) (see page 75)
The LM3S9B92 controller includes the ARMNested Vectored Interrupt Controller (NVIC). The NVIC
and Cortex-M3 prioritize and handle all exceptions in Handler Mode. The processor state is
automatically stored to the stack on an exception and automatically restored from the stack at the
end of the Interrupt Service Routine (ISR). The interrupt vector is fetched in parallel to the state
saving, enabling efficient interrupt entry. The processor supports tail-chaining, meaning that
back-to-back interrupts can be performed without the overhead of state saving and restoration.
Software can set eight priority levels on 7 exceptions (system handlers) and 53 interrupts.

■ Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining

■ External non-maskable interrupt signal (NMI) available for immediate execution of NMI handler
for safety critical applications

■ Dynamically reprioritizable interrupts

■ Exceptional interrupt handling via hardware implementation of required register manipulations

“Interrupts” on page 75 provides an overview of the NVIC controller and the interrupt map. Exceptions
and interrupts are detailed in the ARM® Cortex™-M3 Technical Reference Manual.

37February 24, 2009
Preliminary

LM3S9B92 Microcontroller

1.1.2 On-Chip Memory
The following sections describe the on-chip memory modules.

1.1.2.1 SRAM (see page 196)
The LM3S9B92 microcontroller provides 96 KB of single-cycle on-chip SRAM. The internal SRAM
of the Stellaris® devices is located at offset 0x2000.0000 of the device memory map.

Because read-modify-write (RMW) operations are very time consuming, ARM has introduced
bit-banding technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain
regions in the memory map (SRAM and peripheral space) can use address aliases to access
individual bits in a single, atomic operation.

Data can be transferred to and from the SRAM using the Micro Direct Memory Access Controller
(µDMA).

1.1.2.2 Flash (see page 196)
The LM3S9B92 microcontroller provides 256 KB of single-cycle on-chip Flash memory. The Flash
is organized as a set of 2-KB blocks that can be individually erased. Erasing a block causes the
entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks
that can be individually protected. The blocks can be marked as read-only or execute-only, providing
different levels of code protection. Read-only blocks cannot be erased or programmed, protecting
the contents of those blocks from being modified. Execute-only blocks cannot be erased or
programmed, and can only be read by the controller instruction fetch mechanism, protecting the
contents of those blocks from being read by either the controller or by a debugger.

1.1.2.3 ROM (see page 1027)
Preprogrammed in the LM3S9B92microcontroller's on-chip read-only memory (ROM) is the Stellaris®

Peripheral Driver Library, a royalty-free software library for controlling on-chip peripherals with a
boot-loader capability. The library performs both peripheral initialization and control functions, with
a choice of polled or interrupt-driven peripheral support. In addition, the library is designed to take
full advantage of the stellar interrupt performance of the ARM® Cortex™-M3 core. No special
pragmas or custom assembly code prologue/epilogue functions are required. For applications that
require in-field programmability, the royalty-free Stellaris® Boot Loader can act as an application
loader and support in-field firmware updates.

The Advanced Encryption Standard (AES) is a publicly defined encryption standard used by the
U.S. Government. AES is a strong encryption method with reasonable performance and size. In
addition, it is fast in both hardware and software, is fairly easy to implement, and requires little
memory. The Luminary Micro encryption package is available with full source code, and is based
on lesser general public license (LGPL) source. An LGPL means that the code can be used within
an application without any copyleft implications for the application (the code does not automatically
become open source). Modifications to the package source, however, must be open source.

CRC (Cyclic Redundancy Check) is a technique to validate a span of data has the same contents
as when previously checked. This technique can be used to validate correct receipt of messages
(nothing lost or modified in transit), to validate data after decompression, to validate that Flash
contents have not been changed, and for other cases where the data needs to be validated. A CRC
is preferred over a simple checksum (e.g. XOR all bits) because it catches changes more readily.

The LM3S9B92 ROM is preprogrammed with the following software and programs:

■ Stellaris® Peripheral Driver Library

February 24, 200938
Preliminary

Architectural Overview

■ Stellaris® Boot Loader

■ Advanced Encryption Standard (AES) cryptography tables

■ Cyclic Redundancy Check (CRC) error-detection functionality

1.1.3 External Peripheral Interface (see page 342)
The External Peripheral Interface (EPI) provides access to external devices using a parallel path.
Unlike communications peripherals such as SSI, UART, and I2C, the EPI is designed to act like a
bus to external peripherals and memory. The EPI has the following features:

■ 16-bit dedicated parallel bus for external peripherals and memory

■ Memory interface supports contiguous memory access independent of data bus width, thus
enabling code execution directly from SDRAM, SRAM and Flash memory

■ Blocking and non-blocking reads

■ Processor from timing details through use of an internal write FIFO

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for read and write

– Read channel request asserted by programmable levels on the internal non-blocking read
FIFO (NBRFIFO)

– Write channel request asserted by empty on the internal write FIFO (WFIFO)

The EPI supports three primary functional modes: Synchronous Dynamic Random Access Memory
(SDRAM) mode, Traditional Host-Bus mode, and General-Purpose mode. The EPI module also
provides custom GPIOs; however, unlike regular GPIOs, the EPI module uses a FIFO in the same
way as a communication mechanism and is speed-controlled using clocking.

■ Synchronous Dynamic Random Access Memory (SDRAM)

– Supports x16 (single data rate) SDRAM at up to 50 MHz

– Supports low-cost SDRAMs up to 64 MB (512 Mb)

– Includes automatic refresh and access to all banks/rows

– Includes a Sleep/Standby mode to keep contents active with minimal power draw

– Multiplexed address/data interface for reduced pin count

■ Host-bus

– Traditional x8 MCU bus interface capabilities

– Similar device compatibility options as PIC, ATmega, 8051, and others

– Access to SRAM, NOR Flash, and other devices, with up to 1 MB of addressing

– Support of both muxed and de-muxed address and data

39February 24, 2009
Preliminary

LM3S9B92 Microcontroller

– Access to a range of devices supporting the non-address FIFO x8 interface variant, with
support for external FIFO (XFIFO) EMPTY and FULL signals

– Speed controlled, with read and write data wait-state counters

– Manual chip-enable (or use extra address pins)

■ General Purpose

– Wide parallel interfaces for fast communications with CPLDs and FPGAs

– Data widths up to 32-bits

– Data rates up to 150 Mbytes/second

– Optional “address” sizes from 4-bits to 16-bits

– Optional clock output, read/write strobes, framing (with counter-based size), and clock-enable
input

■ General parallel GPIO

– 1 to 32 bits, FIFOed with speed control

– Useful for custom peripherals or for digital data acquisition and actuator controls

1.1.4 Serial Communications Peripherals
The LM3S9B92 controller supports both asynchronous and synchronous serial communications
with:

■ Ethernet MAC and PHY

■ Two CAN 2.0 A/B Controllers

■ USB 2.0 (full speed and low speed) OTG/Host/Device

■ Three UARTs with IrDA and ISO 7816 support (one UART with full modem controls)

■ Two I2C modules

■ Two Synchronous Serial Interface Modules (SSI)

■ Integrated Interchip Sound (I2S) Module

The following sections provide more detail on each of these communications functions.

1.1.4.1 Ethernet Controller (see page 723)
Ethernet is a frame-based computer networking technology for local area networks (LANs). Ethernet
has been standardized as IEEE 802.3. This specification defines a number of wiring and signaling
standards for the physical layer, two means of network access at the Media Access Control
(MAC)/Data Link Layer, and a common addressing format.

The Stellaris® Ethernet Controller consists of a fully integrated media access controller (MAC) and
network physical (PHY) interface and has the following features:

February 24, 200940
Preliminary

Architectural Overview

■ Conforms to the IEEE 802.3-2002 specification

– 10BASE-T/100BASE-TX IEEE-802.3 compliant. Requires only a dual 1:1 isolation transformer
interface to the line

– 10BASE-T/100BASE-TX ENDEC, 100BASE-TX scrambler/descrambler

– Full-featured auto-negotiation

■ Multiple operational modes

– Full- and half-duplex 100 Mbps

– Full- and half-duplex 10 Mbps

– Power-saving and power-down modes

■ Highly configurable

– Programmable MAC address

– LED activity selection

– Promiscuous mode support

– CRC error-rejection control

– User-configurable interrupts

■ Physical media manipulation

– MDI/MDI-X cross-over support through software assist

– Register-programmable transmit amplitude

– Automatic polarity correction and 10BASE-T signal reception

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive

– Receive channel request asserted on packet receipt

– Transmit channel request asserted on empty transmit FIFO

1.1.4.2 Controller Area Network (see page 677)
Controller Area Network (CAN) is a multicast shared serial-bus standard for connecting electronic
control units (ECUs). CAN was specifically designed to be robust in electromagnetically noisy
environments and can utilize a differential balanced line like RS-485 or twisted-pair wire. Originally
created for automotive purposes, it is now used in many embedded control applications (for example,
industrial or medical). Bit rates up to 1Mbps are possible at network lengths below 40 meters.
Decreased bit rates allow longer network distances (for example, 125 Kbps at 500m).

A transmitter sends a message to all CAN nodes (broadcasting). Each node decides on the basis
of the identifier received whether it should process the message. The identifier also determines the
priority that the message enjoys in competition for bus access. Each CAN message can transmit

41February 24, 2009
Preliminary

LM3S9B92 Microcontroller

from 0 to 8 bytes of user information. The LM3S9B92 microcontroller includes two CAN units with
the following features:

■ CAN protocol version 2.0 part A/B

■ Bit rates up to 1 Mbps

■ 32 message objects with individual identifier masks

■ Maskable interrupt

■ Disable Automatic Retransmission mode for Time-Triggered CAN (TTCAN) applications

■ Programmable Loopback mode for self-test operation

■ Programmable FIFO mode enables storage of multiple message objects

■ Gluelessly attaches to an external CAN transceiver through the CANnTX and CANnRX signals

1.1.4.3 USB (see page 771)
Universal Serial Bus (USB) is a serial bus standard designed to allow peripherals to be connected
and disconnected using a standardized interface without rebooting the system.

The LM3S9B92 controller supports three configurations in USB 2.0 full and low speed: USB Device,
USB Host, and USB On-The-Go (negotiated on-the-go as host or device when connected to other
USB-enabled systems). The USB module has the following features:

■ Complies with USB-IF certification standards

■ USB 2.0 full-speed (12 Mbps) and low-speed (1.5 Mbps) operation

■ Integrated PHY

■ 4 transfer types: Control, Interrupt, Bulk, and Isochronous

■ 16 endpoints

– 1 dedicated control IN endpoint and 1 dedicated control OUT endpoint

– 7 configurable IN endpoints and 7 configurable OUT endpoints

■ 4 KB dedicated endpoint memory - one endpoint may be defined for double-buffered 1023-byte
isochronous packet size

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive for up to 3 IN endpoints and 3 OUT endpoints

– Burst requests

– Channel requests asserted when FIFO contains required amount of data

February 24, 200942
Preliminary

Architectural Overview

1.1.4.4 UART (see page 520)
A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C
serial communications, containing a transmitter (parallel-to-serial converter) and a receiver
(serial-to-parallel converter), each clocked separately.

The LM3S9B92 controller includes three fully programmable 16C550-type UARTs. Although the
functionality is similar to a 16C550 UART, this UART design is not register compatible. The UART
can generate individually masked interrupts from the Rx, Tx, modem status, and error conditions.
The module generates a single combined interrupt when any of the interrupts are asserted and are
unmasked. The UARTs have the following features:

■ Programmable baud-rate generator allowing speeds up to 5 Mbps for regular speed (divide by
16) and 10 Mbps for high speed (divide by 8)

■ Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading

■ LIN protocol support

■ Programmable FIFO length, including 1-byte deep operation providing conventional
double-buffered interface

■ FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8

■ Standard asynchronous communication bits for start, stop, and parity

■ False-start bit detection

■ Line-break generation and detection

■ Fully programmable serial interface characteristics

– 5, 6, 7, or 8 data bits

– Even, odd, stick, or no-parity bit generation/detection

– 1 or 2 stop bit generation

■ IrDA serial-IR (SIR) encoder/decoder providing

– Programmable use of IrDA Serial Infrared (SIR) or UART input/output

– Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex

– Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations

– Programmable internal clock generator enabling division of reference clock by 1 to 256 for
low-power mode bit duration

■ Support for communication with ISO 7816 smart cards

■ Full modem handshake support (on UART1)

■ Standard FIFO-level and End-of-Transmission interrupts

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

43February 24, 2009
Preliminary

LM3S9B92 Microcontroller

– Separate channels for transmit and receive

– Receive single request asserted when data is in the FIFO; burst request asserted at
programmed FIFO level

– Transmit single request asserted when there is space in the FIFO; burst request asserted at
programmed FIFO level

1.1.4.5 I2C (see page 610)
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design
(a serial data line SDA and a serial clock line SCL). The I2C bus interfaces to external I2C devices
such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on.
The I2C bus may also be used for system testing and diagnostic purposes in product development
and manufacture.

Each device on the I2C bus can be designated as either a master or a slave. Each I2C module
supports both sending and receiving data as either a master or a slave and can operate
simultaneously as both a master and a slave. Both the I2Cmaster and slave can generate interrupts.

The LM3S9B92 controller includes two I2C modules with the following features:

■ Devices on the I2C bus can be designated as either a master or a slave

– Supports both sending and receiving data as either a master or a slave

– Supports simultaneous master and slave operation

■ Four I2C modes

– Master transmit

– Master receive

– Slave transmit

– Slave receive

■ Two transmission speeds: Standard (100 Kbps) and Fast (400 Kbps)

■ Master and slave interrupt generation

– Master generates interrupts when a transmit or receive operation completes (or aborts due
to an error)

– Slave generates interrupts when data has been sent or requested by a master or when a
START or STOP condition is detected

■ Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing
mode

1.1.4.6 SSI (see page 570)
Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface that converts
data between parallel and serial. Each SSI module performs serial-to-parallel conversion on data
received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral

February 24, 200944
Preliminary

Architectural Overview

device. Each SSI module can be configured as either a master or slave device. As a slave device,
the SSI module can also be configured to disable its output, which allows a master device to be
coupled with multiple slave devices. The TX and RX paths are buffered with separate internal FIFOs.

Each SSI module also includes a programmable bit rate clock divider and prescaler to generate the
output serial clock derived from the SSI module's input clock. Bit rates are generated based on the
input clock and the maximum bit rate is determined by the connected peripheral.

Each SSI module provide the following features:

■ Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments
synchronous serial interfaces

■ Master or slave operation

■ Programmable clock bit rate and prescaler

■ Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep

■ Programmable data frame size from 4 to 16 bits

■ Internal loopback test mode for diagnostic/debug testing

■ Standard FIFO-based interrupts and End-of-Transmission interrupt

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive

– Receive single request asserted when data is in the FIFO; burst request asserted when FIFO
contains 4 entries

– Transmit single request asserted when there is space in the FIFO; burst request asserted
when FIFO contains 4 entries

1.1.4.7 Inter-Integrated Circuit Sound (I2S) Interface (see page 645)
The I2S interface is a configurable serial audio core that contains a transmit module and a receive
module. The module is configurable for the I2S as well as Left-Justified and Right-Justified serial
audio formats. Data can be in one of four modes: Stereo, Mono, Compact 16-bit Stereo and Compact
8-Bit Stereo.

The transmit and receive modules each have an 8-entry audio-sample FIFO. An audio sample can
consist of a Left and Right Stereo sample, a Mono sample, or a Left and Right Compact Stereo
sample. In Compact 16-Bit Stereo, each FIFO entry contains both the 16-bit left and 16-bit right
samples, allowing efficient data transfers and requiring less memory space. In Compact 8-bit Stereo,
each FIFO entry contains an 8-bit left and an 8-bit right sample, reducing memory requirements
further.

Both the transmitter and receiver are capable of being a master or a slave.

The Stellaris® I2S interface has the following features:

■ Configurable audio format supporting I2S, Left-justification, and Right-justification

■ Configurable sample size from 8 to 32 bits

45February 24, 2009
Preliminary

LM3S9B92 Microcontroller

■ Mono and Stereo support

■ 8-, 16-, and 32-bit FIFO interface for packing memory

■ Independent transmit and receive 8-entry FIFOs

■ Configurable FIFO-level interrupt and µDMA requests

■ Independent transmit and receive MCLK direction control

■ Transmit and receive internal MCLK sources

■ Independent transmit and receive control for serial clock and word select

■ MCLK and SCLK can be independently set to master or slave

■ Configurable transmit zero or last sample when FIFO empty

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive

– Burst requests

– Channel requests asserted when FIFO contains required amount of data

1.1.5 System Integration
The LM3S9B92 controller provides a variety of standard system functions integrated into the device,
including:

■ Micro Direct Memory Access Controller (µDMA)

■ System control and clocks including on-chip precision 16-MHz oscillator

■ ARM Cortex SysTick Timer

■ Four 32-bit timers (up to eight 16-bit)

■ Eight Capture Compare PWM pins (CCP)

■ Real-Time Clock

■ Watchdog Timer

■ 0-65 GPIOs, depending on configuration

– Highly flexible pin muxing allows use as GPIO or one of several peripheral functions

– Independently configurable to 2, 4 or 8 mA drive capability

– Up to 4 GPIOs can have 18 mA drive capability

The following sections provide more detail on each of these functions.

February 24, 200946
Preliminary

Architectural Overview

1.1.5.1 Direct Memory Access (see page 226)
The LM3S9B92 microcontroller includes a Direct Memory Access (DMA) controller, known as
micro-DMA (μDMA). The μDMA controller provides a way to offload data transfer tasks from the
Cortex-M3 processor, allowing for more efficient use of the processor and the expanded available
bus bandwidth. The μDMA controller can perform transfers between memory and peripherals. It
has dedicated channels for each supported on-chip module and can be programmed to automatically
perform transfers between peripherals and memory as the peripheral is ready to transfer more data.
The μDMA controller provides the following features:.

■ ARM PrimeCell® 32-channel configurable µDMA controller

■ Support for multiple transfer modes

– Memory-to-memory, memory-to-peripheral, peripheral-to-memory

– Basic for simple transfer scenarios

– Ping-pong for continuous data flow

– Scatter-gather for a programmable list of arbitrary transfers initiated from a single request

■ Highly flexible and configurable channel operation

– Independently configured and operated channels

– Dedicated channels for supported on-chip modules - USB, UART, Ethernet, GP Timer, ADC,
EPI, SSI, I2S

– Alternate channel assignments

– One channel each for receive and transmit path for bidirectional modules

– Dedicated channel for software-initiated transfers

– Per-channel configurable bus arbitration scheme

– Optional software-initiated requests for any channel

■ Two levels of priority

■ Design optimizations for improved bus access performance between µDMA controller and the
processor core

– µDMA controller access is subordinate to core access

– RAM striping

– Peripheral bus segmentation

■ Data sizes of 8, 16, and 32 bits

■ Transfer size is programmable in binary steps from 1 to 1024

■ Source and destination address increment size of byte, half-word, word, or no increment

■ Maskable device requests

47February 24, 2009
Preliminary

LM3S9B92 Microcontroller

■ Interrupt on transfer completion, with a separate interrupt per channel

1.1.5.2 System Control and Clocks (see page 90)
System control determines the overall operation of the device. It provides information about the
device, controls power-saving features, controls the clocking of the device and individual peripherals,
and handles reset detection and reporting.

■ Device identification information - version, part number, SRAM size, Flash size, and so on

■ Power control

– On-chip fixed Low Drop-Out (LDO) voltage regulator

– Low-power options for microcontroller: Sleep and Deep-sleep modes with clock gating

– Low-power options for on-chip modules: software controls shutdown of individual peripherals
and memory

– 3.3-V supply brown-out detection and reporting via interrupt or reset

■ Multiple clock sources for microcontroller system clock

– Precision Oscillator (PIOSC) - on-chip resource providing a 16 MHz ±1% frequency at room
temperature

• 16 MHz ±3% across temperature

• Software power down control for low power modes

– Main Oscillator (MOSC) - a frequency-accurate clock source by one of two means: an external
single-ended clock source is connected to the OSC0 input pin, or an external crystal is
connected across the OSC0 input and OSC1 output pins.

• External oscillator used with or without on-chip PLL - select supported frequencies from
1 MHz to 16.384 MHz.

• External crystal - from DC to maximum device speed

– Internal 30-kHz Oscillator - on chip resource providing a 30 kHz ± 50% frequency, used during
power-saving modes

■ Flexible reset sources

– Power-on reset (POR)

– Reset pin assertion

– Brown-out reset (BOR) detector alerts to system power drops

– Software reset

– Watchdog timer reset

– Internal low drop-out (LDO) regulator output goes unregulated

February 24, 200948
Preliminary

Architectural Overview

1.1.5.3 Four Programmable Timers (see page 388)
Programmable timers can be used to count or time external events that drive the Timer input pins.
The Stellaris® General-Purpose Timer Module (GPTM) contains four GPTM blocks. Each GPTM
block provides two 16-bit timers/counters that can be configured to operate independently as timers
or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).
Timers can also be used to trigger analog-to-digital (ADC) conversions.

The Timer Module can be configured independently and has the following functional options:

■ Count up or down

■ 16- or 32-bit programmable one-shot timer

■ 16- or 32-bit programmable periodic timer

■ 16-bit general-purpose timer with an 8-bit prescaler

■ 32-bit Real-Time Clock (RTC) when using an external 32.768-KHz clock as the input

■ Daisy chaining of timer modules to allow a single timer to initiate multiple timing events

■ ADC event trigger

■ User-enabled stalling when the controller asserts CPU Halt flag during debug (excluding RTC
mode)

■ 16-bit input-edge count- or time-capture modes

■ 16-bit PWM mode with software-programmable output inversion of the PWM signal

■ Ability to determine the elapsed time between the assertion of the timer interrupt and entry into
the interrupt service routine.

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Dedicated channel for each timer

– Burst request generated on timer interrupt

1.1.5.4 CCP Pins (see page 393)
The LM3S9B92 microcontroller includes eight Capture Compare PWM pins (CCP) which can be
used by the General-Purpose Timer Module to time/count external events using the CCP pin as an
input. Alternatively, the GPTM can generate a simple PWM output on the CCP pin. Each pin can
be programmed to operate in the following modes:

■ Capture - The GP Timer is incremented/decremented by programmed events on the CCP input.
The GP Timer captures and stores the current timer value when a programmed event occurs.

■ Compare - TheGP Timer is incremented/decremented by programmed events on the CCP input.
The GP Timer compares the current value with a stored value and generates an interrupt when
a match occurs.

■ PWM - The GP Timer is incremented/decremented by the system clock. A PWM signal is
generated based on a match between the counter value and a value stored in a match register
and is output on the CCP pin.

49February 24, 2009
Preliminary

LM3S9B92 Microcontroller

1.1.5.5 Watchdog Timers (see page 427)
A watchdog timer is used to regain control when a system has failed due to a software error or to
the failure of an external device to respond in the expected way. The Stellaris® Watchdog Timer
can generate a nonmaskable interrupt (NMI) or a reset when a time-out value is reached. In addition,
the Watchdog Timer is ARM FiRM-compliant and can be configured to generate an interrupt to the
controller on its first time-out, and to generate a reset signal on its second time-out. Once the
Watchdog Timer has been configured, the lock register can be written to prevent the timer
configuration from being inadvertently altered.

The LM3S9B92 microcontroller has two Watchdog Timer modules: Watchdog Timer 0 uses the
system clock for its timer clock; Watchdog Timer 1 uses the PIOSC as its timer clock. The Stellaris®

Watchdog Timer module has the following features:

■ 32-bit down counter with a programmable load register

■ Separate watchdog clock with an enable

■ Programmable interrupt generation logic with interrupt masking

■ Lock register protection from runaway software

■ Reset generation logic with an enable/disable

■ User-enabled stalling when the controller asserts the CPU Halt flag during debug

1.1.5.6 Programmable GPIOs (see page 291)
General-purpose input/output (GPIO) pins offer flexibility for a variety of connections. The Stellaris®

GPIOmodule is comprised of nine physical GPIO blocks, each corresponding to an individual GPIO
port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time
Microcontrollers specification) and supports 0-65 programmable input/output pins. The number of
GPIOs available depends on the peripherals being used (see “Signal Tables” on page 960 for the
signals available to each GPIO pin).

■ 0-65 GPIOs, depending on configuration

■ Highly flexible pin muxing allows use as GPIO or one of several peripheral functions

■ 5-V-tolerant input/outputs

■ Fast toggle capable of a change every two clock cycles

■ Two means of port access: either Advanced Host Bus (AHB) with better back-to-back access
performance, or the legacy Advanced Peripheral Bus (APB) for backwards-compatibility with
existing code

■ Programmable control for GPIO interrupts

– Interrupt generation masking

– Edge-triggered on rising, falling, or both

– Level-sensitive on High or Low values

■ Bit masking in both read and write operations through address lines

February 24, 200950
Preliminary

Architectural Overview

■ Can be used to initiate an ADC sample sequence

■ Pins configured as digital inputs are Schmitt-triggered

■ Programmable control for GPIO pad configuration

– Weak pull-up or pull-down resistors

– 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured
with an 18-mA pad drive for high-current applications

– Slew rate control for the 8-mA drive

– Open drain enables

– Digital input enables

1.1.6 Advanced Motion Control
The LM3S9B92 controller provides motion control functions integrated into the device, including:

■ Eight advanced PWM outputs for motion and energy applications

■ Four fault inputs to promote low-latency shutdown

■ Two Quadrature Encoder Inputs (QEI)

The following provides more detail on these motion control functions.

1.1.6.1 PWM (see page 883)
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.
High-resolution counters are used to generate a square wave, and the duty cycle of the square
wave is modulated to encode an analog signal. Typical applications include switching power supplies
and motor control. The LM3S9B92 PWM module consists of four PWM generator blocks and a
control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two
comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector.
Each PWM generator block produces two PWM signals that can either be independent signals or
a single pair of complementary signals with dead-band delays inserted. PWM generator block has
the following features:

■ One 16-bit counter

– Runs in Down or Up/Down mode

– Output frequency controlled by a 16-bit load value

– Load value updates can be synchronized

– Produces output signals at zero and load value

■ Two PWM comparators

– Comparator value updates can be synchronized

– Produces output signals on match

51February 24, 2009
Preliminary

LM3S9B92 Microcontroller

■ PWM signal generator

– Output PWM signal is constructed based on actions taken as a result of the counter and
PWM comparator output signals

– Produces two independent PWM signals

■ Dead-band generator

– Produces two PWM signals with programmable dead-band delays suitable for driving a half-H
bridge

– Can be bypassed, leaving input PWM signals unmodified

■ Can initiate an ADC sample sequence

The control block determines the polarity of the PWM signals and which signals are passed through
to the pins. The output of the PWM generation blocks are managed by the output control block
before being passed to the device pins. The PWM control block has the following options:

■ PWM output enable of each PWM signal

■ Optional output inversion of each PWM signal (polarity control)

■ Optional fault handling for each PWM signal

■ Synchronization of timers in the PWM generator blocks

■ Synchronization of timer/comparator updates across the PWM generator blocks

■ Interrupt status summary of the PWM generator blocks

■ Extended fault capabilities with multiple fault signals, programmable polarities, and filtering

■ PWM generators can be operated independently or synchronized with other generators

1.1.6.2 Fault Pins ((see page 889))
The LM3S9B92 PWM module includes four fault-condition handling inputs to quickly provide
low-latency shutdown and prevent damage to the motor being controlled.

1.1.6.3 QEI (see page 942)
A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement
into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals,
the position, direction of rotation, and speed can be tracked. In addition, a third channel, or index
signal, can be used to reset the position counter. The Stellaris® quadrature encoder with index (QEI)
module interprets the code produced by a quadrature encoder wheel to integrate position over time
and determine direction of rotation. In addition, it can capture a running estimate of the velocity of
the encoder wheel. The input frequency of the QEI inputs may be as high as 1/4 of the processor
frequency (for example, 12.5 MHz for a 50-MHz system). The LM3S9B92 microcontroller includes
two QEI modules providing control of two motors at the same time. The QEI module has the following
features:

■ Position integrator that tracks the encoder position

February 24, 200952
Preliminary

Architectural Overview

■ Programmable noise filter on the inputs

■ Velocity capture using built-in timer

■ Interrupt generation on:

– Index pulse

– Velocity-timer expiration

– Direction change

– Quadrature error detection

1.1.7 Analog
The LM3S9B92 controller provides analog functions integrated into the device, including:

■ Two 10-bit Analog-to-Digital Converters (ADC) with sixteen analog input channels and sample
rate of one million samples/second

■ Three analog comparators

■ Digital Comparator

■ On-chip voltage regulator

The following provides more detail on these analog functions.

1.1.7.1 ADC (see page 452)
An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a
discrete digital number. The Stellaris® ADCmodule features 10-bit conversion resolution and supports
sixteen input channels plus an internal temperature sensor. Four buffered sample sequencers allow
rapid sampling of up to eight analog input sources without controller intervention. Each sample
sequencer provides flexible programming with fully configurable input source, trigger events, interrupt
generation, and sequencer priority. The LM3S9B92 microcontroller provides two ADC modules. A
digital comparator function is included which allows the conversion value to be diverted to a
comparison unit that provides digital comparator. The ADC module has the following features:

■ Sixteen analog input channels

■ Single-ended and differential-input configurations

■ On-chip internal temperature sensor

■ Sample rate of one million samples/second

■ Flexible, configurable analog-to-digital conversion

■ Four programmable sample conversion sequencers from one to eight entries long, with
corresponding conversion result FIFOs

■ Flexible trigger control

– Controller (software)

53February 24, 2009
Preliminary

LM3S9B92 Microcontroller

– Timers

– Analog Comparators

– PWM

– GPIO

■ Hardware averaging of up to 64 samples for improved accuracy

■ Digital comparison unit providing digital comparator

■ Converter uses an internal 3-V reference or an external reference

■ Power and ground for the analog circuitry is separate from the digital power and ground

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Dedicated channel for each sample sequencer

– Burst request asserted when interrupt is triggered

1.1.7.2 Analog Comparators (see page 871)
An analog comparator is a peripheral that compares two analog voltages and provides a logical
output that signals the comparison result. The LM3S9B92microcontroller provides three independent
integrated analog comparators that can be configured to drive an output or generate an interrupt or
ADC event.

The comparator can provide its output to a device pin, acting as a replacement for an analog
comparator on the board, or it can be used to signal the application via interrupts or triggers to the
ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering
logic is separate. This means, for example, that an interrupt can be generated on a rising edge and
the ADC triggered on a falling edge. Each comparator has the following functions:

■ Compare external pin input to external pin input or to internal programmable voltage reference

■ Compare a test voltage against any one of these voltages

– An individual external reference voltage

– A shared single external reference voltage

– A shared internal reference voltage

1.1.8 JTAG and ARM Serial Wire Debug (see page 78)
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface
for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR)
can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing
information on the components. The JTAG Port also provides a means of accessing and controlling
design-for-test features such as I/O pin observation and control, scan testing, and debugging.
Luminary Micro replaces the ARM SW-DP and JTAG-DP with the ARM CoreSight™-compliant
Serial Wire JTAG Debug Port (SWJ-DP) interface. The SWJ-DP interface combines the SWD and
JTAG debug ports into one module providing all the normal JTAG debug and test functionality plus

February 24, 200954
Preliminary

Architectural Overview

real-time access to system memory without halting the core or requiring any target resident code.
See the CoreSight™ Design Kit Technical Reference Manual for details on SWJ-DP. The SWJ-DP
interface has the following features:

■ IEEE 1149.1-1990 compatible Test Access Port (TAP) controller

■ Four-bit Instruction Register (IR) chain for storing JTAG instructions

■ IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST

■ ARM additional instructions: APACC, DPACC and ABORT

■ Integrated ARM Serial Wire Debug (SWD)

– Serial Wire JTAG Debug Port (SWJ-DP)

– Flash Patch and Breakpoint (FPB) unit for implementing breakpoints

– Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources,
and system profiling

– Instrumentation Trace Macrocell (ITM) for support of printf style debugging

– Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer

1.1.9 Packaging and Temperature

■ Industrial-range 100-pin RoHS-compliant LQFP package

1.2 Target Applications
The Stellaris® family is positioned for cost-conscious applications requiring significant control
processing and connectivity capabilities such as:

■ Remote monitoring

■ Electronic point-of-sale (POS) machines

■ Test and measurement equipment

■ Network appliances and switches

■ Factory automation

■ HVAC and building control

■ Gaming equipment

■ Motion control

■ Medical instrumentation

■ Fire and security

■ Power and energy

55February 24, 2009
Preliminary

LM3S9B92 Microcontroller

■ Transportation

1.3 High-Level Block Diagram
Figure 1-1 depicts the features on the Stellaris® LM3S9B92 microcontroller. Note that there are two
on-chip buses that connect the core to the peripherals. The Advanced Peripheral Bus (APB) bus is
the legacy bus. The Advanced Host Bus (AHB) bus provides better back-to-back access performance
than the APB bus.

February 24, 200956
Preliminary

Architectural Overview

Figure 1-1. Stellaris® LM3S9B92 Microcontroller High-Level Block Diagram

LM3S9B92

ARM®
Cortex™-M3

(80 MHz)

NVIC MPU

Flash
(256 KB)

Boot Loader
DriverLib
AES & CRC

ROM

DCode bus

ICode bus

JTAG/SWD

System
Control and

Clocks
(w/ Precis. Osc.)

Bridge

System Bus

SRAM
(96 KB)

SYSTEM PERIPHERALS

Watchdog
Timer

(2)
DMA

General-
Purpose

Timers (4)

GPIOs
(65)

External
Peripheral
Interface

SERIAL PERIPHERALS

UARTs
(3)

USB
(OTG)

I2C
(2)

SSI
(2)

Ethernet
MAC/PHY

CAN
Controllers

(2)

I2S

ANALOG PERIPHERALS

ADC
Channels

(16)

Analog
Comparators

(3)

MOTION CONTROL PERIPHERALS

QEI
(2)

PWM
(8)

A
dv

an
ce

d
P

er
ip

he
ra

lB
us

(A
P

B
)

A
dv

an
ce

d
H

os
tB

us
(A

H
B

)

57February 24, 2009
Preliminary

LM3S9B92 Microcontroller

1.4 Additional Features

1.4.1 Memory Map (see page 72)
A memory map lists the location of instructions and data in memory. The memory map for the
LM3S9B92 controller can be found in “Memory Map” on page 72. Register addresses are given as
a hexadecimal increment, relative to the module's base address as shown in the memory map. The
ARM® Cortex™-M3 Technical Reference Manual provides further information on the memory map.

1.4.2 Hardware Details
Details on the pins and package can be found in the following sections:

■ “Pin Diagram” on page 959

■ “Signal Tables” on page 960

■ “Operating Characteristics” on page 992

■ “Electrical Characteristics” on page 993

■ “Package Information” on page 1020

February 24, 200958
Preliminary

Architectural Overview

2 ARM Cortex-M3 Processor Core
The ARM Cortex-M3 processor provides a high-performance, low-cost platform that meets the
system requirements of minimal memory implementation, reduced pin count, and low power
consumption, while delivering outstanding computational performance and exceptional system
response to interrupts. Features include:

■ 32-bit ARM®Cortex™-M3 v7M architecture optimized for small-footprint embedded applications

■ Thumb-2 mixed 16-/32-bit instruction set, delivers the high performance expected of from a 32-bit
ARM core in a compact memory size usually associated with 8- and 16-bit devices; typically in
the range of a few kilobytes of memory for microcontroller-class applications

– Single-cycle multiply instruction and hardware divide

– Atomic bit manipulation (bit-banding), delivering maximummemory utilization and streamlined
peripheral control

– Unaligned data access, enabling data to be efficiently packed into memory

■ Harvard architecture characterized by separate buses for instruction and data

■ Memory protection unit (MPU) to provide a privileged mode for protected operating system
functionality

■ Migration from the ARM7™ processor family for better performance and power efficiency

■ Optimized for single-cycle Flash usage

■ 80-MHz operation

■ 1.25 DMIPS/MHz

The Stellaris® family of microcontrollers builds on this core to bring high-performance 32-bit computing
to cost-sensitive embedded microcontroller applications, such as factory automation and control,
industrial control power devices, building and home automation, and stepper motors.

For more information on the ARMCortex-M3 processor core, see the ARM®Cortex™-M3 Technical
Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference
Manual.

59February 24, 2009
Preliminary

LM3S9B92 Microcontroller

2.1 Block Diagram

Figure 2-1. CPU Block Diagram

Private Peripheral
Bus

(internal)

Data
Watchpoint
and Trace

Interrupts

Debug

Sleep

Instrumentation
Trace Macrocell

Trace
Port

Interface
Unit

CM3 Core

Instructions Data

Flash
Patch and
Breakpoint

Memory
Protection

Unit

Debug
Access Port

Nested
Vectored
Interrupt
Controller

Serial Wire JTAG
Debug Port

Bus
Matrix

Adv. Peripheral
Bus

I-code bus
D-code bus
System bus

ROM
Table

Serial
Wire
Output
Trace
Port

(SWO)

ARM
Cortex-M3

2.2 Functional Description
Important: The ARM® Cortex™-M3 Technical Reference Manual describes all the features of an

ARM Cortex-M3 in detail. However, these features differ based on the implementation.
This section describes the Stellaris® implementation.

Luminary Micro implements the ARM Cortex-M3 core as shown in Figure 2-1 on page 60. The
Cortex-M3 uses the entire 16-bit Thumb instruction set and the base Thumb-2 32-bit instruction
set.. In addition, as noted in the ARM®Cortex™-M3 Technical ReferenceManual, several Cortex-M3
components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the
MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the
sections that follow.

2.2.1 Programming Model
This section provides a brief overview of the programming model for the Cortex-M3 core. More
detailed information can be found in the ARM® Cortex™-M3 Technical Reference Manual.

■ Privileged access and user access - Code can execute as privileged or unprivileged. Unprivileged
execution limits or excludes access to some resources. Privileged execution has access to all
resources. Handler mode is always privileged. Thread mode can be privileged or unprivileged.
Thread mode is privileged out of reset, but you can change it to user or unprivileged by setting
the CONTROL[0] bit using the MSR instruction. User access prevents:

– Use of some instructions such as CPS to set FAULTMASK and PRIMASK

February 24, 200960
Preliminary

ARM Cortex-M3 Processor Core

– Access to most registers in System Control Space (SCS)

When Thread mode has been changed from privileged to user, it cannot change itself back to
privileged. Only a Handler can change the privilege of Thread mode. Handler mode is always
privileged.

■ Register set - The processor has the following 32-bit registers:

– 13 general-purpose registers, r0-r12

– Stack point alias of banked registers, SP_process and SP_main

– Link register, r14

– Program counter, r15

– One program status register, xPSR.

■ Data types - The processor supports the following data types:

– 32-bit words

– 16-bit halfwords

– 8-bit bytes

■ Memory formats - The processor views memory as a linear collection of bytes numbered in
ascending order from 0. For example, bytes 0-3 hold the first stored word and bytes 4-7 hold the
second stored word. The processor accesses code and data in little-endian format. In little-endian
format, the byte with the lowest address in a word is the least-significant byte of the word. The
byte with the highest address in a word is the most significant. The byte at address 0 of the
memory system connects to data lines 7-0.

■ Instruction set - The Cortex-M3 instruction set contains both 16 and 32-bit instructions. These
instructions are summarized in Table 2-1 on page 61 and Table 2-2 on page 63, respectively.

Table 2-1. 16-Bit Cortex-M3 Instruction Set Summary

AssemblerOperation

ADC <Rd>, <Rm>Add register value and C flag to register value

ADD <Rd>, <Rn>, #<immed_3>Add immediate 3-bit value to register

ADD <Rd>, #<immed_8>Add immediate 8-bit value to register

ADD <Rd>, <Rn>, <Rm>Add low register value to low register value

ADD <Rd>, <Rm>Add high register value to low or high register value

ADD <Rd>, PC, #<immed_8> * 4Add 4* (immediate 8-bit value) with PC to register

ADD <Rd>, SP, #<immed_8> * 4Add 4* (immediate 8-bit value) with SP to register

ADD SP, #<immed_7> * 4Add 4* (immediate 7-bit value) to SP

AND <Rd>, <Rm>Bitwise AND register values

ASR <Rd>, <Rm>, #<immed_5>Arithmetic shift right by immediate number

ASR <Rd>, <Rs>Arithmetic shift right by number in register

B<cond> <target address>Branch conditional

B <target_address>Branch unconditional

BIC <Rd>, <Rm>Bit clear

61February 24, 2009
Preliminary

LM3S9B92 Microcontroller

AssemblerOperation

BKPT <immed_8>Software breakpoint

BL <Rm>Branch with link

BLX <Rm>Branch with link and exchange

BX <Rm>Branch and exchange

CBNZ <Rn>,<label>Compare not zero and branch

CBZ <Rn>,<label>Compare zero and branch

CMN <Rn>, <Rm>Compare negation of register value with another register value

CMP <Rn>, #<immed_8>Compare immediate 8-bit value

CMP <Rn>, <Rm>Compare registers

CMP <Rn>, <Rm>Compare high register to low or high register

CPS <effect>, <iflags>Change processor state

CPY <Rd> <Rm>Copy high or low register value to another high or low register

EOR <Rd>, <Rm>Bitwise exclusive OR register values

IT <cond>Condition the following instruction

IT<x> <cond>Condition the following two instructions

IT<x><y> <cond>Condition the following three instructions

IT<x><y><z> <cond>Condition the following four instructions

LDMIA <Rn>!, <registers>Multiple sequential memory word loads

LDR <Rd>, [<Rn>, #<immed_5> * 4]Load memory word from base register address + 5-bit immediate offset

LDR <Rd>, [<Rn>, <Rm>]Load memory word from base register address + register offset

LDR <Rd>, [PC, #<immed_8> * 4]Load memory word from PC address + 8-bit immediate offset

LDR, <Rd>, [SP, #<immed_8> * 4]Load memory word from SP address + 8-bit immediate offset

LDRB <Rd>, [<Rn>, #<immed_5>]Load memory byte [7:0] from register address + 5-bit immediate offset

LDRB <Rd>, [<Rn>, <Rm>]Load memory byte [7:0] from register address + register offset

LDRH <Rd>, [<Rn>, #<immed_5> * 2]Load memory halfword [15:0] from register address + 5-bit immediate offset

LDRH <Rd>, [<Rn>, <Rm>]Load halfword [15:0] from register address + register offset

LDRSB <Rd>, [<Rn>, <Rm>]Load signed byte [7:0] from register address + register offset

LDRSH <Rd>, [<Rn>, <Rm>]Load signed halfword [15:0] from register address + register offset

LSL <Rd>, <Rm>, #<immed_5>Logical shift left by immediate number

LSL <Rd>, <Rs>Logical shift left by number in register

LSR <Rd>, <Rm>, #<immed_5>Logical shift right by immediate number

LSR <Rd>, <Rs>Logical shift right by number in register

MOV <Rd>, #<immed_8>Move immediate 8-bit value to register

MOV <Rd>, <Rn>Move low register value to low register

MOV <Rd>, <Rm>Move high or low register value to high or low register

MUL <Rd>, <Rm>Multiply register values

MVN <Rd>, <Rm>Move complement of register value to register

NEG <Rd>, <Rm>Negate register value and store in register

NOP <c>No operation

ORR <Rd>, <Rm>Bitwise logical OR register values

POP <registers>Pop registers from stack

POP <registers, PC>Pop registers and PC from stack

PUSH <registers>Push registers onto stack

February 24, 200962
Preliminary

ARM Cortex-M3 Processor Core

AssemblerOperation

PUSH <registers, LR>Push LR and registers onto stack

REV <Rd>, <Rn>Reverse bytes in word and copy to register

REV16 <Rd>, <Rn>Reverse bytes in two halfwords and copy to register

REVSH <Rd>, <Rn>Reverse bytes in low halfword [15:0], sign-extend, and copy to register

ROR <Rd>, <Rs>Rotate right by amount in register

SBC <Rd>, <Rm>Subtract register value and C flag from register value

SEV <c>Send event

STMIA <Rn>!, <registers>Store multiple register words to sequential memory locations

STR <Rd>, [<Rn>, #<immed_5> * 4]Store register word to register address + 5-bit immediate offset

STR <Rd>, [<Rn>, <Rm>]Store register word to register address

STR <Rd>, [SP, #<immed_8> * 4]Store register word to SP address + 8-bit immediate offset

STRB <Rd>, [<Rn>, #<immed_5>]Store register byte [7:0] to register address + 5-bit immediate offset

STRB <Rd>, [<Rn>, <Rm>]Store register byte [7:0] to register address

STRH <Rd>, [<Rn>, #<immed_5> * 2]Store register halfword [15:0] to register address + 5-bit immediate offset

STRH <Rd>, [<Rn>, <Rm>]Store register halfword [15:0] to register address + register offset

SUB <Rd>, <Rn>, #<immed_3>Subtract immediate 3-bit value from register

SUB <Rd>, #<immed_8>Subtract immediate 8-bit value from register value

SUB <Rd>, <Rn>, <Rm>Subtract register values

SUB SP, #<immed_7> * 4Subtract 4 (immediate 7-bit value) from SP

SVC <immed_8>Operating system service call with 8-bit immediate call code

SXTB <Rd>, <Rm>Extract byte [7:0] from register, move to register, and sign-extend to 32 bits

SXTH <Rd>, <Rm>Extract halfword [15:0] from register, move to register, and sign-extend to 32 bits

TST <Rn>, <Rm>Test register value for set bits by ANDing it with another register value

UXTB <Rd>, <Rm>10Extract byte [7:0] from register, move to register, and zero-extend to 32 bits

UXTH <Rd>, <Rm>Extract halfword [15:0] from register, move to register, and zero-extend to 32 bits

WFE <c>Wait for event

WFI <c>Wait for interrupt

Table 2-2. 32-Bit Cortex-M3 Instruction Set Summary

AssemblerOperation

ADC{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12>

Add register value, immediate 12-bit value, and C bit

ADC{S}.W <Rd>, <Rn>, <Rm>{, <shift>}Add register value, shifted register value, and C bit

ADD{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12)>

Add register value and immediate 12-bit value

ADD{S}.W <Rd>, <Rm>{, <shift>}Add register value and shifted register value

ADDW.W <Rd>, <Rn>, #<immed_12>Add register value and immediate 12-bit value

AND{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12>

Bitwise AND register value with immediate 12-bit value

AND{S}.W <Rd>, <Rn>, Rm>{, <shift>}Bitwise AND register value with shifted register value

ASR{S}.W <Rd>, <Rn>, <Rm>Arithmetic shift right by number in register

B{cond}.W <label>Conditional branch

BFC.W <Rd>, #<lsb>, #<width>Clear bit field

BFI.W <Rd>, <Rn>, #<lsb>, #<width>Insert bit field from one register value into another

63February 24, 2009
Preliminary

LM3S9B92 Microcontroller

AssemblerOperation

BIC{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12)>

Bitwise AND register value with complement of immediate 12-bit
value

BIC{S}.W <Rd>, <Rn>, <Rm>{, <shift>}Bitwise AND register value with complement of shifted register value

BL <label>Branch with link

BL<c> <label>Branch with link (immediate)

B.W <label>Unconditional branch

CLREX <c>Clear exclusive clears the local record of the executing processor
that an address has had a request for an exclusive access.

CLZ.W <Rd>, <Rn>Return number of leading zeros in register value

CMN.W <Rn>, #<modify_constant(immed_12)>Compare register value with two’s complement of immediate 12-bit
value

CMN.W <Rn>, <Rm>{, <shift>}Compare register value with two’s complement of shifted register
value

CMP.W <Rn>, #<modify_constant(immed_12)>Compare register value with immediate 12-bit value

CMP.W <Rn>, <Rm>{, <shift>}Compare register value with shifted register value

DMB <c>Data memory barrier

DSB <c>Data synchronization barrier

EOR{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12)>

Exclusive OR register value with immediate 12-bit value

EOR{S}.W <Rd>, <Rn>, <Rm>{, <shift>}Exclusive OR register value with shifted register value

ISB <c>Instruction synchronization barrier

LDM{IA|DB}.W <Rn>{!}, <registers>Load multiple memory registers, increment after or decrement before

LDR.W <Rxf>, [<Rn>, #<offset_12>]Memory word from base register address + immediate 12-bit offset

LDR.W PC, [<Rn>, #<offset_12>]Memory word to PC from register address + immediate 12-bit offset

LDR.W PC, [Rn], #<+/-<offset_8>Memory word to PC from base register address immediate 8-bit offset,
postindexed

LDR.W <Rxf>, [<Rn>], #+/–<offset_8>Memory word from base register address immediate 8-bit offset,
postindexed

LDR.W <Rxf>, [<Rn>, #<+/–<offset_8>]!
LDRT.W <Rxf>, [<Rn>, #<offset_8>]

Memory word from base register address immediate 8-bit offset,
preindexed

LDR.W PC, [<Rn>, #+/–<offset_8>]!Memory word to PC from base register address immediate 8-bit offset,
preindexed

LDR.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]Memory word from register address shifted left by 0, 1, 2, or 3 places

LDR.W PC, [<Rn>, <Rm>{, LSL #<shift>}]Memory word to PC from register address shifted left by 0, 1, 2, or
3 places

LDR.W <Rxf>, [PC, #+/–<offset_12>]Memory word from PC address immediate 12-bit offset

LDR.W PC, [PC, #+/–<offset_12>]Memory word to PC from PC address immediate 12-bit offset

LDRB.W <Rxf>, [<Rn>, #<offset_12>]Memory byte [7:0] from base register address + immediate 12-bit
offset

LDRB.W <Rxf>. [<Rn>], #+/-<offset_8>Memory byte [7:0] from base register address immediate 8-bit offset,
postindexed

LDRB.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]Memory byte [7:0] from register address shifted left by 0, 1, 2, or 3
places

LDRB.W <Rxf>, [<Rn>, #<+/–<offset_8>]!Memory byte [7:0] from base register address immediate 8-bit offset,
preindexed

LDRB.W <Rxf>, [PC, #+/–<offset_12>]Memory byte from PC address immediate 12-bit offset

LDRD.W <Rxf>, <Rxf2>, [<Rn>, #+/–<offset_8> * 4]{!}Memory doubleword from register address 8-bit offset 4, preindexed

February 24, 200964
Preliminary

ARM Cortex-M3 Processor Core

AssemblerOperation

LDRD.W <Rxf>, <Rxf2>, [<Rn>], #+/–<offset_8> * 4Memory doubleword from register address 8-bit offset 4, postindexed

LDREX<c> <Rt>,[<Rn>{,#<imm>}]Load register exclusive calculates an address from a base register
value and an immediate offset, loads a word from memory, writes it
to a register

LDREXH<c> <Rt>,[<Rn>{,#<imm>}]Load register exclusive halfword calculates an address from a base
register value and an immediate offset, loads a halfword frommemory,
writes it to a register

LDREXB<c> <Rt>,[<Rn>{,#<imm>}]Load register exclusive byte calculates an address from a base
register value and an immediate offset, loads a byte from memory,
writes it to a register

LDRH.W <Rxf>, [<Rn>, #<offset_12>]Memory halfword [15:0] from base register address + immediate
12-bit offset

LDRH.W <Rxf>, [<Rn>, #<+/–<offset_8>]!Memory halfword [15:0] from base register address immediate 8-bit
offset, preindexed

LDRH.W <Rxf>. [<Rn>], #+/-<offset_8>Memory halfword [15:0] from base register address immediate 8-bit
offset, postindexed

LDRH.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]Memory halfword [15:0] from register address shifted left by 0, 1, 2,
or 3 places

LDRH.W <Rxf>, [PC, #+/–<offset_12>]Memory halfword from PC address immediate 12-bit offset

LDRSB.W <Rxf>, [<Rn>, #<offset_12>]Memory signed byte [7:0] from base register address + immediate
12-bit offset

LDRSB.W <Rxf>. [<Rn>], #+/-<offset_8>Memory signed byte [7:0] from base register address immediate 8-bit
offset, postindexed

LDRSB.W <Rxf>, [<Rn>, #<+/–<offset_8>]!Memory signed byte [7:0] from base register address immediate 8-bit
offset, preindexed

LDRSB.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]Memory signed byte [7:0] from register address shifted left by 0, 1,
2, or 3 places

LDRSB.W <Rxf>, [PC, #+/–<offset_12>]Memory signed byte from PC address immediate 12-bit offset

LDRSH.W <Rxf>, [<Rn>, #<offset_12>]Memory signed halfword [15:0] from base register address +
immediate 12-bit offset

LDRSH.W <Rxf>. [<Rn>], #+/-<offset_8>Memory signed halfword [15:0] from base register address immediate
8-bit offset, postindexed

LDRSH.W <Rxf>, [<Rn>, #<+/–<offset_8>]!Memory signed halfword [15:0] from base register address immediate
8-bit offset, preindexed

LDRSH.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]Memory signed halfword [15:0] from register address shifted left by
0, 1, 2, or 3 places

LDRSH.W <Rxf>, [PC, #+/–<offset_12>]Memory signed halfword from PC address immediate 12-bit offset

LSL{S}.W <Rd>, <Rn>, <Rm>Logical shift left register value by number in register

LSR{S}.W <Rd>, <Rn>, <Rm>Logical shift right register value by number in register

MLA.W <Rd>, <Rn>, <Rm>, <Racc>Multiply two signed or unsigned register values and add the low 32
bits to a register value

MLS.W <Rd>, <Rn>, <Rm>, <Racc>Multiply two signed or unsigned register values and subtract the low
32 bits from a register value

MOV{S}.W <Rd>, #<modify_constant(immed_12)>Move immediate 12-bit value to register

MOV{S}.W <Rd>, <Rm>{, <shift>}Move shifted register value to register

MOVT.W <Rd>, #<immed_16>Move immediate 16-bit value to top halfword [31:16] of register

MOVW.W <Rd>, #<immed_16>Move immediate 16-bit value to bottom halfword [15:0] of register
and clear top halfword [31:16]

MRS<c> <Rd>, <psr>Move to register from status

65February 24, 2009
Preliminary

LM3S9B92 Microcontroller

AssemblerOperation

MSR<c> <psr>_<fields>,<Rn>Move to status register

MUL.W <Rd>, <Rn>, <Rm>Multiply two signed or unsigned register values

NOP.WNo operation

ORN{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12)>

Logical OR NOT register value with immediate 12-bit value

ORN[S}.W <Rd>, <Rn>, <Rm>{, <shift>}Logical OR NOT register value with shifted register value

ORR{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12)>

Logical OR register value with immediate 12-bit value

ORR{S}.W <Rd>, <Rn>, <Rm>{, <shift>}Logical OR register value with shifted register value

RBIT.W <Rd>, <Rm>Reverse bit order

REV.W <Rd>, <Rm>Reverse bytes in word

REV16.W <Rd>, <Rn>Reverse bytes in each halfword

REVSH.W <Rd>, <Rn>Reverse bytes in bottom halfword and sign-extend

ROR{S}.W <Rd>, <Rn>, <Rm>Rotate right by number in register

RRX{S}.W <Rd>, <Rm>Rotate right with extend

RSB{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12)>

Subtract a register value from an immediate 12-bit value

RSB{S}.W <Rd>, <Rn>, <Rm>{, <shift>}Subtract a register value from a shifted register value

SBC{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12)>

Subtract immediate 12-bit value and C bit from register value

SBC{S}.W <Rd>, <Rn>, <Rm>{, <shift>}Subtract shifted register value and C bit from register value

SBFX.W <Rd>, <Rn>, #<lsb>, #<width>Copy selected bits to register and sign-extend

SDIV<c> <Rd>,<Rn>,<Rm>Signed divide

SEV<c>Send event

SMLAL.W <RdLo>, <RdHi>, <Rn>, <Rm>Multiply signed words and add signed-extended value to 2-register
value

SMULL.W <RdLo>, <RdHi>, <Rn>, <Rm>Multiply two signed register values

SSAT.W <c> <Rd>, #<imm>, <Rn>{, <shift>}Signed saturate

STM{IA|DB}.W <Rn>{!}, <registers>Multiple register words to consecutive memory locations

STR.W <Rxf>, [<Rn>, #<offset_12>]Register word to register address + immediate 12-bit offset

STR.W <Rxf>, [<Rn>], #+/–<offset_8>Register word to register address immediate 8-bit offset, postindexed

STR.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]Register word to register address shifted by 0, 1, 2, or 3 places

STR.W <Rxf>, [<Rn>, #+/-<offset_8>]{!}
STRT.W <Rxf>, [<Rn>, #<offset_8>]

Register word to register address immediate 8-bit offset, preindexed
Store, preindexed

STRB{T}.W <Rxf>, [<Rn>, #+/–<offset_8>]{!}Register byte [7:0] to register address immediate 8-bit offset,
preindexed

STRB.W <Rxf>, [<Rn>, #<offset_12>]Register byte [7:0] to register address + immediate 12-bit offset

STRB.W <Rxf>, [<Rn>], #+/–<offset_8>Register byte [7:0] to register address immediate 8-bit offset,
postindexed

STRB.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]Register byte [7:0] to register address shifted by 0, 1, 2, or 3 places

STRD.W <Rxf>, <Rxf2>, [<Rn>, #+/–<offset_8> * 4]{!}Store doubleword, preindexed

STRD.W <Rxf>, <Rxf2>, [<Rn>, #+/–<offset_8> * 4]Store doubleword, postindexed

STREX <c> <Rd>,<Rt>,[<Rn>{,#<imm>}]Store register exclusive calculates an address from a base register
value and an immediate offset, and stores a word from a register to
memory if the executing processor has exclusive access to the
memory addressed.

February 24, 200966
Preliminary

ARM Cortex-M3 Processor Core

AssemblerOperation

STREXB <c> <Rd>,<Rt>,[<Rn>]Store register exclusive byte derives an address from a base register
value, and stores a byte from a register to memory if the executing
processor has exclusive access to the memory addressed

STREXH <c> <Rd>,<Rt>,[<Rn>]Store register exclusive halfword derives an address from a base
register value, and stores a halfword from a register to memory if the
executing processor has exclusive access to the memory addressed.

STRH.W <Rxf>, [<Rn>, #<offset_12>]Register halfword [15:0] to register address + immediate 12-bit offset

STRH.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]Register halfword [15:0] to register address shifted by 0, 1, 2, or 3
places

STRH{T}.W <Rxf>, [<Rn>, #+/–<offset_8>]{!}Register halfword [15:0] to register address immediate 8-bit offset,
preindexed

STRH.W <Rxf>, [<Rn>], #+/–<offset_8>Register halfword [15:0] to register address immediate 8-bit offset,
postindexed

SUB{S}.W <Rd>, <Rn>,
#<modify_constant(immed_12)>

Subtract immediate 12-bit value from register value

SUB{S}.W <Rd>, <Rn>, <Rm>{, <shift>}Subtract shifted register value from register value

SUBW.W <Rd>, <Rn>, #<immed_12>Subtract immediate 12-bit value from register value

SXTB.W <Rd>, <Rm>{, <rotation>}Sign extend byte to 32 bits

SXTH.W <Rd>, <Rm>{, <rotation>}Sign extend halfword to 32 bits

TBB [<Rn>, <Rm>]Table branch byte

TBH [<Rn>, <Rm>, LSL #1]Table branch halfword

TEQ.W <Rn>, #<modify_constant(immed_12)>Exclusive OR register value with immediate 12-bit value

TEQ.W <Rn>, <Rm>{, <shift}Exclusive OR register value with shifted register value

TST.W <Rn>, #<modify_constant(immed_12)>Logical AND register value with 12-bit immediate value

TST.W <Rn>, <Rm>{, <shift>}Logical AND register value with shifted register value

UBFX.W <Rd>, <Rn>, #<lsb>, #<width>Copy bit field from register value to register and zero-extend to 32
bits

UDIV<c> <Rd>,<Rn>,<Rm>Unsigned divide

UMLAL.W <RdLo>, <RdHi>, <Rn>, <Rm>Multiply two unsigned register values and add to a 2-register value

UMULL.W <RdLo>, <RdHi>, <Rn>, <Rm>Multiply two unsigned register values

USAT <c> <Rd>, #<imm>, <Rn>{, <shift>}Unsigned saturate

UXTB.W <Rd>, <Rm>{, <rotation>}Copy unsigned byte to register and zero-extend to 32 bits

UXTH.W <Rd>, <Rm>{, <rotation>}Copy unsigned halfword to register and zero-extend to 32 bits

WFE.WWait for event

WFI.WWait for interrupt

2.2.2 Serial Wire and JTAG Debug
Luminary Micro replaces the ARM SW-DP and JTAG-DP with the ARM CoreSight™-compliant
Serial Wire JTAG Debug Port (SWJ-DP) interface. As a result, Chapter 12, “Debug Port,” of the
ARM® Cortex™-M3 Technical Reference Manual does not apply to Stellaris® devices.

The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the
CoreSight™ Design Kit Technical Reference Manual for details on SWJ-DP.

2.2.3 Embedded Trace Macrocell (ETM)
ETM is not implemented in the Stellaris® devices. As a result, Chapters 15 and 16 of the ARM®
Cortex™-M3 Technical Reference Manual can be ignored.

67February 24, 2009
Preliminary

LM3S9B92 Microcontroller

2.2.4 Trace Port Interface Unit (TPIU)
The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace
Port Analyzer. Stellaris® devices implement the TPIU as shown in Figure 2-2. This implementation
is similar to the non-ETM version described in the ARM®Cortex™-M3 Technical Reference Manual,
however, SWJ-DP only provides the Serial Wire Viewer (SWV) output format for the TPIU.

Figure 2-2. TPIU Block Diagram

ATB
Interface

Asynchronous FIFO

APB
Interface

Trace Out
(serializer)

Debug
ATB
Slave
Port

APB
Slave
Port

Serial Wire
Trace Port
(SWO)

2.2.5 ROM Table
The default ROM table is implemented as described in the ARM®Cortex™-M3 Technical Reference
Manual.

2.2.6 Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) is included on the LM3S9B92 controller and supports the
standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full
support for protection regions, overlapping protection regions, access permissions, and exporting
memory attributes to the system.

2.2.7 Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC):

■ Facilitates low-latency exception and interrupt handling
■ Controls power management
■ Implements system control registers

The NVIC and the processor core interface are closely coupled, which enables low latency interrupt
processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of
the stacked (nested) interrupts to enable tail-chaining of interrupts.

February 24, 200968
Preliminary

ARM Cortex-M3 Processor Core

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode
by enabling the Configuration Control Register (see the ARM® Cortex™-M3 Technical Reference
Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

2.2.7.1 Interrupts
The ARM®Cortex™-M3 Technical Reference Manual describes the maximum number of interrupts
and interrupt priorities. The LM3S9B92 microcontroller supports 53 interrupts with eight priority
levels.

In addition to the peripheral interrupts, the system also provides for a non-maskable interrupt (NMI).
The NMI is generally used in safety critical applications where the immediate execution of an interrupt
handler is required. The NMI signal is available as an external signal so that it may be generated
by external circuitry. The NMI is also used internally as part of the main oscillator verification circuitry.
More information on the non-maskable interrupt is located in “Non-Maskable Interrupt” on page 93.

2.2.8 System Timer (SysTick)
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter
can be used in several different ways, for example:

■ An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a
SysTick routine

■ A high-speed alarm timer using the system clock

■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock
used and the dynamic range of the counter.

■ A simple counter used to measure time to completion and time used

■ An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field
in the control and status register can be used to determine if an action completed within a set
duration, as part of a dynamic clock management control loop.

2.2.8.1 Functional Description
The timer consists of three registers:

■ SysTick Control and Status Register - a control and status counter to configure its clock, enable
the counter, enable the SysTick interrupt, and determine counter status

■ SysTick Reload Value Register - the reload value for the counter, used to provide the counter's
wrap value

■ SysTick Current Value Register - the current value of the counter

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris® devices.

When enabled, the timer counts down on each clock from the reload value to zero, reloads (wraps)
to the value in the SysTick Reload Value register on the next clock edge, then decrements on
subsequent clocks. Clearing the SysTick Reload Value register disables the counter on the next
wrap. When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit
clears on reads.

69February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Writing to the SysTick Current Value register clears the register and the COUNTFLAG status bit.
The write does not trigger the SysTick exception logic. On a read, the current value is the value of
the register at the time the register is accessed.

If the core is in debug state (halted), the counter does not decrement. The timer is clocked with
respect to a reference clock, which can be either the core clock or an external clock source.

2.2.8.2 SysTick Control and Status Register
Use the SysTick Control and Status Register to enable the SysTick features. The reset is
0x0000.0000.

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.

0x000ROreserved31:17

Count Flag

When set, this bit indicates that the timer has counted to 0 since the last time this
register was read.

This bit is cleared by a read of the register.

If read by the debugger using the DAP, this bit is cleared only if the MasterType bit
in the AHB-AP Control Register is clear. Otherwise, the COUNTFLAG bit is not
changed by the debugger read.

0R/WCOUNTFLAG16

Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.

0x000ROreserved15:3

Clock Source

DescriptionValue

External reference clock. (Not implemented for Stellaris® microcontrollers.)0

Core clock1

Because an external reference clock is not supported, this bit must be set in order
for SysTick to operate.

0R/WCLKSOURCE2

Tick Interrupt

When set, this bit causes an interrupt to be generated to the NVIC when SysTick
counts to 0.

When clear, interrupt generation is disabled. Software can use the COUNTFLAG
to determine if the counter has ever reached 0.

0R/WTICKINT1

Enable

When set, this bit enables SysTick to operate in a multi-shot way. That is, the counter
loads the Reload value and begins counting down. On reaching 0, the COUNTFLAG
bit is set and an interrupt is generated if enabled by TICKINT. The counter then
loads the Reload value again and begins counting.

When this bit is clear, the counter is disabled.

0R/WENABLE0

2.2.8.3 SysTick Reload Value Register
The SysTick Reload Value Register specifies the start value to load into the SysTick Current Value
Register when the counter reaches 0. The start value can be between 1 and 0x00FF.FFFF. A start
value of 0 is possible but has no effect because the SysTick interrupt and COUNTFLAG are activated
when counting from 1 to 0.

February 24, 200970
Preliminary

ARM Cortex-M3 Processor Core

SysTick can be configured as a multi-shot timer, repeated over and over, firing every N+1 clock
pulses, where N is any value from 1 to 0x00FF.FFFF. For example, if a tick interrupt is required
every 100 clock pulses, 99 must be written into the RELOAD field.

When configuring SysTick as a single-shot timer, a new value is written on each tick interrupt, and
the actual count down value must be written. For example, if a tick is next required after 400 clock
pulses, 400 must be written into the RELOAD field.

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a read-modify-write
operation.

0x00ROreserved31:24

Reload Value

Value to load into the SysTick Current Value Register when the counter reaches 0.

-R/WRELOAD23:0

2.2.8.4 SysTick Current Value Register
The SysTick Current Value Register contains the current value of the counter.

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.

0x00ROreserved31:24

Current Value

This field contains the current value at the time the register is accessed. No
read-modify-write protection is provided, so change with care.

This register is write-clear. Writing to it with any value clears the register to 0. Clearing
this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.

-W1CCURRENT23:0

2.2.8.5 SysTick Calibration Value Register
The SysTick Calibration Value register is not implemented.

71February 24, 2009
Preliminary

LM3S9B92 Microcontroller

3 Memory Map
The memory map for the LM3S9B92 controller is provided in Table 3-1.

In this manual, register addresses are given as a hexadecimal increment, relative to the module’s
base address as shown in the memory map. See also Chapter 4, “Memory Map” in the ARM®
Cortex™-M3 Technical Reference Manual.

Note that within the memory map, all reserved space returns a bus fault when read or written.

Table 3-1. Memory Map

For details,
see page ...

DescriptionEndStart

Memory

196On-chip Flash0x0003.FFFF0x0000.0000

-Reserved0x00FF.FFFF0x0004.0000

196On-chip ROM0x0100.4FFF0x0100.0000

1047AES+CRC software in on-chip ROM0x0100.5EFF0x0100.5000

-Reserved0x1FFF.FFFF0x0100.5F00

196Bit-banded on-chip SRAM0x2001.7FFF0x2000.0000

-Reserved0x21FF.FFFF0x2001.8000

196Bit-band alias of 0x2000.0000 through 0x200F.FFFF0x222F.FFFF0x2200.0000

-Reserved0x3FFF.FFFF0x2230.0000

FiRM Peripherals

430Watchdog timer 00x4000.0FFF0x4000.0000

430Watchdog timer 10x4000.1FFF0x4000.1000

-Reserved0x4000.3FFF0x4000.2000

300GPIO Port A0x4000.4FFF0x4000.4000

300GPIO Port B0x4000.5FFF0x4000.5000

300GPIO Port C0x4000.6FFF0x4000.6000

300GPIO Port D0x4000.7FFF0x4000.7000

583SSI00x4000.8FFF0x4000.8000

583SSI10x4000.9FFF0x4000.9000

-Reserved0x4000.BFFF0x4000.A000

529UART00x4000.CFFF0x4000.C000

529UART10x4000.DFFF0x4000.D000

529UART20x4000.EFFF0x4000.E000

-Reserved0x4001.FFFF0x4000.F000

Peripherals

624I2C Master 00x4002.07FF0x4002.0000

636I2C Slave 00x4002.0FFF0x4002.0800

624I2C Master 10x4002.17FF0x4002.1000

636I2C Slave 10x4002.1FFF0x4002.1800

-Reserved0x4002.3FFF0x4002.2000

300GPIO Port E0x4002.4FFF0x4002.4000

300GPIO Port F0x4002.5FFF0x4002.5000

February 24, 200972
Preliminary

Memory Map

For details,
see page ...

DescriptionEndStart

300GPIO Port G0x4002.6FFF0x4002.6000

300GPIO Port H0x4002.7FFF0x4002.7000

893PWM0x4002.8FFF0x4002.8000

-Reserved0x4002.BFFF0x4002.9000

946QEI00x4002.CFFF0x4002.C000

946QEI10x4002.DFFF0x4002.D000

-Reserved0x4002.FFFF0x4002.E000

400Timer 00x4003.0FFF0x4003.0000

400Timer 10x4003.1FFF0x4003.1000

400Timer 20x4003.2FFF0x4003.2000

400Timer 30x4003.3FFF0x4003.3000

-Reserved0x4003.7FFF0x4003.4000

468ADC00x4003.8FFF0x4003.8000

468ADC10x4003.9FFF0x4003.9000

-Reserved0x4003.BFFF0x4003.A000

871Analog Comparators0x4003.CFFF0x4003.C000

300GPIO Port J0x4003.DFFF0x4003.D000

-Reserved0x4003.FFFF0x4003.E000

695CAN0 Controller0x4004.0FFF0x4004.0000

695CAN1 Controller0x4004.1FFF0x4004.1000

-Reserved0x4004.7FFF0x4004.2000

733Ethernet Controller0x4004.8FFF0x4004.8000

-Reserved0x4004.FFFF0x4004.9000

789USB0x4005.0FFF0x4005.0000

-Reserved0x4005.3FFF0x4005.1000

656I2S00x4005.4FFF0x4005.4000

-Reserved0x4005.7FFF0x4005.5000

300GPIO Port A (AHB aperture)0x4005.8FFF0x4005.8000

300GPIO Port B (AHB aperture)0x4005.9FFF0x4005.9000

300GPIO Port C (AHB aperture)0x4005.AFFF0x4005.A000

300GPIO Port D (AHB aperture)0x4005.BFFF0x4005.B000

300GPIO Port E (AHB aperture)0x4005.CFFF0x4005.C000

300GPIO Port F (AHB aperture)0x4005.DFFF0x4005.D000

300GPIO Port G (AHB aperture)0x4005.EFFF0x4005.E000

300GPIO Port H (AHB aperture)0x4005.FFFF0x4005.F000

300GPIO Port J (AHB aperture)0x4006.0FFF0x4006.0000

-Reserved0x400C.FFFF0x4006.1000

353EPI00x400D.FFFF0x400D.0000

-Reserved0x400F.CFFF0x400E.0000

200Flash control0x400F.DFFF0x400F.D000

101System control0x400F.EFFF0x400F.E000

247µDMA0x400F.FFFF0x400F.F000

73February 24, 2009
Preliminary

LM3S9B92 Microcontroller

For details,
see page ...

DescriptionEndStart

-Reserved0x41FF.FFFF0x4010.0000

-Bit-banded alias of 0x4000.0000 through 0x400F.FFFF0x43FF.FFFF0x4200.0000

-Reserved0xDFFF.FFFF0x4400.0000

Private Peripheral Bus

ARM®
Cortex™-M3
Technical
Reference
Manual

Instrumentation Trace Macrocell (ITM)0xE000.0FFF0xE000.0000

ARM®
Cortex™-M3
Technical
Reference
Manual

Data Watchpoint and Trace (DWT)0xE000.1FFF0xE000.1000

ARM®
Cortex™-M3
Technical
Reference
Manual

Flash Patch and Breakpoint (FPB)0xE000.2FFF0xE000.2000

-Reserved0xE000.DFFF0xE000.3000

ARM®
Cortex™-M3
Technical
Reference
Manual

Nested Vectored Interrupt Controller (NVIC)0xE000.EFFF0xE000.E000

-Reserved0xE003.FFFF0xE000.F000

ARM®
Cortex™-M3
Technical
Reference
Manual

Trace Port Interface Unit (TPIU)0xE004.0FFF0xE004.0000

-Reserved0xFFFF.FFFF0xE004.1000

February 24, 200974
Preliminary

Memory Map

4 Interrupts
The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and
handle all exceptions in Handler Mode. The processor state is automatically stored to the stack on
an exception and automatically restored from the stack at the end of the Interrupt Service Routine
(ISR). The vector is fetched in parallel to the state saving, enabling efficient interrupt entry. The
processor supports tail-chaining, which enables back-to-back interrupts to be performed without the
overhead of state saving and restoration.

Table 4-1 on page 75 lists all exception types. Software can set eight priority levels on seven of
these exceptions (system handlers) as well as on 53 interrupts (listed in Table 4-2 on page 76).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts
are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt
Priority registers. Priorities can be grouped by splitting priority levels into pre-emption priorities and
subpriorities. All of the interrupt registers are described in Chapter 8, “Nested Vectored Interrupt
Controller” in the ARM® Cortex™-M3 Technical Reference Manual.

Internally, the highest user-programmable priority (0) is treated as fourth priority, after a Reset,
Non-Maskable Interrupt (NMI), and a Hard Fault, in that order. Note that 0 is the default priority for
all the programmable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower
position number) determines the order in which the processor activates them. For example, if both
GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

Important: It may take several processor cycles after a write to clear an interrupt source for the
NVIC to see the interrupt source de-assert. Thus if the interrupt clear is done as the
last action in an interrupt handler, it is possible for the interrupt handler to complete
while the NVIC sees the interrupt as still asserted, causing the interrupt handler to be
re-entered errantly. This situation can be avoided by either clearing the interrupt source
at the beginning of the interrupt handler or by performing a read or write after the write
to clear the interrupt source (and flush the write buffer).

See Chapter 5, “Exceptions” and Chapter 8, “Nested Vectored Interrupt Controller” in the ARM®
Cortex™-M3 Technical Reference Manual for more information on exceptions and interrupts.

Table 4-1. Exception Types

DescriptionPriorityaVector
Number

Exception Type

Stack top is loaded from the first entry of the vector table on reset.-0-

This exception is invoked on power up and warm reset. On the first
instruction, Reset drops to the lowest priority (and then is called the base
level of activation). This exception is asynchronous.

-3 (highest)1Reset

This exception is caused by the assertion of the NMI signal or by using
the NVIC Interrupt Control State register and cannot be stopped or
preempted by any exception but Reset. This exception is asynchronous.

-22Non-Maskable
Interrupt (NMI)

This exception is caused by all classes of Fault, when the fault cannot
activate due to priority or the configurable fault handler has been disabled.
This exception is synchronous.

-13Hard Fault

This exception is caused by an MPUmismatch, including access violation
and no match. This exception is synchronous.

programmable4Memory
Management

75February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionPriorityaVector
Number

Exception Type

This exception is caused by a pre-fetch fault, memory access fault, and
other address/memory related faults. This exception is synchronous when
precise and asynchronous when imprecise.

This fault can be enabled or disabled.

programmable5Bus Fault

This exception is caused by a usage fault, such as undefined instruction
executed or illegal state transition attempt. This exception is synchronous.

programmable6Usage Fault

Reserved.-7-10-

This exception is caused by a system service call with an SVC instruction.
This exception is synchronous.

programmable11SVCall

This exception is caused by the debug monitor (when not halting). This
exception is synchronous, but only active when enabled. This exception
does not activate if it is a lower priority than the current activation.

programmable12Debug Monitor

Reserved.-13-

This exception is caused by a pendable request for system service. This
exception is asynchronous and only pended by software.

programmable14PendSV

This exception is caused by the SysTick timer reaching 0, when it is
enabled to generate an interrupt. This exception is asynchronous.

programmable15SysTick

This exception is caused by interrupts asserted from outside the ARM
Cortex-M3 core and fed through the NVIC (prioritized). These exceptions
are all asynchronous. Table 4-2 on page 76 lists the interrupts on the
LM3S9B92 controller.

programmable16 and
above

Interrupts

a. 0 is the default priority for all the programmable priorities.

Table 4-2. Interrupts

DescriptionInterrupt Number (Bit in
Interrupt Registers)

Vector Number

Processor exceptions-0-15

GPIO Port A016

GPIO Port B117

GPIO Port C218

GPIO Port D319

GPIO Port E420

UART0521

UART1622

SSI0723

I2C0824

PWM Fault925

PWM Generator 01026

PWM Generator 11127

PWM Generator 21228

QEI01329

ADC0 Sequence 01430

ADC0 Sequence 11531

ADC0 Sequence 21632

ADC0 Sequence 31733

Watchdog Timers 0 and 11834

February 24, 200976
Preliminary

Interrupts

DescriptionInterrupt Number (Bit in
Interrupt Registers)

Vector Number

Timer 0A1935

Timer 0B2036

Timer 1A2137

Timer 1B2238

Timer 2A2339

Timer 2B2440

Analog Comparator 02541

Analog Comparator 12642

Analog Comparator 22743

System Control2844

Flash Control2945

GPIO Port F3046

GPIO Port G3147

GPIO Port H3248

UART23349

SSI13450

Timer 3A3551

Timer 3B3652

I2C13753

QEI13854

CAN03955

CAN14056

Reserved4157

Ethernet Controller4258

Reserved4359

USB4460

PWM Generator 34561

µDMA Software4662

µDMA Error4763

ADC1 Sequence 04864

ADC1 Sequence 14965

ADC1 Sequence 25066

ADC1 Sequence 35167

I2S05268

EPI5369

GPIO Port J5470

Reserved5571

77February 24, 2009
Preliminary

LM3S9B92 Microcontroller

5 JTAG Interface
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface
for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR)
can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing
information on the components. The JTAG Port also provides a means of accessing and controlling
design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of four pins: TCK, TMS, TDI, and TDO. Data is transmitted serially into
the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent
on the current state of the TAP controller. For detailed information on the operation of the JTAG
port and TAP controller, please refer to the IEEE Standard 1149.1-Test Access Port and
Boundary-Scan Architecture.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3
core by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the
ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO output.
The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive
programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

The Stellaris® JTAG module has the following features:

■ IEEE 1149.1-1990 compatible Test Access Port (TAP) controller

■ Four-bit Instruction Register (IR) chain for storing JTAG instructions

■ IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST

■ ARM additional instructions: APACC, DPACC and ABORT

■ Integrated ARM Serial Wire Debug (SWD)

– Serial Wire JTAG Debug Port (SWJ-DP)

– Flash Patch and Breakpoint (FPB) unit for implementing breakpoints

– Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources,
and system profiling

– Instrumentation Trace Macrocell (ITM) for support of printf style debugging

– Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer

See the ARM® Cortex™-M3 Technical Reference Manual for more information on the ARM JTAG
controller.

February 24, 200978
Preliminary

JTAG Interface

5.1 Block Diagram

Figure 5-1. JTAG Module Block Diagram

Instruction Register (IR)

TAP Controller

BYPASS Data Register

Boundary Scan Data Register

IDCODE Data Register

ABORT Data Register

DPACC Data Register

APACC Data Register

TCK
TMS

TDI

TDO

Cortex-M3
Debug
Port

5.2 Functional Description
A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 79. The JTAG
module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel
update registers. The TAP controller is a simple state machine controlled by the TCK and TMS inputs.
The current state of the TAP controller depends on the sequence of values captured on TMS at the
rising edge of TCK. The TAP controller determines when the serial shift chains capture new data,
shift data from TDI towards TDO, and update the parallel load registers. The current state of the
TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register
(DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR)
chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load
register determines which DR chain is captured, shifted, or updated during the sequencing of the
TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not
capture, shift, or update any of the chains. Instructions that are not implemented decode to the
BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see
Table 5-2 on page 85 for a list of implemented instructions).

See “JTAG and Boundary Scan” on page 1001 for JTAG timing diagrams.

Note: Of all the possible reset sources, only Power-On reset (POR) and the assertion of the RST
input have any effect on the JTAG module. The pin configurations are reset by both the

79February 24, 2009
Preliminary

LM3S9B92 Microcontroller

RST input and POR, whereas the internal JTAG logic is only reset with POR. See “Reset
Sources” on page 90 for more information on reset.

5.2.1 JTAG Interface Pins
The JTAG interface consists of four standard pins: TCK, TMS, TDI, and TDO. These pins and their
associated state after a power-on reset or reset caused by the RST input are given in Table 5-1.
Detailed information on each pin follows. Refer to “General-Purpose Input/Outputs (GPIOs)” on page
291 for information on how to reprogram the configuration of these pins.

Table 5-1. JTAG Port Pins State after Power-On Reset or RST assertion

Drive ValueDrive StrengthInternal Pull-DownInternal Pull-UpData DirectionPin Name

N/AN/ADisabledEnabledInputTCK

N/AN/ADisabledEnabledInputTMS

N/AN/ADisabledEnabledInputTDI

High-Z2-mA driverDisabledEnabledOutputTDO

5.2.1.1 Test Clock Input (TCK)
The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate
independently of any other system clocks and to ensure that multiple JTAG TAP controllers that
are daisy-chained together can synchronously communicate serial test data between components.
During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When
necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0
or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data
Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset, assuring that no clocking
occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors
can be turned off to save internal power as long as the TCK pin is constantly being driven by an
external source (see page 317 and page 319).

5.2.1.2 Test Mode Select (TMS)
The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge
of TCK. Depending on the current TAP state and the sampled value of TMS, the next state may be
entered. Because the TMS pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1
expects the value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the
Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG
module and associated registers are reset to their default values. This procedure should be performed
to initialize the JTAG controller. The JTAG Test Access Port state machine can be seen in its entirety
in Figure 5-2 on page 82.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled
on PC1/TMS; otherwise JTAG communication could be lost (see page 317).

5.2.1.3 Test Data Input (TDI)
The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is
sampled on the rising edge of TCK and, depending on the current TAP state and the current
instruction, may present this data to the proper shift register chain. Because the TDI pin is sampled

February 24, 200980
Preliminary

JTAG Interface

on the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TDI to change on the
falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled
on PC2/TDI; otherwise JTAG communication could be lost (see page 317).

5.2.1.4 Test Data Output (TDO)
The TDO pin provides an output stream of serial information from the IR chain or the DR chains.
The value of TDO depends on the current TAP state, the current instruction, and the data in the
chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin
is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected
to the TDI of another controller in a daisy-chain configuration, the IEEE Standard 1149.1 expects
the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset, assuring that the pin
remains at a constant logic level when the JTAG port is not being used. The internal pull-up and
pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable
during certain TAP controller states (see page 317 and page 319).

5.2.2 JTAG TAP Controller
The JTAG TAP controller state machine is shown in Figure 5-2. The TAP controller state machine
is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR). In order to reset
the JTAG module after the microcontroller has been powered on, the TMS input must be held HIGH
for five TCK clock cycles, resetting the TAP controller and all associated JTAG chains. Asserting
the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in
data, or idle during extended testing sequences. For detailed information on the function of the TAP
controller and the operations that occur in each state, please refer to IEEE Standard 1149.1.

81February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 5-2. Test Access Port State Machine

Test Logic Reset

Run Test Idle Select DR Scan Select IR Scan

Capture DR Capture IR

Shift DR Shift IR

Exit 1 DR Exit 1 IR

Exit 2 DR Exit 2 IR

Pause DR Pause IR

Update DR Update IR

1 11

1 1

1

1 1

1 1

1 1

1 1

1 10 0

00

00

0 0

0 0

0 0

00

0

0

5.2.3 Shift Registers
The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift
register chain samples specific information during the TAP controller’s CAPTURE states and allows
this information to be shifted out on TDO during the TAP controller’s SHIFT states. While the sampled
data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register
on TDI. This new data is stored in the parallel load register during the TAP controller’s UPDATE
states. Each of the shift registers is discussed in detail in “Register Descriptions” on page 85.

5.2.4 Operational Considerations
Certain operational parameters must be considered when using the JTAG module. Because the
JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these
pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire
Debug, the method for switching between these two operational modes is described below.

February 24, 200982
Preliminary

JTAG Interface

5.2.4.1 GPIO Functionality
When the microcontroller is reset with either a POR or RST, the JTAG/SWD port pins default to their
JTAG/SWD configurations. The default configuration includes enabling digital functionality (DEN[3:0]
set in thePort CGPIODigital Enable (GPIODEN) register), enabling the pull-up resistors (PUE[3:0]
set in the Port C GPIO Pull-Up Select (GPIOPUR) register) and enabling the alternate hardware
function (AFSEL[3:0] set in the Port C GPIO Alternate Function Select (GPIOAFSEL) register)
on the JTAG/SWD pins. See page 321, page 317 and page 311.

It is possible for software to configure these pins as GPIOs after reset by clearing AFSEL[3:0] in
the Port C GPIOAFSEL register. If the user does not require the JTAG/SWD port for debugging or
board-level testing, this provides four more GPIOs for use in the design.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the
controller before the JTAG pin functionality switches. As a result, the debugger may be locked out of
the part. This issue can be avoided with a software routine that restores JTAG functionality based on
an external or software trigger.

The GPIO commit control registers provide a layer of protection against accidental programming of
critical hardware peripherals. Protection is currently provided for the NMI pin (PB7) and the four
JTAG/SWD pins (PC[3:0]). Writes to protected bits of theGPIOAFSEL register,GPIOPUR register,
GPIO Pull-Down Select (GPIOPDR) register (see page 319), and GPIODEN register are not
committed to storage unless theGPIO Lock (GPIOLOCK) register (see page 323) has been unlocked
and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 324) have been set.

5.2.4.2 Recovering a "Locked" Microcontroller
Note: Performing the sequence below restores the nonvolatile registers discussed in “Nonvolatile

Register Programming” on page 199 to their factory default values. The mass erase of the
Flash memory caused by the sequence below occurs prior to the nonvolatile registers being
restored.

If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate
with the debugger, there is a debug sequence that can be used to recover the microcontroller.
Performing a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the
microcontroller in reset mass erases the Flash memory. The sequence to recover the microcontroller
is:

1. Assert and hold the RST signal.

2. Perform steps 1. and 2. of the JTAG-to-SWD switch sequence on the section called
“JTAG-to-SWD Switching” on page 84.

3. Perform steps 1. and 2. of the SWD-to-JTAG switch sequence on the section called
“SWD-to-JTAG Switching” on page 84.

4. Perform steps 1. and 2. of the JTAG-to-SWD switch sequence.

5. Perform steps 1. and 2. of the SWD-to-JTAG switch sequence.

6. Perform steps 1. and 2. of the JTAG-to-SWD switch sequence.

7. Perform steps 1. and 2. of the SWD-to-JTAG switch sequence.

83February 24, 2009
Preliminary

LM3S9B92 Microcontroller

8. Perform steps 1. and 2. of the JTAG-to-SWD switch sequence.

9. Perform steps 1. and 2. of the SWD-to-JTAG switch sequence.

10. Perform steps 1. and 2. of the JTAG-to-SWD switch sequence.

11. Perform steps 1. and 2. of the SWD-to-JTAG switch sequence.

12. Release the RST signal.

13. Wait 400 ms.

14. Power-cycle the microcontroller.

5.2.4.3 ARM Serial Wire Debug (SWD)
In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire
debugger must be able to connect to the Cortex-M3 core without having to perform, or have any
knowledge of, JTAG cycles. This integration is accomplished with a SWD preamble that is issued
before the SWD session begins.

The switching preamble used to enable the SWD interface of the SWJ-DP module starts with the
TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller
through the following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic
Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run
Test Idle, Run Test Idle, Select DR, Select IR, and Test Logic Reset states.

Stepping through this sequence of the TAP state machine enables the SWD interface and disables
the JTAG interface. For more information on this operation and the SWD interface, see the ARM®
Cortex™-M3 Technical Reference Manual and the ARM® CoreSight Technical Reference Manual.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG
TAP controller is not fully compliant to the IEEE Standard 1149.1. This instance is the only one
where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to
the low probability of this sequence occurring during normal operation of the TAP controller, it should
not affect normal performance of the JTAG interface.

JTAG-to-SWD Switching

To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the
external debug hardware must send the switching preamble to the microcontroller. The 16-bit TMS
command for switching to SWD mode is defined as b1110.0111.1001.1110, transmitted LSB first.
This command can also be represented as 0xE79Ewhen transmitted LSB first. The complete switch
sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that both JTAG and SWD
are in their reset/idle states.

2. Send the 16-bit JTAG-to-SWD switch command, 0xE79E, on TMS.

3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that if SWJ-DP was already
in SWD mode, the SWD goes into the line reset state before sending the switch sequence.

SWD-to-JTAG Switching

To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the
external debug hardware must send a switch command to the microcontroller. The 16-bit TMS

February 24, 200984
Preliminary

JTAG Interface

command for switching to JTAG mode is defined as b1110.0111.0011.1100, transmitted LSB first.
This command can also be represented as 0xE73C when transmitted LSB first. The complete switch
sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that both JTAG and SWD
are in their reset/idle states.

2. Send the 16-bit SWD-to-JTAG switch command, 0xE73C, on TMS.

3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that if SWJ-DP was already
in JTAG mode, the JTAG goes into the Test Logic Reset state before sending the switch
sequence.

5.3 Initialization and Configuration
After a Power-On-Reset or an external reset (RST), the JTAG pins are automatically configured for
JTAG communication. No user-defined initialization or configuration is needed. However, if the user
application changes these pins to their GPIO function, they must be configured back to their JTAG
functionality before JTAG communication can be restored. To return the pins to their JTAG functions,
enable the four JTAG pins (PC[3:0]) for their alternate function using the GPIOAFSEL register.
In addition to enabling the alternate functions, any other changes to the GPIO pad configurations
on the four JTAG pins (PC[3:0]) should be returned to their default settings.

5.4 Register Descriptions
The registers in the JTAG TAP Controller or Shift Register chains are not memory mapped and are
not accessible through the on-chip Advanced Peripheral Bus (APB). Instead, the registers within
the JTAG controller are all accessed serially through the TAP Controller. These registers include
the Instruction Register and the six Data Registers.

5.4.1 Instruction Register (IR)
The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain connected between the JTAG
TDI and TDO pins with a parallel load register. When the TAP Controller is placed in the correct
states, bits can be shifted into the IR. Once these bits have been shifted into the chain and updated,
they are interpreted as the current instruction. The decode of the IR bits is shown in Table 5-2. A
detailed explanation of each instruction, along with its associated Data Register, follows.

Table 5-2. JTAG Instruction Register Commands

DescriptionInstructionIR[3:0]

Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD
instruction onto the pads.

EXTEST0x0

Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD
instruction into the controller.

INTEST0x1

Captures the current I/O values and shifts the sampled values out of the Boundary Scan
Chain while new preload data is shifted in.

SAMPLE / PRELOAD0x2

Shifts data into the ARM Debug Port Abort Register.ABORT0x8

Shifts data into and out of the ARM DP Access Register.DPACC0xA

Shifts data into and out of the ARM AC Access Register.APACC0xB

Loads manufacturing information defined by the IEEE Standard 1149.1 into the IDCODE
chain and shifts it out.

IDCODE0xE

Connects TDI to TDO through a single Shift Register chain.BYPASS0xF

85February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionInstructionIR[3:0]

Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.ReservedAll Others

5.4.1.1 EXTEST Instruction
The EXTEST instruction is not associated with its own Data Register chain. Instead, the EXTEST
instruction uses the data that has been preloaded into the Boundary Scan Data Register using the
SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register,
the preloaded data in the Boundary Scan Data Register associated with the outputs and output
enables are used to drive the GPIO pads rather than the signals coming from the core. With tests
that drive known values out of the controller, this instruction can be used to verify connectivity. While
the EXTEST instruction is present in the Instruction Register, the Boundary Scan Data Register can
be accessed to sample and shift out the current data and load new data into the Boundary Scan
Data Register.

5.4.1.2 INTEST Instruction
The INTEST instruction is not associated with its own Data Register chain. Instead, the INTEST
instruction uses the data that has been preloaded into the Boundary Scan Data Register using the
SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register,
the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive
the signals going into the core rather than the signals coming from the GPIO pads. With tests that
drive known values into the controller, this instruction can be used for testing. It is important to note
that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable.
While the INTEST instruction is present in the Instruction Register, the Boundary Scan Data Register
can be accessed to sample and shift out the current data and load new data into the Boundary Scan
Data Register.

5.4.1.3 SAMPLE/PRELOAD Instruction
The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between
TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads
new test data. Each GPIO pad has an associated input, output, and output enable signal. When the
TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable
signals to each of the GPIO pads are captured. These samples are serially shifted out on TDO while
the TAP controller is in the Shift DR state and can be used for observation or comparison in various
tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary
Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI.
Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the
parallel load registers when the TAP controller enters the Update DR state. This update of the
parallel load register preloads data into the Boundary Scan Data Register that is associated with
each input, output, and output enable. This preloaded data can be used with the EXTEST and
INTEST instructions to drive data into or out of the controller. See “Boundary Scan Data
Register” on page 88 for more information.

5.4.1.4 ABORT Instruction
The ABORT instruction connects the associated ABORT Data Register chain between TDI and
TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates
a DAP abort of a previous request. See the “ABORT Data Register” on page 89 for more information.

February 24, 200986
Preliminary

JTAG Interface

5.4.1.5 DPACC Instruction
The DPACC instruction connects the associated DPACC Data Register chain between TDI and
TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this register and reading the data output from this
register allows read and write access to the ARM debug and status registers. See “DPACC Data
Register” on page 89 for more information.

5.4.1.6 APACC Instruction
The APACC instruction connects the associated APACC Data Register chain between TDI and
TDO. This instruction provides read and write access to the APACC Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this register and reading the data output from this
register allows read and write access to internal components and buses through the Debug Port.
See “APACC Data Register” on page 88 for more information.

5.4.1.7 IDCODE Instruction
The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and
TDO. This instruction provides information on the manufacturer, part number, and version of the
ARM core. This information can be used by testing equipment and debuggers to automatically
configure input and output data streams. IDCODE is the default instruction loaded into the JTAG
Instruction Register when a Power-On-Reset (POR) is asserted, or the Test-Logic-Reset state is
entered. See “IDCODE Data Register” on page 87 for more information.

5.4.1.8 BYPASS Instruction
The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and
TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports.
The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by
allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain
by loading them with the BYPASS instruction. See “BYPASS Data Register” on page 88 for more
information.

5.4.2 Data Registers
The JTAGmodule contains six Data Registers. These serial Data Register chains include: IDCODE,
BYPASS, Boundary Scan, APACC, DPACC, and ABORT and are discussed in the following sections.

5.4.2.1 IDCODE Data Register
The format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1 is shown in
Figure 5-3. The standard requires that every JTAG-compliant microcontroller implement either the
IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE
Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB
of 0. This definition allows auto-configuration test tools to determine which instruction is the default
instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly and program
development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE
instruction outputs a value of 0x412F.C230. This value indicates an ARM Cortex-M3, Version 1
processor and allows the debuggers to automatically configure themselves to work correctly with
the Cortex-M3 during debug.

87February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 5-3. IDCODE Register Format

Version Part Number Manufacturer ID 1

31 28 27 12 11 1 0
TDOTDI

5.4.2.2 BYPASS Data Register
The format for the 1-bit BYPASS Data Register defined by the IEEE Standard 1149.1 is shown in
Figure 5-4. The standard requires that every JTAG-compliant microcontroller implement either the
BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS
Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB
of 1. This definition allows auto-configuration test tools to determine which instruction is the default
instruction.

Figure 5-4. BYPASS Register Format

0 TDOTDI

0

5.4.2.3 Boundary Scan Data Register
The format of the Boundary Scan Data Register is shown in Figure 5-5. Each GPIO pin, starting
with a GPIO pin next to the JTAG port pins, is included in the Boundary Scan Data Register. Each
GPIO pin has three associated digital signals that are included in the chain. These signals are input,
output, and output enable, and are arranged in that order as shown in the figure. For detailed
information on the order of the input, output, and output enable bits for each of the GPIO ports and
any other pins included on the Boundary Scan Data Chain, please refer to the Stellaris® Family
Boundary Scan Description Language (BSDL) files, downloadable from www.luminarymicro.com.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the
input, output, and output enable from each digital pad are sampled and then shifted out of the chain
to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR
state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain
in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with
the EXTEST and INTEST instructions. The EXTEST instruction forces data out of the controller,
and the INTEST instruction forces data into the controller.

Figure 5-5. Boundary Scan Register Format

I
N

TDI

1st GPIO

TDO...
O
U
T

O
E

I
N

mth GPIO

O
U
T

O
E

I
N

(m+1)th GPIO

O
U
T

O
E

... I
N

GPIO nth

O
U
T

O
E

5.4.2.4 APACC Data Register
The format for the 35-bit APACC Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.

February 24, 200988
Preliminary

JTAG Interface

5.4.2.5 DPACC Data Register
The format for the 35-bit DPACC Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.

5.4.2.6 ABORT Data Register
The format for the 35-bit ABORT Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.

89February 24, 2009
Preliminary

LM3S9B92 Microcontroller

6 System Control
System control configures the overall operation of the device and provides information about the
device. Configurable features include reset control, NMI operation, power control, clock control, and
low-power modes.

6.1 Functional Description
The System Control module provides the following capabilities:

■ Device identification, see “Device Identification” on page 90

■ Local control, such as reset (see “Reset Control” on page 90), power (see “Power
Control” on page 94) and clock control (see “Clock Control” on page 94)

■ System control (Run, Sleep, and Deep-Sleep modes), see “System Control” on page 99

6.1.1 Device Identification
Several read-only registers provide software with information on the microcontroller, such as version,
part number, SRAM size, Flash size, and other features. See theDID0 (page 102),DID1 (page 131),
DC0-DC9 (page 133) and NVMSTAT (page 157) registers.

6.1.2 Reset Control
This section discusses aspects of hardware functions during reset as well as system software
requirements following the reset sequence.

6.1.2.1 Reset Sources
The LM3S9B92 microcontroller has six sources of reset:

1. External reset input pin (RST) assertion (see page 91).

2. Power-on reset (POR) (see page 91).

3. Internal brown-out (BOR) detector (see page 92).

4. Software-initiated reset (with the software reset registers) (see page 92).

5. A watchdog timer reset condition violation (see page 93).

6. MOSC failure (see page 93).

Table 6-1 provides a summary of results of the various reset operations.

Table 6-1. Reset Sources

On-Chip Peripherals Reset?JTAG Reset?Core Reset?Reset Source

YesPin Config OnlyYesRST

YesYesYesPower-On Reset

YesNoYesBrown-Out Reset

YesbNoYesaSoftware Reset

YesNoYesWatchdog Reset

February 24, 200990
Preliminary

System Control

On-Chip Peripherals Reset?JTAG Reset?Core Reset?Reset Source

YesNoYesMOSC Failure Reset

a. By using the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register
b. Programmable on a module-by-module basis using the Software Reset Control Registers.

After a reset, the Reset Cause (RESC) register is set with the reset cause. The bits in this register
are sticky and maintain their state across multiple reset sequences, except when an internal POR
is the cause, in which case, all the bits in theRESC register are cleared except for the POR indicator.
A bit in the RESC register can be cleared by writing a 0.

6.1.2.2 RST Pin Assertion
The external reset pin (RST) resets the microcontroller including the core and all the on-chip
peripherals except the JTAG TAP controller (see “JTAG Interface” on page 78). The external reset
sequence is as follows:

1. The external reset pin (RST) is asserted for the duration specified by TMIN and then de-asserted
(see “Reset” on page 1002).

2. A few clock cycles from RST de-assertion to the start of the reset sequence is necessary for
synchronization.

3. The internal reset is released and the core loads from memory the initial stack pointer, the initial
program counter, and the first instruction designated by the program counter, and then begins
execution.

The external reset timing is shown in Figure 27-6 on page 1002.

6.1.2.3 Power-On Reset (POR)
Note: The power-on reset also resets the JTAG controller. An external reset does not.

The Power-On Reset (POR) circuit monitors the power supply voltage (VDD). The POR circuit
generates a reset signal to all of the internal logic including JTAG when the power supply ramp
reaches a threshold value (VTH). If the application only uses the POR circuit, the RST input must be
connected to the power supply (VDD) through a pull-up resistor (1K to 10K Ω).

The microcontroller must be operating within the specified operating parameters when the on-chip
power-on reset pulse is complete. The 3.3-V power supply to the microcontroller must reach 3.0 V
within 10 msec of VDD crossing 2.0 V to guarantee proper operation. For applications that require
the use of an external reset signal to hold the microcontroller in reset longer than the internal POR,
the RST input may be used with the circuit as shown in Figure 6-1.

Figure 6-1. External Circuitry to Extend Reset

R1

C1
R2

RST

Stellaris
D1

91February 24, 2009
Preliminary

LM3S9B92 Microcontroller

The R1 and C1 components define the power-on delay. The R2 resistor mitigates any leakage from
the RST input. The diode (D1) discharges C1 rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

1. The microcontroller waits for both external reset (RST) and internal POR to go inactive.

2. The internal reset is released and the core loads from memory the initial stack pointer, the initial
program counter, and the first instruction designated by the program counter, and then begins
execution.

The internal POR is only active on the initial power-up of the microcontroller. The Power-On Reset
timing is shown in Figure 27-7 on page 1003.

6.1.2.4 Brown-Out Reset (BOR)
The microcontroller provides a brown-out detection circuit that triggers if the power supply (VDD)
drops below a brown-out threshold voltage (VBTH). If a brown-out condition is detected, the system
may generate an interrupt or a system reset. Brown-out resets are controlled with the Power-On
and Brown-Out Reset Control (PBORCTL) register. The BORIOR bit in the PBORCTL register
must be set for a brown-out condition to trigger a reset; if BORIOR is clear, an interrupt is generated.
The default condition is to generate an interrupt, so BOR must be enabled. When a Brown-out
condition occurs during a Flash PROGRAM or ERASE operation, a full system reset is always
triggered without regard to the setting in the PBORCTL register.

The result of a brown-out reset is equivalent to that of an assertion of the external RST input, and
the reset is held active until the proper VDD level is restored. The RESC register can be examined
in the reset interrupt handler to determine if a Brown-Out condition was the cause of the reset, thus
allowing software to determine what actions are required to recover.

The internal Brown-Out Reset timing is shown in Figure 27-8 on page 1003.

6.1.2.5 Software Reset
Software can reset a specific peripheral or generate a reset to the entire microcontroller.

Peripherals can be individually reset by software via three registers that control reset signals to each
on-chip peripheral (see the SRCRn registers, see page 188). If the bit position corresponding to a
peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers
is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see
“System Control” on page 99).

The entire microcontroller including the core can be reset by software by setting the SYSRESETREQ
bit in the Cortex-M3 Application Interrupt and Reset Control register. The software-initiated system
reset sequence is as follows:

1. A software microcontroller reset is initiated by setting the SYSRESETREQ bit in the ARM
Cortex-M3 Application Interrupt and Reset Control register.

2. An internal reset is asserted.

3. The internal reset is deasserted and the microcontroller loads from memory the initial stack
pointer, the initial program counter, and the first instruction designated by the program counter,
and then begins execution.

The software-initiated system reset timing is shown in Figure 27-9 on page 1003.

February 24, 200992
Preliminary

System Control

6.1.2.6 Watchdog Timer Reset
The Watchdog Timer module's function is to prevent system hangs. The LM3S9B92 microcontroller
has two Watchdog Timer modules in case one watchdog clock source fails. One watchdog is run
off the system clock and the other is run off the Precision Internal Oscillator (PIOSC). Each module
operates in the samemanner except that because the PIOSCwatchdog timer module is in a different
clock domain, register accesses must have a time delay between them. The watchdog timer can
be configured to generate an interrupt to the microcontroller on its first time-out and to generate a
reset on its second time-out.

After the watchdog's first time-out event, the 32-bit watchdog counter is reloaded with the value of
theWatchdog Timer Load (WDTLOAD) register and resumes counting down from that value. If
the timer counts down to zero again before the first time-out interrupt is cleared, and the reset signal
has been enabled, the watchdog timer asserts its reset signal to the microcontroller. The watchdog
timer reset sequence is as follows:

1. The watchdog timer times out for the second time without being serviced.

2. An internal reset is asserted.

3. The internal reset is released and the microcontroller loads frommemory the initial stack pointer,
the initial program counter, and the first instruction designated by the program counter, and
then begins execution.

For more information on the Watchdog Timer module, see “Watchdog Timer” on page 427.

The watchdog reset timing is shown in Figure 27-10 on page 1003.

6.1.3 Non-Maskable Interrupt
The microcontroller has two sources of non-maskable interrupt (NMI):

■ The assertion of the NMI signal

■ A main oscillator verification error

If both sources of NMI are enabled, software must check that the main oscillator verification is the
cause of the interrupt in order to distinguish between the two sources.

6.1.3.1 NMI Pin
The alternate function to GPIO port pin B7 is an NMI signal. The alternate function must be enabled
in the GPIO for the signal to be used as an interrupt, as described in “General-Purpose Input/Outputs
(GPIOs)” on page 291. Note that enabling the NMI alternate function requires the use of the GPIO
lock and commit function just like the GPIO port pins associated with JTAG/SWD functionality, see
page 324. The active sense of the NMI signal is High; asserting the enabled NMI signal above VIH
initiates the NMI interrupt sequence.

6.1.3.2 Main Oscillator Verification Failure
The LM3S9B92 microcontroller provides a main oscillator verification circuit that generates an error
condition if the oscillator is running too fast or two slow. The main oscillator verification circuit can
be programmed to generate a reset event, at which time a Power-on Reset is generated and control
is transferred to the NMI handler. The NMI handler is used to address the main oscillator verification
failure because the necessary code can be removed from the general reset handler, speeding up
reset processing. The detection circuit is enabled by setting the CVAL bit in the Main Oscillator

93February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Control (MOSCCTL) register. The main oscillator verification error is indicated in the main oscillator
fail status (MOSCFAIL) bit in theReset Cause (RESC) register. The main oscillator verification circuit
action is described in more detail in “Main Oscillator Verification Circuit” on page 98.

6.1.4 Power Control
The Stellaris® microcontroller provides an integrated LDO regulator that may be used to provide
power to the majority of the microcontroller's internal logic. For power reduction, a non-programmable
LDO may be used to scale the microcontroller’s 3.3 V input voltage to 1.2V. The voltage output has
a minimum voltage of 1.08 V and a maximum of 1.35 V. The LDO delivers up to 60 ma.

Figure 6-2 shows the power architecture.

Note: On the printed circuit board, use the LDO output as the source of VDDC input. In addition,
the LDO requires decoupling capacitors. See “On-Chip Low Drop-Out (LDO) Regulator
Characteristics” on page 994.

Figure 6-2. Power Architecture

Analog circuits
(ADC, analog
comparators)

I/O Buffers

Low-noise
LDO

Internal
Logic and PLL

GND

GNDA

GNDA

VDDA

VDDA

VDDC

VDDC

LDO

+3.3V

GND

GND

GNDVDD

VDD

6.1.5 Clock Control
System control determines the control of clocks in this part.

February 24, 200994
Preliminary

System Control

6.1.5.1 Fundamental Clock Sources
There are multiple clock sources for use in the microcontroller:

■ Precision Internal Oscillator (PIOSC). The precision internal oscillator is an on-chip clock
source. It does not require the use of any external components.]The PIOSC provides a clock
that is 16 MHz ±1% at room temperature and ±3% across temperature. Applications that do not
depend on highly accurate clock sources may use this clock source to reduce system cost. The
precision internal oscillator is the clock source the microcontroller uses during and following
POR. If the main oscillator is required, software must enable the main oscillator following reset
and allow the main oscillator to stabilize before changing the clock reference.

■ Main Oscillator (MOSC). The main oscillator provides a frequency-accurate clock source by
one of two means: an external single-ended clock source is connected to the OSC0 input pin, or
an external crystal is connected across the OSC0 input and OSC1 output pins. If the PLL is being
used, the crystal value must be one of the supported frequencies between 3.579545MHz through
16.384 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported
frequencies between 1 MHz and 16.384 MHz. The single-ended clock source range is from DC
through the specified speed of the microcontroller. The supported crystals are listed in the XTAL
bit field in the RCC register (see page 113).

■ Internal 30-kHz Oscillator. The internal 30-kHz oscillator is similar to the internal oscillator,
except that it provides an operational frequency of 30 kHz ± 50%. It is intended for use during
Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal
switching and also allows the main oscillator to be powered down.

The internal system clock (SysClk), is derived from any of the above sources plus two others: the
output of the main internal PLL and the precision internal oscillator divided by four (4 MHz ± 1%).
The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 16.384 MHz
(inclusive). Table 6-2 on page 95 shows how the various clock sources can be used in a system.

Table 6-2. Clock Source Options

Used as SysClk?Drive PLL?Clock Source

BYPASS = 1, OSCSRC = 0x1YesBYPASS = 0, OSCSRC = 0x1YesPrecision Internal Oscillator

BYPASS = 1, OSCSRC = 0x2YesBYPASS = 1NoInternal Oscillator divide by 4 (4 MHz ± 1%)

BYPASS = 1, OSCSRC = 0x0YesBYPASS = 0, OSCSRC = 0x0YesMain Oscillator

BYPASS = 1, OSCSRC = 0x3YesBYPASS = 1NoInternal 30-kHz Oscillator

The Run-Mode Clock Configuration (RCC) and Run-Mode Clock Configuration 2 (RCC2)
registers provide control for the system clock. The RCC2 register is provided to extend fields that
offer additional encodings over the RCC register. When used, the RCC2 register field values are
used by the logic over the corresponding field in the RCC register. In particular, RCC2 provides for
a larger assortment of clock configuration options.

Figure 6-3 shows the logic for the main clock tree. The peripheral blocks are driven by the system
clock signal and can be individually enabled/disabled. The ADC clock signal is automatically divided
down to 16 MHz for proper ADC operation. The PWM clock signal is a synchronous divide of the
system clock to provide the PWM circuit with more range (set with PWMDIV in RCC).

95February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 6-3. Main Clock Tree

USB PLL
(240 MHz)

÷ 4

PLL
(400 MHz)Main OSC

Precision
Internal OSC
(16 MHz)

Internal OSC
(30 kHz)

÷ 4

÷ 25

PWRDN

ADC Clock

System Clock

USB Clock

XTALa
USBPWRDNc

MOSCDIS a

IOSCDISa

SYSDIVb,d,e

USESYSDIVa,d

PWMDW a

USEPWMDIV a

PWM Clock

a. Control provided by RCC register bit/field.
b. Control provided by RCC register bit/field or RCC2 register bit/field, if overridden with RCC2 register bit USERCC2.
c. Control provided by RCC2 register bit/field.
d. Also may be controlled by DSLPCLKCFG when in deep sleep mode.
e. The USEFRACT and FRACT bit fields can also be used to influence the system clock for clock frequencies greater
than 50 MHz..

HIB Clock
Source

(4.19 MHz)

Hibernation
Module

(32.768 kHz)

OSCSRCb,d

BYPASS b,d

XTALa
PWRDN b

÷ 2

RXINT
RXFRAC

TXINT
TXFRAC

I2S Receive MCLK

I2S Transmit MCLK

Note: The figure above shows all features available on all Stellaris® Tempest-class microcontrollers.

6.1.5.2 Crystal Configuration for the Main Oscillator (MOSC)
The main oscillator supports the use of a select number of crystals. If the main oscillator is used by
the PLL as a reference clock, the supported range of crystals is 3.579545 to 16.384 MHz, otherwise,
the range of supported crystals is 1 to 16.384 MHz.

February 24, 200996
Preliminary

System Control

The XTAL bit in the RCC register (see page 113) describes the available crystal choices and default
programming values.

Software configures the RCC register XTAL field with the crystal number. If the PLL is used in the
design, the XTAL field value is internally translated to the PLL settings. Table 27-11 on page 999
shows the actual PLL frequency and error for a given crystal choice.

6.1.5.3 Main PLL Frequency Configuration
The main PLL is disabled by default during power-on reset and is enabled later by software if
required. Software specifies the output divisor to set the system clock frequency and enables the
main PLL to drive the output.

If the main oscillator provides the clock reference to the main PLL, the translation provided by
hardware and used to program the PLL is available for software in the XTAL to PLL Translation
(PLLCFG) register (see page 118). The internal translation provides a translation within ± 1% of the
targeted PLL VCO frequency.

The Crystal Value field (XTAL) in theRun-Mode Clock Configuration (RCC) register (see page 113)
describes the available crystal choices and default programming of the PLLCFG register. Any time
the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

The microcontroller powers up with the PIOSC running. To configure the PIOSC to be the clock
source for the main PLL, program the OSCRC2 field in theRun-Mode Clock Configuration 2 (RCC2)
register to be 0x1. If another clock source is desired, the PIOSC can be powered down by setting
the IOSCDIS bit in the RCC register.

The PIOSC generates a 16 MHz clock with a ±1% accuracy at room temperatures. Across the
extended temperature range, the accuracy is ±3%. At the factory, the PIOSC is set to 16 MHz at
room temperature, however, the frequency can be trimmed for other voltage or temperature conditions
using software in one of two ways:

■ Default calibration: clear the UTEN bit and set the UPDATE bit in the Precision Internal Oscillator
Calibration (PIOSCCAL) register.

■ User-defined calibration: The user can program the UT value to adjust the PIOSC frequency. As
the UT value increases, the generated period increases. To commit a new UT value, first set the
UTEN bit, then program the UT field, and then set the UPDATE bit. The adjustment finishes within
a few clock periods and is glitch free.

6.1.5.4 USB PLL Frequency Configuration
The USB PLL is disabled by default during power-on reset and is enabled later by software. The
USB PLLmust be enabled and running for proper USB function. The main oscillator is the only clock
reference for the USB PLL. The USB PLL is enabled by clearing the USBPWRDN bit of the RCC2
register. The XTAL bit field (Crystal Value) of theRCC register describes the available crystal choices.
The main oscillator must be connected to one of the following crystal values in order to correctly
generate the USB clock: 4, 5, 6, 8, 10, 12, or 16 MHz. Only these crystals provide the necessary
USB PLL VCO frequency to conform with the USB timing specifications.

6.1.5.5 PLL Modes
Both PLLs have two modes of operation: Normal and Power-Down

■ Normal: The PLL multiplies the input clock reference and drives the output.

■ Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

97February 24, 2009
Preliminary

LM3S9B92 Microcontroller

The modes are programmed using the RCC/RCC2 register fields (see page 113 and page 121).

6.1.5.6 PLL Operation
If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks)
to the new setting. The time between the configuration change and relock is TREADY (see Table
27-10 on page 999). During the relock time, the affected PLL is not usable as a clock reference.

Either PLL is changed by one of the following:

■ Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.

■ Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the TREADY requirement. The counter is clocked by the main
oscillator. The range of the main oscillator has been taken into account and the down counter is set
to 0x1200 (that is, ~600 μs at an 8.192 MHz external oscillator clock). When the XTAL value is
greater than 0x0F, the down counter is set to 0x2400 to maintain the required lock time on higher
frequency crystal inputs. Hardware is provided to keep the PLL from being used as a system clock
until the TREADY condition is met after one of the two changes above. It is the user's responsibility
to have a stable clock source (like the main oscillator) before the RCC/RCC2 register is switched
to use the PLL.

If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system
control hardware continues to clock the microcontroller from the oscillator selected by theRCC/RCC2
register until the main PLL is stable (TREADY time met), after which it changes to the PLL. Software
can use many methods to ensure that the system is clocked from the main PLL, including periodically
polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register, and enabling the PLL Lock
interrupt.

The USB PLL is not protected during the lock time (TREADY), and software should ensure that the
USB PLL has locked before using the interface. Software can use many methods to ensure the
TREADY period has passed, including periodically polling the USBPLLLRIS bit in the Raw Interrupt
Status (RIS) register, and enabling the USB PLL Lock interrupt.

6.1.5.7 Main Oscillator Verification Circuit
The clock control includes circuitry to ensure that the main oscillator is running at the appropriate
frequency. The circuit monitors the main oscillator frequency and signals if the frequency is outside
of the allowable band of attached crystals.

The detection circuit is enabled using the CVAL bit in the Main Oscillator Control (MOSCCTL)
register. If this circuit is enabled and detects an error, the following sequence is performed by the
hardware:

1. The MOSCFAIL bit in the Reset Cause (RESC) register is set.

2. If the internal oscillator (PIOSC) is disabled, it is enabled.

3. The system clock is switched from the main oscillator to the PIOSC.

4. An internal power-on reset is initiated that lasts for 32 PIOSC periods.

5. Reset is de-asserted and the processor is directed to the NMI handler during the reset sequence.

February 24, 200998
Preliminary

System Control

6.1.6 System Control
For power-savings purposes, the RCGCn, SCGCn, and DCGCn registers control the clock gating
logic for each peripheral or block in the system while the microcontroller is in Run, Sleep, and
Deep-Sleep mode, respectively. The DC1 , DC2 and DC4 registers act as a write mask for the
RCGCn , SCGCn, and DCGCn registers.

There are three levels of operation for the microcontroller defined as:

■ RunMode. In Run mode, the microcontroller actively executes code. Run mode provides normal
operation of the processor and all of the peripherals that are currently enabled by the RCGCn
registers. The system clock can be any of the available clock sources including the PLL.

■ Sleep Mode. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the
processor and the memory subsystem are not clocked and therefore no longer execute code.
Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for Interrupt) instruction.
Any properly configured interrupt event in the system brings the processor back into Run mode.
See the system control NVIC section of the ARM® Cortex™-M3 Technical Reference Manual
for more details.

Peripherals are clocked that are enabled in the SCGCn register when auto-clock gating is enabled
(see theRCC register) or theRCGCn register when the auto-clock gating is disabled. The system
clock has the same source and frequency as that during Run mode.

■ Deep-Sleep Mode. In Deep-Sleep mode, the clock frequency of the active peripherals may
change (depending on the Run mode clock configuration) in addition to the processor clock being
stopped. An interrupt returns the microcontroller to Run mode from one of the sleep modes; the
sleep modes are entered on request from the code. Deep-Sleep mode is entered by first writing
the Deep Sleep Enable bit in the ARMCortex-M3 NVIC system control register and then executing
a WFI instruction. Any properly configured interrupt event in the system brings the processor
back into Run mode. See the system control NVIC section of the ARM® Cortex™-M3 Technical
Reference Manual for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are
clocked that are enabled in theDCGCn register when auto-clock gating is enabled (see theRCC
register) or the RCGCn register when auto-clock gating is disabled. The system clock source is
the main oscillator by default or the internal oscillator specified in the DSLPCLKCFG register if
one is enabled. When the DSLPCLKCFG register is used, the internal oscillator is powered up,
if necessary, and the main oscillator is powered down. If the PLL is running at the time of the
WFI instruction, hardware powers the PLL down and overrides the SYSDIV field of the active
RCC/RCC2 register, to be determined by the DSDIVORIDE setting in theDSLPCLKCFG register,
up to /16 or /64 respectively. When the Deep-Sleep exit event occurs, hardware brings the system
clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling
the clocks that had been stopped during the Deep-Sleep duration. If the PIOSC is used as the
PLL reference clock source, it may continue to provide the clock during Deep-Sleep. See page 125.

6.2 Initialization and Configuration
The PLL is configured using direct register writes to the RCC/RCC2 register. If the RCC2 register
is being used, the USERCC2 bit must be set and the appropriate RCC2 bit/field is used. The steps
required to successfully change the PLL-based system clock are:

1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS
bit in the RCC register, thereby configuring the microcontroller to run off a “raw” clock source

99February 24, 2009
Preliminary

LM3S9B92 Microcontroller

and allowing for the new PLL configuration to be validated before switching the system clock
to the PLL.

2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in
RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the
appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.

3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The
SYSDIV field determines the system frequency for the microcontroller.

4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.

5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

6.3 Register Map
Table 6-3 on page 100 lists the System Control registers, grouped by function. The offset listed is a
hexadecimal increment to the register’s address, relative to the System Control base address of
0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or
internal use by Luminary Micro, Inc. Software should not modify any reserved memory
address.

Additional Flash and ROM registers defined in the System Control register space are
described in the “Internal Memory” on page 195.

Table 6-3. System Control Register Map

See
pageDescriptionResetTypeNameOffset

102Device Identification 0-RODID00x000

131Device Identification 1-RODID10x004

133Device Capabilities 00x017F.007FRODC00x008

134Device Capabilities 1-RODC10x010

137Device Capabilities 20x570F.5337RODC20x014

140Device Capabilities 30xBFFF.B6FFRODC30x018

143Device Capabilities 40x5000.F1FFRODC40x01C

145Device Capabilities 50x0F30.00FFRODC50x020

147Device Capabilities 60x0000.0013RODC60x024

148Device Capabilities 70xFFFF.FFFFRODC70x028

152Device Capabilities 8 ADC Channels0xFFFF.FFFFRODC80x02C

104Brown-Out Reset Control0x0000.7FFDR/WPBORCTL0x030

188Software Reset Control 00x00000000R/WSRCR00x040

190Software Reset Control 10x00000000R/WSRCR10x044

193Software Reset Control 20x00000000R/WSRCR20x048

February 24, 2009100
Preliminary

System Control

See
pageDescriptionResetTypeNameOffset

105Raw Interrupt Status0x0000.0000RORIS0x050

107Interrupt Mask Control0x0000.0000R/WIMC0x054

109Masked Interrupt Status and Clear0x0000.0000R/W1CMISC0x058

111Reset Cause-R/WRESC0x05C

113Run-Mode Clock Configuration0x078E.3AD1R/WRCC0x060

118XTAL to PLL Translation-ROPLLCFG0x064

119GPIO Host-Bus Control0x0000.0000R/WGPIOHBCTL0x06C

121Run-Mode Clock Configuration 20x0780.6810R/WRCC20x070

124Main Oscillator Control0x0000.0000R/WMOSCCTL0x07C

158Run Mode Clock Gating Control Register 00x00000040R/WRCGC00x100

167Run Mode Clock Gating Control Register 10x00000000R/WRCGC10x104

179Run Mode Clock Gating Control Register 20x00000000R/WRCGC20x108

161Sleep Mode Clock Gating Control Register 00x00000040R/WSCGC00x110

171Sleep Mode Clock Gating Control Register 10x00000000R/WSCGC10x114

182Sleep Mode Clock Gating Control Register 20x00000000R/WSCGC20x118

164Deep Sleep Mode Clock Gating Control Register 00x00000040R/WDCGC00x120

175Deep-Sleep Mode Clock Gating Control Register 10x00000000R/WDCGC10x124

185Deep Sleep Mode Clock Gating Control Register 20x00000000R/WDCGC20x128

125Deep Sleep Clock Configuration0x0780.0000R/WDSLPCLKCFG0x144

127Deep Sleep Flash Configuration0x0000.0000R/WDSFLASHCFG0x14C

128Precision Internal Oscillator Calibration0x0000.0000R/WPIOSCCAL0x150

129I2S MCLK Configuration0x0000.0000R/WI2SMCLKCFG0x170

155Device Capabilities 9 ADC Digital Comparators0x00FF.00FFRODC90x190

157Non-Volatile Memory Information0x0000.0001RONVMSTAT0x1A0

6.4 Register Descriptions
All addresses given are relative to the System Control base address of 0x400F.E000.

101February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: Device Identification 0 (DID0), offset 0x000
This register identifies the version of the microcontroller.

Device Identification 0 (DID0)
Base 0x400F.E000
Offset 0x000
Type RO, reset -

16171819202122232425262728293031

CLASSreservedVERreserved

ROROROROROROROROROROROROROROROROType
0010000000001000Reset

0123456789101112131415

MINORMAJOR

ROROROROROROROROROROROROROROROROType
----------------Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

DID0 Version

This field defines the DID0 register format version. The version number
is numeric. The value of the VER field is encoded as follows (all other
encodings are reserved):

DescriptionValue

Second version of the DID0 register format.0x1

0x1ROVER30:28

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved27:24

Device Class

The CLASS field value identifies the internal design from which all mask
sets are generated for all microcontrollers in a particular product line.
The CLASS field value is changed for new product lines, for changes in
fab process (for example, a remap or shrink), or any case where the
MAJOR or MINOR fields require differentiation from prior microcontrollers.
The value of the CLASS field is encoded as follows (all other encodings
are reserved):

DescriptionValue

Stellaris® Tempest-class microcontrollers0x04

0x04ROCLASS23:16

February 24, 2009102
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Major Revision

This field specifies the major revision number of the microcontroller.
The major revision reflects changes to base layers of the design. The
major revision number is indicated in the part number as a letter (A for
first revision, B for second, and so on). This field is encoded as follows:

DescriptionValue

Revision A (initial device)0x0

Revision B (first base layer revision)0x1

Revision C (second base layer revision)0x2

and so on.

-ROMAJOR15:8

Minor Revision

This field specifies the minor revision number of the microcontroller.
The minor revision reflects changes to the metal layers of the design.
The MINOR field value is reset when the MAJOR field is changed. This
field is numeric and is encoded as follows:

DescriptionValue

Initial device, or a major revision update.0x0

First metal layer change.0x1

Second metal layer change.0x2

and so on.

-ROMINOR7:0

103February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030
This register is responsible for controlling reset conditions after initial power-on reset.

Brown-Out Reset Control (PBORCTL)
Base 0x400F.E000
Offset 0x030
Type R/W, reset 0x0000.7FFD

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBORIORreserved

ROR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:2

BOR Interrupt or Reset

DescriptionValue

A Brown Out Event causes an interrupt to be generated to the
interrupt controller.

0

A Brown Out Event causes a reset of the microcontroller.1

0R/WBORIOR1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009104
Preliminary

System Control

Register 3: Raw Interrupt Status (RIS), offset 0x050
This register indicates the status for system control raw interrupts. An interrupt is sent to the interrupt
controller if the corresponding bit in the Interrupt Mask Control (IMC) register is set. Writing a 1
to the corresponding bit in theMasked Interrupt Status and Clear (MISC) register clears an interrupt
status bit.

Raw Interrupt Status (RIS)
Base 0x400F.E000
Offset 0x050
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBORRISreservedPLLLRISUSBPLLLRISMOSCPUPRISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:9

MOSC Power Up Raw Interrupt Status

DescriptionValue

Sufficient time has passed for the MOSC to reach the expected
frequency. The value for this power-up time is indicated by
TMOSC_SETTLE.

1

Sufficient time has not passed for the MOSC to reach the
expected frequency.

0

This bit is cleared by writing a 1 to the MOSCPUPMIS bit in the MISC
register.

0ROMOSCPUPRIS8

USB PLL Lock Raw Interrupt Status

DescriptionValue

The USB PLL timer has reached TREADY indicating that sufficient
time has passed for the USB PLL to lock.

1

The USB PLL timer has not reached TREADY.0

This bit is cleared by writing a 1 to the USBPLLLMIS bit in the MISC
register.

0ROUSBPLLLRIS7

PLL Lock Raw Interrupt Status

DescriptionValue

The PLL timer has reached TREADY indicating that sufficient time
has passed for the PLL to lock.

1

The PLL timer has not reached TREADY.0

This bit is cleared by writing a 1 to the PLLLMIS bit in theMISC register.

0ROPLLLRIS6

105February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved5:2

Brown-Out Reset Raw Interrupt Status

DescriptionValue

A brown-out condition is currently active.1

A brown-out condition is not currently active.0

Note the BORIOR bit in the PBORCTL register must be cleared to cause
an interrupt due to a Brown Out Event.

This bit is cleared by writing a 1 to the BORMIS bit in the MISC register.

0ROBORRIS1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009106
Preliminary

System Control

Register 4: Interrupt Mask Control (IMC), offset 0x054
This register contains the mask bits for system control raw interrupts. A raw interrupt, indicated by
a bit being set in the Raw Interrupt Status (RIS) register, is sent to the interrupt controller if the
corresponding bit in this register is set.

Interrupt Mask Control (IMC)
Base 0x400F.E000
Offset 0x054
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBORIMreservedPLLLIMUSBPLLLIMMOSCPUPIMreserved

ROR/WROROROROR/WR/WR/WROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:9

MOSC Power Up Interrupt Mask

This bit controls the reporting of the MOSC power up interrupt status to
the interrupt controller.

DescriptionValue

An interrupt is sent to the interrupt controller when the
MOSCPUPRIS bit in the RIS register is set.

1

The MOSCPUPRIS interrupt is suppressed and not sent to the
interrupt controller.

0

0R/WMOSCPUPIM8

USB PLL Lock Interrupt Mask

This bit controls the reporting of the USB PLL Lock interrupt status to
the interrupt controller.

DescriptionValue

An interrupt is sent to the interrupt controller when the
USBPLLLRIS bit in the RIS register is set.

1

The USBPLLLRIS interrupt is suppressed and not sent to the
interrupt controller.

0

0R/WUSBPLLLIM7

107February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PLL Lock Interrupt Mask

This bit controls the reporting of the PLL Lock interrupt status to the
interrupt controller.

DescriptionValue

An interrupt is sent to the interrupt controller when the PLLLRIS
bit in the RIS register is set.

1

The PLLLRIS interrupt is suppressed and not sent to the
interrupt controller.

0

0R/WPLLLIM6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved5:2

Brown-Out Reset Interrupt Mask

This bit controls the reporting of the Brown-Out Reset interrupt status
to the interrupt controller.

DescriptionValue

An interrupt is sent to the interrupt controller when the BORRIS
bit in the RIS register is set.

1

The BORRIS interrupt is suppressed and not sent to the interrupt
controller.

0

0R/WBORIM1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009108
Preliminary

System Control

Register 5: Masked Interrupt Status and Clear (MISC), offset 0x058
On a read, this register gives the current masked status value of the corresponding interrupt in the
Raw Interrupt Status (RIS) register. All of the bits are R/W1C, thus writing a 1 to a bit clears the
corresponding raw interrupt bit in the RIS register (see page 105).

Masked Interrupt Status and Clear (MISC)
Base 0x400F.E000
Offset 0x058
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBORMISreservedPLLLMISUSBPLLLMISMOSCPUPMISreserved

ROR/W1CROROROROR/W1CR/W1CR/W1CROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:9

MOSC Power Up Masked Interrupt Status

DescriptionValue

When read, a 1 indicates that an unmasked interrupt was
signaled because sufficient time has passed for the MOSC PLL
to lock.

Writing a 1 to this bit clears it and also the MOSCPUPRIS bit in
the RIS register.

1

When read, a 0 indicates that sufficient time has not passed for
the MOSC PLL to lock.

A write of 0 has no effect on the state of this bit.

0

0R/W1CMOSCPUPMIS8

USB PLL Lock Masked Interrupt Status

DescriptionValue

When read, a 1 indicates that an unmasked interrupt was
signaled because sufficient time has passed for the USB PLL
to lock.

Writing a 1 to this bit clears it and also the USBPLLLRIS bit in
the RIS register.

1

When read, a 0 indicates that sufficient time has not passed for
the USB PLL to lock.

A write of 0 has no effect on the state of this bit.

0

0R/W1CUSBPLLLMIS7

109February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PLL Lock Masked Interrupt Status

DescriptionValue

When read, a 1 indicates that an unmasked interrupt was
signaled because sufficient time has passed for the PLL to lock.

Writing a 1 to this bit clears it and also the PLLLRIS bit in the
RIS register.

1

When read, a 0 indicates that sufficient time has not passed for
the PLL to lock.

A write of 0 has no effect on the state of this bit.

0

0R/W1CPLLLMIS6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved5:2

BOR Masked Interrupt Status

DescriptionValue

When read, a 1 indicates that an unmasked interrupt was
signaled because of a brown-out condition.

Writing a 1 to this bit clears it and also the BORRIS bit in the
RIS register.

1

When read, a 0 indicates that a brown-out condition has not
occurred.

A write of 0 has no effect on the state of this bit.

0

0R/W1CBORMIS1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009110
Preliminary

System Control

Register 6: Reset Cause (RESC), offset 0x05C
This register is set with the reset cause after reset. The bits in this register are sticky and maintain
their state across multiple reset sequences, except when an power-on reset is the cause, in which
case, all bits other than POR in the RESC register are cleared.

Reset Cause (RESC)
Base 0x400F.E000
Offset 0x05C
Type R/W, reset -

16171819202122232425262728293031

MOSCFAILreserved

R/WROROROROROROROROROROROROROROROType
-000000000000000Reset

0123456789101112131415

EXTPORBORWDT0SWreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
-----00000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved31:17

MOSC Failure Reset

DescriptionValue

When read, this bit indicates that the MOSC circuit was enabled
for clock validation and failed, generating a reset event.

1

When read, this bit indicates that a MOSC failure has not
generated a reset since the previous power-on reset.

Writing a 0 to this bit clears it.

0

-R/WMOSCFAIL16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:5

Watchdog Timer 1 Reset

DescriptionValue

When read, this bit indicates that Watchdog Timer 1 timed out
and generated a reset.

1

When read, this bit indicates that Watchdog Timer 1 has not
generated a reset since the previous power-on reset.

Writing a 0 to this bit clears it.

0

-R/WWDT15

111February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software Reset

DescriptionValue

When read, this bit indicates that a software reset has caused
a reset event.

1

When read, this bit indicates that a software reset has not
generated a reset since the previous power-on reset.

Writing a 0 to this bit clears it.

0

-R/WSW4

Watchdog Timer 0 Reset

DescriptionValue

When read, this bit indicates that Watchdog Timer 0 timed out
and generated a reset.

1

When read, this bit indicates that Watchdog Timer 0 has not
generated a reset since the previous power-on reset.

Writing a 0 to this bit clears it.

0

-R/WWDT03

Brown-Out Reset

DescriptionValue

When read, this bit indicates that a brown-out reset has caused
a reset event.

1

When read, this bit indicates that a brown-out reset has not
generated a reset since the previous power-on reset.

Writing a 0 to this bit clears it.

0

-R/WBOR2

Power-On Reset

DescriptionValue

When read, this bit indicates that a power-on reset has caused
a reset event.

1

When read, this bit indicates that a power-on reset has not
generated a reset.

Writing a 0 to this bit clears it.

0

-R/WPOR1

External Reset

DescriptionValue

When read, this bit indicates that an external reset (RST
assertion) has caused a reset event.

1

When read, this bit indicates that an external reset (RST
assertion) has not caused a reset event since the previous
power-on reset.

Writing a 0 to this bit clears it.

0

-R/WEXT0

February 24, 2009112
Preliminary

System Control

Register 7: Run-Mode Clock Configuration (RCC), offset 0x060
The bits in this register configure the system clock and oscillators.

Run-Mode Clock Configuration (RCC)
Base 0x400F.E000
Offset 0x060
Type R/W, reset 0x078E.3AD1

16171819202122232425262728293031

reservedPWMDIVUSEPWMDIVreservedUSESYSDIVSYSDIVACGreserved

ROR/WR/WR/WR/WROR/WR/WR/WR/WR/WR/WROROROROType
0111000111100000Reset

0123456789101112131415

MOSCDISIOSCDISreservedOSCSRCXTALBYPASSreservedPWRDNreserved

R/WR/WROROR/WR/WR/WR/WR/WR/WR/WR/WROR/WROROType
1000101101011100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:28

Auto Clock Gating

This bit specifies whether the system uses the Sleep-Mode Clock
Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock
Gating Control (DCGCn) registers if the microcontroller enters a Sleep
or Deep-Sleep mode (respectively).

DescriptionValue

The SCGCn or DCGCn registers are used to control the clocks
distributed to the peripherals when the microcontroller is in a
sleep mode. The SCGCn and DCGCn registers allows unused
peripherals to consume less power when the microcontroller is
in a sleep mode.

1

The Run-Mode Clock Gating Control (RCGCn) registers are
used when the microcontroller enters a sleep mode.

0

The RCGCn registers are always used to control the clocks in Run
mode.

0R/WACG27

113February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

System Clock Divisor

Specifies which divisor is used to generate the system clock from the
PLL output.

Although the PLL VCO frequency is 400MHz, it is predivided by 2 before
the divisor is applied.

Frequency (BYPASS=0)Divisor (BYPASS=1)Value

reservedreserved0x0

reserved/20x1

80 MHz/30x2

50 MHz/40x3

40 MHz/50x4

33.33 MHz/60x5

28.57 MHz/70x6

25 MHz/80x7

22.22 MHz/90x8

20 MHz/100x9

18.18 MHz/110xA

16.67 MHz/120xB

15.38 MHz/130xC

14.29 MHz/140xD

13.33 MHz/150xE

12.5 MHz (default)/160xF

If the SYSDIV value is less than MINSYSDIV (see page 134), and the
PLL is being used, then the MINSYSDIV value is used as the divisor.

If the PLL is not being used, the SYSDIV value can be less than
MINSYSDIV.

0xFR/WSYSDIV26:23

Enable System Clock Divider

DescriptionValue

The system clock divider is the source for the system clock. The
system clock divider is forced to be used when the PLL is
selected as the source.

1

The system clock is used undivided.0

0R/WUSESYSDIV22

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved21

Enable PWM Clock Divisor

DescriptionValue

The PWM clock divider is the source for the PWM clock.1

The system clock is the source for the PWM clock.0

0R/WUSEPWMDIV20

February 24, 2009114
Preliminary

System Control

DescriptionResetTypeNameBit/Field

PWM Unit Clock Divisor

This field specifies the binary divisor used to predivide the system clock
down for use as the timing reference for the PWM module. The rising
edge of this clock is synchronous with the system clock.

DivisorValue

/20x0

/40x1

/80x2

/160x3

/320x4

/640x5

/640x6

/64 (default)0x7

0x7R/WPWMDIV19:17

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved16:14

PLL Power Down

DescriptionValue

The PLL is powered down. Care must be taken to ensure that
another clock source is functioning and that the BYPASS bit is
set before setting this bit.

1

The PLL is operating normally.0

1R/WPWRDN13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

1ROreserved12

PLL Bypass

DescriptionValue

The system clock is derived from the OSC source.1

The system clock is the PLL output clock divided by the system
divider.

0

Note: The ADC must be clocked from the PLL or directly from a
14-MHz to 18-MHz clock source to operate properly. While
the ADC works in a 14-18 MHz range, to maintain a 1 M
sample/second rate, the ADC must be provided a 16-MHz
clock source.

1R/WBYPASS11

115February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Crystal Value

This field specifies the crystal value attached to the main oscillator. The
encoding for this field is provided below. Depending on the crystal used,
the PLL frequency may not be exactly 400 MHz. See Table
27-11 on page 999 for more information.

Frequencies that may be used with the USB interface are indicated in
the table. To function within the clocking requirements of the USB
specification, a crystal of 4, 5, 6, 8, 10, 12, or 16 MHz must be used.

Crystal Frequency (MHz)
Using the PLL

Crystal Frequency (MHz)
Not Using the PLL

Value

reserved1.0000x00

reserved1.84320x01

reserved2.0000x02

reserved2.45760x03

3.579545 MHz0x04

3.6864 MHz0x05

4 MHz (USB)0x06

4.096 MHz0x07

4.9152 MHz0x08

5 MHz (USB)0x09

5.12 MHz0x0A

6 MHz (reset value)(USB)0x0B

6.144 MHz0x0C

7.3728 MHz0x0D

8 MHz (USB)0x0E

8.192 MHz0x0F

10.0 MHz (USB)0x10

12.0 MHz (USB)0x11

12.288 MHz0x12

13.56 MHz0x13

14.31818 MHz0x14

16.0 MHz (USB)0x15

16.384 MHz0x16

0x0BR/WXTAL10:6

February 24, 2009116
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Oscillator Source

Selects the input source for the OSC. The values are:

Input SourceValue

MOSC

Main oscillator

0x0

PIOSC

Precision internal oscillator

(default)

0x1

PIOSC/4

Precision internal oscillator / 4

0x2

30 kHz

30-kHz internal oscillator

0x3

For additional oscillator sources, see the RCC2 register.

0x1R/WOSCSRC5:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:2

Precision Internal Oscillator Disable

DescriptionValue

The precision internal oscillator (PIOSC) is disabled.1

The precision internal oscillator is enabled.0

0R/WIOSCDIS1

Main Oscillator Disable

DescriptionValue

The main oscillator is disabled (default).1

The main oscillator is enabled.0

1R/WMOSCDIS0

117February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 8: XTAL to PLL Translation (PLLCFG), offset 0x064
This register provides a means of translating external crystal frequencies into the appropriate PLL
settings. This register is initialized during the reset sequence and updated anytime that the XTAL
field changes in the Run-Mode Clock Configuration (RCC) register (see page 113).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * F / (R + 1)

XTAL to PLL Translation (PLLCFG)
Base 0x400F.E000
Offset 0x064
Type RO, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RFreserved

ROROROROROROROROROROROROROROROROType
--------------00Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.0ROreserved31:14

PLL F Value

This field specifies the value supplied to the PLL’s F input.

-ROF13:5

PLL R Value

This field specifies the value supplied to the PLL’s R input.

-ROR4:0

February 24, 2009118
Preliminary

System Control

Register 9: GPIO Host-Bus Control (GPIOHBCTL), offset 0x06C
This register controls which internal bus is used to access each GPIO port. When a bit is clear, the
corresponding GPIO port is accessed across the legacy Advanced Peripheral Bus (APB) bus and
through the APB memory aperture. When a bit is set, the corresponding port is accessed across
the Advanced Host Bus (AHB) bus and through the AHB memory aperture. Each GPIO port can be
individually configured to use AHB or APB, but may be accessed only through one aperture. The
AHB bus provides better back-to-back access performance than the APB bus. The address aperture
in the memory map changes for the ports that are enabled for AHB access (see
Table 9-5 on page 299).

GPIO Host-Bus Control (GPIOHBCTL)
Base 0x400F.E000
Offset 0x06C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PORTAPORTBPORTCPORTDPORTEPORTFPORTGPORTHPORTJreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.0ROreserved31:9

Port J Advanced Host Bus

This bit defines the memory aperture for Port J.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTJ8

Port H Advanced Host Bus

This bit defines the memory aperture for Port H.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTH7

Port G Advanced Host Bus

This bit defines the memory aperture for Port G.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTG6

119February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Port F Advanced Host Bus

This bit defines the memory aperture for Port F.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTF5

Port E Advanced Host Bus

This bit defines the memory aperture for Port E.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTE4

Port D Advanced Host Bus

This bit defines the memory aperture for Port D.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTD3

Port C Advanced Host Bus

This bit defines the memory aperture for Port C.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTC2

Port B Advanced Host Bus

This bit defines the memory aperture for Port B.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTB1

Port A Advanced Host Bus

This bit defines the memory aperture for Port A.

DescriptionValue

Advanced Host Bus (AHB)1

Advanced Peripheral Bus (APB). This bus is the legacy bus.0

0R/WPORTA0

February 24, 2009120
Preliminary

System Control

Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070
This register overrides the RCC equivalent register fields when the USERCC2 bit is set, allowing the
extended capabilities of the RCC2 register to be used while also providing a means to be
backward-compatible to previous parts. The fields within the RCC2 register occupy the same bit
positions as they do within the RCC register as LSB-justified.

The SYSDIV2 field is 2 bits wider than the SYSDIV field in the RCC register so that additional larger
divisors are possible, allowing a lower system clock frequency for improved Deep Sleep power
consumption. An additional bit, FRACT, has been added as an available LSB for SYSDIV2 to provide
additional frequency choices. FRACT can be modified when USEFRACT is set. The following table
provides some examples of frequency choices using the SYSDIV2, USEFRACT and FRACT bits. The
PLL VCO frequency is 400 MHz.

Table 6-4. Examples of Possible System Clock Frequencies

FRACTUSEFRACTSYSDIV2System Clock

don't care00x0920 MHz

110x0920 MHz

don't care00x0725 MHz

don't care00x0440 MHz

010x0444.4 MHz

don't care00x0350 MHz

010x0280 MHz

Run-Mode Clock Configuration 2 (RCC2)
Base 0x400F.E000
Offset 0x070
Type R/W, reset 0x0780.6810

16171819202122232425262728293031

reservedFRACTSYSDIV2reservedUSEFRACTUSERCC2

ROROROROROROR/WR/WR/WR/WR/WR/WR/WROR/WR/WType
0000000111100000Reset

0123456789101112131415

reservedOSCSRC2reservedBYPASS2reservedPWRDN2USBPWRDNreserved

ROROROROR/WR/WR/WROROROROR/WROR/WR/WROType
0000100000010110Reset

DescriptionResetTypeNameBit/Field

Use RCC2

DescriptionValue

The RCC2 register fields override the RCC register fields.1

The RCC register fields are used, and the fields in RCC2 are
ignored.

0

0R/WUSERCC231

121February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Use FRACT

The FRACT bit adds an additional bit as the LSB to the SYSDIV2 field
allowing additional frequency choices.

DescriptionValue

The FRACT bit can be set or cleared by the software.1

The FRACT bit is forced to be set.0

0R/WUSEFRACT30

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved29

System Clock Divisor

Specifies which divisor is used to generate the system clock from the
PLL output.

Although the PLL VCO frequency is 400MHz, it is predivided by 2 before
the divisor is applied.

This field is wider than theRCC register SYSDIV field in order to provide
additional divisor values. These additional values permit the system
clock to be run at much lower frequencies during Deep Sleep mode.
For example, where theRCC register SYSDIV encoding of 1111 provides
/16, the RCC2 register SYSDIV2 encoding of 111111 provides /64.

0x0FR/WSYSDIV228:23

Fractional Divider

The FRACT bit adds an additional bit as the LSB to the SYSDIV2 field
allowing additional frequency choices.

This bit can only be set or cleared when USEFRACT is set.

0R/WFRACT22

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved21:15

Power-Down USB PLL

DescriptionValue

The USB PLL is powered down.1

The USB PLL operates normally.0

1R/WUSBPWRDN14

Power-Down PLL

DescriptionValue

The PLL is powered down.1

The PLL operates normally.0

1R/WPWRDN213

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12

February 24, 2009122
Preliminary

System Control

DescriptionResetTypeNameBit/Field

PLL Bypass

DescriptionValue

The system clock is derived from the OSC source.1

The system clock is the PLL output clock divided by the system
divider.

0

Note: The ADC must be clocked from the PLL or directly from a
14-MHz to 18-MHz clock source to operate properly. While
the ADC works in a 14-18 MHz range, to maintain a 1 M
sample/second rate, the ADC must be provided a 16-MHz
clock source.

1R/WBYPASS211

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved10:7

Oscillator Source

Selects the input source for the OSC. The values are:

DescriptionValue

MOSC

Main oscillator

0x0

PIOSC

Precision internal oscillator

0x1

PIOSC/4

Precision internal oscillator / 4

0x2

30 kHz

30-kHz internal oscillator

0x3

Reserved0x4-0x7

0x1R/WOSCSRC26:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:0

123February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: Main Oscillator Control (MOSCCTL), offset 0x07C
This register provides the ability to enable the MOSC clock verification circuit. When enabled, this
circuit monitors the frequency of the MOSC to verify that the oscillator is operating within specified
limits. If the clock goes invalid after being enabled, the microcontroller issues a power-on reset and
reboots to the NMI handler.

Main Oscillator Control (MOSCCTL)
Base 0x400F.E000
Offset 0x07C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CVALreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:1

Clock Validation for MOSC

DescriptionValue

The MOSC monitor circuit is enabled.1

The MOSC monitor circuit is disabled.0

0R/WCVAL0

February 24, 2009124
Preliminary

System Control

Register 12: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144
This register provides configuration information for the hardware control of Deep Sleep Mode.

Deep Sleep Clock Configuration (DSLPCLKCFG)
Base 0x400F.E000
Offset 0x144
Type R/W, reset 0x0780.0000

16171819202122232425262728293031

reservedDSDIVORIDEreserved

ROROROROROROROR/WR/WR/WR/WR/WR/WROROROType
0000000111100000Reset

0123456789101112131415

reservedDSOSCSRCreserved

ROROROROR/WR/WR/WROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:29

Divider Field Override

If Deep-Sleep mode is enabled when the PLL is running, the PLL is
disabled. This 6-bit field contains a system divider field that overrides
the SYSDIV field in the RCC register or the SYSDIV2 field in the RCC2
register during Deep Sleep. This divider is applied to the source selected
by the DSOSCSRC field.

DescriptionValue

reserved0x0

/20x1

/30x2

/40x3

/50x4

/60x5

/70x6

/80x7

/90x8

/100x9

/110xA

/120xB

/130xC

/140xD

/150xE

/160xF

0x0FR/WDSDIVORIDE28:23

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved22:7

125February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Clock Source

Specifies the clock source during Deep-Sleep mode.

DescriptionValue

MOSC

Use the main oscillator as the source.

0x0

Note: If the PIOSC is being used as the clock reference
for the PLL, the PIOSC is the clock source instead
of MOSC in Deep-Sleep mode.

PIOSC

Use the precision internal 16-MHz oscillator as the source.

0x1

Reserved0x2

30 kHz

Use the 30-kHz internal oscillator as the source.

0x3

Reserved0x4-0x7

0x0R/WDSOSCSRC6:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:0

February 24, 2009126
Preliminary

System Control

Register 13: Deep Sleep Flash Configuration (DSFLASHCFG), offset 0x14C
This register allows the user to force the shutdown of the Flash subsystem during all Deep-Sleep
periods. For deep-sleep periods that do not require a MOSC startup time or a PLL lock time, the
microcontroller has a lockout period of 30-120 µs for the Flash to start up after the event to exit deep
sleep has occurred.

Deep Sleep Flash Configuration (DSFLASHCFG)
Base 0x400F.E000
Offset 0x14C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

SHDWNreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:1

Flash Shutdown

DescriptionValue

The Flash subsystem is shutdown during all deep-sleep
operations.

1

The Flash subsystem is powered up during deep-sleep
operations

0

0R/WSHDWN0

127February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 14: Precision Internal Oscillator Calibration (PIOSCCAL), offset 0x150
This register provides the ability to update or recalibrate the precision internal oscillator.

Precision Internal Oscillator Calibration (PIOSCCAL)
Base 0x400F.E000
Offset 0x150
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reservedUTEN

ROROROROROROROROROROROROROROROR/WType
0000000000000000Reset

0123456789101112131415

UTreservedUPDATEreserved

R/WR/WR/WR/WR/WR/WR/WROR/WROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Use User Trim Value

DescriptionValue

The trim value in bits[6:0] of this register are used for any update
trim operation.

1

The factory calibration value is used for an update trim operation.0

0R/WUTEN31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved30:9

Update Trim

DescriptionValue

Updates the PIOSC trim value with the UT bit or the DT bit in
the PIOSCSTAT register. Used with UTEN.

1

No action.0

This bit is auto-cleared after the update.

0R/WUPDATE8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

User Trim Value

User trim value that can be loaded into the PIOSC.

Refer to “Main PLL Frequency Configuration” on page 97 for more
information on calibrating the PIOSC.

0x0R/WUT6:0

February 24, 2009128
Preliminary

System Control

Register 15: I2S MCLK Configuration (I2SMCLKCFG), offset 0x170
This register configures the receive and transmit fractional clock dividers for the for the I2S master
transmit and receive clocks (I2S0TXMCLK and I2S0RXMCLK) . Varying the integer and fractional
inputs for the clocks allows greater accuracy in hitting the target I2S clock frequencies. Refer to
“Clock Control” on page 649 for combinations of the TXI and TXF bits and the RXI and RXF bits that
provide MCLK frequencies within acceptable error limits.

I2S MCLK Configuration (I2SMCLKCFG)
Base 0x400F.E000
Offset 0x170
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

RXFRXIreservedRXEN

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROR/WType
0000000000000000Reset

0123456789101112131415

TXFTXIreservedTXEN

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

RX Clock Enable

DescriptionValue

The I2S receive clock generator is enabled.1

The I2S receive clock generator is disabled.

If the RXSLV bit in the I2S Module Configuration (I2SCFG)
register is set, then the I2S0RXMCLK must be externally
generated.

0

0R/WRXEN31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved30:28

RX Clock Integer Input

This field contains the integer input for the receive clock generator.

0x0R/WRXI27:20

RX Clock Fractional Input

This field contains the fractional input for the receive clock generator.

0x0R/WRXF19:16

TX Clock Enable

DescriptionValue

The I2S transmit clock generator is enabled.1

The I2S transmit clock generator is disabled.

If the TXSLV bit in the I2S Module Configuration (I2SCFG)
register is set, then the I2S0TXMCLK must be externally
generated.

0

0R/WTXEN15

129February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved14:12

TX Clock Integer Input

This field contains the integer input for the transmit clock generator.

0x00R/WTXI11:4

TX Clock Fractional Input

This field contains the fractional input for the transmit clock generator.

0x0R/WTXF3:0

February 24, 2009130
Preliminary

System Control

Register 16: Device Identification 1 (DID1), offset 0x004
This register identifies the device family, part number, temperature range, and package type.

Device Identification 1 (DID1)
Base 0x400F.E000
Offset 0x004
Type RO, reset -

16171819202122232425262728293031

PARTNOFAMVER

ROROROROROROROROROROROROROROROROType
0101011000001000Reset

0123456789101112131415

QUALROHSPKGTEMPreservedPINCOUNT

ROROROROROROROROROROROROROROROROType
--1-----00000010Reset

DescriptionResetTypeNameBit/Field

DID1 Version

This field defines the DID1 register format version. The version number
is numeric. The value of the VER field is encoded as follows (all other
encodings are reserved):

DescriptionValue

Second version of the DID1 register format.0x1

0x1ROVER31:28

Family

This field provides the family identification of the device within the
Luminary Micro product portfolio. The value is encoded as follows (all
other encodings are reserved):

DescriptionValue

Stellaris family of microcontollers, that is, all devices with
external part numbers starting with LM3S.

0x0

0x0ROFAM27:24

Part Number

This field provides the part number of the device within the family. The
value is encoded as follows (all other encodings are reserved):

DescriptionValue

LM3S9B920x6A

0x6AROPARTNO23:16

Package Pin Count

This field specifies the number of pins on the device package. The value
is encoded as follows (all other encodings are reserved):

DescriptionValue

100-pin package0x2

0x2ROPINCOUNT15:13

131February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:8

Temperature Range

This field specifies the temperature rating of the device. The value is
encoded as follows (all other encodings are reserved):

DescriptionValue

Commercial temperature range (0°C to 70°C)0x0

Industrial temperature range (-40°C to 85°C)0x1

Extended temperature range (-40°C to 105°C)0x2

-ROTEMP7:5

Package Type

This field specifies the package type. The value is encoded as follows
(all other encodings are reserved):

DescriptionValue

SOIC package0x0

LQFP package0x1

BGA package0x2

-ROPKG4:3

RoHS-Compliance

This bit specifies whether the device is RoHS-compliant. A 1 indicates
the part is RoHS-compliant.

1ROROHS2

Qualification Status

This field specifies the qualification status of the device. The value is
encoded as follows (all other encodings are reserved):

DescriptionValue

Engineering Sample (unqualified)0x0

Pilot Production (unqualified)0x1

Fully Qualified0x2

-ROQUAL1:0

February 24, 2009132
Preliminary

System Control

Register 17: Device Capabilities 0 (DC0), offset 0x008
This register is predefined by the part and can be used to verify features.

Device Capabilities 0 (DC0)
Base 0x400F.E000
Offset 0x008
Type RO, reset 0x017F.007F

16171819202122232425262728293031

SRAMSZ

ROROROROROROROROROROROROROROROROType
1111111010000000Reset

0123456789101112131415

FLASHSZ

ROROROROROROROROROROROROROROROROType
1111111000000000Reset

DescriptionResetTypeNameBit/Field

SRAM Size

Indicates the size of the on-chip SRAM memory.

DescriptionValue

96 KB of SRAM0x017F

0x017FROSRAMSZ31:16

Flash Size

Indicates the size of the on-chip flash memory.

DescriptionValue

256 KB of Flash0x007F

0x007FROFLASHSZ15:0

133February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 18: Device Capabilities 1 (DC1), offset 0x010
This register is predefined by the part and can be used to verify features. If any bit is clear in this
register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0
registers cannot be set.

Device Capabilities 1 (DC1)
Base 0x400F.E000
Offset 0x010
Type RO, reset -

16171819202122232425262728293031

ADC0ADC1reservedPWMreservedCAN0CAN1reservedWDT1reserved

ROROROROROROROROROROROROROROROROType
1100100011001000Reset

0123456789101112131415

JTAGSWDSWOWDT0PLLTEMPSNSreservedMPUMAXADC0SPDMAXADC1SPDMINSYSDIV

ROROROROROROROROROROROROROROROROType
111111011111----Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:29

Watchdog Timer1 Present

When set, indicates that watchdog timer 1 is present.

1ROWDT128

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:26

CAN Module 1 Present

When set, indicates that CAN unit 1 is present.

1ROCAN125

CAN Module 0 Present

When set, indicates that CAN unit 0 is present.

1ROCAN024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Module Present

When set, indicates that the PWM module is present.

1ROPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:18

ADC Module 1 Present

When set, indicates that ADC module 1 is present.

1ROADC117

ADC Module 0 Present

When set, indicates that ADC module 0 is present

1ROADC016

February 24, 2009134
Preliminary

System Control

DescriptionResetTypeNameBit/Field

System Clock Divider

Minimum 4-bit divider value for system clock. The reset value is
hardware-dependent. See the RCC register for how to change the
system clock divisor using the SYSDIV bit.

DescriptionValue

Divide VCO (400MHZ) by 5 minimum0x1

Divide VCO (400MHZ) by 2*2 + 2 = 6 minimum0x2

Specifies a 50-MHz CPU clock with a PLL divider of 4.0x3

Specifies a 25-MHz clock with a PLL divider of 8.0x7

Specifies a 20-MHz clock with a PLL divider of 10.0x9

-ROMINSYSDIV15:12

Max ADC1 Speed

This field indicates the maximum rate at which the ADC samples data.

DescriptionValue

1M samples/second0x3

0x3ROMAXADC1SPD11:10

Max ADC0 Speed

This field indicates the maximum rate at which the ADC samples data.

DescriptionValue

1M samples/second0x3

0x3ROMAXADC0SPD9:8

MPU Present

When set, indicates that the Cortex-M3 Memory Protection Unit (MPU)
module is present. See the ARMCortex-M3 Technical ReferenceManual
for details on the MPU.

1ROMPU7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved6

Temp Sensor Present

When set, indicates that the on-chip temperature sensor is present.

1ROTEMPSNS5

PLL Present

When set, indicates that the on-chip Phase Locked Loop (PLL) is
present.

1ROPLL4

Watchdog Timer 0 Present

When set, indicates that watchdog timer 0 is present.

1ROWDT03

SWO Trace Port Present

When set, indicates that the Serial Wire Output (SWO) trace port is
present.

1ROSWO2

SWD Present

When set, indicates that the Serial Wire Debugger (SWD) is present.

1ROSWD1

135February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

JTAG Present

When set, indicates that the JTAG debugger interface is present.

1ROJTAG0

February 24, 2009136
Preliminary

System Control

Register 19: Device Capabilities 2 (DC2), offset 0x014
This register is predefined by the part and can be used to verify features. If any bit is clear in this
register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0
registers cannot be set.

Device Capabilities 2 (DC2)
Base 0x400F.E000
Offset 0x014
Type RO, reset 0x570F.5337

16171819202122232425262728293031

TIMER0TIMER1TIMER2TIMER3reservedCOMP0COMP1COMP2reservedI2S0reservedEPI0reserved

ROROROROROROROROROROROROROROROROType
1111000011101010Reset

0123456789101112131415

UART0UART1UART2reservedSSI0SSI1reservedQEI0QEI1reservedI2C0reservedI2C1reserved

ROROROROROROROROROROROROROROROROType
1110110011001010Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

EPI Module 0 Present

When set, indicates that EPI module 0 is present.

1ROEPI030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

I2S Module 0 Present

When set, indicates that I2S module 0 is present.

1ROI2S028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27

Analog Comparator 2 Present

When set, indicates that analog comparator 2 is present.

1ROCOMP226

Analog Comparator 1 Present

When set, indicates that analog comparator 1 is present.

1ROCOMP125

Analog Comparator 0 Present

When set, indicates that analog comparator 0 is present.

1ROCOMP024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:20

Timer Module 3 Present

When set, indicates that General-Purpose Timer module 3 is present.

1ROTIMER319

137February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Timer Module 2 Present

When set, indicates that General-Purpose Timer module 2 is present.

1ROTIMER218

Timer Module 1 Present

When set, indicates that General-Purpose Timer module 1 is present.

1ROTIMER117

Timer Module 0 Present

When set, indicates that General-Purpose Timer module 0 is present.

1ROTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15

I2C Module 1 Present

When set, indicates that I2C module 1 is present.

1ROI2C114

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved13

I2C Module 0 Present

When set, indicates that I2C module 0 is present.

1ROI2C012

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:10

QEI Module 1 Present

When set, indicates that QEI module 1 is present.

1ROQEI19

QEI Module 0 Present

When set, indicates that QEI module 0 is present.

1ROQEI08

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

SSI Module 1 Present

When set, indicates that SSI module 1 is present.

1ROSSI15

SSI Module 0 Present

When set, indicates that SSI module 0 is present.

1ROSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

UART Module 2 Present

When set, indicates that UART module 2 is present.

1ROUART22

UART Module 1 Present

When set, indicates that UART module 1 is present.

1ROUART11

February 24, 2009138
Preliminary

System Control

DescriptionResetTypeNameBit/Field

UART Module 0 Present

When set, indicates that UART module 0 is present.

1ROUART00

139February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 20: Device Capabilities 3 (DC3), offset 0x018
This register is predefined by the part and can be used to verify features. If any bit is clear in this
register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0
registers cannot be set.

Device Capabilities 3 (DC3)
Base 0x400F.E000
Offset 0x018
Type RO, reset 0xBFFF.B6FF

16171819202122232425262728293031

ADC0AIN0ADC0AIN1ADC0AIN2ADC0AIN3ADC0AIN4ADC0AIN5ADC0AIN6ADC0AIN7CCP0CCP1CCP2CCP3CCP4CCP5reserved32KHZ

ROROROROROROROROROROROROROROROROType
1111111111111101Reset

0123456789101112131415

PWM0PWM1PWM2PWM3PWM4PWM5C0MINUSC0PLUSreservedC1MINUSC1PLUSreservedC2MINUSC2PLUSreservedPWMFAULT

ROROROROROROROROROROROROROROROROType
1111111101101101Reset

DescriptionResetTypeNameBit/Field

32KHz Input Clock Available

When set, indicates an even CCP pin is present and can be used as a
32-KHz input clock.

1RO32KHZ31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved30

CCP5 Pin Present

When set, indicates that Capture/Compare/PWM pin 5 is present.

1ROCCP529

CCP4 Pin Present

When set, indicates that Capture/Compare/PWM pin 4 is present.

1ROCCP428

CCP3 Pin Present

When set, indicates that Capture/Compare/PWM pin 3 is present.

1ROCCP327

CCP2 Pin Present

When set, indicates that Capture/Compare/PWM pin 2 is present.

1ROCCP226

CCP1 Pin Present

When set, indicates that Capture/Compare/PWM pin 1 is present.

1ROCCP125

CCP0 Pin Present

When set, indicates that Capture/Compare/PWM pin 0 is present.

1ROCCP024

ADC Module 0 AIN7 Pin Present

When set, indicates that ADC module 0 input pin 7 is present.

1ROADC0AIN723

ADC Module 0 AIN6 Pin Present

When set, indicates that ADC module 0 input pin 6 is present.

1ROADC0AIN622

February 24, 2009140
Preliminary

System Control

DescriptionResetTypeNameBit/Field

ADC Module 0 AIN5 Pin Present

When set, indicates that ADC module 0 input pin 5 is present.

1ROADC0AIN521

ADC Module 0 AIN4 Pin Present

When set, indicates that ADC module 0 input pin 4 is present.

1ROADC0AIN420

ADC Module 0 AIN3 Pin Present

When set, indicates that ADC module 0 input pin 3 is present.

1ROADC0AIN319

ADC Module 0 AIN2 Pin Present

When set, indicates that ADC module 0 input pin 2 is present.

1ROADC0AIN218

ADC Module 0 AIN1 Pin Present

When set, indicates that ADC module 0 input pin 1 is present.

1ROADC0AIN117

ADC Module 0 AIN0 Pin Present

When set, indicates that ADC module 0 input pin 0 is present.

1ROADC0AIN016

PWM Fault Pin Present

When set, indicates that a PWM Fault pin is present. See DC5 for
specific Fault pins on this device.

1ROPWMFAULT15

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved14

C2+ Pin Present

When set, indicates that the analog comparator 2 (+) input pin is present.

1ROC2PLUS13

C2- Pin Present

When set, indicates that the analog comparator 2 (-) input pin is present.

1ROC2MINUS12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11

C1+ Pin Present

When set, indicates that the analog comparator 1 (+) input pin is present.

1ROC1PLUS10

C1- Pin Present

When set, indicates that the analog comparator 1 (-) input pin is present.

1ROC1MINUS9

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved8

C0+ Pin Present

When set, indicates that the analog comparator 0 (+) input pin is present.

1ROC0PLUS7

C0- Pin Present

When set, indicates that the analog comparator 0 (-) input pin is present.

1ROC0MINUS6

141February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PWM5 Pin Present

When set, indicates that the PWM pin 5 is present.

1ROPWM55

PWM4 Pin Present

When set, indicates that the PWM pin 4 is present.

1ROPWM44

PWM3 Pin Present

When set, indicates that the PWM pin 3 is present.

1ROPWM33

PWM2 Pin Present

When set, indicates that the PWM pin 2 is present.

1ROPWM22

PWM1 Pin Present

When set, indicates that the PWM pin 1 is present.

1ROPWM11

PWM0 Pin Present

When set, indicates that the PWM pin 0 is present.

1ROPWM00

February 24, 2009142
Preliminary

System Control

Register 21: Device Capabilities 4 (DC4), offset 0x01C
This register is predefined by the part and can be used to verify features. If any bit is clear in this
register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0
registers cannot be set.

Device Capabilities 4 (DC4)
Base 0x400F.E000
Offset 0x01C
Type RO, reset 0x5000.F1FF

16171819202122232425262728293031

reservedEMAC0reservedEPHY0reserved

ROROROROROROROROROROROROROROROROType
0000000000001010Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJreservedROMUDMACCP6CCP7

ROROROROROROROROROROROROROROROROType
1111111110001111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

Ethernet PHY Layer 0 Present

When set, indicates that Ethernet PHY layer 0 is present.

1ROEPHY030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

Ethernet MAC Layer 0 Present

When set, indicates that Ethernet MAC layer 0 is present.

1ROEMAC028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:16

CCP7 Pin Present

When set, indicates that Capture/Compare/PWM pin 7 is present.

1ROCCP715

CCP6 Pin Present

When set, indicates that Capture/Compare/PWM pin 6 is present.

1ROCCP614

Micro-DMA Module Present

When set, indicates that the micro-DMA module present.

1ROUDMA13

Internal Code ROM Present

When set, indicates that internal code ROM is present.

1ROROM12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:9

143February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

GPIO Port J Present

When set, indicates that GPIO Port J is present.

1ROGPIOJ8

GPIO Port H Present

When set, indicates that GPIO Port H is present.

1ROGPIOH7

GPIO Port G Present

When set, indicates that GPIO Port G is present.

1ROGPIOG6

GPIO Port F Present

When set, indicates that GPIO Port F is present.

1ROGPIOF5

GPIO Port E Present

When set, indicates that GPIO Port E is present.

1ROGPIOE4

GPIO Port D Present

When set, indicates that GPIO Port D is present.

1ROGPIOD3

GPIO Port C Present

When set, indicates that GPIO Port C is present.

1ROGPIOC2

GPIO Port B Present

When set, indicates that GPIO Port B is present.

1ROGPIOB1

GPIO Port A Present

When set, indicates that GPIO Port A is present.

1ROGPIOA0

February 24, 2009144
Preliminary

System Control

Register 22: Device Capabilities 5 (DC5), offset 0x020
This register is predefined by the part and can be used to verify features. If any bit is clear in this
register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0
registers cannot be set.

Device Capabilities 5 (DC5)
Base 0x400F.E000
Offset 0x020
Type RO, reset 0x0F30.00FF

16171819202122232425262728293031

reservedPWMESYNCPWMEFLTreservedPWMFAULT0PWMFAULT1PWMFAULT2PWMFAULT3reserved

ROROROROROROROROROROROROROROROROType
0000110011110000Reset

0123456789101112131415

PWM0PWM1PWM2PWM3PWM4PWM5PWM6PWM7reserved

ROROROROROROROROROROROROROROROROType
1111111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:28

PWM Fault 3 Pin Present

When set, indicates that the PWM Fault 3 pin is present.

1ROPWMFAULT327

PWM Fault 2 Pin Present

When set, indicates that the PWM Fault 2 pin is present.

1ROPWMFAULT226

PWM Fault 1 Pin Present

When set, indicates that the PWM Fault 1 pin is present.

1ROPWMFAULT125

PWM Fault 0 Pin Present

When set, indicates that the PWM Fault 0 pin is present.

1ROPWMFAULT024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:22

PWM Extended Fault Active

When set, indicates that the PWM Extended Fault feature is active.

1ROPWMEFLT21

PWM Extended SYNC Active

When set, indicates that the PWM Extended SYNC feature is active.

1ROPWMESYNC20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:8

PWM7 Pin Present

When set, indicates that the PWM pin 7 is present.

1ROPWM77

145February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PWM6 Pin Present

When set, indicates that the PWM pin 6 is present.

1ROPWM66

PWM5 Pin Present

When set, indicates that the PWM pin 5 is present.

1ROPWM55

PWM4 Pin Present

When set, indicates that the PWM pin 4 is present.

1ROPWM44

PWM3 Pin Present

When set, indicates that the PWM pin 3 is present.

1ROPWM33

PWM2 Pin Present

When set, indicates that the PWM pin 2 is present.

1ROPWM22

PWM1 Pin Present

When set, indicates that the PWM pin 1 is present.

1ROPWM11

PWM0 Pin Present

When set, indicates that the PWM pin 0 is present.

1ROPWM00

February 24, 2009146
Preliminary

System Control

Register 23: Device Capabilities 6 (DC6), offset 0x024
This register is predefined by the part and can be used to verify features. If any bit is clear in this
register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0
registers cannot be set.

Device Capabilities 6 (DC6)
Base 0x400F.E000
Offset 0x024
Type RO, reset 0x0000.0013

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

USB0reservedUSB0PHYreserved

ROROROROROROROROROROROROROROROROType
1100100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:5

USB Module 0 PHY Present

When set, indicates that the USB module 0 PHY is present.

1ROUSB0PHY4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:2

USB Module 0 Present

Thie field indicates that USB module 0 is present and specifies its
capability.

DescriptionValue

USB0 is OTG.0x3

0x3ROUSB01:0

147February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 24: Device Capabilities 7 (DC7), offset 0x028
This register is predefined by the part and can be used to verify uDMA channel features. A 1 indicates
the channel is available on this device; a 0 that the channel is only available on other devices in the
family. Most channels have primary and alternate assignments. If the primary function is not available
on this microcontroller, the alternate function becomes the primary function. If the alternate function
is not available, the primary function is the only option.

Device Capabilities 7 (DC7)
Base 0x400F.E000
Offset 0x028
Type RO, reset 0xFFFF.FFFF

16171819202122232425262728293031

DMACH16DMACH17DMACH18DMACH19DMACH20DMACH21DMACH22DMACH23DMACH24DMACH25DMACH26DMACH27DMACH28DMACH29DMACH30reserved-31

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

0123456789101112131415

DMACH0DMACH1DMACH2DMACH3DMACH4DMACH5DMACH6DMACH7DMACH8DMACH9DMACH10DMACH11DMACH12DMACH13DMACH14DMACH15

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Reserved

Reserved for uDMA channel 31.

1ROreserved-3131

SW

When set, indicates uDMA channel 30 is available for software transfers.

1RODMACH3030

I2S0_TX / CAN1_TX

When set, indicates uDMA channel 29 is available and connected to
the transmit path of I2S module 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of CAN module 1 transmit.

1RODMACH2929

I2S0_RX / CAN1_RX

When set, indicates uDMA channel 28 is available and connected to
the receive path of I2S module 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of CAN module 1 receive.

1RODMACH2828

CAN1_TX / ADC1_SS3

When set, indicates uDMA channel 27 is available and connected to
the transmit path of CAN module 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of ADC module 1 Sample Sequencer 3.

1RODMACH2727

CAN1_RX / ADC1_SS2

When set, indicates uDMA channel 26 is available and connected to
the receive path of CAN module 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of ADC module 1 Sample Sequencer 2.

1RODMACH2626

February 24, 2009148
Preliminary

System Control

DescriptionResetTypeNameBit/Field

SSI1_TX / ADC1_SS1

When set, indicates uDMA channel 25 is available and connected to
the transmit path of SSI module 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of ADC module 1 Sample Sequencer 1.

1RODMACH2525

SSI1_RX / ADC1_SS0

When set, indicates uDMA channel 24 is available and connected to
the receive path of SSI module 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of ADC module 1 Sample Sequencer 0.

1RODMACH2424

UART1_TX / CAN2_TX

When set, indicates uDMA channel 23 is available and connected to
the transmit path of UART module 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of CAN module 2 transmit.

1RODMACH2323

UART1_RX / CAN2_RX

When set, indicates uDMA channel 22 is available and connected to
the receive path of UART module 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of CAN module 2 receive.

1RODMACH2222

Timer1B / EPI0_TX

When set, indicates uDMA channel 21 is available and connected to
Timer 1B. If the corresponding bit in the DMACHALT register is set, the
channel is connected instead to the alternate channel assignment of
EPI module 0 transmit.

1RODMACH2121

Timer1A / EPI0_RX

When set, indicates uDMA channel 20 is available and connected to
Timer 1A. If the corresponding bit in the DMACHALT register is set, the
channel is connected instead to the alternate channel assignment of
EPI module 0 receive.

1RODMACH2020

Timer0B / Timer1B

When set, indicates uDMA channel 19 is available and connected to
Timer 0B. If the corresponding bit in the DMACHALT register is set, the
channel is connected instead to the alternate channel assignment of
Timer 1B.

1RODMACH1919

Timer0A / Timer1A

When set, indicates uDMA channel 18 is available and connected to
Timer 0A. If the corresponding bit in the DMACHALT register is set, the
channel is connected instead to the alternate channel assignment of
Timer 1A.

1RODMACH1818

ADC0_SS3

When set, indicates uDMA channel 17 is available and connected to
ADC module 0 Sample Sequencer 3.

1RODMACH1717

149February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

ADC0_SS2

When set, indicates uDMA channel 16 is available and connected to
ADC module 0 Sample Sequencer 2.

1RODMACH1616

ADC0_SS1 / Timer2B

When set, indicates uDMA channel 15 is available and connected to
ADC module 0 Sample Sequencer 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of Timer 2B.

1RODMACH1515

ADC0_SS0 / Timer2A

When set, indicates uDMA channel 14 is available and connected to
ADC module 0 Sample Sequencer 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of Timer 2A.

1RODMACH1414

CAN0_TX / UART2_TX

When set, indicates uDMA channel 13 is available and connected to
the transmit path of CAN module 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of UART module 2 transmit.

1RODMACH1313

CAN0_RX / UART2_RX

When set, indicates uDMA channel 12 is available and connected to
the receive path of CAN module 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of UART module 2 receive.

1RODMACH1212

SSI0_TX / UART1_TX

When set, indicates uDMA channel 11 is available and connected to
the transmit path of SSI module 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of UART module 1 transmit.

1RODMACH1111

SSI0_RX / UART1_RX

When set, indicates uDMA channel 10 is available and connected to
the receive path of SSI module 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of UART module 1 receive.

1RODMACH1010

UART0_TX / SSI1_TX

When set, indicates uDMA channel 9 is available and connected to the
transmit path of UART module 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of SSI module 1 transmit.

1RODMACH99

UART0_RX / SSI1_RX

When set, indicates uDMA channel 8 is available and connected to the
receive path of UART module 0. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of SSI module 1 receive.

1RODMACH88

February 24, 2009150
Preliminary

System Control

DescriptionResetTypeNameBit/Field

ETH_TX / Timer2B

When set, indicates uDMA channel 7 is available and connected to the
transmit path of the Ethernet module. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of Timer 2B.

1RODMACH77

ETH_RX / Timer2A

When set, indicates uDMA channel 6 is available and connected to the
receive path of the Ethernet module. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of Timer 2A.

1RODMACH66

USB_EP3_TX / Timer2B

When set, indicates uDMA channel 5 is available and connected to the
transmit path of USB endpoint 3. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of Timer 2B.

1RODMACH55

USB_EP3_RX / Timer2A

When set, indicates uDMA channel 4 is available and connected to the
receive path of USB endpoint 3. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of Timer 2A.

1RODMACH44

USB_EP2_TX / Timer3B

When set, indicates uDMA channel 3 is available and connected to the
transmit path of USB endpoint 2. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of Timer 3B.

1RODMACH33

USB_EP2_RX / Timer3A

When set, indicates uDMA channel 2 is available and connected to the
receive path of USB endpoint 2. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of Timer 3A.

1RODMACH22

USB_EP1_TX / UART2_TX

When set, indicates uDMA channel 1 is available and connected to the
transmit path of USB endpoint 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of UART module 2 transmit.

1RODMACH11

USB_EP1_RX / UART2_RX

When set, indicates uDMA channel 0 is available and connected to the
receive path of USB endpoint 1. If the corresponding bit in the
DMACHALT register is set, the channel is connected instead to the
alternate channel assignment of UART module 2 receive.

1RODMACH00

151February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 25: Device Capabilities 8 ADC Channels (DC8), offset 0x02C
This register is predefined by the part and can be used to verify features.

Device Capabilities 8 ADC Channels (DC8)
Base 0x400F.E000
Offset 0x02C
Type RO, reset 0xFFFF.FFFF

16171819202122232425262728293031

ADC1AIN0ADC1AIN1ADC1AIN2ADC1AIN3ADC1AIN4ADC1AIN5ADC1AIN6ADC1AIN7ADC1AIN8ADC1AIN9ADC1AIN10ADC1AIN11ADC1AIN12ADC1AIN13ADC1AIN14ADC1AIN15

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

0123456789101112131415

ADC0AIN0ADC0AIN1ADC0AIN2ADC0AIN3ADC0AIN4ADC0AIN5ADC0AIN6ADC0AIN7ADC0AIN8ADC0AIN9ADC0AIN10ADC0AIN11ADC0AIN12ADC0AIN13ADC0AIN14ADC0AIN15

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

ADC Module 1 AIN15 Pin Present

When set, indicates that ADC module 1 input pin 15 is present.

1ROADC1AIN1531

ADC Module 1 AIN14 Pin Present

When set, indicates that ADC module 1 input pin 14 is present.

1ROADC1AIN1430

ADC Module 1 AIN13 Pin Present

When set, indicates that ADC module 1 input pin 13 is present.

1ROADC1AIN1329

ADC Module 1 AIN12 Pin Present

When set, indicates that ADC module 1 input pin 12 is present.

1ROADC1AIN1228

ADC Module 1 AIN11 Pin Present

When set, indicates that ADC module 1 input pin 11 is present.

1ROADC1AIN1127

ADC Module 1 AIN10 Pin Present

When set, indicates that ADC module 1 input pin 10 is present.

1ROADC1AIN1026

ADC Module 1 AIN9 Pin Present

When set, indicates that ADC module 1 input pin 9 is present.

1ROADC1AIN925

ADC Module 1 AIN8 Pin Present

When set, indicates that ADC module 1 input pin 8 is present.

1ROADC1AIN824

ADC Module 1 AIN7 Pin Present

When set, indicates that ADC module 1 input pin 7 is present.

1ROADC1AIN723

ADC Module 1 AIN6 Pin Present

When set, indicates that ADC module 1 input pin 6 is present.

1ROADC1AIN622

ADC Module 1 AIN5 Pin Present

When set, indicates that ADC module 1 input pin 5 is present.

1ROADC1AIN521

February 24, 2009152
Preliminary

System Control

DescriptionResetTypeNameBit/Field

ADC Module 1 AIN4 Pin Present

When set, indicates that ADC module 1 input pin 4 is present.

1ROADC1AIN420

ADC Module 1 AIN3 Pin Present

When set, indicates that ADC module 1 input pin 3 is present.

1ROADC1AIN319

ADC Module 1 AIN2 Pin Present

When set, indicates that ADC module 1 input pin 2 is present.

1ROADC1AIN218

ADC Module 1 AIN1 Pin Present

When set, indicates that ADC module 1 input pin 1 is present.

1ROADC1AIN117

ADC Module 1 AIN0 Pin Present

When set, indicates that ADC module 1 input pin 0 is present.

1ROADC1AIN016

ADC Module 0 AIN15 Pin Present

When set, indicates that ADC module 0 input pin 15 is present.

1ROADC0AIN1515

ADC Module 0 AIN14 Pin Present

When set, indicates that ADC module 0 input pin 14 is present.

1ROADC0AIN1414

ADC Module 0 AIN13 Pin Present

When set, indicates that ADC module 0 input pin 13 is present.

1ROADC0AIN1313

ADC Module 0 AIN12 Pin Present

When set, indicates that ADC module 0 input pin 12 is present.

1ROADC0AIN1212

ADC Module 0 AIN11 Pin Present

When set, indicates that ADC module 0 input pin 11 is present.

1ROADC0AIN1111

ADC Module 0 AIN10 Pin Present

When set, indicates that ADC module 0 input pin 10 is present.

1ROADC0AIN1010

ADC Module 0 AIN9 Pin Present

When set, indicates that ADC module 0 input pin 9 is present.

1ROADC0AIN99

ADC Module 0 AIN8 Pin Present

When set, indicates that ADC module 0 input pin 8 is present.

1ROADC0AIN88

ADC Module 0 AIN7 Pin Present

When set, indicates that ADC module 0 input pin 7 is present.

1ROADC0AIN77

ADC Module 0 AIN6 Pin Present

When set, indicates that ADC module 0 input pin 6 is present.

1ROADC0AIN66

ADC Module 0 AIN5 Pin Present

When set, indicates that ADC module 0 input pin 5 is present.

1ROADC0AIN55

ADC Module 0 AIN4 Pin Present

When set, indicates that ADC module 0 input pin 4 is present.

1ROADC0AIN44

153February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

ADC Module 0 AIN3 Pin Present

When set, indicates that ADC module 0 input pin 3 is present.

1ROADC0AIN33

ADC Module 0 AIN2 Pin Present

When set, indicates that ADC module 0 input pin 2 is present.

1ROADC0AIN22

ADC Module 0 AIN1 Pin Present

When set, indicates that ADC module 0 input pin 1 is present.

1ROADC0AIN11

ADC Module 0 AIN0 Pin Present

When set, indicates that ADC module 0 input pin 0 is present.

1ROADC0AIN00

February 24, 2009154
Preliminary

System Control

Register 26: Device Capabilities 9 ADC Digital Comparators (DC9), offset
0x190
This register is predefined by the part and can be used to verify features.

Device Capabilities 9 ADC Digital Comparators (DC9)
Base 0x400F.E000
Offset 0x190
Type RO, reset 0x00FF.00FF

16171819202122232425262728293031

ADC1DC0ADC1DC1ADC1DC2ADC1DC3ADC1DC4ADC1DC5ADC1DC6ADC1DC7reserved

ROROROROROROROROROROROROROROROROType
1111111100000000Reset

0123456789101112131415

ADC0DC0ADC0DC1ADC0DC2ADC0DC3ADC0DC4ADC0DC5ADC0DC6ADC0DC7reserved

ROROROROROROROROROROROROROROROROType
1111111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:24

ADC1 DC7 Present

When set, indicates that ADCmodule 1 Digital Comparator 7 is present.

1ROADC1DC723

ADC1 DC6 Present

When set, indicates that ADCmodule 1 Digital Comparator 6 is present.

1ROADC1DC622

ADC1 DC5 Present

When set, indicates that ADCmodule 1 Digital Comparator 5 is present.

1ROADC1DC521

ADC1 DC4 Present

When set, indicates that ADCmodule 1 Digital Comparator 4 is present.

1ROADC1DC420

ADC1 DC3 Present

When set, indicates that ADCmodule 1 Digital Comparator 3 is present.

1ROADC1DC319

ADC1 DC2 Present

When set, indicates that ADCmodule 1 Digital Comparator 2 is present.

1ROADC1DC218

ADC1 DC1 Present

When set, indicates that ADCmodule 1 Digital Comparator 1 is present.

1ROADC1DC117

ADC1 DC0 Present

When set, indicates that ADCmodule 1 Digital Comparator 0 is present.

1ROADC1DC016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:8

ADC0 DC7 Present

When set, indicates that ADCmodule 0 Digital Comparator 7 is present.

1ROADC0DC77

155February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

ADC0 DC6 Present

When set, indicates that ADCmodule 0 Digital Comparator 6 is present.

1ROADC0DC66

ADC0 DC5 Present

When set, indicates that ADCmodule 0 Digital Comparator 5 is present.

1ROADC0DC55

ADC0 DC4 Present

When set, indicates that ADCmodule 0 Digital Comparator 4 is present.

1ROADC0DC44

ADC0 DC3 Present

When set, indicates that ADCmodule 0 Digital Comparator 3 is present.

1ROADC0DC33

ADC0 DC2 Present

When set, indicates that ADCmodule 0 Digital Comparator 2 is present.

1ROADC0DC22

ADC0 DC1 Present

When set, indicates that ADCmodule 0 Digital Comparator 1 is present.

1ROADC0DC11

ADC0 DC0 Present

When set, indicates that ADCmodule 0 Digital Comparator 0 is present.

1ROADC0DC00

February 24, 2009156
Preliminary

System Control

Register 27: Non-Volatile Memory Information (NVMSTAT), offset 0x1A0
This register is predefined by the part and can be used to verify features.

Non-Volatile Memory Information (NVMSTAT)
Base 0x400F.E000
Offset 0x1A0
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FWBreserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:1

32 Word Flash Write Buffer Active

When set, indicates that the 32 word Flash memory write buffer feature
is active.

1ROFWB0

157February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 28: RunMode Clock Gating Control Register 0 (RCGC0), offset 0x100
This register controls the clock gating logic in normal Run mode. Each bit controls a clock enable
for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC0 is the clock configuration register for
running operation, SCGC0 for Sleep operation, and DCGC0 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Run Mode Clock Gating Control Register 0 (RCGC0)
Base 0x400F.E000
Offset 0x100
Type R/W, reset 0x00000040

16171819202122232425262728293031

ADC0ADC1reservedPWMreservedCAN0CAN1reservedWDT1reserved

R/WR/WROROR/WROROROR/WR/WROROR/WROROROType
0000000000000000Reset

0123456789101112131415

reservedWDT0reservedMAXADC0SPDMAXADC1SPDreserved

ROROROR/WROROROROR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:29

WDT1 Clock Gating Control

This bit controls the clock gating for the Watchdog Timer module 1. If
set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WWDT128

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:26

CAN1 Clock Gating Control

This bit controls the clock gating for CAN module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WCAN125

CAN0 Clock Gating Control

This bit controls the clock gating for CAN module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WCAN024

February 24, 2009158
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Clock Gating Control

This bit controls the clock gating for the PWMmodule. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:18

ADC1 Clock Gating Control

This bit controls the clock gating for SAR ADC module 1. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WADC117

ADC0 Clock Gating Control

This bit controls the clock gating for ADC module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WADC016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:12

ADC1 Sample Speed

This field sets the rate at which ADCmodule 1 samples data. You cannot
set the rate higher than the maximum rate. You can set the sample rate
by setting the MAXADC1SPD bit as follows (all other encodings are
reserved):

DescriptionValue

1M samples/second0x3

0R/WMAXADC1SPD11:10

ADC0 Sample Speed

This field sets the rate at which ADC0 samples data. You cannot set
the rate higher than the maximum rate. You can set the sample rate by
setting the MAXADC0SPD bit as follows (all other encodings are reserved):

DescriptionValue

1M samples/second0x3

0R/WMAXADC0SPD9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:4

159February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

WDT0 Clock Gating Control

This bit controls the clock gating for the Watchdog Timer module 0. If
set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WWDT03

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

February 24, 2009160
Preliminary

System Control

Register 29: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset
0x110
This register controls the clock gating logic in Sleep mode. Each bit controls a clock enable for a
given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC0 is the clock configuration register for
running operation, SCGC0 for Sleep operation, and DCGC0 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Sleep Mode Clock Gating Control Register 0 (SCGC0)
Base 0x400F.E000
Offset 0x110
Type R/W, reset 0x00000040

16171819202122232425262728293031

ADC0ADC1reservedPWMreservedCAN0CAN1reservedWDT1reserved

R/WR/WROROR/WROROROR/WR/WROROR/WROROROType
0000000000000000Reset

0123456789101112131415

reservedWDT0reservedMAXADC0SPDMAXADC1SPDreserved

ROROROR/WROROROROR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:29

WDT1 Clock Gating Control

This bit controls the clock gating for Watchdog Timer module 1. If set,
the module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WWDT128

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:26

CAN1 Clock Gating Control

This bit controls the clock gating for CAN module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WCAN125

CAN0 Clock Gating Control

This bit controls the clock gating for CAN module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WCAN024

161February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Clock Gating Control

This bit controls the clock gating for the PWMmodule. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:18

ADC1 Clock Gating Control

This bit controls the clock gating for ADC module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WADC117

ADC0 Clock Gating Control

This bit controls the clock gating for ADC module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WADC016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:12

ADC1 Sample Speed

This field sets the rate at which ADCmodule 1 samples data. You cannot
set the rate higher than the maximum rate. You can set the sample rate
by setting the MAXADC1SPD bit as follows (all other encodings are
reserved):

DescriptionValue

1M samples/second0x3

0R/WMAXADC1SPD11:10

ADC0 Sample Speed

This field sets the rate at which ADCmodule 0 samples data. You cannot
set the rate higher than the maximum rate. You can set the sample rate
by setting the MAXADC0SPD bit as follows (all other encodings are
reserved):

DescriptionValue

1M samples/second0x3

0R/WMAXADC0SPD9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:4

February 24, 2009162
Preliminary

System Control

DescriptionResetTypeNameBit/Field

WDT0 Clock Gating Control

This bit controls the clock gating for the Watchdog Timer module 0. If
set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WWDT03

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

163February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 30: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0),
offset 0x120
This register controls the clock gating logic in Deep-Sleep mode. Each bit controls a clock enable
for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC0 is the clock configuration register for
running operation, SCGC0 for Sleep operation, and DCGC0 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)
Base 0x400F.E000
Offset 0x120
Type R/W, reset 0x00000040

16171819202122232425262728293031

ADC0ADC1reservedPWMreservedCAN0CAN1reservedWDT1reserved

R/WR/WROROR/WROROROR/WR/WROROR/WROROROType
0000000000000000Reset

0123456789101112131415

reservedWDT0reservedMAXADC0SPDMAXADC1SPDreserved

ROROROR/WROROROROR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:29

WDT1 Clock Gating Control

This bit controls the clock gating for the Watchdog Timer module 1. If
set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WWDT128

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:26

CAN1 Clock Gating Control

This bit controls the clock gating for CAN module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WCAN125

CAN0 Clock Gating Control

This bit controls the clock gating for CAN module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WCAN024

February 24, 2009164
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Clock Gating Control

This bit controls the clock gating for the PWMmodule. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:18

ADC1 Clock Gating Control

This bit controls the clock gating for ADC module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WADC117

ADC0 Clock Gating Control

This bit controls the clock gating for ADC module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WADC016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:12

ADC1 Sample Speed

This field sets the rate at which ADCmodule 1 samples data. You cannot
set the rate higher than the maximum rate. You can set the sample rate
by setting the MAXADC1SPD bit as follows (all other encodings are
reserved):

DescriptionValue

1M samples/second0x3

0R/WMAXADC1SPD11:10

ADC0 Sample Speed

This field sets the rate at which ADCmodule 0 samples data. You cannot
set the rate higher than the maximum rate. You can set the sample rate
by setting the MAXADC0SPD bit as follows (all other encodings are
reserved):

DescriptionValue

1M samples/second0x3

0R/WMAXADC0SPD9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:4

165February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

WDT0 Clock Gating Control

This bit controls the clock gating for the Watchdog Timer module 0. If
set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WWDT03

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

February 24, 2009166
Preliminary

System Control

Register 31: RunMode Clock Gating Control Register 1 (RCGC1), offset 0x104
This register controls the clock gating logic in normal Run mode. Each bit controls a clock enable
for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC1 is the clock configuration register for
running operation, SCGC1 for Sleep operation, and DCGC1 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Run Mode Clock Gating Control Register 1 (RCGC1)
Base 0x400F.E000
Offset 0x104
Type R/W, reset 0x00000000

16171819202122232425262728293031

TIMER0TIMER1TIMER2TIMER3reservedCOMP0COMP1COMP2reservedI2S0reservedEPI0reserved

R/WR/WR/WR/WROROROROR/WR/WR/WROR/WROR/WROType
0000000000000000Reset

0123456789101112131415

UART0UART1UART2reservedSSI0SSI1reservedQEI0QEI1reservedI2C0reservedI2C1reserved

R/WR/WR/WROR/WR/WROROR/WR/WROROR/WROR/WROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

EPI0 Clock Gating

This bit controls the clock gating for EPI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WEPI030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

I2S0 Clock Gating

This bit controls the clock gating for I2S module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2S028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27

167February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Analog Comparator 2 Clock Gating

This bit controls the clock gating for analog comparator 2. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP226

Analog Comparator 1 Clock Gating

This bit controls the clock gating for analog comparator 1. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP125

Analog Comparator 0 Clock Gating

This bit controls the clock gating for analog comparator 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:20

Timer 3 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 3.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER319

Timer 2 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 2.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER218

Timer 1 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 1.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER117

Timer 0 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 0.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15

I2C1 Clock Gating Control

This bit controls the clock gating for I2C module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2C114

February 24, 2009168
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved13

I2C0 Clock Gating Control

This bit controls the clock gating for I2C module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2C012

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:10

QEI1 Clock Gating Control

This bit controls the clock gating for QEI module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WQEI19

QEI0 Clock Gating Control

This bit controls the clock gating for QEI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WQEI08

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

SSI1 Clock Gating Control

This bit controls the clock gating for SSI module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WSSI15

SSI0 Clock Gating Control

This bit controls the clock gating for SSI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

UART2 Clock Gating Control

This bit controls the clock gating for UART module 2. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART22

169February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

UART1 Clock Gating Control

This bit controls the clock gating for UART module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART11

UART0 Clock Gating Control

This bit controls the clock gating for UART module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART00

February 24, 2009170
Preliminary

System Control

Register 32: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset
0x114
This register controls the clock gating logic in Sleep mode. Each bit controls a clock enable for a
given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC1 is the clock configuration register for
running operation, SCGC1 for Sleep operation, and DCGC1 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Sleep Mode Clock Gating Control Register 1 (SCGC1)
Base 0x400F.E000
Offset 0x114
Type R/W, reset 0x00000000

16171819202122232425262728293031

TIMER0TIMER1TIMER2TIMER3reservedCOMP0COMP1COMP2reservedI2S0reservedEPI0reserved

R/WR/WR/WR/WROROROROR/WR/WR/WROR/WROR/WROType
0000000000000000Reset

0123456789101112131415

UART0UART1UART2reservedSSI0SSI1reservedQEI0QEI1reservedI2C0reservedI2C1reserved

R/WR/WR/WROR/WR/WROROR/WR/WROROR/WROR/WROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

EPI0 Clock Gating

This bit controls the clock gating for EPI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WEPI030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

I2S0 Clock Gating

This bit controls the clock gating for I2S module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2S028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27

171February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Analog Comparator 2 Clock Gating

This bit controls the clock gating for analog comparator 2. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP226

Analog Comparator 1 Clock Gating

This bit controls the clock gating for analog comparator 1. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP125

Analog Comparator 0 Clock Gating

This bit controls the clock gating for analog comparator 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:20

Timer 3 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 3.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER319

Timer 2 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 2.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER218

Timer 1 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 1.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER117

Timer 0 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 0.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15

I2C1 Clock Gating Control

This bit controls the clock gating for I2C module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2C114

February 24, 2009172
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved13

I2C0 Clock Gating Control

This bit controls the clock gating for I2C module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2C012

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:10

QEI1 Clock Gating Control

This bit controls the clock gating for QEI module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WQEI19

QEI0 Clock Gating Control

This bit controls the clock gating for QEI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WQEI08

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

SSI1 Clock Gating Control

This bit controls the clock gating for SSI module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WSSI15

SSI0 Clock Gating Control

This bit controls the clock gating for SSI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

UART2 Clock Gating Control

This bit controls the clock gating for UART module 2. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART22

173February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

UART1 Clock Gating Control

This bit controls the clock gating for UART module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART11

UART0 Clock Gating Control

This bit controls the clock gating for UART module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART00

February 24, 2009174
Preliminary

System Control

Register 33: Deep-Sleep Mode Clock Gating Control Register 1 (DCGC1),
offset 0x124
This register controls the clock gating logic in Deep-Sleep mode. Each bit controls a clock enable
for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC1 is the clock configuration register for
running operation, SCGC1 for Sleep operation, and DCGC1 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Deep-Sleep Mode Clock Gating Control Register 1 (DCGC1)
Base 0x400F.E000
Offset 0x124
Type R/W, reset 0x00000000

16171819202122232425262728293031

TIMER0TIMER1TIMER2TIMER3reservedCOMP0COMP1COMP2reservedI2S0reservedEPI0reserved

R/WR/WR/WR/WROROROROR/WR/WR/WROR/WROR/WROType
0000000000000000Reset

0123456789101112131415

UART0UART1UART2reservedSSI0SSI1reservedQEI0QEI1reservedI2C0reservedI2C1reserved

R/WR/WR/WROR/WR/WROROR/WR/WROROR/WROR/WROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

EPI0 Clock Gating

This bit controls the clock gating for EPI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WEPI030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

I2S0 Clock Gating

This bit controls the clock gating for I2S module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2S028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27

175February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Analog Comparator 2 Clock Gating

This bit controls the clock gating for analog comparator 2. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP226

Analog Comparator 1 Clock Gating

This bit controls the clock gating for analog comparator 1. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP125

Analog Comparator 0 Clock Gating

This bit controls the clock gating for analog comparator 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WCOMP024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:20

Timer 3 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 3.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER319

Timer 2 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 2.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER218

Timer 1 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 1.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER117

Timer 0 Clock Gating Control

This bit controls the clock gating for General-Purpose Timer module 0.
If set, the module receives a clock and functions. Otherwise, the module
is unclocked and disabled. If the module is unclocked, a read or write
to the module generates a bus fault.

0R/WTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15

I2C1 Clock Gating Control

This bit controls the clock gating for I2C module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2C114

February 24, 2009176
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved13

I2C0 Clock Gating Control

This bit controls the clock gating for I2C module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WI2C012

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:10

QEI1 Clock Gating Control

This bit controls the clock gating for QEI module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WQEI19

QEI0 Clock Gating Control

This bit controls the clock gating for QEI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WQEI08

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

SSI1 Clock Gating Control

This bit controls the clock gating for SSI module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WSSI15

SSI0 Clock Gating Control

This bit controls the clock gating for SSI module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

UART2 Clock Gating Control

This bit controls the clock gating for UART module 2. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART22

177February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

UART1 Clock Gating Control

This bit controls the clock gating for UART module 1. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART11

UART0 Clock Gating Control

This bit controls the clock gating for UART module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUART00

February 24, 2009178
Preliminary

System Control

Register 34: RunMode Clock Gating Control Register 2 (RCGC2), offset 0x108
This register controls the clock gating logic in normal Run mode. Each bit controls a clock enable
for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC2 is the clock configuration register for
running operation, SCGC2 for Sleep operation, and DCGC2 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Run Mode Clock Gating Control Register 2 (RCGC2)
Base 0x400F.E000
Offset 0x108
Type R/W, reset 0x00000000

16171819202122232425262728293031

USB0reservedEMAC0reservedEPHY0reserved

R/WROROROROROROROROROROROR/WROR/WROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJreservedUDMAreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

PHY0 Clock Gating Control

This bit controls the clock gating for Ethernet PHY layer 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WEPHY030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

MAC0 Clock Gating Control

This bit controls the clock gating for Ethernet MAC layer 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WEMAC028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:17

179February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

USB0 Clock Gating Control

This bit controls the clock gating for USB module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUSB016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:14

Micro-DMA Clock Gating Control

This bit controls the clock gating for micro-DMA. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUDMA13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:9

Port J Clock Gating Control

This bit controls the clock gating for Port J. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOJ8

Port H Clock Gating Control

This bit controls the clock gating for Port H. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOH7

Port G Clock Gating Control

This bit controls the clock gating for Port G. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOG6

Port F Clock Gating Control

This bit controls the clock gating for Port F. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOF5

Port E Clock Gating Control

Port E Clock Gating Control. This bit controls the clock gating for Port
E. If set, the module receives a clock and functions. Otherwise, the
module is unclocked and disabled. If the module is unclocked, a read
or write to the module generates a bus fault.

0R/WGPIOE4

Port D Clock Gating Control

Port D Clock Gating Control. This bit controls the clock gating for Port
D. If set, the module receives a clock and functions. Otherwise, the
module is unclocked and disabled. If the module is unclocked, a read
or write to the module generates a bus fault.

0R/WGPIOD3

February 24, 2009180
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Port C Clock Gating Control

This bit controls the clock gating for Port C. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOC2

Port B Clock Gating Control

This bit controls the clock gating for Port B. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOB1

Port A Clock Gating Control

This bit controls the clock gating for Port A. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOA0

181February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 35: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset
0x118
This register controls the clock gating logic in Sleep mode. Each bit controls a clock enable for a
given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC2 is the clock configuration register for
running operation, SCGC2 for Sleep operation, and DCGC2 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Sleep Mode Clock Gating Control Register 2 (SCGC2)
Base 0x400F.E000
Offset 0x118
Type R/W, reset 0x00000000

16171819202122232425262728293031

USB0reservedEMAC0reservedEPHY0reserved

R/WROROROROROROROROROROROR/WROR/WROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJreservedUDMAreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

PHY0 Clock Gating Control

This bit controls the clock gating for Ethernet PHY layer 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WEPHY030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

MAC0 Clock Gating Control

This bit controls the clock gating for Ethernet MAC layer 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WEMAC028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:17

February 24, 2009182
Preliminary

System Control

DescriptionResetTypeNameBit/Field

USB0 Clock Gating Control

This bit controls the clock gating for USB module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUSB016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:14

Micro-DMA Clock Gating Control

This bit controls the clock gating for micro-DMA. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUDMA13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:9

Port J Clock Gating Control

This bit controls the clock gating for Port J. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOJ8

Port H Clock Gating Control

This bit controls the clock gating for Port H. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOH7

Port G Clock Gating Control

This bit controls the clock gating for Port G. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOG6

Port F Clock Gating Control

This bit controls the clock gating for Port F. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOF5

Port E Clock Gating Control

Port E Clock Gating Control. This bit controls the clock gating for Port
E. If set, the module receives a clock and functions. Otherwise, the
module is unclocked and disabled. If the module is unclocked, a read
or write to the module generates a bus fault.

0R/WGPIOE4

Port D Clock Gating Control

Port D Clock Gating Control. This bit controls the clock gating for Port
D. If set, the module receives a clock and functions. Otherwise, the
module is unclocked and disabled. If the module is unclocked, a read
or write to the module generates a bus fault.

0R/WGPIOD3

183February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Port C Clock Gating Control

This bit controls the clock gating for Port C. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOC2

Port B Clock Gating Control

This bit controls the clock gating for Port B. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOB1

Port A Clock Gating Control

This bit controls the clock gating for Port A. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOA0

February 24, 2009184
Preliminary

System Control

Register 36: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2),
offset 0x128
This register controls the clock gating logic in Deep-Sleep mode. Each bit controls a clock enable
for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise,
the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes
to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise
noted, so that all functional modules are disabled. It is the responsibility of software to enable the
ports necessary for the application. Note that these registers may contain more bits than there are
interfaces, functions, or modules to control. This configuration is implemented to assure reasonable
code compatibility with other family and future parts. RCGC2 is the clock configuration register for
running operation, SCGC2 for Sleep operation, and DCGC2 for Deep-Sleep operation. Setting the
ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep
modes.

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)
Base 0x400F.E000
Offset 0x128
Type R/W, reset 0x00000000

16171819202122232425262728293031

USB0reservedEMAC0reservedEPHY0reserved

R/WROROROROROROROROROROROR/WROR/WROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJreservedUDMAreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

PHY0 Clock Gating Control

This bit controls the clock gating for Ethernet PHY layer 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WEPHY030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

MAC0 Clock Gating Control

This bit controls the clock gating for Ethernet MAC layer 0. If set, the
module receives a clock and functions. Otherwise, the module is
unclocked and disabled. If the module is unclocked, a read or write to
the module generates a bus fault.

0R/WEMAC028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:17

185February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

USB0 Clock Gating Control

This bit controls the clock gating for USB module 0. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUSB016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:14

Micro-DMA Clock Gating Control

This bit controls the clock gating for micro-DMA. If set, the module
receives a clock and functions. Otherwise, the module is unclocked and
disabled. If the module is unclocked, a read or write to the module
generates a bus fault.

0R/WUDMA13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:9

Port J Clock Gating Control

This bit controls the clock gating for Port J. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOJ8

Port H Clock Gating Control

This bit controls the clock gating for Port H. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOH7

Port G Clock Gating Control

This bit controls the clock gating for Port G. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOG6

Port F Clock Gating Control

This bit controls the clock gating for Port F. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOF5

Port E Clock Gating Control

Port E Clock Gating Control. This bit controls the clock gating for Port
E. If set, the module receives a clock and functions. Otherwise, the
module is unclocked and disabled. If the module is unclocked, a read
or write to the module generates a bus fault.

0R/WGPIOE4

Port D Clock Gating Control

Port D Clock Gating Control. This bit controls the clock gating for Port
D. If set, the module receives a clock and functions. Otherwise, the
module is unclocked and disabled. If the module is unclocked, a read
or write to the module generates a bus fault.

0R/WGPIOD3

February 24, 2009186
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Port C Clock Gating Control

This bit controls the clock gating for Port C. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOC2

Port B Clock Gating Control

This bit controls the clock gating for Port B. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOB1

Port A Clock Gating Control

This bit controls the clock gating for Port A. If set, the module receives
a clock and functions. Otherwise, the module is unclocked and disabled.
If the module is unclocked, a read or write to the module generates a
bus fault.

0R/WGPIOA0

187February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 37: Software Reset Control 0 (SRCR0), offset 0x040
This register allows individual modules to be reset. Writes to this register are masked by the bits in
the Device Capabilities 1 (DC1) register.

Software Reset Control 0 (SRCR0)
Base 0x400F.E000
Offset 0x040
Type R/W, reset 0x00000000

16171819202122232425262728293031

ADC0ADC1reservedPWMreservedCAN0CAN1reservedWDT1reserved

R/WR/WROROR/WROROROR/WR/WROROR/WROROROType
0000000000000000Reset

0123456789101112131415

reservedWDT0reserved

ROROROR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:29

WDT1 Reset Control

When this bit is set, Watchdog Timer module 1 is reset. All internal data
is lost and the registers are returned to their reset states. This bit must
be manually cleared after being set.

0R/WWDT128

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:26

CAN1 Reset Control

When this bit is set, CAN module 1 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WCAN125

CAN0 Reset Control

When this bit is set, CAN module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WCAN024

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:21

PWM Reset Control

When this bit is set, PWM module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WPWM20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved19:18

February 24, 2009188
Preliminary

System Control

DescriptionResetTypeNameBit/Field

ADC1 Reset Control

When this bit is set, ADC module 1 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WADC117

ADC0 Reset Control

When this bit is set, ADC module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WADC016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:4

WDT0 Reset Control

When this bit is set, Watchdog Timer module 0 is reset. All internal data
is lost and the registers are returned to their reset states. This bit must
be manually cleared after being set.

0R/WWDT03

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2:0

189February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 38: Software Reset Control 1 (SRCR1), offset 0x044
This register allows individual modules to be reset. Writes to this register are masked by the bits in
the Device Capabilities 2 (DC2) register.

Software Reset Control 1 (SRCR1)
Base 0x400F.E000
Offset 0x044
Type R/W, reset 0x00000000

16171819202122232425262728293031

TIMER0TIMER1TIMER2TIMER3reservedCOMP0COMP1COMP2reservedI2S0reservedEPI0reserved

R/WR/WR/WR/WROROROROR/WR/WR/WROR/WROR/WROType
0000000000000000Reset

0123456789101112131415

UART0UART1UART2reservedSSI0SSI1reservedQEI0QEI1reservedI2C0reservedI2C1reserved

R/WR/WR/WROR/WR/WROROR/WR/WROROR/WROR/WROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

EPI0 Reset Control

When this bit is set, EPI module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WEPI030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

I2S0 Reset Control

When this bit is set, I2S module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WI2S028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27

Analog Comp 2 Reset Control

When this bit is set, Analog Comparator module 2 is reset. All internal
data is lost and the registers are returned to their reset states. This bit
must be manually cleared after being set.

0R/WCOMP226

Analog Comp 1 Reset Control

When this bit is set, Analog Comparator module 1 is reset. All internal
data is lost and the registers are returned to their reset states. This bit
must be manually cleared after being set.

0R/WCOMP125

Analog Comp 0 Reset Control

When this bit is set, Analog Comparator module 0 is reset. All internal
data is lost and the registers are returned to their reset states. This bit
must be manually cleared after being set.

0R/WCOMP024

February 24, 2009190
Preliminary

System Control

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23:20

Timer 3 Reset Control

Timer 3 Reset Control. When this bit is set, General-Purpose Timer
module 3 is reset. All internal data is lost and the registers are returned
to their reset states. This bit must be manually cleared after being set.

0R/WTIMER319

Timer 2 Reset Control

When this bit is set, General-Purpose Timer module 2 is reset. All internal
data is lost and the registers are returned to their reset states. This bit
must be manually cleared after being set.

0R/WTIMER218

Timer 1 Reset Control

When this bit is set, General-Purpose Timer module 1 is reset. All internal
data is lost and the registers are returned to their reset states. This bit
must be manually cleared after being set.

0R/WTIMER117

Timer 0 Reset Control

When this bit is set, General-Purpose Timer module 0 is reset. All internal
data is lost and the registers are returned to their reset states. This bit
must be manually cleared after being set.

0R/WTIMER016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15

I2C1 Reset Control

When this bit is set, I2C module 1 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WI2C114

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved13

I2C0 Reset Control

When this bit is set, I2C module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WI2C012

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:10

QEI1 Reset Control

When this bit is set, QEI module 1 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WQEI19

QEI0 Reset Control

When this bit is set, QEI module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WQEI08

191February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:6

SSI1 Reset Control

When this bit is set, SSI module 1 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WSSI15

SSI0 Reset Control

When this bit is set, SSI module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WSSI04

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

UART2 Reset Control

When this bit is set, UART module 2 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WUART22

UART1 Reset Control

When this bit is set, UART module 1 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WUART11

UART0 Reset Control

When this bit is set, UART module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WUART00

February 24, 2009192
Preliminary

System Control

Register 39: Software Reset Control 2 (SRCR2), offset 0x048
This register allows individual modules to be reset. Writes to this register are masked by the bits in
the Device Capabilities 4 (DC4) register.

Software Reset Control 2 (SRCR2)
Base 0x400F.E000
Offset 0x048
Type R/W, reset 0x00000000

16171819202122232425262728293031

USB0reservedEMAC0reservedEPHY0reserved

R/WROROROROROROROROROROROR/WROR/WROType
0000000000000000Reset

0123456789101112131415

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJreservedUDMAreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31

PHY0 Reset Control

When this bit is set, Ethernet PHY layer 0 is reset. All internal data is
lost and the registers are returned to their reset states. This bit must be
manually cleared after being set.

0R/WEPHY030

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

MAC0 Reset Control

When this bit is set, Ethernet MAC layer 0 is reset. All internal data is
lost and the registers are returned to their reset states. This bit must be
manually cleared after being set.

0R/WEMAC028

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved27:17

USB0 Reset Control

When this bit is set, USB module 0 is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WUSB016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:14

Micro-DMA Reset Control

When this bit is set, uDMA module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WUDMA13

193February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12:9

Port J Reset Control

When this bit is set, Port J module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOJ8

Port H Reset Control

When this bit is set, Port H module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOH7

Port G Reset Control

When this bit is set, Port G module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOG6

Port F Reset Control

When this bit is set, Port F module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOF5

Port E Reset Control

When this bit is set, Port E module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOE4

Port D Reset Control

When this bit is set, Port D module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOD3

Port C Reset Control

When this bit is set, Port C module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOC2

Port B Reset Control

When this bit is set, Port B module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOB1

Port A Reset Control

When this bit is set, Port A module is reset. All internal data is lost and
the registers are returned to their reset states. This bit must be manually
cleared after being set.

0R/WGPIOA0

February 24, 2009194
Preliminary

System Control

7 Internal Memory
The LM3S9B92 microcontroller comes with 96 KB of bit-banded SRAM, internal ROM, and 256 KB
of Flash memory. The Flash controller provides a user-friendly interface, making Flash programming
a simple task. Flash protection can be applied to the Flash memory on a 2-KB block basis.

7.1 Block Diagram
Figure 7-1 on page 195 illustrates the Flash functions. The dashed boxes in the figure indicate
registers residing in the System Control module rather than the Flash Control module.

Figure 7-1. Flash Block Diagram

Flash Protection

ROM Control

RMCTL
ROM Array

Flash Control

Flash Write Buffer

FMA
FMD

FCIM
FCMISC

Flash Array

Cortex-M3

Bridge

SRAM Array

S
ys
te
m

B
us

Icode Bus

Dcode Bus

Flash Protection

FMPRE
FMPPE

Flash Timing

USECRL

Flash Protection

FMPREn
FMPPEn

Flash Timing

USECRL

User Registers

USER_DBG
USER_REG0
USER_REG1
USER_REG2
USER_REG3

FMC
FCRIS

RMVER

FMC2
FWBVAL

FWBn
32 words

195February 24, 2009
Preliminary

LM3S9B92 Microcontroller

7.2 Functional Description
This section describes the functionality of the SRAM, ROM, and Flash memories.

7.2.1 SRAM
Note: The SRAM is implemented using two 32-bit wide SRAM banks (separate SRAM arrays).

The banks are partitioned such that one bank contains all even words (the even bank) and
the other contains all odd words (the odd bank). A write access that is followed immediately
by a read access to the same bank incurs a stall of a single clock cycle. However, a write
to one bank followed by a read of the other bank can occur in successive clock cycles
without incurring any delay.

The internal SRAM of the Stellaris® devices is located at address 0x2000.0000 of the device memory
map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has
introduced bit-banding technology in the Cortex-M3 processor. With a bit-band-enabled processor,
certain regions in thememory map (SRAM and peripheral space) can use address aliases to access
individual bits in a single, atomic operation. The bit-band base is located at address 0x2200.0000.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C
allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, “Memory Map” in the ARM® Cortex™-M3
Technical Reference Manual.

7.2.2 ROM
The internal ROM of the Stellaris® device is located at address 0x0100.0000 of the device memory
map. The ROM contains the following components:

■ Stellaris® Boot Loader and vector table (see “Boot Loader” on page 1022)

■ Stellaris® Peripheral Driver Library (DriverLib) release for product-specific peripherals and
interfaces (see “ROM DriverLib Functions” on page 1027)

■ Advanced Encryption Standard (AES) cryptography tables (see “Advance Encryption Standard
and Cyclic Redundancy Check Software in ROM” on page 1047)

■ Cyclic Redundancy Check (CRC) error detection functionality (see “Advance Encryption Standard
and Cyclic Redundancy Check Software in ROM” on page 1047)

7.2.3 Flash Memory
The Flash is organized as a set of 1-KB blocks that can be individually erased. An individual 32-bit
word can be programmed to change bits from 1 to 0. In addition, a write buffer provides the ability
to concurrently program 32 continuous words in Flash memory. Erasing a block causes the entire
contents of the block to be reset to all 1s. The 1-KB blocks are paired into sets of 2-KB blocks that
can be individually protected. The protection allows blocks to bemarked as read-only or execute-only,

February 24, 2009196
Preliminary

Internal Memory

providing different levels of code protection. Read-only blocks cannot be erased or programmed,
protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased
or programmed and can only be read by the controller instruction fetch mechanism, protecting the
contents of those blocks from being read by either the controller or by a debugger.

The Flashmemory controller has a prefetch buffer that is automatically used when the CPU frequency
is greater than 50MHz. The prefetch buffer fetches two 32-bit words per clock allowing Flash memory
to be read with no wait states while code is executing linearly. Branches incur a single wait state.

7.2.3.1 Flash Memory Protection
The user is provided two forms of Flash protection per 2-KB Flash block in four pairs of 32-bit wide
registers. The policy for each protection form is controlled by individual bits (per policy per block)
in the FMPPEn and FMPREn registers.

■ Flash Memory Protection Program Enable (FMPPEn): If a bit is set, the corresponding block
may be programmed (written) or erased. If a bit is cleared, the corresponding block may not be
changed.

■ Flash Memory Protection Read Enable (FMPREn): If a bit is set, the corresponding block may
be executed or read by software or debuggers. If a bit is cleared, the corresponding block may
only be executed, and contents of the memory block are prohibited from being accessed as data.

The policies may be combined as shown in Table 7-1 on page 197.

Table 7-1. Flash Protection Policy Combinations

ProtectionFMPREnFMPPEn

Execute-only protection. The block may only be executed andmay not be written or erased. This mode
is used to protect code.

00

The block may be written, erased or executed, but not read. This combination is unlikely to be used.01

Read-only protection. The block may be read or executed but may not be written or erased. This mode
is used to lock the block from further modification while allowing any read or execute access.

10

No protection. The block may be written, erased, executed or read.11

An access that attempts to program or erase a program-protected block is prohibited. An access
that attempts to read an read-protected block is prohibited. Such accesses return data of all 0s. A
controller interrupt may be optionally generated whenever an attempt is made to improperly access
the Flashmemory (by setting the AMASK bit in the Flash Controller Interrupt Mask (FCIM) register)
to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented
banks. These settings create a policy of open access and programmability. The register bits may
be changed by clearing the specific register bit. The changes are not permanent until the register
is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a
0 and not committed, it may be restored by executing a power-on reset sequence. The changes
are committed using the Flash Memory Control (FMC) register. Details on programming these bits
are discussed in “Nonvolatile Register Programming” on page 199.

7.3 Flash Memory Initialization and Configuration

7.3.1 Flash Programming
The Stellaris® devices provide a user-friendly interface for Flash programming. All erase/program
operations are handled via three registers: Flash Memory Address (FMA), Flash Memory Data

197February 24, 2009
Preliminary

LM3S9B92 Microcontroller

(FMD), and Flash Memory Control (FMC). Note that if the debug capabilities of the microcontroller
have been deactivated, resulting in a "locked" state, a recovery sequence must be performed in
order to reactivate the debug module. See “Recovering a "Locked" Microcontroller” on page 83.

7.3.1.1 To program a 32-bit word

1. Write source data to the FMD register.

2. Write the target address to the FMA register.

3. Write the Flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.

4. Poll the FMC register until the WRITE bit is cleared.

Important: To ensure proper operation, two writes to the same word must be separated by an
ERASE.

7.3.1.2 To perform an erase of a 1-KB page

1. Write the page address to the FMA register.

2. Write the Flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.

3. Poll the FMC register until the ERASE bit is cleared.

7.3.1.3 To perform a mass erase of the Flash

1. Write the Flash write key and the MERASE bit (a value of 0xA442.0004) to the FMC register.

2. Poll the FMC register until the MERASE bit is cleared.

7.3.2 32-Word Flash Write Buffer
A 32-word write buffer provides the capability to perform faster write accesses to the Flash memory
by concurrently programing 32 words with a single buffered Flash write operation. The buffered
Flash write operation takes the same amount of time as the single word write operation controlled
by bit 0 in the FMC register. The data for the buffered write is written to the Flash Write Buffer
(FWBn) registers.

The registers are 32-word aligned with Flash memory, and therefore the register FWB0 corresponds
with the address in FMA where bits [6:0] of FMA are all 0. FWB1 corresponds with the address in
FMA + 0x4 and so on. Only the FWBn registers that have been updated since the previous buffered
Flash write operation are written. The Flash Write Buffer Valid (FWBVAL) register shows which
registers have been written since the last buffered Flash write operation. This register contains a
bit for each of the 32 FWBn registers, where bit[n] of FWBVAL corresponds to FWBn. The FWBn
register has been updated if the corresponding bit in the FWBVAL register is set.

7.3.2.1 To program 32 words with a single buffered Flash write operation

1. Write the source data to the FWBn registers.

2. Write the target address to the FMA register. This must be a 32-word aligned address (that is,
bits [6:0] in FMA must be 0s).

3. Write the Flash write key and the WRBUF bit (a value of 0xA442.0001) to the FMC2 register.

February 24, 2009198
Preliminary

Internal Memory

4. Poll the FMC2 register until the WRBUF bit is cleared.

7.3.3 Nonvolatile Register Programming
This section discusses how to update registers that are resident within the Flash memory itself.
These registers exist in a separate space from the main Flash array and are not affected by an
ERASE or MASS ERASE operation. These nonvolatile registers are updated using the COMT bit in
the FMC register to activate a write operation. With the exception of the USER_DBG register, the
settings in these registers can be tested before committing them to Flash memory.

For the USER_DBG register, the data to be written is loaded into the FMD register before it is
committed. The FMD register is read only and does not allow the USER_DBG operation to be tried
before committing it to nonvolatile memory.

Important: These registers can only have bits changed from 1 to 0 by user programming, but can
be restored to their factory default values only by performing the sequence described
in “Recovering a "Locked" Microcontroller” on page 83. The mass erase of the main
Flash array caused by the sequence is performed prior to restoring these registers.

In addition, theUSER_REG0,USER_REG1,USER_REG2,USER_REG3, andUSER_DBG registers
each use bit 31 (NW) to indicate that they are available for user write. These five registers can only
be committed once whereas the Flash protection registers may be committed multiple times. Table
7-2 on page 199 provides the FMA address required for commitment of each of the registers and
the source of the data to be written when the FMC register is written with a value of 0xA442.0008.
After writing the COMT bit, the user may poll the FMC register to wait for the commit operation to
complete.

Table 7-2. User-Programmable Flash Resident Registers

Data SourceFMA ValueRegister to be Committed

FMPRE00x0000.0000FMPRE0

FMPRE10x0000.0002FMPRE1

FMPRE20x0000.0004FMPRE2

FMPRE30x0000.0006FMPRE3

FMPPE00x0000.0001FMPPE0

FMPPE10x0000.0003FMPPE1

FMPPE20x0000.0005FMPPE2

FMPPE30x0000.0007FMPPE3

USER_REG00x8000.0000USER_REG0

USER_REG10x8000.0001USER_REG1

USER_REG20x8000.0002USER_REG2

USER_REG30x8000.0003USER_REG3

FMD0x7510.0000USER_DBG

7.4 Register Map
Table 7-3 on page 200 lists the ROMController register and the Flash memory and control registers.
The offset listed is a hexadecimal increment to the register's address. The FMA, FMD, FMC, FCRIS,
FCIM, FCMISC, FMC2, FWBVAL, and FWBn register offsets are relative to the Flash control base
address of 0x400F.D000. The ROM and Flash protection register offsets are relative to the System
Control base address of 0x400F.E000.

199February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Table 7-3. Flash Register Map

See
pageDescriptionResetTypeNameOffset

Flash Registers (Flash Control Offset)

201Flash Memory Address0x0000.0000R/WFMA0x000

202Flash Memory Data0x0000.0000R/WFMD0x004

203Flash Memory Control0x0000.0000R/WFMC0x008

205Flash Controller Raw Interrupt Status0x0000.0000ROFCRIS0x00C

206Flash Controller Interrupt Mask0x0000.0000R/WFCIM0x010

207Flash Controller Masked Interrupt Status and Clear0x0000.0000R/W1CFCMISC0x014

208Flash Memory Control 20x0000.0000R/WFMC20x020

209Flash Write Buffer Valid0x0000.0000R/WFWBVAL0x030

210Flash Write Buffer n0x0000.0000R/WFWBn0x100 -
0x13C

Memory Registers (System Control Offset)

211ROM Control-R/W1CRMCTL0x0F0

212ROM Version Register0x0202.5400RORMVER0x0F4

213Flash Memory Protection Read Enable 00xFFFF.FFFFR/WFMPRE00x130

213Flash Memory Protection Read Enable 00xFFFF.FFFFR/WFMPRE00x200

214Flash Memory Protection Program Enable 00xFFFF.FFFFR/WFMPPE00x134

214Flash Memory Protection Program Enable 00xFFFF.FFFFR/WFMPPE00x400

215User Debug0xFFFF.FFFER/WUSER_DBG0x1D0

216User Register 00xFFFF.FFFFR/WUSER_REG00x1E0

217User Register 10xFFFF.FFFFR/WUSER_REG10x1E4

218User Register 20xFFFF.FFFFR/WUSER_REG20x1E8

219User Register 30xFFFF.FFFFR/WUSER_REG30x1EC

220Flash Memory Protection Read Enable 10xFFFF.FFFFR/WFMPRE10x204

221Flash Memory Protection Read Enable 20xFFFF.FFFFR/WFMPRE20x208

222Flash Memory Protection Read Enable 30xFFFF.FFFFR/WFMPRE30x20C

223Flash Memory Protection Program Enable 10xFFFF.FFFFR/WFMPPE10x404

224Flash Memory Protection Program Enable 20xFFFF.FFFFR/WFMPPE20x408

225Flash Memory Protection Program Enable 30xFFFF.FFFFR/WFMPPE30x40C

7.5 Flash Register Descriptions (Flash Control Offset)
This section lists and describes the Flash Memory registers, in numerical order by address offset.
Registers in this section are relative to the Flash control base address of 0x400F.D000.

February 24, 2009200
Preliminary

Internal Memory

Register 1: Flash Memory Address (FMA), offset 0x000
During a write operation, this register contains a 4-byte-aligned address and specifies where the
data is written. During erase operations, this register contains a 1 KB-aligned address and specifies
which page is erased. Note that the alignment requirements must be met by software or the results
of the operation are unpredictable.

Flash Memory Address (FMA)
Base 0x400F.D000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

OFFSETreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

OFFSET

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:18

Address Offset

Address offset in Flash where operation is performed, except for
nonvolatile registers (see “Nonvolatile Register Programming” on page
199 for details on values for this field).

0x0R/WOFFSET17:0

201February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: Flash Memory Data (FMD), offset 0x004
This register contains the data to be written during the programming cycle or read during the read
cycle. Note that the contents of this register are undefined for a read access of an execute-only
block. This register is not used during erase cycles.

Flash Memory Data (FMD)
Base 0x400F.D000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Data Value

Data value for write operation.

0x0000.0000R/WDATA31:0

February 24, 2009202
Preliminary

Internal Memory

Register 3: Flash Memory Control (FMC), offset 0x008
When this register is written, the Flash controller initiates the appropriate access cycle for the location
specified by the Flash Memory Address (FMA) register (see page 201). If the access is a write
access, the data contained in the Flash Memory Data (FMD) register (see page 202) is written to
the specified address.

This register must be the final register written and initiates the memory operation. The four control
bits in the lower byte of this register are used to initiate memory operations.

Care must be taken not to set multiple control bits as the results of such an operation are
unpredictable.

Flash Memory Control (FMC)
Base 0x400F.D000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

WRKEY

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

WRITEERASEMERASECOMTreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Flash Write Key

This field contains a write key, which is used to minimize the incidence
of accidental Flash writes. The value 0xA442 must be written into this
field for a Flash write to occur. Writes to the FMC register without this
WRKEY value are ignored. A read of this field returns the value 0.

0x0000WOWRKEY31:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved15:4

Commit Register Value

This bit is used to commit writes to Flash-resident registers and to
monitor the progress of that process.

DescriptionValue

Set this bit to commit (write) the register value to a
Flash-resident register.

When read, a 1 indicates that the previous commit access is
not complete.

1

A write of 0 has no effect on the state of this bit.

When read, a 0 indicates that the previous commit access is
complete.

0

A commit can take up to 50 μs.

See “Nonvolatile Register Programming” on page 199 formore information
on programming Flash-resident registers.

0R/WCOMT3

203February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Mass Erase Flash Memory

This bit is used to mass erase the Flash main memory and to monitor
the progress of that process.

DescriptionValue

Set this bit to erase the Flash main memory.

When read, a 1 indicates that the previous mass erase access
is not complete.

1

A write of 0 has no effect on the state of this bit.

When read, a 0 indicates that the previous mass erase access
is complete.

0

A mass erase can take up to 250 ms.

0R/WMERASE2

Erase a Page of Flash Memory

This bit is used to erase a page of Flash memory and to monitor the
progress of that process.

DescriptionValue

Set this bit to erase the Flash memory page specified by the
contents of the FMA register.

When read, a 1 indicates that the previous page erase access
is not complete.

1

A write of 0 has no effect on the state of this bit.

When read, a 0 indicates that the previous page erase access
is complete.

0

A page erase can take up to 25 ms.

0R/WERASE1

Write a Word into Flash Memory

This bit is used to write a word into Flash memory and to monitor the
progress of that process.

DescriptionValue

Set this bit to write the data stored in the FMD register into the
Flash memory location specified by the contents of the FMA
register.

When read, a 1 indicates that the write update access is not
complete.

1

A write of 0 has no effect on the state of this bit.

When read, a 0 indicates that the previous write update access
is complete.

0

Writing a single word can take up to 50 µs.

0R/WWRITE0

February 24, 2009204
Preliminary

Internal Memory

Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C
This register indicates that the Flash controller has an interrupt condition. An interrupt is sent to the
interrupt controller only if the corresponding FCIM register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)
Base 0x400F.D000
Offset 0x00C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ARISPRISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:2

Programming Raw Interrupt Status

This bit provides status on programming cycles which are write or erase
actions generated through the FMC or FMC2 register bits (see page
203 and page 208).

DescriptionValue

The programming cycle has completed.1

The programming cycle has not completed.0

This status is sent to the interrupt controller when the PMASK bit in the
FCIM register is set.

This bit is cleared by writing a 1 to the PMISC bit in the FCMISC register.

0ROPRIS1

Access Raw Interrupt Status

This bit indicates if the Flash was improperly accessed.

DescriptionValue

The program tried to access the Flash memory counter to the
policy set in the FMPREn and FMPPEn registers.

1

No access has tried to improperly access the Flash.0

This status is sent to the interrupt controller when the AMASK bit in the
FCIM register is set.

This bit is cleared by writing a 1 to the AMISC bit in the FCMISC register.

0ROARIS0

205February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010
This register controls whether the Flash controller generates interrupts to the controller.

Flash Controller Interrupt Mask (FCIM)
Base 0x400F.D000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

AMASKPMASKreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:2

Programming Interrupt Mask

This bit controls the reporting of the programming raw interrupt status
to the interrupt controller.

DescriptionValue

An interrupt is sent to the interrupt controller when the PRIS bit
is set.

1

The PRIS interrupt is suppressed and not sent to the interrupt
controller.

0

0R/WPMASK1

Access Interrupt Mask

This bit controls the reporting of the access raw interrupt status to the
interrupt controller.

DescriptionValue

An interrupt is sent to the interrupt controller when the ARIS bit
is set.

1

The ARIS interrupt is suppressed and not sent to the interrupt
controller.

0

0R/WAMASK0

February 24, 2009206
Preliminary

Internal Memory

Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC),
offset 0x014
This register provides two functions. First, it reports the cause of an interrupt by indicating which
interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the
interrupt reporting.

Flash Controller Masked Interrupt Status and Clear (FCMISC)
Base 0x400F.D000
Offset 0x014
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

AMISCPMISCreserved

R/W1CR/W1CROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:2

Programming Masked Interrupt Status and Clear

DescriptionValue

When read, a 1 indicates that an unmasked interrupt was
signaled because a programming cycle completed.

Writing a 1 to this bit clears PMISC and also the PRIS bit in the
FCRIS register (see page 205).

1

When read, a 0 indicates that a programming cycle complete
interrupt has not occurred.

A write of 0 has no effect on the state of this bit.

0

0R/W1CPMISC1

Access Masked Interrupt Status and Clear

DescriptionValue

When read, a 1 indicates that an unmasked interrupt was
signaled because an improper access to protected Flash
memory was attempted.

Writing a 1 to this bit clears AMISC and also the ARIS bit in the
FCRIS register (see page 205).

1

When read, a 0 indicates that no improper accesses have
occurred.

A write of 0 has no effect on the state of this bit.

0

0R/W1CAMISC0

207February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 7: Flash Memory Control 2 (FMC2), offset 0x020
When this register is written, the Flash controller initiates the appropriate access cycle for the location
specified by the Flash Memory Address (FMA) register (see page 201). If the access is a write
access, the data contained in the Flash Write Buffer (FWB) registers is written.

This register must be the final register written as it initiates the memory operation.

Flash Memory Control 2 (FMC2)
Base 0x400F.D000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

WRKEY

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

WRBUFreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Flash Write Key

This field contains a write key, which is used to minimize the incidence
of accidental Flash writes. The value 0xA442 must be written into this
field for a write to occur. Writes to the FMC2 register without this WRKEY
value are ignored. A read of this field returns the value 0.

0x0000WOWRKEY31:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved15:1

Buffered Flash Write

This bit is used to start a buffered Flash write to Flash Memory.

DescriptionValue

Set this bit to write the data stored in the FWBn registers to the
location specified by the contents of the FMA register.

When read, a 1 indicates that the previous buffered Flash write
access is not complete.

1

A write of 0 has no effect on the state of this bit.

When read, a 0 indicates that the previous buffered Flash write
access is complete.

0

A buffered Flash write can take up to 4 ms.

0R/WWRBUF0

February 24, 2009208
Preliminary

Internal Memory

Register 8: Flash Write Buffer Valid (FWBVAL), offset 0x030
This register provides a bitwise status of which FWBn registers have been written by the processor
since the last write of the Flash write buffer. The entries with a 1 are written on the next write of the
Flash write buffer. This register is cleared after the write operation by hardware. A protection violation
on the write operation also clears this status.

Software can program the same 32 words to various Flash memory locations by setting the FWB[n]
bits after they are cleared by the write operation. The next write operation then uses the same data
as the previous one. In addition, if a FWBn register change should not be written to Flash memory,
software can clear the corresponding FWB[n] bit to preserve the existing data when the next write
operation occurs.

Flash Write Buffer Valid (FWBVAL)
Base 0x400F.D000
Offset 0x030
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

FWB[n]

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

FWB[n]

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Flash Write Buffer

DescriptionValue

The corresponding FWBn register has been updated since the
last buffer write operation and is ready to be written to Flash
memory.

1

The corresponding FWBn register has no new data to be written.0

Bit 0 corresponds to FWB0, offset 0x100, and bit 31 corresponds to
FWB31, offset 0x13C.

0x0R/WFWB[n]31:0

209February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: Flash Write Buffer n (FWBn), offset 0x100 - 0x13C
These 32 registers hold the contents of the data to be written into the Flash on a buffered Flash
write operation. The offset selects one of the 32-bit registers. Only FWBn registers that have been
updated since the preceding buffered Flash write operation are written into the Flash, so it is not
necessary to write the entire bank of registers in order to write 1 or 2 words. The FWBn registers
are written into the Flash with the FWB0 register corresponding to the address contained in FMA.
FWB1 is written to the address FMA+0x4 etc. Note that only data bits that are 0 result in the Flash
memory being modified. A data bit that is 1 leaves the content of the Flash memory bit at its previous
value.

Flash Write Buffer n (FWBn)
Base 0x400F.D000
Offset 0x100 - 0x13C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Data

Data to be written into the Flash.

0x0000.0000R/WDATA31:0

7.6 Memory Register Descriptions (System Control Offset)
The remainder of this section lists and describes the registers that reside in Flash memory, in
numerical order by address offset. Registers in this section are relative to the System Control base
address of 0x400F.E000.

February 24, 2009210
Preliminary

Internal Memory

Register 10: ROM Control (RMCTL), offset 0x0F0
This register provides control of the ROM controller state. This register offset is relative to the System
Control base address of 0x400F.E000.

ROM Control (RMCTL)
Base 0x400F.E000
Offset 0x0F0
Type R/W1C, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BAreserved

R/W1CROROROROROROROROROROROROROROROType
-000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:1

Boot Alias

Upon reset, the system control module checks the first two words of the
Flash memory to see if it has been programmed. If the first two words
of Flash memory contain 0xFFFF.FFFF then it has not yet been
programmed, and this bit is then set by hardware so that the on-chip
ROM appears at address 0x0.

DescriptionValue

The microcontroller's ROM appears at address 0x0. This bit is
set automatically if the first two words of the Flash memory
contain 0xFFFF.FFFF.

1

The Flash memory is at address 0x0.0

This bit is cleared by writing a 1 to this bit position.

-R/W1CBA0

211February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: ROM Version Register (RMVER), offset 0x0F4
Note: Offset is relative to System Control base address of 0x400FE000.

A 32-bit read-only register containing the ROM content version information.

ROM Version Register (RMVER)
Base 0x400F.E000
Offset 0x0F4
Type RO, reset 0x0202.5400

16171819202122232425262728293031

SIZECONT

ROROROROROROROROROROROROROROROROType
0100000001000000Reset

0123456789101112131415

REVVER

ROROROROROROROROROROROROROROROROType
0000000000101010Reset

DescriptionResetTypeNameBit/Field

ROM Contents

DescriptionValue

Stellaris Boot Loader & DriverLib with AES0x02

0x02ROCONT31:24

ROM Size

This field encodes the size of the ROM.

DescriptionValue

Stellaris Boot Loader & DriverLib with AES,ethernet0x02

0x02ROSIZE23:16

ROM Version0x54ROVER15:8

ROM Revision0x0ROREV7:0

February 24, 2009212
Preliminary

Internal Memory

Register 12: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130
and 0x200
Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 0 (FMPRE0)
Base 0x400F.E000
Offset 0x130 and 0x200
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Read Enable. Enables 2-KB Flash memory blocks to be executed
or read. The policies may be combined as shown in the table “Flash
Protection Policy Combinations”.

DescriptionValue

Enables 256 KB of Flash memory.0xFFFFFFFF

0xFFFFFFFFR/WREAD_ENABLE31:0

213February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 13: Flash Memory Protection Program Enable 0 (FMPPE0), offset
0x134 and 0x400
Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 0 (FMPPE0)
Base 0x400F.E000
Offset 0x134 and 0x400
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Programming Enable

Configures 2-KB flash blocks to be execute only. The policies may be
combined as shown in the table “Flash Protection Policy Combinations”.

DescriptionValue

Enables 256 KB of Flash memory.0xFFFFFFFF

0xFFFFFFFFR/WPROG_ENABLE31:0

February 24, 2009214
Preliminary

Internal Memory

Register 14: User Debug (USER_DBG), offset 0x1D0
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides a write-once mechanism to disable external debugger access to the device
in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory
and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0
disables any external debugger access to the device permanently, starting with the next power-up
cycle of the device. The NOTWRITTEN bit (bit 31) indicates that the register is available to be written
and is controlled through hardware to ensure that the register is only written once.

User Debug (USER_DBG)
Base 0x400F.E000
Offset 0x1D0
Type R/W, reset 0xFFFF.FFFE

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DBG0DBG1DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0111111111111111Reset

DescriptionResetTypeNameBit/Field

User Debug Not Written. When set, this bit specifies that this 32-bit
register has not been written. When clear, this bit specifies that this
register has been written and may not be written again.

1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x1FFFFFFFR/WDATA30:2

Debug Control 1. The DBG1 bit must be 1 and DBG0must be 0 for debug
to be available.

1R/WDBG11

Debug Control 0. The DBG1 bit must be 1 and DBG0must be 0 for debug
to be available.

0R/WDBG00

215February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 15: User Register 0 (USER_REG0), offset 0x1E0
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once.
Bit 31 indicates that the register is available to be written and is controlled through hardware to
ensure that the register is only written once. The write-once characteristics of this register are useful
for keeping static information like communication addresses that need to be unique per part and
would otherwise require an external EEPROM or other non-volatile device.

User Register 0 (USER_REG0)
Base 0x400F.E000
Offset 0x1E0
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Not Written. When set, this bit specifies that this 32-bit register has not
been written. When clear, this bit specifies that this register has been
written and may not be written again.

1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x7FFFFFFFR/WDATA30:0

February 24, 2009216
Preliminary

Internal Memory

Register 16: User Register 1 (USER_REG1), offset 0x1E4
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once.
Bit 31 indicates that the register is available to be written and is controlled through hardware to
ensure that the register is only written once. The write-once characteristics of this register are useful
for keeping static information like communication addresses that need to be unique per part and
would otherwise require an external EEPROM or other non-volatile device.

User Register 1 (USER_REG1)
Base 0x400F.E000
Offset 0x1E4
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Not Written. When set, this bit specifies that this 32-bit register has not
been written. When clear, this bit specifies that this register has been
written and may not be written again.

1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x7FFFFFFFR/WDATA30:0

217February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 17: User Register 2 (USER_REG2), offset 0x1E8
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once.
Bit 31 indicates that the register is available to be written and is controlled through hardware to
ensure that the register is only written once. The write-once characteristics of this register are useful
for keeping static information like communication addresses that need to be unique per part and
would otherwise require an external EEPROM or other non-volatile device.

User Register 2 (USER_REG2)
Base 0x400F.E000
Offset 0x1E8
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Not Written. When set, this bit specifies that this 32-bit register has not
been written. When clear, this bit specifies that this register has been
written and may not be written again.

1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x7FFFFFFFR/WDATA30:0

February 24, 2009218
Preliminary

Internal Memory

Register 18: User Register 3 (USER_REG3), offset 0x1EC
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once.
Bit 31 indicates that the register is available to be written and is controlled through hardware to
ensure that the register is only written once. The write-once characteristics of this register are useful
for keeping static information like communication addresses that need to be unique per part and
would otherwise require an external EEPROM or other non-volatile device.

User Register 3 (USER_REG3)
Base 0x400F.E000
Offset 0x1EC
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

DATANW

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Not Written. When set, this bit specifies that this 32-bit register has not
been written. When clear, this bit specifies that this register has been
written and may not be written again.

1R/WNW31

User Data. Contains the user data value. This field is initialized to all 1s
and can only be written once.

0x7FFFFFFFR/WDATA30:0

219February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 19: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 1 (FMPRE1)
Base 0x400F.E000
Offset 0x204
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Read Enable. Enables 2-KB Flash memory blocks to be executed
or read. The policies may be combined as shown in the table “Flash
Protection Policy Combinations”.

DescriptionValue

Enables 256 KB of Flash memory.0xFFFFFFFF

0xFFFFFFFFR/WREAD_ENABLE31:0

February 24, 2009220
Preliminary

Internal Memory

Register 20: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 2 (FMPRE2)
Base 0x400F.E000
Offset 0x208
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Read Enable. Enables 2-KB Flash memory blocks to be executed
or read. The policies may be combined as shown in the table “Flash
Protection Policy Combinations”.

DescriptionValue

Enables 256 KB of Flash memory.0xFFFFFFFF

0xFFFFFFFFR/WREAD_ENABLE31:0

221February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 21: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 3 (FMPRE3)
Base 0x400F.E000
Offset 0x20C
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

READ_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Read Enable. Enables 2-KB Flash memory blocks to be executed
or read. The policies may be combined as shown in the table “Flash
Protection Policy Combinations”.

DescriptionValue

Enables 256 KB of Flash memory.0xFFFFFFFF

0xFFFFFFFFR/WREAD_ENABLE31:0

February 24, 2009222
Preliminary

Internal Memory

Register 22: Flash Memory Protection Program Enable 1 (FMPPE1), offset
0x404
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 1 (FMPPE1)
Base 0x400F.E000
Offset 0x404
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Programming Enable

DescriptionValue

Enables 256 KB of Flash memory.0xFFFFFFFF

0xFFFFFFFFR/WPROG_ENABLE31:0

223February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 23: Flash Memory Protection Program Enable 2 (FMPPE2), offset
0x408
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 2 (FMPPE2)
Base 0x400F.E000
Offset 0x408
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Programming Enable

DescriptionValue

Enables 256 KB of Flash memory.0xFFFFFFFF

0xFFFFFFFFR/WPROG_ENABLE31:0

February 24, 2009224
Preliminary

Internal Memory

Register 24: Flash Memory Protection Program Enable 3 (FMPPE3), offset
0x40C
Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves
a policy of open access and programmability. The register bits may be changed by writing the
specific register bit. However, this register is R/W0; the user can only change the protection bit from
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence. For additional
information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 3 (FMPPE3)
Base 0x400F.E000
Offset 0x40C
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

PROG_ENABLE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Flash Programming Enable

DescriptionValue

Enables 256 KB of Flash memory.0xFFFFFFFF

0xFFFFFFFFR/WPROG_ENABLE31:0

225February 24, 2009
Preliminary

LM3S9B92 Microcontroller

8 Micro Direct Memory Access (μDMA)
The LM3S9B92 microcontroller includes a Direct Memory Access (DMA) controller, known as
micro-DMA (μDMA). The μDMA controller provides a way to offload data transfer tasks from the
Cortex-M3 processor, allowing for more efficient use of the processor and the expanded available
bus bandwidth. The μDMA controller can perform transfers between memory and peripherals. It
has dedicated channels for each supported on-chip module and can be programmed to automatically
perform transfers between peripherals and memory as the peripheral is ready to transfer more data.
The μDMA controller provides the following features:.

■ ARM PrimeCell® 32-channel configurable µDMA controller

■ Support for multiple transfer modes

– Memory-to-memory, memory-to-peripheral, peripheral-to-memory

– Basic for simple transfer scenarios

– Ping-pong for continuous data flow

– Scatter-gather for a programmable list of arbitrary transfers initiated from a single request

■ Highly flexible and configurable channel operation

– Independently configured and operated channels

– Dedicated channels for supported on-chip modules - USB, UART, Ethernet, GP Timer, ADC,
EPI, SSI, I2S

– Alternate channel assignments

– One channel each for receive and transmit path for bidirectional modules

– Dedicated channel for software-initiated transfers

– Per-channel configurable bus arbitration scheme

– Optional software-initiated requests for any channel

■ Two levels of priority

■ Design optimizations for improved bus access performance between µDMA controller and the
processor core

– µDMA controller access is subordinate to core access

– RAM striping

– Peripheral bus segmentation

■ Data sizes of 8, 16, and 32 bits

■ Transfer size is programmable in binary steps from 1 to 1024

■ Source and destination address increment size of byte, half-word, word, or no increment

February 24, 2009226
Preliminary

Micro Direct Memory Access (μDMA)

■ Maskable device requests

■ Interrupt on transfer completion, with a separate interrupt per channel

8.1 Block Diagram

Figure 8-1. μDMA Block Diagram

System Memory

CH Control Table

Transfer Buffers
Used by uDMA

μDMA
Controller

•
•
•

DMASRCENDP
DMADSTENDP
DMACHCTRL

DMASRCENDP
DMADSTENDP
DMACHCTRL

DMA error

Peripheral
DMA Channel 0

Peripheral
DMA Channel N-1

•
•
•

DMASTAT
DMACFG

DMACTLBASE
DMAALTBASE
DMAWAITSTAT
DMASWREQ

DMAUSEBURSTSET
DMAUSEBURSTCLR
DMAREQMASKSET
DMAREQMASKCLR

DMAENASET
DMAENACLR
DMAALTSET
DMAALTCLR
DMAPRIOSET
DMAPRIOCLR
DMAERRCLR

request

done

request

done

General
Peripheral N
Registers

Nested
Vectored
Interrupt
Controller
(NVIC)

ARM
Cortex-M3

IRQ request

done

8.2 Functional Description
The μDMA controller is a flexible and highly configurable DMA controller designed to work efficiently
with the microcontroller's Cortex-M3 processor core. It supports multiple data sizes and address
increment schemes, multiple levels of priority among DMA channels, and several transfer modes
to allow for sophisticated programmed data transfers. The DMA controller's usage of the bus is
always subordinate to the processor core, and so it never holds up a bus transaction by the processor.
Because the μDMA controller is only using otherwise-idle bus cycles, the data transfer bandwidth
it provides is essentially free, with no impact on the rest of the system. The bus architecture has
been optimized to greatly reduce contention between the processor core and the μDMA controller,
thus improving performance. The optimizations include RAM striping and peripheral bus segmentation,
which in many cases allows both the processor core and the μDMA controller to access the bus
and perform simultaneous data transfers.

Each peripheral function that is supported has a dedicated channel on the μDMA controller that can
be configured independently. The μDMA controller implements a unique configuration method using
channel control structures that are maintained in system memory by the processor. While simple
transfer modes are supported, it is also possible to build up sophisticated "task" lists in memory that
allow the μDMA controller to perform arbitrary-sized transfers to and from arbitrary locations as part
of a single transfer request. The μDMA controller also supports the use of ping-pong buffering to
accommodate constant streaming of data to or from a peripheral.

Each channel also has a configurable arbitration size. The arbitration size is the number of items
that are transferred in a burst before the μDMA controller rearbitrates for channel priority. Using the

227February 24, 2009
Preliminary

LM3S9B92 Microcontroller

arbitration size, it is possible to control exactly howmany items are transferred to or from a peripheral
each time it makes a DMA service request.

8.2.1 Channel Assignments
μDMA channels 0-31 are assigned to peripherals according to the following table. TheDMAChannel
Alternate Select (DMACHALT) register (see page 280) can be used to specify the alternate
assignment.

Note: Channels noted in the table as "Available for software" may be assigned to peripherals in
the future. However, they are currently available for software use. Channel 30 is dedicated
for software use.

Table 8-1. DMA Channel Assignments

Alternate AssignmentPeripheral AssignedDMA Channel

UART2 ReceiveUSB Endpoint 1 Receive0

UART2 TransmitUSB Endpoint 1 Transmit1

General-Purpose Timer 3AUSB Endpoint 2 Receive2

General-Purpose Timer 3BUSB Endpoint 2 Transmit3

General-Purpose Timer 2AUSB Endpoint 3 Receive4

General-Purpose Timer 2BUSB Endpoint 3 Transmit5

General-Purpose Timer 2AEthernet Receive6

General-Purpose Timer 2BEthernet Transmit7

SSI1 ReceiveUART0 Receive8

SSI1 TransmitUART0 Transmit9

UART1 ReceiveSSI0 Receive10

UART1 TransmitSSI0 Transmit11

UART2 ReceiveAvailable for software12

UART2 TransmitAvailable for software13

General-Purpose Timer 2AADC0 Sample Sequencer 014

General-Purpose Timer 2BADC0 Sample Sequencer 115

Available for softwareADC0 Sample Sequencer 216

Available for softwareADC0 Sample Sequencer 317

General-Purpose Timer 1AGeneral-Purpose Timer 0A18

General-Purpose Timer 1BGeneral-Purpose Timer 0B19

EPI0 ReceiveGeneral-Purpose Timer 1A20

EPI0 TransmitGeneral-Purpose Timer 1B21

Available for softwareUART1 Receive22

Available for softwareUART1 Transmit23

ADC1 Sample Sequencer 0SSI1 Receive24

ADC1 Sample Sequencer 1SSI1 Transmit25

ADC1 Sample Sequencer 2Available for software26

ADC1 Sample Sequencer 3Available for software27

Available for softwareI2S0 Receive28

Available for softwareI2S0 Transmit29

Dedicated for software use30

Reserved31

February 24, 2009228
Preliminary

Micro Direct Memory Access (μDMA)

8.2.2 Priority
The μDMA controller assigns priority to each channel based on the channel number and the priority
level bit for the channel. Channel number 0 has the highest priority and as the channel number
increases, the priority of a channel decreases. Each channel has a priority level bit to provide two
levels of priority: default priority and high priority. If the priority level bit is set, then that channel has
higher priority than all other channels at default priority. If multiple channels are set for high priority,
then the channel number is used to determine relative priority among all the high priority channels.

The priority bit for a channel can be set using the DMA Channel Priority Set (DMAPRIOSET)
register and cleared with the DMA Channel Priority Clear (DMAPRIOCLR) register.

8.2.3 Arbitration Size
When a μDMA channel requests a transfer, the μDMA controller arbitrates among all the channels
making a request and services the DMA channel with the highest priority. Once a transfer begins,
it continues for a selectable number of transfers before rearbitrating among the requesting channels
again. The arbitration size can be configured for each channel, ranging from 1 to 1024 item transfers.
After the μDMA controller transfers the number of items specified by the arbitration size, it then
checks among all the channels making a request and services the channel with the highest priority.

If a lower priority DMA channel uses a large arbitration size, the latency for higher priority channels
is increased because the μDMA controller completes the lower priority burst before checking for
higher priority requests. Therefore, lower priority channels should not use a large arbitration size
for best response on high priority channels.

The arbitration size can also be thought of as a burst size. It is the maximum number of items that
are transferred at any one time in a burst. Here, the term arbitration refers to determination of DMA
channel priority, not arbitration for the bus. When the μDMA controller arbitrates for the bus, the
processor always takes priority. Furthermore, the μDMA controller is held off whenever the processor
must perform a bus transaction on the same bus, even in the middle of a burst transfer.

8.2.4 Request Types
The μDMA controller responds to two types of requests from a peripheral: single or burst. Each
peripheral may support either or both types of requests. A single request means that the peripheral
is ready to transfer one item, while a burst request means that the peripheral is ready to transfer
multiple items.

The μDMA controller responds differently depending on whether the peripheral is making a single
request or a burst request. If both are asserted, and the μDMA channel has been set up for a burst
transfer, then the burst request takes precedence. See Table 8-2, which shows how each peripheral
supports the two request types.

Table 8-2. Request Type Support

Burst Request SignalSingle Request SignalPeripheral

FIFO TXRDYNoneUSB TX

FIFO RXRDYNoneUSB RX

NoneTX FIFO emptyEthernet TX

NoneRX packet receivedEthernet RX

TX FIFO Level (configurable)TX FIFO Not FullUART TX

RX FIFO Level (configurable)RX FIFO Not EmptyUART RX

TX FIFO Level (fixed at 4)TX FIFO Not FullSSI TX

229February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Burst Request SignalSingle Request SignalPeripheral

RX FIFO Level (fixed at 4)RX FIFO Not EmptySSI RX

Sequencer IE bitNoneADC

NoneRaw interrupt pulseGeneral-Purpose Timer

FIFO service requestNoneI2S TX

FIFO service requestNoneI2S RX

TX FIFO not fullNoneEPI TX

RX FIFO not emptyNoneEPI RX

8.2.4.1 Single Request
When a single request is detected, and not a burst request, the μDMA controller transfers one item
and then stops to wait for another request.

8.2.4.2 Burst Request
When a burst request is detected, the μDMA controller transfers the number of items that is the
lesser of the arbitration size or the number of items remaining in the transfer. Therefore, the arbitration
size should be the same as the number of data items that the peripheral can accommodate when
making a burst request. For example, the UART generates a burst request based on the FIFO trigger
level. In this case, the arbitration size should be set to the amount of data that the FIFO can transfer
when the trigger level is reached.

It may be desirable to use only burst transfers and not allow single transfers. For example, perhaps
the nature of the data is such that it only makes sense when transferred together as a single unit
rather than one piece at a time. The single request can be disabled by using the DMA Channel
Useburst Set (DMAUSEBURSTSET) register. By setting the bit for a channel in this register, the
μDMA controller only responds to burst requests for that channel.

8.2.5 Channel Configuration
The μDMA controller uses an area of system memory to store a set of channel control structures
in a table. The control table may have one or two entries for each DMA channel. Each entry in the
table structure contains source and destination pointers, transfer size, and transfer mode. The
control table can be located anywhere in system memory, but it must be contiguous and aligned on
a 1024-byte boundary.

Table 8-3 on page 231 shows the layout in memory of the channel control table. Each channel may
have one or two control structures in the control table: a primary control structure and an optional
alternate control structure. The table is organized so that all of the primary entries are in the first
half of the table, and all the alternate structures are in the second half of the table. The primary entry
is used for simple transfer modes where transfers can be reconfigured and restarted after each
transfer is complete. In this case, the alternate control structures are not used and therefore only
the first half of the table must be allocated in memory; the second half of the control table is not
necessary, and that memory can be used for something else. If a more complex transfer mode is
used such as ping-pong or scatter-gather, then the alternate control structure is also used and
memory space should be allocated for the entire table.

Any unused memory in the control table may be used by the application. This includes the control
structures for any channels that are unused by the application as well as the unused control word
for each channel.

February 24, 2009230
Preliminary

Micro Direct Memory Access (μDMA)

Table 8-3. Control Structure Memory Map

ChannelOffset

0, Primary0x0

1, Primary0x10

......

31, Primary0x1F0

0, Alternate0x200

1, Alternate0x210

......

31, Alternate0x3F0

Table 8-4 shows an individual control structure entry in the control table. Each entry has a source
and destination end pointer. These pointers point to the ending address of the transfer and are
inclusive. If the source or destination is non-incrementing (as for a peripheral register), then the
pointer should point to the transfer address.

Table 8-4. Channel Control Structure

DescriptionOffset

Source End Pointer0x000

Destination End Pointer0x004

Control Word0x008

Unused0x00C

The remaining part of the control structure is the control word. The control word contains the following
fields:

■ Source and destination data sizes

■ Source and destination address increment size

■ Number of transfers before bus arbitration

■ Total number of items to transfer

■ Useburst flag

■ Transfer mode

The control word and each field are described in detail in “μDMA Channel Control
Structure” on page 248. The μDMA controller updates the transfer size and transfer mode fields as
the transfer is performed. At the end of a transfer, the transfer size indicates 0, and the transfer
mode will indicate "stopped." Because the control word is modified by the μDMA controller, it must
be reconfigured before each new transfer. The source and destination end pointers are not modified,
so they can be left unchanged if the source or destination addresses remain the same.

Prior to starting a transfer, a μDMA channel must be enabled by setting the appropriate bit in the
DMA Channel Enable Set (DMAENASET) register. A channel can be disabled by setting the
channel bit in the DMA Channel Enable Clear (DMAENACLR) register. At the end of a complete
DMA transfer, the controller automatically disables the channel.

231February 24, 2009
Preliminary

LM3S9B92 Microcontroller

8.2.6 Transfer Modes
The μDMA controller supports several transfer modes. Two of the modes support simple one-time
transfers. Several complex modes support a continuous flow of data.

8.2.6.1 Stop Mode
While Stop is not actually a transfer mode, it is a valid value for the mode field of the control word.
When the mode field has this value, the μDMA controller does not perform any transfers and disables
the channel if it is enabled. At the end of a transfer, the μDMA controller updates the control word
to set the mode to Stop.

8.2.6.2 Basic Mode
In Basic mode, the μDMA controller performs transfers as long as there are more items to transfer,
and a transfer request is present. This mode is used with peripherals that assert a DMA request
signal whenever the peripheral is ready for a data transfer. Basic mode should not be used in any
situation where the request is momentary even though the entire transfer should be completed. For
example, a software-initiated transfer creates a momentary request, and in Basic mode, only one
item is transferred on a software request.

When all of the items have been transferred using Basic mode, the μDMA controller sets the mode
for that channel to Stop.

8.2.6.3 Auto Mode
Auto mode is similar to Basic mode, except that once a transfer request is received, the transfer
runs to completion, even if the DMA request is removed. This mode is suitable for software-triggered
transfers. Generally, Auto mode is not used with a peripheral.

When all the items have been transferred using Auto mode, the μDMA controller sets the mode for
that channel to Stop.

8.2.6.4 Ping-Pong
Ping-Pongmode is used to support a continuous data flow to or from a peripheral. To use Ping-Pong
mode, both the primary and alternate data structures must be implemented. Both structures are set
up by the processor for data transfer between memory and a peripheral. The transfer is started
using the primary control structure. When the transfer using the primary control structure is complete,
the μDMA controller reads the alternate control structure for that channel to continue the transfer.
Each time this happens, an interrupt is generated, and the processor can reload the control structure
for the just-completed transfer. Data flow can continue indefinitely this way, using the primary and
alternate control structures to switch back and forth between buffers as the data flows to or from
the peripheral.

Refer to Figure 8-2 for an example showing operation in Ping-Pong mode.

February 24, 2009232
Preliminary

Micro Direct Memory Access (μDMA)

Figure 8-2. Example of Ping-Pong DMA Transaction

Alternate Structure

Primary Structure

Primary Structure

Alternate Structure

tra
ns
fe
rc
on
tin
ue
s
us
in
g
al
te
rn
at
e

SOURCE
DEST BUFFER B

SOURCE
DEST BUFFER A

Process data in BUFFER A
Reload primary structure

transfers using BUFFER A
SOURCE
DEST BUFFER A

transfers using BUFFER A

transfers using BUFFER B

tra
ns
fe
rc
on
tin
ue
s
us
in
g
al
te
rn
at
e

tra
ns
fe
rc
on
tin
ue
s
us
in
g
pr
im
ar
y

SOURCE
DEST BUFFER B

transfers using BUFFER B

Peripheral/uDMA Interrupt

Process data in BUFFER B
Reload alternate structure

Process data in BUFFER B
Reload alternate structure

μDMA Controller Cortex-M3 Processor

Ti
m
e

Peripheral/uDMA Interrupt

Peripheral/uDMA Interrupt

8.2.6.5 Memory Scatter-Gather
Memory Scatter-Gather mode is a complex mode used when data must be transferred to or from
varied locations in memory instead of a set of contiguous locations in a memory buffer. For example,
a gather DMA operation could be used to selectively read the payload of several stored packets of
a communication protocol and store them together in sequence in a memory buffer.

233February 24, 2009
Preliminary

LM3S9B92 Microcontroller

In Memory Scatter-Gather mode, the primary control structure is used to program the alternate
control structure from a table in memory. The table is set up by the processor software and contains
a list of control structures, each containing the source and destination end pointers, and the control
word for a specific transfer. The mode of each control word must be set to Scatter-Gather mode.
Each entry in the table is copied in turn to the alternate structure where it is then executed. The
μDMA controller alternates between using the primary control structure to copy the next transfer
instruction from the list and then executing the new transfer instruction. The end of the list is marked
by programming the control word for the last entry to use Basic transfer mode. Once the last transfer
is performed using Basic mode, the μDMA controller stops. A completion interrupt is generated only
after the last transfer. It is possible to loop the list by having the last entry copy the primary control
structure to point back to the beginning of the list (or to a new list). It is also possible to trigger a set
of other channels to perform a transfer, either directly, by programming a write to the software trigger
for another channel, or indirectly, by causing a peripheral action that results in a μDMA request.

By programming the μDMA controller using this method, a set of arbitrary transfers can be performed
based on a single DMA request.

Refer to Figure 8-3 on page 235 and Figure 8-4 on page 236, which show an example of operation
in Memory Scatter-Gather mode. This example shows a gather operation, where data in three
separate buffers in memory is copied together into one buffer. Figure 8-3 on page 235 shows how
the application sets up a μDMA task list in memory that is used by the controller to perform three
sets of copy operations from different locations in memory. The primary control structure for the
channel that is used for the operation is configured to copy from the task list to the alternate control
structure.

Figure 8-4 on page 236 shows the sequence as the μDMA controller performs the three sets of copy
operations. First, using the primary control structure, the μDMA controller loads the alternate control
structure with task A. It then performs the copy operation specified by task A, copying the data from
the source buffer A to the destination buffer. Next, the μDMA controller again uses the primary
control structure to load task B into the alternate control structure, and then performs the B operation
with the alternate control structure. The process is repeated for task C.

February 24, 2009234
Preliminary

Micro Direct Memory Access (μDMA)

Figure 8-3. Memory Scatter-Gather, Setup and Configuration

NOTES:
1. Application has a need to copy data items from three separate location in memory into one combined buffer.
2. Application sets up uDMA “task list” in memory, which contains the pointers and control configuration for three

uDMA copy “tasks.”
3. Application sets up the channel primary control structure to copy each task configuration, one at a time, to the

alternate control structure, where it will be executed by the uDMA controller.

C

4 WORDS (SRC A)

16 WORDS (SRC B)

SRC

DST

ITEMS=4

SRC

DST

ITEMS=16

SRC

DST

ITEMS=1

1 WORD (SRC C)

4 (DEST A)

16 (DEST B)

1 (DEST C)

A

B

“TASK” A

“TASK” B

“TASK” C

SRC

DST

ITEMS=12

SRC

DST

ITEMS=n

Task List in Memory

21 3

Source and Destination
Buffer in Memory

Channel Control
Table in Memory

Channel Primary
Control Structure

Channel Alternate
Control Structure

235February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 8-4. Memory Scatter-Gather, μDMA Copy Sequence

SRC

DST

COPIED

SRC

DST

COPIED

PRI

ALT

SRC

DST

COPIED

SRC

DST

COPIED

SRC

DST

COPIED

SRC

DST
COPIED

Task List
in Memory

μDMA Control Table
in Memory

Buffers
in Memory

TASK B

TASK C

PRI

ALT

SRC B

SRC C

DEST B

DEST C

Using the channel’s primary control structure, the μDMA
controller copies task A configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
μDMA controller copies data from the source buffer A to
the destination buffer.

Task List
in Memory

μDMA Control Table
in Memory

Buffers
in Memory

Using the channel’s primary control structure, the μDMA
controller copies task B configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
μDMA controller copies data from the source buffer B to
the destination buffer.

μDMA Control Table
in Memory

Buffers
in Memory

Using the channel’s primary control structure, the μDMA
controller copies task C configuration to the channel’s
alternate control structure.

Then, using the channel’s alternate control structure, the
μDMA controller copies data from the source buffer C to
the destination buffer.

PRI

ALT

Task List
in Memory

TASK A

TASK B

TASK A

TASK C

SRC A

SRC C

DEST A

DEST C

SRC A

SRC B

DEST A

DEST B

TASK A

TASK B

SRC A

TASK C

SRC C

DEST C

SRC B

DEST B

DEST A

February 24, 2009236
Preliminary

Micro Direct Memory Access (μDMA)

8.2.6.6 Peripheral Scatter-Gather
Peripheral Scatter-Gather mode is very similar to Memory Scatter-Gather, except that the transfers
are controlled by a peripheral making a DMA request. Upon detecting a DMA request from the
peripheral, the μDMA controller uses the primary control structure to copy one entry from the list to
the alternate control structure and then performs the transfer. At the end of this transfer, the next
transfer is started only if the peripheral again asserts a DMA request. The μDMA controller continues
to perform transfers from the list only when the peripheral is making a request, until the last transfer
is complete. A completion interrupt is generated only after the last transfer.

By using this method, the μDMA controller can transfer data to or from a peripheral from a set of
arbitrary locations whenever the peripheral is ready to transfer data.

Refer to Figure 8-5 on page 238 and Figure 8-6 on page 239, which show an example of operation
in Peripheral Scatter-Gather mode. This example shows a gather operation, where data from three
separate buffers in memory is copied to a single peripheral data register. Figure 8-5 on page 238
shows how the application sets up a µDMA task list in memory that is used by the controller to
perform three sets of copy operations from different locations in memory. The primary control
structure for the channel that is used for the operation is configured to copy from the task list to the
alternate control structure.

Figure 8-6 on page 239 shows the sequence as the µDMA controller performs the three sets of copy
operations. First, using the primary control structure, the µDMA controller loads the alternate control
structure with task A. It then performs the copy operation specified by task A, copying the data from
the source buffer A to the peripheral data register. Next, the µDMA controller again uses the primary
control structure to load task B into the alternate control structure, and then performs the B operation
with the alternate control structure. The process is repeated for task C.

237February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 8-5. Peripheral Scatter-Gather, Setup and Configuration

NOTES:
1. Application has a need to copy data items from three separate location in memory into a peripheral data

register.
2. Application sets up μDMA “task list” in memory, which contains the pointers and control configuration for three

uDMA copy “tasks.”
3. Application sets up the channel primary control structure to copy each task configuration, one at a time, to the

alternate control structure, where it will be executed by the μDMA controller.

C

4 WORDS (SRC A)

16 WORDS (SRC B)

SRC

DST

ITEMS=4

SRC

DST

ITEMS=16

SRC

DST

ITEMS=1

1 WORD (SRC C)

A

B

“TASK” A

“TASK” B

“TASK” C

SRC

DST

ITEMS=12

SRC

DST

ITEMS=n

Task List in Memory

21 3

Source Buffer
in Memory

Channel Control
Table in Memory

Channel Primary
Control Structure

Channel Alternate
Control Structure

DEST

Peripheral Data
Register

February 24, 2009238
Preliminary

Micro Direct Memory Access (μDMA)

Figure 8-6. Peripheral Scatter-Gather, μDMA Copy Sequence

SRC C

SRC

DST

COPIED

SRC

DST COPIED

μDMA Control
Table

in Memory

Buffers
in Memory

Using the channel’s primary control structure, the
μDMA controller copies task C configuration to the
channel’s alternate control structure.

Then, using the channel’s alternate control structure,
the μDMA controller copies data from the source
buffer C to the peripheral data register.

PRI

ALT

Task List
in Memory

TASK A
TASK B

Peripheral
Data

Register

SRC A

SRC B

TASK C

PRI

ALT

SRC

DST

COPIED

SRC

DST

COPIED

Task List
in Memory

μDMA Control
Table

in Memory

Buffers
in Memory

Using the channel’s primary control structure, the
μDMA controller copies task B configuration to the
channel’s alternate control structure.

Then, using the channel’s alternate control structure,
the μDMA controller copies data from the source
buffer B to the peripheral data register.

TASK A

TASK C Peripheral
Data

Register

SRC A

SRC C

TASK B

SRC B

TASK A

SRC

DST

COPIED

SRC

DST

COPIED

Task List
in Memory

μDMA Control
Table

in Memory

Buffers
in Memory

TASK B
TASK C

PRI

ALT

Using the channel’s primary control structure, the
μDMA controller copies task A configuration to the
channel’s alternate control structure.

Then, using the channel’s alternate control structure,
the μDMA controller copies data from the source
buffer A to the peripheral data register.

Peripheral
Data

Register

SRC B

SRC C

SRC A

239February 24, 2009
Preliminary

LM3S9B92 Microcontroller

8.2.7 Transfer Size and Increment
The μDMA controller supports transfer data sizes of 8, 16, or 32 bits. The source and destination
data size must be the same for any given transfer. The source and destination address can be
auto-incremented by bytes, half-words, or words, or can be set to no increment. The source and
destination address increment values can be set independently, and it is not necessary for the
address increment to match the data size as long as the increment is the same or larger than the
data size. For example, it is possible to perform a transfer using 8-bit data size, but using an address
increment of full words (4 bytes). The data to be transferred must be aligned in memory according
to the data size (8, 16, or 32 bits).

Table 8-5 shows the configuration to read from a peripheral that supplies 8-bit data.

Table 8-5. μDMA Read Example: 8-Bit Peripheral

ConfigurationField

8 bitsSource data size

8 bitsDestination data size

No incrementSource address increment

ByteDestination address increment

Peripheral read FIFO registerSource end pointer

End of the data buffer in memoryDestination end pointer

8.2.8 Peripheral Interface
Each peripheral that supports μDMA has a DMA single request and/or burst request signal that is
asserted when the device is ready to transfer data (see Table 8-2 on page 229). The request signal
can be disabled or enabled using the DMA Channel Request Mask Set (DMAREQMASKSET)
andDMAChannel Request Mask Clear (DMAREQMASKCLR) registers. The DMA request signal
is disabled, or masked, when the channel request mask bit is set. When the request is not masked,
the DMA channel is configured correctly and enabled, and the peripheral asserts the DMA request
signal, the μDMA controller begins the transfer.

When a DMA transfer is complete, the μDMA controller asserts a DMA Done signal, which is routed
through the interrupt vector of the peripheral. Therefore, if DMA is used to transfer data for a
peripheral and interrupts are used, then the interrupt handler for that peripheral must be designed
to handle the μDMA transfer completion interrupt. When DMA is enabled for a peripheral, the μDMA
controller masks the normal interrupts for a peripheral. Thus, when a large amount of data is
transferred using DMA, instead of receiving multiple interrupts from the peripheral as data flows,
the processor receives only one interrupt when the transfer is complete.

The interrupt request from the μDMA controller is automatically cleared when the interrupt handler
is activated.

8.2.9 Software Request
One μDMA channel is dedicated to software-initiated transfers. This channel also has a dedicated
interrupt to signal completion of a DMA transfer. A transfer is initiated by software by first configuring
and enabling the transfer, and then issuing a software request using the DMA Channel Software
Request (DMASWREQ) register. For software-based transfers, the Auto transfer mode should be
used.

It is possible to initiate a transfer on any channel using the DMASWREQ register. If a request is
initiated by software using a peripheral DMA channel, then the completion interrupt occurs on the

February 24, 2009240
Preliminary

Micro Direct Memory Access (μDMA)

interrupt vector for the peripheral instead of the software interrupt vector. Any channel may be used
for software requests as long as the corresponding peripheral is not using μDMA for data transfer.

8.2.10 Interrupts and Errors
When a μDMA channel generates an interrupt, the interrupt status is latched in the DMA Channel
Interrupt Status (DMACHIS) register (see page 281). This register can be used by the peripheral
interrupt handler code to determine if the interrupt was caused by the μDMA channel or something
else.

When a DMA transfer is complete, the μDMA controller generates a completion interrupt on the
interrupt vector of the peripheral. If the transfer uses the software DMA channel, then the completion
interrupt occurs on the dedicated software DMA interrupt vector.

If the μDMA controller encounters a bus or memory protection error as it attempts to perform a data
transfer, it disables the DMA channel that caused the error and generates an interrupt on the μDMA
Error interrupt vector. The processor can read the DMA Bus Error Clear (DMAERRCLR) register
to determine if an error is pending. The ERRCLR bit is set if an error occurred. The error can be
cleared by writing a 1 to the ERRCLR bit.

If the peripheral generates an error that causes an interrupt, the interrupt is generated on the interrupt
vector for that peripheral. This is the same whether or not μDMA is being used with the peripheral.

Table 8-6 shows the dedicated interrupt assignments for the μDMA controller.

Table 8-6. μDMA Interrupt Assignments

AssignmentInterrupt

μDMA Software Channel Transfer46

μDMA Error47

8.3 Initialization and Configuration

8.3.1 Module Initialization
Before the μDMA controller can be used, it must be enabled in the System Control block and in the
peripheral. The location of the channel control structure must also be programmed.

The following steps should be performed one time during system initialization:

1. The μDMA peripheral must be enabled in the System Control block. To do this, set the UDMA
bit of the System Control RCGC2 register (page 179).

2. Enable the μDMA controller by setting the MASTEREN bit of theDMAConfiguration (DMACFG)
register.

3. Program the location of the channel control table by writing the base address of the table to the
DMA Channel Control Base Pointer (DMACTLBASE) register. The base address must be
aligned on a 1024-byte boundary.

8.3.2 Configuring a Memory-to-Memory Transfer
μDMA channel 30 is dedicated for software-initiated transfers. However, any channel can be used
for software-initiated, memory-to-memory transfer if the associated peripheral is not being used.

241February 24, 2009
Preliminary

LM3S9B92 Microcontroller

8.3.2.1 Configure the Channel Attributes
First, configure the channel attributes:

1. Program bit 30 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority
Clear (DMAPRIOCLR) registers to set the channel to High priority or Default priority.

2. Set bit 30 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the
primary channel control structure for this transfer.

3. Set bit 30 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the
μDMA controller to respond to single and burst requests.

4. Set bit 30 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow
the μDMA controller to recognize requests for this channel.

8.3.2.2 Configure the Channel Control Structure
Now the channel control structure must be configured.

This example transfers 256 words from one memory buffer to another. Channel 30 is used for a
software transfer, and the control structure for channel 30 is at offset 0x1E0 of the channel control
table. The channel control structure for channel 30 is located at the offsets shown in Table 8-7.

Table 8-7. Channel Control Structure Offsets for Channel 30

DescriptionOffset

Channel 30 Source End PointerControl Table Base + 0x1E0

Channel 30 Destination End PointerControl Table Base + 0x1E4

Channel 30 Control WordControl Table Base + 0x1E8

Configure the Source and Destination

The source and destination end pointers must be set to the last address for the transfer (inclusive).

1. Program the source end pointer at offset 0x1E0 to the address of the source buffer + 0x3FC.

2. Program the destination end pointer at offset 0x1E4 to the address of the destination buffer +
0x3FC.

The control word at offset 0x1E8 must be programmed according to Table 8-8.

Table 8-8. Channel Control Word Configuration for Memory Transfer Example

DescriptionValueBitsField in DMACHCTL

32-bit destination address increment231:30DSTINC

32-bit destination data size229:28DSTSIZE

32-bit source address increment227:26SRCINC

32-bit source data size225:24SRCSIZE

Reserved023:18reserved

Arbitrates after 8 transfers317:14ARBSIZE

Transfer 256 items25513:4XFERSIZE

N/A for this transfer type03NXTUSEBURST

Use Auto-request transfer mode22:0XFERMODE

February 24, 2009242
Preliminary

Micro Direct Memory Access (μDMA)

8.3.2.3 Start the Transfer
Now the channel is configured and is ready to start.

1. Enable the channel by setting bit 30 of the DMA Channel Enable Set (DMAENASET) register.

2. Issue a transfer request by setting bit 30 of theDMAChannel Software Request (DMASWREQ)
register.

The DMA transfer begins. If the interrupt is enabled, then the processor is notified by interrupt when
the transfer is complete. If needed, the status can be checked by reading bit 30 of theDMAENASET
register. This bit is automatically cleared when the transfer is complete. The status can also be
checked by reading the XFERMODE field of the channel control word at offset 0x1E8. This field is
automatically cleared at the end of the transfer.

8.3.3 Configuring a Peripheral for Simple Transmit
This example configures the μDMA controller to transmit a buffer of data to a peripheral. The
peripheral has a transmit FIFO with a trigger level of 4. The example peripheral uses μDMA channel
7.

8.3.3.1 Configure the Channel Attributes
First, configure the channel attributes:

1. Configure bit 7 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority
Clear (DMAPRIOCLR) registers to set the channel to High priority or Default priority.

2. Set bit 7 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the
primary channel control structure for this transfer.

3. Set bit 7 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the
μDMA controller to respond to single and burst requests.

4. Set bit 7 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow
the μDMA controller to recognize requests for this channel.

8.3.3.2 Configure the Channel Control Structure
This example transfers 64 bytes from a memory buffer to the peripheral's transmit FIFO register
using μDMA channel 7. The control structure for channel 7 is at offset 0x070 of the channel control
table. The channel control structure for channel 7 is located at the offsets shown in Table 8-9.

Table 8-9. Channel Control Structure Offsets for Channel 7

DescriptionOffset

Channel 7 Source End PointerControl Table Base + 0x070

Channel 7 Destination End PointerControl Table Base + 0x074

Channel 7 Control WordControl Table Base + 0x078

Configure the Source and Destination

The source and destination end pointers must be set to the last address for the transfer (inclusive).
Because the peripheral pointer does not change, it simply points to the peripheral's data register.

1. Program the source end pointer at offset 0x070 to the address of the source buffer + 0x3F.

243February 24, 2009
Preliminary

LM3S9B92 Microcontroller

2. Program the destination end pointer at offset 0x074 to the address of the peripheral's transmit
FIFO register.

The control word at offset 0x078 must be programmed according to Table 8-10.

Table 8-10. Channel Control Word Configuration for Peripheral Transmit Example

DescriptionValueBitsField in DMACHCTL

Destination address does not increment331:30DSTINC

8-bit destination data size029:28DSTSIZE

8-bit source address increment027:26SRCINC

8-bit source data size025:24SRCSIZE

Reserved023:18reserved

Arbitrates after 4 transfers217:14ARBSIZE

Transfer 64 items6313:4XFERSIZE

N/A for this transfer type03NXTUSEBURST

Use Basic transfer mode12:0XFERMODE

Note: In this example, it is not important if the peripheral makes a single request or a burst request.
Because the peripheral has a FIFO that triggers at a level of 4, the arbitration size is set to
4. If the peripheral does make a burst request, then 4 bytes are transferred, which is what
the FIFO can accommodate. If the peripheral makes a single request (if there is any space
in the FIFO), then one byte is transferred at a time. If it is important to the application that
transfers only be made in bursts, then the Channel Useburst SET[7] bit should be set in
the DMA Channel Useburst Set (DMAUSEBURSTSET) register.

8.3.3.3 Start the Transfer
Now the channel is configured and is ready to start.

1. Enable the channel by setting bit 7 of the DMA Channel Enable Set (DMAENASET) register.

The μDMA controller is now configured for transfer on channel 7. The controller makes transfers to
the peripheral whenever the peripheral asserts a DMA request. The transfers continue until the
entire buffer of 64 bytes has been transferred. When that happens, the μDMA controller disables
the channel and sets the XFERMODE field of the channel control word to 0 (Stopped). The status of
the transfer can be checked by reading bit 7 of the DMA Channel Enable Set (DMAENASET)
register. This bit is automatically cleared when the transfer is complete. The status can also be
checked by reading the XFERMODE field of the channel control word at offset 0x078. This field is
automatically cleared at the end of the transfer.

If peripheral interrupts are enabled, then the peripheral interrupt handler receives an interrupt when
the entire transfer is complete.

8.3.4 Configuring a Peripheral for Ping-Pong Receive
This example configures the μDMA controller to continuously receive 8-bit data from a peripheral
into a pair of 64-byte buffers. The peripheral has a receive FIFO with a trigger level of 8. The example
peripheral uses μDMA channel 8.

8.3.4.1 Configure the Channel Attributes
First, configure the channel attributes:

February 24, 2009244
Preliminary

Micro Direct Memory Access (μDMA)

1. Configure bit 8 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority
Clear (DMAPRIOCLR) registers to set the channel to High priority or Default priority.

2. Set bit 8 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the
primary channel control structure for this transfer.

3. Set bit 8 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the
μDMA controller to respond to single and burst requests.

4. Set bit 8 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow
the μDMA controller to recognize requests for this channel.

8.3.4.2 Configure the Channel Control Structure
This example transfers bytes from the peripheral's receive FIFO register into two memory buffers
of 64 bytes each. As data is received, when one buffer is full, the μDMA controller switches to use
the other.

To use Ping-Pong buffering, both primary and alternate channel control structures must be used.
The primary control structure for channel 8 is at offset 0x080 of the channel control table, and the
alternate channel control structure is at offset 0x280. The channel control structures for channel 8
are located at the offsets shown in Table 8-11.

Table 8-11. Primary and Alternate Channel Control Structure Offsets for Channel 8

DescriptionOffset

Channel 8 Primary Source End PointerControl Table Base + 0x080

Channel 8 Primary Destination End PointerControl Table Base + 0x084

Channel 8 Primary Control WordControl Table Base + 0x088

Channel 8 Alternate Source End PointerControl Table Base + 0x280

Channel 8 Alternate Destination End PointerControl Table Base + 0x284

Channel 8 Alternate Control WordControl Table Base + 0x288

Configure the Source and Destination

The source and destination end pointers must be set to the last address for the transfer (inclusive).
Because the peripheral pointer does not change, it simply points to the peripheral's data register.
Both the primary and alternate sets of pointers must be configured.

1. Program the primary source end pointer at offset 0x080 to the address of the peripheral's receive
buffer.

2. Program the primary destination end pointer at offset 0x084 to the address of ping-pong buffer
A + 0x3F.

3. Program the alternate source end pointer at offset 0x280 to the address of the peripheral's
receive buffer.

4. Program the alternate destination end pointer at offset 0x284 to the address of ping-pong buffer
B + 0x3F.

The primary control word at offset 0x088 and the alternate control word at offset 0x288 must be
programmed according to Table 8-10 on page 244. Both control words are initially programmed the
same way.

245February 24, 2009
Preliminary

LM3S9B92 Microcontroller

1. Program the primary channel control word at offset 0x088 according to Table 8-12.

2. Program the alternate channel control word at offset 0x288 according to Table 8-12.

Table 8-12. Channel Control Word Configuration for Peripheral Ping-Pong Receive Example

DescriptionValueBitsField in DMACHCTL

8-bit destination address increment031:30DSTINC

8-bit destination data size029:28DSTSIZE

Source address does not increment327:26SRCINC

8-bit source data size025:24SRCSIZE

Reserved023:18reserved

Arbitrates after 8 transfers317:14ARBSIZE

Transfer 64 items6313:4XFERSIZE

N/A for this transfer type03NXTUSEBURST

Use Ping-Pong transfer mode32:0XFERMODE

Note: In this example, it is not important if the peripheral makes a single request or a burst request.
Because the peripheral has a FIFO that triggers at a level of 8, the arbitration size is set to
8. If the peripheral does make a burst request, then 8 bytes are transferred, which is what
the FIFO can accommodate. If the peripheral makes a single request (if there is any data
in the FIFO), then one byte is transferred at a time. If it is important to the application that
transfers only be made in bursts, then the Channel Useburst SET[8] bit should be set in
the DMA Channel Useburst Set (DMAUSEBURSTSET) register.

8.3.4.3 Configure the Peripheral Interrupt
An interrupt handler should be configured when using μDMA Ping-Pong mode, it is best to use an
interrupt handler. However, the Ping-Pong mode can be configured without interrupts by polling.
The interrupt handler is triggered after each buffer is complete.

1. Configure and enable an interrupt handler for the peripheral.

8.3.4.4 Enable the μDMA Channel
Now the channel is configured and is ready to start.

1. Enable the channel by setting bit 8 of the DMA Channel Enable Set (DMAENASET) register.

8.3.4.5 Process Interrupts
The μDMA controller is now configured and enabled for transfer on channel 8. When the peripheral
asserts the DMA request signal, the μDMA controller makes transfers into buffer A using the primary
channel control structure. When the primary transfer to buffer A is complete, it switches to the
alternate channel control structure and makes transfers into buffer B. At the same time, the primary
channel control word mode field is configured to indicate Stopped, and an interrupt is

When an interrupt is triggered, the interrupt handler must determine which buffer is complete and
process the data or set a flag that the data must be processed by non-interrupt buffer processing
code. Then the next buffer transfer must be set up.

In the interrupt handler:

1. Read the primary channel control word at offset 0x088 and check the XFERMODE field. If the
field is 0, this means buffer A is complete. If buffer A is complete, then:

February 24, 2009246
Preliminary

Micro Direct Memory Access (μDMA)

a. Process the newly received data in buffer A or signal the buffer processing code that buffer
A has data available.

b. Reprogram the primary channel control word at offset 0x88 according to Table
8-12 on page 246.

2. Read the alternate channel control word at offset 0x288 and check the XFERMODE field. If the
field is 0, this means buffer B is complete. If buffer B is complete, then:

a. Process the newly received data in buffer B or signal the buffer processing code that buffer
B has data available.

b. Reprogram the alternate channel control word at offset 0x288 according to Table
8-12 on page 246.

8.3.5 Configuring Alternate Channels
Alternate peripherals can be assigned to each μDMA channel using the DMACHALT register. Each
bit represents a μDMA channel. If the bit is set, then the alternate peripheral is used for the channel.

Refer to Table 8-1 on page 228 for alternate channel assignments.

For example, to use SSI1 Receive on channel 8 instead of UART0, set bit 8 of the DMACHALT
register to 1.

8.4 Register Map
Table 8-13 on page 247 lists the μDMA channel control structures and registers. The channel control
structure shows the layout of one entry in the channel control table. The channel control table is
located in system memory, and the location is determined by the application, that is, the base
address is n/a (not applicable). In the table below, the offset for the channel control structures is the
offset from the entry in the channel control table. See “Channel Configuration” on page 230 and Table
8-3 on page 231 for a description of how the entries in the channel control table are located in memory.
The μDMA register addresses are given as a hexadecimal increment, relative to the μDMA base
address of 0x400F.F000. Note that the μDMA module clock must be enabled before the registers
can be programmed (see page 179).

Table 8-13. μDMA Register Map

See
pageDescriptionResetTypeNameOffset

μDMA Channel Control Structure

249DMA Channel Source Address End Pointer-R/WDMASRCENDP0x000

250DMA Channel Destination Address End Pointer-R/WDMADSTENDP0x004

251DMA Channel Control Word-R/WDMACHCTL0x008

μDMA Registers

256DMA Status0x001F.0000RODMASTAT0x000

258DMA Configuration-WODMACFG0x004

259DMA Channel Control Base Pointer0x0000.0000R/WDMACTLBASE0x008

260DMA Alternate Channel Control Base Pointer0x0000.0200RODMAALTBASE0x00C

247February 24, 2009
Preliminary

LM3S9B92 Microcontroller

See
pageDescriptionResetTypeNameOffset

261DMA Channel Wait-on-Request Status0x0000.0000RODMAWAITSTAT0x010

262DMA Channel Software Request-WODMASWREQ0x014

263DMA Channel Useburst Set0x0000.0000R/WDMAUSEBURSTSET0x018

265DMA Channel Useburst Clear-WODMAUSEBURSTCLR0x01C

266DMA Channel Request Mask Set0x0000.0000R/WDMAREQMASKSET0x020

268DMA Channel Request Mask Clear-WODMAREQMASKCLR0x024

269DMA Channel Enable Set0x0000.0000R/WDMAENASET0x028

271DMA Channel Enable Clear-WODMAENACLR0x02C

272DMA Channel Primary Alternate Set0x0000.0000R/WDMAALTSET0x030

274DMA Channel Primary Alternate Clear-WODMAALTCLR0x034

275DMA Channel Priority Set0x0000.0000R/WDMAPRIOSET0x038

277DMA Channel Priority Clear-WODMAPRIOCLR0x03C

278DMA Bus Error Clear0x0000.0000R/WDMAERRCLR0x04C

280DMA Channel Alternate Select0x0000.0000R/WDMACHALT0x500

281DMA Channel Interrupt Status0x0000.0000R/W1CDMACHIS0x504

286DMA Peripheral Identification 40x0000.0004RODMAPeriphID40xFD0

282DMA Peripheral Identification 00x0000.0030RODMAPeriphID00xFE0

283DMA Peripheral Identification 10x0000.00B2RODMAPeriphID10xFE4

284DMA Peripheral Identification 20x0000.000BRODMAPeriphID20xFE8

285DMA Peripheral Identification 30x0000.0000RODMAPeriphID30xFEC

287DMA PrimeCell Identification 00x0000.000DRODMAPCellID00xFF0

288DMA PrimeCell Identification 10x0000.00F0RODMAPCellID10xFF4

289DMA PrimeCell Identification 20x0000.0005RODMAPCellID20xFF8

290DMA PrimeCell Identification 30x0000.00B1RODMAPCellID30xFFC

8.5 μDMA Channel Control Structure
The μDMA Channel Control Structure holds the μDMA transfer settings for a μDMA channel. Each
channel has two control structures, which are located in a table in systemmemory. Refer to “Channel
Configuration” on page 230 for an explanation of the Channel Control Table and the Channel Control
Structure.

The channel control structure is one entry in the channel control table. Each channel has a primary
and alternate structure. The primary control structures are located at offsets 0x0, 0x10, 0x20 and
so on. The alternate control structures are located at offsets 0x200, 0x210, 0x220, and so on.

February 24, 2009248
Preliminary

Micro Direct Memory Access (μDMA)

Register 1: DMAChannel Source Address End Pointer (DMASRCENDP), offset
0x000
DMA Channel Source Address End Pointer (DMASRCENDP) is part of the Channel Control
Structure and is used to specify the source address for a μDMA transfer.

Note: The offset specified is from the base address of the control structure in system memory,
not the μDMA module base address.

DMA Channel Source Address End Pointer (DMASRCENDP)
Base n/a
Offset 0x000
Type R/W, reset -

16171819202122232425262728293031

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

0123456789101112131415

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

DescriptionResetTypeNameBit/Field

Source Address End Pointer

This field points to the last address of the DMA transfer source
(inclusive). If the source address is not incrementing (the SRCINC field
in the DMACHCTL register is 0x3), then this field points at the source
location itself (such as a peripheral data register).

-R/WADDR31:0

249February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: DMA Channel Destination Address End Pointer (DMADSTENDP),
offset 0x004
DMA Channel Destination Address End Pointer (DMADSTENDP) is part of the Channel Control
Structure and is used to specify the destination address for a μDMA transfer.

Note: The offset specified is from the base address of the control structure in system memory,
not the μDMA module base address.

DMA Channel Destination Address End Pointer (DMADSTENDP)
Base n/a
Offset 0x004
Type R/W, reset -

16171819202122232425262728293031

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

0123456789101112131415

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

DescriptionResetTypeNameBit/Field

Destination Address End Pointer

This field points to the last address of the DMA transfer destination
(inclusive). If the destination address is not incrementing (the DSTINC
field in the DMACHCTL register is 0x3), then this field points at the
destination location itself (such as a peripheral data register).

-R/WADDR31:0

February 24, 2009250
Preliminary

Micro Direct Memory Access (μDMA)

Register 3: DMA Channel Control Word (DMACHCTL), offset 0x008
DMA Channel Control Word (DMACHCTL) is part of the Channel Control Structure and is used
to specify parameters of a μDMA transfer.

Note: The offset specified is from the base address of the control structure in system memory,
not the μDMA module base address.

DMA Channel Control Word (DMACHCTL)
Base n/a
Offset 0x008
Type R/W, reset -

16171819202122232425262728293031

ARBSIZEreservedSRCSIZESRCINCDSTSIZEDSTINC

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

0123456789101112131415

XFERMODENXTUSEBURSTXFERSIZEARBSIZE

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

DescriptionResetTypeNameBit/Field

Destination Address Increment

This field configures the destination address increment.

The address increment value must be equal or greater than the value
of the destination size (DSTSIZE).

DescriptionValue

Byte

Increment by 8-bit locations

0x0

Half-word

Increment by 16-bit locations

0x1

Word

Increment by 32-bit locations

0x2

No increment

Address remains set to the value of the Destination Address
End Pointer (DMADSTENDP) for the channel

0x3

-R/WDSTINC31:30

251February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Destination Data Size

This field configures the destination item data size.

Note: DSTSIZE must be the same as SRCSIZE.

DescriptionValue

Byte

8-bit data size

0x0

Half-word

16-bit data size

0x1

Word

32-bit data size

0x2

Reserved0x3

-R/WDSTSIZE29:28

Source Address Increment

This field configures the source address increment.

The address increment value must be equal or greater than the value
of the source size (SRCSIZE).

DescriptionValue

Byte

Increment by 8-bit locations

0x0

Half-word

Increment by 16-bit locations

0x1

Word

Increment by 32-bit locations

0x2

No increment

Address remains set to the value of the Source Address End
Pointer (DMASRCENDP) for the channel

0x3

-R/WSRCINC27:26

Source Data Size

This field configures the source item data size.

Note: DSTSIZE must be the same as SRCSIZE.

DescriptionValue

Byte

8-bit data size.

0x0

Half-word

16-bit data size.

0x1

Word

32-bit data size.

0x2

Reserved0x3

-R/WSRCSIZE25:24

February 24, 2009252
Preliminary

Micro Direct Memory Access (μDMA)

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

-R/Wreserved23:18

Arbitration Size

This field configures the number of transfers that can occur before the
μDMA controller re-arbitrates. The possible arbitration rate configurations
represent powers of 2 and are shown below.

DescriptionValue

1 Transfer

Arbitrates after each μDMA transfer

0x0

2 Transfers0x1

4 Transfers0x2

8 Transfers0x3

16 Transfers0x4

32 Transfers0x5

64 Transfers0x6

128 Transfers0x7

256 Transfers0x8

512 Transfers0x9

1024 Transfers

In this configuration, no arbitration occurs during the μDMA
transfer because the maximum transfer size is 1024.

0xA-0xF

-R/WARBSIZE17:14

Transfer Size (minus 1)

This field configures the total number of items to transfer. The value of
this field is 1 less than the number to transfer (value 0 means transfer
1 item). The maximum value for this 10-bit field is 1023 which represents
a transfer size of 1024 items.

The transfer size is the number of items, not the number of bytes. If the
data size is 32 bits, then this value is the number of 32-bit words to
transfer.

The μDMA controller updates this field immediately prior to entering the
arbitration process, so it contains the number of outstanding DMA items
that is necessary to complete the μDMA cycle.

-R/WXFERSIZE13:4

Next Useburst

This field controls whether the Useburst SET[n] bit is automatically set
for the last transfer of a peripheral scatter-gather operation. Normally,
for the last transfer, if the number of remaining items to transfer is less
than the arbitration size, the μDMA controller uses single transfers to
complete the transaction. If this bit is set, then the controller uses a burst
transfer to complete the last transfer.

-R/WNXTUSEBURST3

253February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

DMA Transfer Mode

This field configures the operating mode of the μDMA cycle. Refer to
“Transfer Modes” on page 232 for a detailed explanation of transfer
modes.

Because this register is in system RAM, it has no reset value. Therefore,
this field should be initialized to 0 before the channel is enabled.

DescriptionValue

Stop0x0

Basic0x1

Auto-Request0x2

Ping-Pong0x3

Memory Scatter-Gather0x4

Alternate Memory Scatter-Gather0x5

Peripheral Scatter-Gather0x6

Alternate Peripheral Scatter-Gather0x7

-R/WXFERMODE2:0

XFERMODE Bit Field Values.

Stop
Channel is stopped or configuration data is invalid. No more transfers can occur.

Basic
For each trigger (whether from a peripheral or a software request), the μDMA controller performs
the number of transfers specified by the ARBSIZE field.

Auto-Request
The initial request (software- or peripheral-initiated) is sufficient to complete the entire transfer
of XFERSIZE items without any further requests.

Ping-Pong
This mode uses both the primary and alternate control structures for this channel. When the
number of transfers specified by the XFERSIZE field have completed for the current control
structure (primary or alternate), the µDMA controller switches to the other one. These switches
continue until one of the control structures is not set to ping-pong mode. At that point, the µDMA
controller stops. An interrupt is generated upon completion of the transfers configured by each
control structure. See “Ping-Pong” on page 232.

Memory Scatter-Gather
When using this mode, the primary control structure for the channel is configured to allow a list
of operations (tasks) to be performed. The source address pointer specifies the start of a table
of tasks to be copied to the alternate control structure for this channel. The XFERMODE field for
the alternate control structure should be configured to 0x5 (Alternate memory scatter-gather)
to perform the task. When the task completes, the µDMA switches back to the primary channel
control structure, which then copies the next task to the alternate control structure. This process
continues until the table of tasks is empty. The last task must have an XFERMODE value other
than 0x5. Note that for continuous operation, the last task can update the primary channel control
structure back to the start of the list or to another list. See “Memory Scatter-Gather” on page 233.

February 24, 2009254
Preliminary

Micro Direct Memory Access (μDMA)

Alternate Memory Scatter-Gather
This value must be used in the alternate channel control data structure when the μDMA controller
operates in Memory Scatter-Gather mode.

Peripheral Scatter-Gather
This value must be used in the primary channel control data structure when the μDMA controller
operates in Peripheral Scatter-Gather mode. In this mode, the μDMA controller operates exactly
the same as in Memory Scatter-Gather mode, except that instead of performing the number of
transfers specified by the XFERSIZE field in the alternate control structure at one time, the
μDMA controller only performs the number of transfers specified by the ARBSIZE field per
trigger; see Basic mode for details. See “Peripheral Scatter-Gather” on page 237.

Alternate Peripheral Scatter-Gather
This value must be used in the alternate channel control data structure when the μDMA controller
operates in Peripheral Scatter-Gather mode.

8.6 μDMA Register Descriptions
The register addresses given are relative to the μDMA base address of 0x400F.F000.

255February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: DMA Status (DMASTAT), offset 0x000
The DMA Status (DMASTAT) register returns the status of the μDMA controller. You cannot read
this register when the μDMA controller is in the reset state.

DMA Status (DMASTAT)
Base 0x400F.F000
Offset 0x000
Type RO, reset 0x001F.0000

16171819202122232425262728293031

DMACHANSreserved

ROROROROROROROROROROROROROROROROType
1111100000000000Reset

0123456789101112131415

MASTENreservedSTATEreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved31:21

Available DMA Channels Minus 1

This field contains a value equal to the number of DMA channels the
μDMA controller is configured to use, minus one. The value of 0x1F
corresponds to 32 DMA channels.

0x1FRODMACHANS20:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:8

February 24, 2009256
Preliminary

Micro Direct Memory Access (μDMA)

DescriptionResetTypeNameBit/Field

Control State Machine Status

This field shows the current status of the control state machine. Status
can be one of the following.

DescriptionValue

Idle0x0

Read Chan Control Data

Reading channel controller data.

0x1

Read Source End Ptr

Reading source end pointer.

0x2

Read Dest End Ptr

Reading destination end pointer.

0x3

Read Source Data

Reading source data.

0x4

Write Dest Data

Writing destination data.

0x5

Wait for Req Clear

Waiting for DMA request to clear.

0x6

Write Chan Control Data

Writing channel controller data.

0x7

Stalled0x8

Done0x9

Undefined0xA-0xF

0x0ROSTATE7:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:1

Master Enable

This bit shows the status of the μDMA controller.

DescriptionValue

Disabled0

Enabled1

0ROMASTEN0

257February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: DMA Configuration (DMACFG), offset 0x004
The DMACFG register controls the configuration of the μDMA controller.

DMA Configuration (DMACFG)
Base 0x400F.F000
Offset 0x004
Type WO, reset -

16171819202122232425262728293031

reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

MASTENreserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

-WOreserved31:1

Controller Master Enable

This bit enables the μDMA controller.

DescriptionValue

Disable0

Enable1

-WOMASTEN0

February 24, 2009258
Preliminary

Micro Direct Memory Access (μDMA)

Register 6: DMA Channel Control Base Pointer (DMACTLBASE), offset 0x008
The DMACTLBASE register must be configured so that the base pointer points to a location in
system memory.

The amount of system memory that must be assigned to the μDMA controller depends on the
number of DMA channels used and whether the alternate channel control data structure is used.
See “Channel Configuration” on page 230 for details about the Channel Control Table. The base
address must be aligned on a 1024-byte boundary. This register cannot be read when the μDMA
controller is in the reset state.

DMA Channel Control Base Pointer (DMACTLBASE)
Base 0x400F.F000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

reservedADDR

ROROROROROROROROROROR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel Control Base Address

This field contains the pointer to the base address of the channel control
table. The base address must be 1024-byte aligned.

0x0000.00R/WADDR31:10

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved9:0

259February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 7: DMA Alternate Channel Control Base Pointer (DMAALTBASE),
offset 0x00C
The DMAALTBASE register returns the base address of the alternate channel control data. This
register removes the necessity for application software to calculate the base address of the alternate
channel control structures. This register cannot be read when the μDMA controller is in the reset
state.

DMA Alternate Channel Control Base Pointer (DMAALTBASE)
Base 0x400F.F000
Offset 0x00C
Type RO, reset 0x0000.0200

16171819202122232425262728293031

ADDR

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ADDR

ROROROROROROROROROROROROROROROROType
0000000001000000Reset

DescriptionResetTypeNameBit/Field

Alternate Channel Address Pointer

This field provides the base address of the alternate channel control
structures.

0x0000.0200ROADDR31:0

February 24, 2009260
Preliminary

Micro Direct Memory Access (μDMA)

Register 8: DMA Channel Wait-on-Request Status (DMAWAITSTAT), offset
0x010
This read-only register indicates that the μDMA channel is waiting on a request. A peripheral can
pull this Low to hold off the μDMA from performing a single request until the peripheral is ready for
a burst request. The use of this feature is dependent on the design of the peripheral and is used to
enhance performance of the μDMA with that peripheral. This register cannot be read when the
μDMA controller is in the reset state.

DMA Channel Wait-on-Request Status (DMAWAITSTAT)
Base 0x400F.F000
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

WAITREQ[n]

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

WAITREQ[n]

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Wait Status

These bits provide the channel wait-on-request status. Bit 0 corresponds
to channel 0.

DescriptionValue

The corresponding channel is waiting on a request.1

The corresponding channel is not waiting on a request.0

0x0000.0000ROWAITREQ[n]31:0

261February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: DMA Channel Software Request (DMASWREQ), offset 0x014
Each bit of the DMASWREQ register represents the corresponding μDMA channel. Setting a bit
generates a request for the specified μDMA channel.

DMA Channel Software Request (DMASWREQ)
Base 0x400F.F000
Offset 0x014
Type WO, reset -

16171819202122232425262728293031

SWREQ[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

SWREQ[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Software Request

These bits generate software requests. Bit 0 corresponds to channel 0.

DescriptionValue

Generate a software request for the corresponding channel.1

No request generated.0

-WOSWREQ[n]31:0

February 24, 2009262
Preliminary

Micro Direct Memory Access (μDMA)

Register 10: DMA Channel Useburst Set (DMAUSEBURSTSET), offset 0x018
Each bit of the DMAUSEBURSTSET register represents the corresponding μDMA channel. Setting
a bit disables the channel's single request input from generating requests, configuring the channel
to only accept burst requests. Reading the register returns the status of USEBURST.

When there are fewer items remaining to transfer than the arbitration (burst) size, the μDMA controller
automatically clears the corresponding SET[n] bit, allowing the remaining items to transfer using
single requests. A bit should not be set if the corresponding peripheral does not support the burst
request model.

Refer to “Request Types” on page 229 for more details about request types.

Reads

DMA Channel Useburst Set (DMAUSEBURSTSET)
Base 0x400F.F000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Useburst Status

Returns the useburst status of channel [n].

DescriptionValue

Single and Burst

μDMA channel [n] responds to single or burst requests.

0

Burst Only

μDMA channel [n] responds only to burst requests.

1

0x00RSET[n]31:0

263February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Writes

DMA Channel Useburst Set (DMAUSEBURSTSET)
Base 0x400F.F000
Offset 0x018
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Useburst Set

Sets useburst bit on channel [n]. Use theDMAUSEBURSTCLR register
to clear bit [n].

DescriptionValue

No Effect0

Burst Only

μDMA channel [n] responds only to burst requests.

1

0x00WSET[n]31:0

February 24, 2009264
Preliminary

Micro Direct Memory Access (μDMA)

Register 11: DMAChannel Useburst Clear (DMAUSEBURSTCLR), offset 0x01C
Each bit of the DMAUSEBURSTCLR register represents the corresponding DMA channel. Writing
a 1 enables dma_sreq[n] to generate requests.

DMA Channel Useburst Clear (DMAUSEBURSTCLR)
Base 0x400F.F000
Offset 0x01C
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Useburst Clear

Clears useburst bit on channel [n].

DescriptionValue

No Effect

Use the DMAUSEBURSTSET to set bit [n] to 1.

0

Single and Burst

DMA channel [n] responds to single and burst requests.

1

-WOCLR[n]31:0

265February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 12: DMA Channel Request Mask Set (DMAREQMASKSET), offset
0x020
Each bit of the DMAREQMASKSET register represents the corresponding DMA channel. Writing
a 1 disables DMA requests for the channel. Reading the register returns the request mask status.
When a μDMA channel's request is masked, that means the peripheral can no longer request μDMA
transfers. The channel can then be used for software-initiated transfers.

Reads

DMA Channel Request Mask Set (DMAREQMASKSET)
Base 0x400F.F000
Offset 0x020
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Request Mask Status

Returns the channel request mask status.

DescriptionValue

Enabled

External requests are not masked for channel [n].

0

Masked

External requests are masked for channel [n].

1

0x00RSET[n]31:0

Writes

DMA Channel Request Mask Set (DMAREQMASKSET)
Base 0x400F.F000
Offset 0x020
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

February 24, 2009266
Preliminary

Micro Direct Memory Access (μDMA)

DescriptionResetTypeNameBit/Field

Channel [n] Request Mask Set

Masks (disables) the corresponding channel [n] from generating DMA
requests.

DescriptionValue

No Effect

Use theDMAREQMASKCLR register to clear the request mask.

0

Masked

Masks (disables) DMA requests on channel [n].

1

0x00WSET[n]31:0

267February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 13: DMA Channel Request Mask Clear (DMAREQMASKCLR), offset
0x024
Each bit of the DMAREQMASKCLR register represents the corresponding DMA channel. Writing
a 1 clears the request mask for the channel, and enables the channel to receive DMA requests.

DMA Channel Request Mask Clear (DMAREQMASKCLR)
Base 0x400F.F000
Offset 0x024
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Request Mask Clear

Set the appropriate bit to clear the DMA request mask for channel [n].
This will enable DMA requests for the channel.

DescriptionValue

No Effect

Use the DMAREQMASKSET register to set the request mask.

0

Clear Mask

Clears the request mask for the DMA channel. This enables
DMA requests for the channel.

1

-WOCLR[n]31:0

February 24, 2009268
Preliminary

Micro Direct Memory Access (μDMA)

Register 14: DMA Channel Enable Set (DMAENASET), offset 0x028
Each bit of the DMAENASET register represents the corresponding DMA channel. Writing a 1
enables the DMA channel. Reading the register returns the enable status of the channels. If a
channel is enabled but the request mask is set (DMAREQMASKSET), then the channel can be
used for software-initiated transfers.

Reads

DMA Channel Enable Set (DMAENASET)
Base 0x400F.F000
Offset 0x028
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Enable Status

Returns the enable status of the channels.

DescriptionValue

Disabled0

Enabled1

0x00RSET[n]31:0

Writes

DMA Channel Enable Set (DMAENASET)
Base 0x400F.F000
Offset 0x028
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

269February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Channel [n] Enable Set

Enables the corresponding channels.

Note: The controller disables a channel when it completes the DMA
cycle.

DescriptionValue

No Effect

Use the DMAENACLR register to disable a channel.

0

Enable

Enables channel [n].

1

0x00WSET[n]31:0

February 24, 2009270
Preliminary

Micro Direct Memory Access (μDMA)

Register 15: DMA Channel Enable Clear (DMAENACLR), offset 0x02C
Each bit of the DMAENACLR register represents the corresponding DMA channel. Writing a 1
disables the specified DMA channel.

DMA Channel Enable Clear (DMAENACLR)
Base 0x400F.F000
Offset 0x02C
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Clear Channel [n] Enable

Set the appropriate bit to disable the corresponding DMA channel.

Note: The controller disables a channel when it completes the DMA
cycle.

DescriptionValue

No Effect

Use the DMAENASET register to enable DMA channels.

0

Disable

Disables channel [n].

1

-WOCLR[n]31:0

271February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 16: DMA Channel Primary Alternate Set (DMAALTSET), offset 0x030
Each bit of the DMAALTSET register represents the corresponding DMA channel. Writing a 1
configures the DMA channel to use the alternate control data structure. Reading the register returns
the status of which control data structure is in use for the corresponding DMA channel.

Reads

DMA Channel Primary Alternate Set (DMAALTSET)
Base 0x400F.F000
Offset 0x030
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Alternate Status

Returns the channel control data structure status.

DescriptionValue

Primary

DMA channel [n] is using the primary control structure.

0

Alternate

DMA channel [n] is using the alternate control structure.

1

0x00RSET[n]31:0

Writes

DMA Channel Primary Alternate Set (DMAALTSET)
Base 0x400F.F000
Offset 0x030
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

February 24, 2009272
Preliminary

Micro Direct Memory Access (μDMA)

DescriptionResetTypeNameBit/Field

Channel [n] Alternate Set

Selects the alternate channel control data structure for the corresponding
DMA channel.

Note: For Ping-Pong and Scatter-Gather DMA cycle types, the
controller automatically sets these bits to select the alternate
channel control data structure.

DescriptionValue

No Effect

Use the DMAALTCLR register to set bit [n] to 0.

0

Alternate

Selects the alternate control data structure for channel [n].

1

0x00WSET[n]31:0

273February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 17: DMA Channel Primary Alternate Clear (DMAALTCLR), offset
0x034
Each bit of the DMAALTCLR register represents the corresponding DMA channel. Writing a 1
configures the DMA channel to use the primary control data structure.

DMA Channel Primary Alternate Clear (DMAALTCLR)
Base 0x400F.F000
Offset 0x034
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Alternate Clear

Set the appropriate bit to select the primary control data structure for
the corresponding DMA channel.

Note: For Ping-Pong and Scatter-Gather DMA cycle types, the
controller sets these bits to select the primary channel control
data structure.

DescriptionValue

No Effect

Use the DMAALTSET register to select the alternate control
data structure.

0

Primary

Selects the primary control data structure for channel [n].

1

-WOCLR[n]31:0

February 24, 2009274
Preliminary

Micro Direct Memory Access (μDMA)

Register 18: DMA Channel Priority Set (DMAPRIOSET), offset 0x038
Each bit of the DMAPRIOSET register represents the corresponding DMA channel. Writing a 1
configures the DMA channel to have a high priority level. Reading the register returns the status of
the channel priority mask.

Reads

DMA Channel Priority Set (DMAPRIOSET)
Base 0x400F.F000
Offset 0x038
Type RO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

SET[n]

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Channel [n] Priority Status

Returns the channel priority status.

DescriptionValue

Default Priority

DMA channel [n] is using the default priority level.

0

High Priority

DMA channel [n] is using a High Priority level.

1

0x00RSET[n]31:0

Writes

DMA Channel Priority Set (DMAPRIOSET)
Base 0x400F.F000
Offset 0x038
Type WO, reset 0x0000.0000

16171819202122232425262728293031

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

0123456789101112131415

SET[n]

WWWWWWWWWWWWWWWWType
0000000000000000Reset

275February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Channel [n] Priority Set

Sets the channel priority to high.

DescriptionValue

No Effect

Use theDMAPRIOCLR register to set channel [n] to the default
priority level.

0

High Priority

Sets DMA channel [n] to a High Priority level.

1

0x00WSET[n]31:0

February 24, 2009276
Preliminary

Micro Direct Memory Access (μDMA)

Register 19: DMA Channel Priority Clear (DMAPRIOCLR), offset 0x03C
Each bit of the DMAPRIOCLR register represents the corresponding DMA channel. Writing a 1
configures the DMA channel to have the default priority level.

DMA Channel Priority Clear (DMAPRIOCLR)
Base 0x400F.F000
Offset 0x03C
Type WO, reset -

16171819202122232425262728293031

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

CLR[n]

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Priority Clear

Set the appropriate bit to clear the high priority level for the specified
DMA channel.

DescriptionValue

No Effect

Use the DMAPRIOSET register to set channel [n] to the High
priority level.

0

Default Priority

Sets DMA channel [n] to a Default priority level.

1

-WOCLR[n]31:0

277February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 20: DMA Bus Error Clear (DMAERRCLR), offset 0x04C
The DMAERRCLR register is used to read and clear the µDMA bus error status. The error status
is set if the μDMA controller encountered a bus error while performing a DMA transfer. If a bus error
occurs on a channel, that channel is automatically disabled by the μDMA controller. The other
channels are unaffected.

Reads

DMA Bus Error Clear (DMAERRCLR)
Base 0x400F.F000
Offset 0x04C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ERRCLRreserved

RROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

DMA Bus Error Status

DescriptionValue

Low

No bus error is pending.

1

High

Bus error is pending.

1

0RERRCLR0

Writes

DMA Bus Error Clear (DMAERRCLR)
Base 0x400F.F000
Offset 0x04C
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ERRCLRreserved

WROROROROROROROROROROROROROROROType
0000000000000000Reset

February 24, 2009278
Preliminary

Micro Direct Memory Access (μDMA)

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

DMA Bus Error Clear

Clears the bus error.

DescriptionValue

No Effect

Bus error status is unchanged.

0

Clear

Clears a pending bus error.

1

0WERRCLR0

279February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 21: DMA Channel Alternate Select (DMACHALT), offset 0x500
Each bit of the DMACHALT register represents the corresponding µDMA channel. Setting a bit
selects the alternate channel assignment as specified in Table 8-1 on page 228.

DMA Channel Alternate Select (DMACHALT)
Base 0x400F.F000
Offset 0x500
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

CHALT[n]

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

0123456789101112131415

CHALT[n]

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Alternate Assignment Select

DescriptionValue

Use the primary channel assignment.0

Use the alternate channel assignment.1

-R/WCHALT[n]31:0

February 24, 2009280
Preliminary

Micro Direct Memory Access (μDMA)

Register 22: DMA Channel Interrupt Status (DMACHIS), offset 0x504
Each bit of the DMACHIS register represents the corresponding µDMA channel. A bit is set when
that μDMA channel causes an interrupt. The bits are sticky and cleared by a writing a 1.

DMA Channel Interrupt Status (DMACHIS)
Base 0x400F.F000
Offset 0x504
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

CHIS[n]

R/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CType
----------------Reset

0123456789101112131415

CHIS[n]

R/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CType
----------------Reset

DescriptionResetTypeNameBit/Field

Channel [n] Interrupt Status

A read of 1 indicates that channel caused an interrupt. Writing a 1 clears
the channel if an interrupt was set.

DescriptionValue

When read, this bit indicates that the corresponding channel
caused an interrupt.

Writing a 1 clears the channel if an interrupt was set.

1

The corresponding channel has not caused an interrupt.0

-R/W1CCHIS[n]31:0

281February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 23: DMA Peripheral Identification 0 (DMAPeriphID0), offset 0xFE0
TheDMAPeriphIDn registers are hard-coded, and the fields within the registers determine the reset
values.

DMA Peripheral Identification 0 (DMAPeriphID0)
Base 0x400F.F000
Offset 0xFE0
Type RO, reset 0x0000.0030

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
0000110000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

DMA Peripheral ID Register [7:0]

Can be used by software to identify the presence of this peripheral.

0x30ROPID07:0

February 24, 2009282
Preliminary

Micro Direct Memory Access (μDMA)

Register 24: DMA Peripheral Identification 1 (DMAPeriphID1), offset 0xFE4
TheDMAPeriphIDn registers are hard-coded, and the fields within the registers determine the reset
values.

DMA Peripheral Identification 1 (DMAPeriphID1)
Base 0x400F.F000
Offset 0xFE4
Type RO, reset 0x0000.00B2

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0100110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

DMA Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0xB2ROPID17:0

283February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 25: DMA Peripheral Identification 2 (DMAPeriphID2), offset 0xFE8
TheDMAPeriphIDn registers are hard-coded, and the fields within the registers determine the reset
values.

DMA Peripheral Identification 2 (DMAPeriphID2)
Base 0x400F.F000
Offset 0xFE8
Type RO, reset 0x0000.000B

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
1101000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

DMA Peripheral ID Register [23:16]

Can be used by software to identify the presence of this peripheral.

0x0BROPID27:0

February 24, 2009284
Preliminary

Micro Direct Memory Access (μDMA)

Register 26: DMA Peripheral Identification 3 (DMAPeriphID3), offset 0xFEC
The DMAPeriphIDn registers are hard-coded and the fields within the registers determine the reset
values.

DMA Peripheral Identification 3 (DMAPeriphID3)
Base 0x400F.F000
Offset 0xFEC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

DMA Peripheral ID Register [31:24]

Can be used by software to identify the presence of this peripheral.

0x00ROPID37:0

285February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 27: DMA Peripheral Identification 4 (DMAPeriphID4), offset 0xFD0
TheDMAPeriphIDn registers are hard-coded, and the fields within the registers determine the reset
values.

DMA Peripheral Identification 4 (DMAPeriphID4)
Base 0x400F.F000
Offset 0xFD0
Type RO, reset 0x0000.0004

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

DMA Peripheral ID Register

Can be used by software to identify the presence of this peripheral.

0x04ROPID47:0

February 24, 2009286
Preliminary

Micro Direct Memory Access (μDMA)

Register 28: DMA PrimeCell Identification 0 (DMAPCellID0), offset 0xFF0
The DMAPCellIDn registers are hard-coded, and the fields within the registers determine the reset
values.

DMA PrimeCell Identification 0 (DMAPCellID0)
Base 0x400F.F000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

DMA PrimeCell ID Register [7:0]

Provides software a standard cross-peripheral identification system.

0x0DROCID07:0

287February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 29: DMA PrimeCell Identification 1 (DMAPCellID1), offset 0xFF4
The DMAPCellIDn registers are hard-coded, and the fields within the registers determine the reset
values.

DMA PrimeCell Identification 1 (DMAPCellID1)
Base 0x400F.F000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

DMA PrimeCell ID Register [15:8]

Provides software a standard cross-peripheral identification system.

0xF0ROCID17:0

February 24, 2009288
Preliminary

Micro Direct Memory Access (μDMA)

Register 30: DMA PrimeCell Identification 2 (DMAPCellID2), offset 0xFF8
The DMAPCellIDn registers are hard-coded, and the fields within the registers determine the reset
values.

DMA PrimeCell Identification 2 (DMAPCellID2)
Base 0x400F.F000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA PrimeCell ID Register [23:16]

Provides software a standard cross-peripheral identification system.

0x05ROCID27:0

289February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 31: DMA PrimeCell Identification 3 (DMAPCellID3), offset 0xFFC
The DMAPCellIDn registers are hard-coded, and the fields within the registers determine the reset
values.

DMA PrimeCell Identification 3 (DMAPCellID3)
Base 0x400F.F000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

DMA PrimeCell ID Register [31:24]

Provides software a standard cross-peripheral identification system.

0xB1ROCID37:0

February 24, 2009290
Preliminary

Micro Direct Memory Access (μDMA)

9 General-Purpose Input/Outputs (GPIOs)
The GPIO module is composed of nine physical GPIO blocks, each corresponding to an individual
GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G, Port H, Port J). The GPIO module
supports 0-65 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

■ 0-65 GPIOs, depending on configuration

■ Highly flexible pin muxing allows use as GPIO or one of several peripheral functions

■ 5-V-tolerant input/outputs

■ Fast toggle capable of a change every two clock cycles

■ Two means of port access: either Advanced Host Bus (AHB) with better back-to-back access
performance, or the legacy Advanced Peripheral Bus (APB) for backwards-compatibility with
existing code

■ Programmable control for GPIO interrupts

– Interrupt generation masking

– Edge-triggered on rising, falling, or both

– Level-sensitive on High or Low values

■ Bit masking in both read and write operations through address lines

■ Can be used to initiate an ADC sample sequence

■ Pins configured as digital inputs are Schmitt-triggered

■ Programmable control for GPIO pad configuration

– Weak pull-up or pull-down resistors

– 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured
with an 18-mA pad drive for high-current applications

– Slew rate control for the 8-mA drive

– Open drain enables

– Digital input enables

9.1 Functional Description
Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0,

GPIODEN=0, GPIOPDR=0, and GPIOPUR=0) with the exception of the pins shown in
Table 9-1. A Power-On-Reset (POR) or asserting RST puts the pins back to their default
state.

291February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Table 9-1. GPIO Pins With Non-Zero Reset Values

GPIOPCTLGPIOPURGPIOPDRGPIODENGPIOAFSELDefault StateGPIO Pins

0x10011UART0PA[1:0]

0x10011SSI0PA[5:2]

0x10011I2C0PB[3:2]

0x31011JTAGPC[3:0]

Each GPIO port is a separate hardware instantiation of the same physical block (see Figure
9-1 on page 292 and Figure 9-2 on page 293). The LM3S9B92 microcontroller contains nine ports
and thus nine of these physical GPIO blocks. Some GPIO pins can function as I/O signals for the
on-chip peripheral modules. For information on which GPIO pins are used for alternate hardware
functions, refer to Table 25-5 on page 990.

Figure 9-1. Digital I/O Pads

Pad
Control

Commit
Control Mode

Control

GPIOAFSEL

Data
Control

Interrupt
Control

M
U
X

M
U
X

D
E
M
U
X

Digital
I/O
Pad

Identification Registers

GPIOPeriphID0
GPIOPeriphID1
GPIOPeriphID2
GPIOPeriphID3

GPIOPeriphID4
GPIOPeriphID5
GPIOPeriphID6
GPIOPeriphID7

GPIOPCellID0
GPIOPCellID1
GPIOPCellID2
GPIOPCellID3

Pad Input

Pad Output
Enable

GPIOLOCK
GPIOCR

GPIODATA
GPIODIR

GPIOIS
GPIOIBE
GPIOIEV
GPIOIM
GPIORIS
GPIOMIS
GPIOICR

GPIODR2R
GPIODR4R
GPIODR8R
GPIOSLR
GPIOPUR
GPIOPDR
GPIOODR
GPIODEN

Alternate Input
Alternate Output

Alternate Output Enable

Interrupt

GPIO Input

GPIO Output

GPIO Output Enable

Pad Output
Package I/O Pin

M
U
X

Periph 0

Periph 1

Periph n

Port
Control

GPIOPCTL

February 24, 2009292
Preliminary

General-Purpose Input/Outputs (GPIOs)

Figure 9-2. Analog/Digital I/O Pads

Pad
Control

Data
Control

GPIO Input

GPIO Output

GPIO Output Enable

Interrupt
Control

Interrupt

M
U
X

M
U
X

D
E
M
U
X

GPIODR8R

GPIODR2R
GPIODR4R

GPIOSLR
GPIOPUR
GPIOPDR
GPIOODR
GPIODEN

GPIOAMSEL

GPIOIEV

GPIOIS
GPIOIBE

GPIOIM
GPIORIS
GPIOMIS
GPIOICR

GPIODATA
GPIODIR

Identification Registers

GPIOPeriphID0
GPIOPeriphID1
GPIOPeriphID2
GPIOPeriphID3

GPIOPeriphID4
GPIOPeriphID5
GPIOPeriphID6
GPIOPeriphID7

GPIOPCellID0
GPIOPCellID1
GPIOPCellID2
GPIOPCellID3

Analog Circuitry

(for PortB[6:4],
PortE[7:2], and

PortD[7:0] pins that
connect to the ADC

input MUX)

ADC
Isolation
Circuit

Pad Output Enable

Package I/O Pin

Pad Input

Pad Output
Analog/Digital

I/O Pad

Commit
Control Mode

Control

GPIOAFSEL
GPIOLOCK
GPIOCR

Alternate Input
Alternate Output

Alternate Output Enable

M
U
X

Periph 0

Periph 1

Periph n

Port
Control

GPIOPCTL

9.1.1 Data Control
The data control registers allow software to configure the operational modes of the GPIOs. The data
direction register configures the GPIO as an input or an output while the data register either captures
incoming data or drives it out to the pads.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the
controller before the JTAG pin functionality switches. As a result, the debugger may be locked out of
the part. This issue can be avoided with a software routine that restores JTAG functionality based on
an external or software trigger.

9.1.1.1 Data Direction Operation
The GPIO Direction (GPIODIR) register (see page 302) is used to configure each individual pin as
an input or output. When the data direction bit is cleared, the GPIO is configured as an input, and
the corresponding data register bit captures and stores the value on the GPIO port. When the data
direction bit is set, the GPIO is configured as an output, and the corresponding data register bit is
driven out on the GPIO port.

293February 24, 2009
Preliminary

LM3S9B92 Microcontroller

9.1.1.2 Data Register Operation
To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the
GPIO Data (GPIODATA) register (see page 301) by using bits [9:2] of the address bus as a mask.
In this manner, software drivers can modify individual GPIO pins in a single instruction without
affecting the state of the other pins. This method is more efficient than the conventional method of
performing a read-modify-write operation to set or clear an individual GPIO pin. To implement this
feature, the GPIODATA register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set, the value of the GPIODATA
register is altered. If the address bit is cleared, the data bit is left unchanged.

For example, writing a value of 0xEB to the address GPIODATA + 0x098 has the results shown in
Figure 9-3, where u indicates that data is unchanged by the write.

Figure 9-3. GPIODATA Write Example

0 10 0 1 10 0 0

u 1u u 0 1u u

9 8 7 6 5 4 3 2 1 0

1 11 0 0 11 1

7 6 5 4 3 2 1 0
GPIODATA

0xEB

0x098
ADDR[9:2]

0

During a read, if the address bit associated with the data bit is set, the value is read. If the address
bit associated with the data bit is cleared, the data bit is read as a zero, regardless of its actual
value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 9-4.

Figure 9-4. GPIODATA Read Example

0 10 1 0 00 1 0 0

0 10 1 0 00 0

9 8 7 6 5 4 3 2 1 0

0 11 1 1 11 0

7 6 5 4 3 2 1 0
Returned Value

GPIODATA

0x0C4
ADDR[9:2]

9.1.2 Interrupt Control
The interrupt capabilities of each GPIO port are controlled by a set of seven registers. These registers
are used to select the source of the interrupt, its polarity, and the edge properties. When one or
more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for
the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any
further interrupts. For a level-sensitive interrupt, the external source must hold the level constant
for the interrupt to be recognized by the controller.

Three registers define the edge or sense that causes interrupts:

■ GPIO Interrupt Sense (GPIOIS) register (see page 303)

February 24, 2009294
Preliminary

General-Purpose Input/Outputs (GPIOs)

■ GPIO Interrupt Both Edges (GPIOIBE) register (see page 304)

■ GPIO Interrupt Event (GPIOIEV) register (see page 305)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 306).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations:
theGPIORaw Interrupt Status (GPIORIS) andGPIOMasked Interrupt Status (GPIOMIS) registers
(see page 307 and page 308). As the name implies, the GPIOMIS register only shows interrupt
conditions that are allowed to be passed to the interrupt controller. The GPIORIS register indicates
that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the
interrupt controller.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC.
If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set), an interrupt
for Port B is generated, and an external trigger signal is sent to the ADC. If the ADC Event
Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC conversion
is initiated. See page 477.

If no other Port B pins are being used to generate interrupts, the ARM Integrated Nested Vectored
Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the Port B interrupts,
and the ADC interrupt can be used to read back the converted data. Otherwise, the Port B interrupt
handler must ignore and clear interrupts on PB4 and wait for the ADC interrupt, or the ADC interrupt
must be disabled in the SETNA register and the Port B interrupt handler must poll the ADC registers
until the conversion is completed. See the ARM® Cortex™-M3 Technical Reference Manual for
more information.

Interrupts are cleared by writing a 1 to the appropriate bit of the GPIO Interrupt Clear (GPIOICR)
register (see page 310).

When programming the interrupt control registers (GPIOIS, GPIOIBE, or GPIOIEV), the interrupts
should be masked (GPIOIM cleared). Writing any value to an interrupt control register can generate
a spurious interrupt if the corresponding bits are enabled.

9.1.3 Mode Control
The GPIO pins can be controlled by either software or hardware. Software control is the default for
most signals and corresponds to the GPIO mode, where the GPIODATA register is used to read
or write the corresponding pins. When hardware control is enabled via theGPIO Alternate Function
Select (GPIOAFSEL) register (see page 311), the pin state is controlled by its alternate function
(that is, the peripheral).

Further pin muxing options are provided through theGPIO Port Control (GPIOPCTL) register which
selects one of several peripheral functions for each GPIO. For information on the configuration
options, refer to Table 25-5 on page 990.

Note: If any pin is to be used as an ADC input, the appropriate bit in the GPIOAMSEL register
must be set to disable the analog isolation circuit.

9.1.4 Commit Control
The GPIO commit control registers provide a layer of protection against accidental programming of
critical hardware peripherals. Protection is currently provided for the NMI pin (PB7) and the four
JTAG/SWD pins (PC[3:0]). Writes to protected bits of theGPIOAFSEL register,GPIOPUR register,
GPIO Pull-Down Select (GPIOPDR) register (see page 319), and GPIODEN register are not
committed to storage unless theGPIO Lock (GPIOLOCK) register (see page 323) has been unlocked
and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 324) have been set.

295February 24, 2009
Preliminary

LM3S9B92 Microcontroller

9.1.5 Pad Control
The pad control registers allow software to configure the GPIO pads based on the application
requirements. The pad control registers include theGPIODR2R,GPIODR4R,GPIODR8R,GPIOODR,
GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers. These registers control drive strength,
open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital input enable
for each GPIO.

For special high-current applications, the GPIO output buffers may be used with the following
restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may
be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is
specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only
a maximum of two per side of the physical package with the total number of high-current GPIO
outputs not exceeding four for the entire package.

9.1.6 Identification
The identification registers configured at reset allow software to detect and identify the module as
a GPIO block. The identification registers include theGPIOPeriphID0-GPIOPeriphID7 registers as
well as the GPIOPCellID0-GPIOPCellID3 registers.

9.2 Initialization and Configuration
The GPIO modules may be accessed via two different memory apertures. The legacy aperture, the
Advanced Peripheral Bus (APB), is backwards-compatible with previous Stellaris® parts. The other
aperture, the Advanced Host Bus (AHB), offers the same register map but provides better
back-to-back access performance than the APB bus. These apertures are mutually exclusive. The
aperture enabled for a given GPIO port is controlled by the appropriate bit in the GPIOHBCTL
register (see page 119).

To use the pins in a particular GPIO port, the clock for the port must be enabled by setting the
appropriate GPIO Port bit field (GPIOn) in the RCGC2 register (see page 179).

On reset, all GPIO pins are configured out of reset to be undriven (tristate): GPIOAFSEL=0,
GPIODEN=0, GPIOPDR=0, and GPIOPUR=0, except for the pins shown in Table 9-1 on page 292.
Table 9-2 on page 296 shows all possible configurations of the GPIO pads and the control register
settings required to achieve them. Table 9-3 on page 297 shows how a rising edge interrupt is
configured for pin 2 of a GPIO port.

Table 9-2. GPIO Pad Configuration Examples

GPIO Register Bit ValueaConfiguration

SLRDR8RDR4RDR2RPDRPURDENODRDIRAFSEL

XXXX??1000Digital Input (GPIO)

??????1010Digital Output (GPIO)

XXXXXX1100Open Drain Input
(GPIO)

????XX1110Open Drain Output
(GPIO)

????XX11X1Open Drain
Input/Output (I2C)

XXXX??10X1Digital Input (Timer
CCP)

XXXX??10X1Digital Input (QEI)

February 24, 2009296
Preliminary

General-Purpose Input/Outputs (GPIOs)

GPIO Register Bit ValueaConfiguration

SLRDR8RDR4RDR2RPDRPURDENODRDIRAFSEL

??????10X1Digital Output (PWM)

??????10X1Digital Output (Timer
PWM)

??????10X1Digital Input/Output
(SSI)

??????10X1Digital Input/Output
(UART)

XXXX000000Analog Input
(Comparator)

??????10X1Digital Output
(Comparator)

a. X=Ignored (don’t care bit)

?=Can be either 0 or 1, depending on the configuration

Table 9-3. GPIO Interrupt Configuration Example

Pin 2 Bit ValueaDesired
Interrupt
Event
Trigger

Register

01234567

XX0XXXXX0=edge

1=level

GPIOIS

XX0XXXXX0=single
edge

1=both
edges

GPIOIBE

XX1XXXXX0=Low level,
or falling
edge

1=High level,
or rising
edge

GPIOIEV

001000000=masked

1=not
masked

GPIOIM

a. X=Ignored (don’t care bit)

9.3 Register Map
Table 9-5 on page 299 lists the GPIO registers. Each GPIO port can be accessed through one of
two bus apertures. The legacy aperture, the Advanced Peripheral Bus (APB), is backwards-compatible
with previous Stellaris® parts. The other aperture, the Advanced Host Bus (AHB), offers the same
register map but provides better back-to-back access performance than the APB bus.

Important: The GPIO registers in this chapter are duplicated in each GPIO block; however,
depending on the block, all eight bits may not be connected to a GPIO pad. In those
cases, writing to unconnected bits has no effect, and reading unconnected bits returns
no meaningful data.

297February 24, 2009
Preliminary

LM3S9B92 Microcontroller

The offset listed is a hexadecimal increment to the register’s address, relative to that GPIO port’s
base address:

■ GPIO Port A (APB): 0x4000.4000
■ GPIO Port A (AHB): 0x4005.8000
■ GPIO Port B (APB): 0x4000.5000
■ GPIO Port B (AHB): 0x4005.9000
■ GPIO Port C (APB): 0x4000.6000
■ GPIO Port C (AHB): 0x4005.A000
■ GPIO Port D (APB): 0x4000.7000
■ GPIO Port D (AHB): 0x4005.B000
■ GPIO Port E (APB): 0x4002.4000
■ GPIO Port E (AHB): 0x4005.C000
■ GPIO Port F (APB): 0x4002.5000
■ GPIO Port F (AHB): 0x4005.D000
■ GPIO Port G (APB): 0x4002.6000
■ GPIO Port G (AHB): 0x4005.E000
■ GPIO Port H (APB): 0x4002.7000
■ GPIO Port H (AHB): 0x4005.F000
■ GPIO Port J (APB): 0x4003.D000
■ GPIO Port J (AHB): 0x4006.0000

Note that each GPIO module clock must be enabled before the registers can be programmed (see
page 179).

Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0,
GPIODEN=0, GPIOPDR=0, and GPIOPUR=0) with the exception of the pins shown in
Table 9-1. A Power-On-Reset (POR) or asserting RST puts the pins back to their default
state.

Table 9-4. GPIO Pins With Non-Zero Reset Values

GPIOPCTLGPIOPURGPIOPDRGPIODENGPIOAFSELDefault StateGPIO Pins

0x10011UART0PA[1:0]

0x10011SSI0PA[5:2]

0x10011I2C0PB[3:2]

0x31011JTAGPC[3:0]

Note: The default register type for theGPIOCR register is RO for all GPIO pins with the exception
of the NMI pin and the four JTAG/SWD pins (PB7 and PC[3:0]). These five pins are
currently the only GPIOs that are protected by the GPIOCR register. Because of this, the
register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.

The default reset value for the GPIOCR register is 0x0000.00FF for all GPIO pins, with the
exception of the NMI pin and the four JTAG/SWD pins (PB7 and PC[3:0]). To ensure that
the JTAG port is not accidentally programmed as a GPIO, these four pins default to
non-committable. To ensure that the NMI pin is not accidentally programmed as the
non-maskable interrupt pin, it defaults to non-committable. Because of this, the default reset
value of GPIOCR for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR
for Port C is 0x0000.00F0.

February 24, 2009298
Preliminary

General-Purpose Input/Outputs (GPIOs)

Table 9-5. GPIO Register Map

See
pageDescriptionResetTypeNameOffset

301GPIO Data0x0000.0000R/WGPIODATA0x000

302GPIO Direction0x0000.0000R/WGPIODIR0x400

303GPIO Interrupt Sense0x0000.0000R/WGPIOIS0x404

304GPIO Interrupt Both Edges0x0000.0000R/WGPIOIBE0x408

305GPIO Interrupt Event0x0000.0000R/WGPIOIEV0x40C

306GPIO Interrupt Mask0x0000.0000R/WGPIOIM0x410

307GPIO Raw Interrupt Status0x0000.0000ROGPIORIS0x414

308GPIO Masked Interrupt Status0x0000.0000ROGPIOMIS0x418

310GPIO Interrupt Clear0x0000.0000W1CGPIOICR0x41C

311GPIO Alternate Function Select-R/WGPIOAFSEL0x420

313GPIO 2-mA Drive Select0x0000.00FFR/WGPIODR2R0x500

314GPIO 4-mA Drive Select0x0000.0000R/WGPIODR4R0x504

315GPIO 8-mA Drive Select0x0000.0000R/WGPIODR8R0x508

316GPIO Open Drain Select0x0000.0000R/WGPIOODR0x50C

317GPIO Pull-Up Select-R/WGPIOPUR0x510

319GPIO Pull-Down Select0x0000.0000R/WGPIOPDR0x514

320GPIO Slew Rate Control Select0x0000.0000R/WGPIOSLR0x518

321GPIO Digital Enable-R/WGPIODEN0x51C

323GPIO Lock0x0000.0001R/WGPIOLOCK0x520

324GPIO Commit--GPIOCR0x524

326GPIO Analog Mode Select0x0000.0000R/WGPIOAMSEL0x528

328GPIO Port Control-R/WGPIOPCTL0x52C

330GPIO Peripheral Identification 40x0000.0000ROGPIOPeriphID40xFD0

331GPIO Peripheral Identification 50x0000.0000ROGPIOPeriphID50xFD4

332GPIO Peripheral Identification 60x0000.0000ROGPIOPeriphID60xFD8

333GPIO Peripheral Identification 70x0000.0000ROGPIOPeriphID70xFDC

334GPIO Peripheral Identification 00x0000.0061ROGPIOPeriphID00xFE0

335GPIO Peripheral Identification 10x0000.0000ROGPIOPeriphID10xFE4

336GPIO Peripheral Identification 20x0000.0018ROGPIOPeriphID20xFE8

337GPIO Peripheral Identification 30x0000.0001ROGPIOPeriphID30xFEC

338GPIO PrimeCell Identification 00x0000.000DROGPIOPCellID00xFF0

339GPIO PrimeCell Identification 10x0000.00F0ROGPIOPCellID10xFF4

299February 24, 2009
Preliminary

LM3S9B92 Microcontroller

See
pageDescriptionResetTypeNameOffset

340GPIO PrimeCell Identification 20x0000.0005ROGPIOPCellID20xFF8

341GPIO PrimeCell Identification 30x0000.00B1ROGPIOPCellID30xFFC

9.4 Register Descriptions
The remainder of this section lists and describes the GPIO registers, in numerical order by address
offset.

February 24, 2009300
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 1: GPIO Data (GPIODATA), offset 0x000
The GPIODATA register is the data register. In software control mode, values written in the
GPIODATA register are transferred onto the GPIO port pins if the respective pins have been
configured as outputs through the GPIO Direction (GPIODIR) register (see page 302).

In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus
bits [9:2], must be set. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from
the address used to access the data register, bits [9:2]. Bits that are set in the address mask cause
the corresponding bits in GPIODATA to be read, and bits that are clear in the address mask cause
the corresponding bits in GPIODATA to be read as 0, regardless of their value.

A read from GPIODATA returns the last bit value written if the respective pins are configured as
outputs, or it returns the value on the corresponding input pin when these are configured as inputs.
All bits are cleared by a reset.

GPIO Data (GPIODATA)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Data

This register is virtually mapped to 256 locations in the address space.
To facilitate the reading and writing of data to these registers by
independent drivers, the data read from and written to the registers are
masked by the eight address lines [9:2]. Reads from this register return
its current state. Writes to this register only affect bits that are not masked
by ADDR[9:2] and are configured as outputs. See “Data Register
Operation” on page 294 for examples of reads and writes.

0x00R/WDATA7:0

301February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: GPIO Direction (GPIODIR), offset 0x400
TheGPIODIR register is the data direction register. Setting a bit in theGPIODIR register configures
the corresponding pin to be an output, while clearing a bit configures the corresponding pin to be
an input. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x400
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DIRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Data Direction

DescriptionValue

Corresponding pin is an input.0

Corresponding pins is an output.1

0x00R/WDIR7:0

February 24, 2009302
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404
The GPIOIS register is the interrupt sense register. Setting a bit in the GPIOIS register configures
the corresponding pin to detect levels, while clearing a bit configures the corresponding pin to detect
edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x404
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ISreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Interrupt Sense

DescriptionValue

The edge on the corresponding pin is detected (edge-sensitive).0

The level on the corresponding pin is detected (level-sensitive).1

0x00R/WIS7:0

303February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408
The GPIOIBE register allows both edges to cause interrupts. When the corresponding bit in the
GPIO Interrupt Sense (GPIOIS) register (see page 303) is set to detect edges, setting a bit in the
GPIOIBE register configures the corresponding pin to detect both rising and falling edges, regardless
of the corresponding bit in the GPIO Interrupt Event (GPIOIEV) register (see page 305). Clearing
a bit configures the pin to be controlled by the GPIOIEV register. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x408
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IBEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Interrupt Both Edges

DescriptionValue

Interrupt generation is controlled by the GPIO Interrupt Event
(GPIOIEV) register (see page 305).

0

Both edges on the corresponding pin trigger an interrupt.1

0x00R/WIBE7:0

February 24, 2009304
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C
TheGPIOIEV register is the interrupt event register. Setting a bit in theGPIOIEV register configures
the corresponding pin to detect rising edges or high levels, depending on the corresponding bit
value in the GPIO Interrupt Sense (GPIOIS) register (see page 303). Clearing a bit configures the
pin to detect falling edges or low levels, depending on the corresponding bit value in the GPIOIS
register. All bits are cleared by a reset.

GPIO Interrupt Event (GPIOIEV)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x40C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IEVreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Interrupt Event

DescriptionValue

A falling edge or a Low level on the corresponding pin triggers
an interrupt.

0

A rising edge or a High level on the corresponding pin triggers
an interrupt.

1

0x00R/WIEV7:0

305February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410
The GPIOIM register is the interrupt mask register. Setting a bit in the GPIOIM register allows
interrupts that are generated by the corresponding pin to be sent to the interrupt controller on the
combined interrupt signal. Clearing a bit prevents an interrupt on the corresponding pin from being
sent to the interrupt controller. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x410
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IMEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Interrupt Mask Enable

DescriptionValue

The interrupt from the corresponding pin is masked.0

The interrupt from the corresponding pin is sent to the interrupt
controller.

1

0x00R/WIME7:0

February 24, 2009306
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414
TheGPIORIS register is the raw interrupt status register. A bit in this register is set when an interrupt
condition occurs on the corresponding GPIO pin. If the corresponding bit in the GPIO Interrupt
Mask (GPIOIM) register (see page 306) is set, the interrupt is sent to the interrupt controller. Bits
read as zero indicate that corresponding input pins have not initiated an interrupt. A bit in this register
can be cleared by writing a 1 to the corresponding bit in the GPIO Interrupt Clear (GPIOICR)
register.

GPIO Raw Interrupt Status (GPIORIS)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x414
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Interrupt Raw Status

DescriptionValue

An interrupt condition has occurred on the corresponding pin.1

An interrupt condition has not occurred on the corresponding
pin.

0

A bit is cleared by writing a 1 to the corresponding bit in the GPIOICR
register.

0x00RORIS7:0

307February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418
The GPIOMIS register is the masked interrupt status register. If a bit is set in this register, the
corresponding interrupt has triggered an interrupt to the interrupt controller. If a bit is clear, either
no interrupt has been generated, or the interrupt is masked.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC.
If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set), an interrupt
for Port B is generated, and an external trigger signal is sent to the ADC. If the ADC Event
Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC conversion
is initiated. See page 477.

If no other Port B pins are being used to generate interrupts, the ARM Integrated Nested Vectored
Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the Port B interrupts,
and the ADC interrupt can be used to read back the converted data. Otherwise, the Port B interrupt
handler must ignore and clear interrupts on PB4 and wait for the ADC interrupt, or the ADC interrupt
must be disabled in the SETNA register and the Port B interrupt handler must poll the ADC registers
until the conversion is completed. See the ARM® Cortex™-M3 Technical Reference Manual for
more information.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x418
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

February 24, 2009308
Preliminary

General-Purpose Input/Outputs (GPIOs)

DescriptionResetTypeNameBit/Field

GPIO Masked Interrupt Status

DescriptionValue

An interrupt condition on the corresponding pin has triggered
an interrupt to the interrupt controller.

1

An interrupt condition on the corresponding pin is masked or
has not occurred.

0

A bit is cleared by writing a 1 to the corresponding bit in the GPIOICR
register.

0x00ROMIS7:0

309February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C
The GPIOICR register is the interrupt clear register. Writing a 1 to a bit in this register clears the
corresponding interrupt bit in the GPIORIS and GPIOMIS registers. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x41C
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ICreserved

W1CW1CW1CW1CW1CW1CW1CW1CROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Interrupt Clear

DescriptionValue

The corresponding interrupt is cleared.1

The corresponding interrupt is unaffected.0

0x00W1CIC7:0

February 24, 2009310
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420
The GPIOAFSEL register is the mode control select register. If a bit is clear, the pin is used as a
GPIO and is controlled by the GPIO registers. Setting a bit in this register configures the
corresponding GPIO line to be controlled by an associated peripheral. Several possible peripheral
functions are multiplexed on each GPIO. The GPIO Port Control (GPIOPCTL) register is used to
select one of the possible functions. Table 25-5 on page 990 details which functions are muxed on
each GPIO pin. The reset value for this register is 0x0000.0000 for GPIO ports that are not listed
in Table 9-1.

Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0,
GPIODEN=0, GPIOPDR=0, and GPIOPUR=0) with the exception of the pins shown in
Table 9-1. A Power-On-Reset (POR) or asserting RST puts the pins back to their default
state.

Table 9-6. GPIO Pins With Non-Zero Reset Values

GPIOPCTLGPIOPURGPIOPDRGPIODENGPIOAFSELDefault StateGPIO Pins

0x10011UART0PA[1:0]

0x10011SSI0PA[5:2]

0x10011I2C0PB[3:2]

0x31011JTAGPC[3:0]

Caution – It is possible to create a software sequence that prevents the debugger from connecting to
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the
controller before the JTAG pin functionality switches. As a result, the debugger may be locked out of
the part. This issue can be avoided with a software routine that restores JTAG functionality based on
an external or software trigger.

The GPIO commit control registers provide a layer of protection against accidental programming of
critical hardware peripherals. Protection is currently provided for the NMI pin (PB7) and the four
JTAG/SWD pins (PC[3:0]). Writes to protected bits of theGPIOAFSEL register,GPIOPUR register,
GPIO Pull-Down Select (GPIOPDR) register (see page 319), and GPIODEN register are not
committed to storage unless theGPIO Lock (GPIOLOCK) register (see page 323) has been unlocked
and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 324) have been set.

When using the I2C module, in addition to setting the GPIOAFSEL register bits for the I2C clock
and data pins, the pins should be set to open drain using theGPIO Open Drain Select (GPIOODR)
register (see examples in “Initialization and Configuration” on page 296).

311February 24, 2009
Preliminary

LM3S9B92 Microcontroller

GPIO Alternate Function Select (GPIOAFSEL)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x420
Type R/W, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

AFSELreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
--------00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Alternate Function Select

DescriptionValue

The associated pin functions as a GPIO and is controlled by
the GPIO registers.

0

The associated pin functions as a peripheral signal and is
controlled by the alternate hardware function.

The reset value for this register is 0x0000.0000 for GPIO ports
that are not listed in Table 9-1 on page 292.

1

-R/WAFSEL7:0

February 24, 2009312
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500
The GPIODR2R register is the 2-mA drive control register. Each GPIO signal in the port can be
individually configured without affecting the other pads. When setting the DRV2 bit for a GPIO signal,
the corresponding DRV4 bit in the GPIODR4R register and DRV8 bit in the GPIODR8R register are
automatically cleared by hardware. By default, all GPIO pins have 2-mA drive.

GPIO 2-mA Drive Select (GPIODR2R)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x500
Type R/W, reset 0x0000.00FF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DRV2reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
1111111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Output Pad 2-mA Drive Enable

DescriptionValue

The corresponding GPIO pin has 2-mA drive.1

The drive for the corresponding GPIO pin is controlled by the
GPIODR4R or GPIODR8R register.

0

Setting a bit in either the GPIODR4 register or the GPIODR8 register
clears the corresponding 2-mA enable bit. The change is effective on
the second clock cycle after the write if accessing GPIO via the APB
memory aperture. If using AHB access, the change is effective on the
next clock cycle.

0xFFR/WDRV27:0

313February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504
The GPIODR4R register is the 4-mA drive control register. Each GPIO signal in the port can be
individually configured without affecting the other pads. When setting the DRV4 bit for a GPIO signal,
the corresponding DRV2 bit in the GPIODR2R register and DRV8 bit in the GPIODR8R register are
automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x504
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DRV4reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Output Pad 4-mA Drive Enable

DescriptionValue

The corresponding GPIO pin has 4-mA drive.1

The drive for the corresponding GPIO pin is controlled by the
GPIODR2R or GPIODR8R register.

0

Setting a bit in either the GPIODR2 register or the GPIODR8 register
clears the corresponding 4-mA enable bit. The change is effective on
the second clock cycle after the write if accessing GPIO via the APB
memory aperture. If using AHB access, the change is effective on the
next clock cycle.

0x00R/WDRV47:0

February 24, 2009314
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508
The GPIODR8R register is the 8-mA drive control register. Each GPIO signal in the port can be
individually configured without affecting the other pads. When setting the DRV8 bit for a GPIO signal,
the corresponding DRV2 bit in the GPIODR2R register and DRV4 bit in the GPIODR4R register are
automatically cleared by hardware. The 8-mA setting is also used for high-current operation.

Note: There is no configuration difference between 8-mA and high-current operation. The additional
current capacity results from a shift in the VOH/VOL levels. See “Recommended DCOperating
Conditions” on page 993 for further information.

GPIO 8-mA Drive Select (GPIODR8R)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x508
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DRV8reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Output Pad 8-mA Drive Enable

DescriptionValue

The corresponding GPIO pin has 8-mA drive.1

The drive for the corresponding GPIO pin is controlled by the
GPIODR2R or GPIODR4R register.

0

Setting a bit in either the GPIODR2 register or the GPIODR4 register
clears the corresponding 8-mA enable bit. The change is effective on
the second clock cycle after the write if accessing GPIO via the APB
memory aperture. If using AHB access, the change is effective on the
next clock cycle.

0x00R/WDRV87:0

315February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C
The GPIOODR register is the open drain control register. Setting a bit in this register enables the
open-drain configuration of the corresponding GPIO pad. When open-drain mode is enabled, the
corresponding bit should also be set in the GPIO Digital Input Enable (GPIODEN) register (see
page 321). Corresponding bits in the drive strength and slew rate control registers (GPIODR2R,
GPIODR4R, GPIODR8R, and GPIOSLR) can be set to achieve the desired rise and fall times. The
GPIO acts as an open-drain input if the corresponding bit in the GPIODIR register is cleared; and
as an open-drain output when it is set.

When using the I2C module, in addition to configuring the pin to open drain, the GPIO Alternate
Function Select (GPIOAFSEL) register bits for the I2C clock and data pins should be set (see
examples in “Initialization and Configuration” on page 296).

GPIO Open Drain Select (GPIOODR)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x50C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ODEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Output Pad Open Drain Enable

DescriptionValue

The corresponding pin is configured as open drain.1

The corresponding pin is not configured as open drain.0

0x00R/WODE7:0

February 24, 2009316
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510
The GPIOPUR register is the pull-up control register. When a bit is set, a weak pull-up resistor on
the corresponding GPIO signal is enabled. Setting a bit in GPIOPUR automatically clears the
corresponding bit in theGPIO Pull-Down Select (GPIOPDR) register (see page 319). Write access
to this register is protected with theGPIOCR register. Bits inGPIOCR that are cleared prevent writes
to the equivalent bit in this register.

Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0,
GPIODEN=0, GPIOPDR=0, and GPIOPUR=0) with the exception of the pins shown in
Table 9-1. A Power-On-Reset (POR) or asserting RST puts the pins back to their default
state.

Table 9-7. GPIO Pins With Non-Zero Reset Values

GPIOPCTLGPIOPURGPIOPDRGPIODENGPIOAFSELDefault StateGPIO Pins

0x10011UART0PA[1:0]

0x10011SSI0PA[5:2]

0x10011I2C0PB[3:2]

0x31011JTAGPC[3:0]

Note: The GPIO commit control registers provide a layer of protection against accidental
programming of critical hardware peripherals. Protection is currently provided for the NMI
pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the
GPIOAFSEL register, GPIOPUR register, GPIO Pull-Down Select (GPIOPDR) register
(see page 319), andGPIODEN register are not committed to storage unless theGPIO Lock
(GPIOLOCK) register (see page 323) has been unlocked and the appropriate bits of the
GPIO Commit (GPIOCR) register (see page 324) have been set.

GPIO Pull-Up Select (GPIOPUR)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x510
Type R/W, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PUEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
--------00000000Reset

317February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Pad Weak Pull-Up Enable

DescriptionValue

The corresponding pin has a weak pull-up resistor.1

The corresponding pin is not affected.0

Setting a bit in the GPIOPDR register clears the corresponding bit in
the GPIOPUR register. The change is effective on the second clock
cycle after the write if accessing GPIO via the APB memory aperture.
If using AHB access, the change is effective on the next clock cycle.

The reset value for this register is 0x0000.0000 for GPIO ports that are
not listed in Table 9-1 on page 292.

-R/WPUE7:0

February 24, 2009318
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514
TheGPIOPDR register is the pull-down control register. When a bit is set, a weak pull-down resistor
on the corresponding GPIO signal is enabled. Setting a bit in GPIOPDR automatically clears the
corresponding bit in the GPIO Pull-Up Select (GPIOPUR) register (see page 317).

Note: The GPIO commit control registers provide a layer of protection against accidental
programming of critical hardware peripherals. Protection is currently provided for the NMI
pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the
GPIOAFSEL register, GPIOPUR register, GPIO Pull-Down Select (GPIOPDR) register
(see page 319), andGPIODEN register are not committed to storage unless theGPIO Lock
(GPIOLOCK) register (see page 323) has been unlocked and the appropriate bits of the
GPIO Commit (GPIOCR) register (see page 324) have been set.

GPIO Pull-Down Select (GPIOPDR)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x514
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PDEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Pad Weak Pull-Down Enable

DescriptionValue

The corresponding pin has a weak pull-down resistor.1

The corresponding pin is not affected.0

Setting a bit in the GPIOPUR register clears the corresponding bit in
the GPIOPDR register. The change is effective on the second clock
cycle after the write if accessing GPIO via the APB memory aperture.
If using AHB access, the change is effective on the next clock cycle.

0x00R/WPDE7:0

319February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518
The GPIOSLR register is the slew rate control register. Slew rate control is only available when
using the 8-mA drive strength option via the GPIO 8-mA Drive Select (GPIODR8R) register (see
page 315).

GPIO Slew Rate Control Select (GPIOSLR)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x518
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

SRLreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Slew Rate Limit Enable (8-mA drive only)

DescriptionValue

Slew rate control is enabled for the corresponding pin.1

Slew rate control is disabled for the corresponding pin.0

0x00R/WSRL7:0

February 24, 2009320
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C
Note: Pins configured as digital inputs are Schmitt-triggered.

The GPIODEN register is the digital enable register. By default, with the exception of the GPIO
signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven
(tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not
allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or
alternate function), the corresponding GPIODEN bit must be set.

Note: The GPIO commit control registers provide a layer of protection against accidental
programming of critical hardware peripherals. Protection is currently provided for the NMI
pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the
GPIOAFSEL register, GPIOPUR register, GPIO Pull-Down Select (GPIOPDR) register
(see page 319), andGPIODEN register are not committed to storage unless theGPIO Lock
(GPIOLOCK) register (see page 323) has been unlocked and the appropriate bits of the
GPIO Commit (GPIOCR) register (see page 324) have been set.

GPIO Digital Enable (GPIODEN)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x51C
Type R/W, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DENreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
--------00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

321February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Digital Enable

DescriptionValue

The digital functions for the corresponding pin are disabled.0

The digital functions for the corresponding pin are enabled.

The reset value for this register is 0x0000.0000 for GPIO ports
that are not listed in Table 9-1 on page 292.

1

-R/WDEN7:0

February 24, 2009322
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 19: GPIO Lock (GPIOLOCK), offset 0x520
The GPIOLOCK register enables write access to the GPIOCR register (see page 324). Writing
0x4C4F.434B to the GPIOLOCK register unlocks the GPIOCR register. Writing any other value to
the GPIOLOCK register re-enables the locked state. Reading the GPIOLOCK register returns the
lock status rather than the 32-bit value that was previously written. Therefore, when write accesses
are disabled, or locked, reading theGPIOLOCK register returns 0x0000.0001. When write accesses
are enabled, or unlocked, reading the GPIOLOCK register returns 0x0000.0000.

GPIO Lock (GPIOLOCK)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x520
Type R/W, reset 0x0000.0001

16171819202122232425262728293031

LOCK

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

LOCK

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

GPIO Lock

A write of the value 0x4C4F.434B unlocks theGPIOCommit (GPIOCR)
register for write access.A write of any other value or a write to the
GPIOCR register reapplies the lock, preventing any register updates.

A read of this register returns the following values:

DescriptionValue

TheGPIOCR register is locked andmay not bemodified.0x0000.0001

TheGPIOCR register is unlocked and may be modified.0x0000.0000

0x0000.0001R/WLOCK31:0

323February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 20: GPIO Commit (GPIOCR), offset 0x524
The GPIOCR register is the commit register. The value of the GPIOCR register determines which
bits of the GPIOAFSEL, GPIOPUR, GPIOPDR, and GPIODEN registers are committed when a
write to these registers is performed. If a bit in theGPIOCR register is cleared, the data being written
to the corresponding bit in the GPIOAFSEL, GPIOPUR, GPIOPDR, or GPIODEN registers cannot
be committed and retains its previous value. If a bit in the GPIOCR register is set, the data being
written to the corresponding bit of the GPIOAFSEL, GPIOPUR, GPIOPDR, or GPIODEN registers
is committed to the register and reflects the new value.

The contents of the GPIOCR register can only be modified if the status in the GPIOLOCK register
is unlocked. Writes to the GPIOCR register are ignored if the status in the GPIOLOCK register is
locked.

Important: This register is designed to prevent accidental programming of the registers that control
connectivity to the NMI and JTAG/SWD debug hardware. By initializing the bits of the
GPIOCR register to 0 for PB7 and PC[3:0], the NMI and JTAG/SWD debug port can
only be converted to GPIOs through a deliberate set of writes to the GPIOLOCK,
GPIOCR, and the corresponding registers.

Because this protection is currently only implemented on the NMI and JTAG/SWD pins
on PB7 and PC[3:0], all of the other bits in the GPIOCR registers cannot be written
with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit
new values to the GPIOAFSEL, GPIOPUR, GPIOPDR, or GPIODEN register bits of
these other pins.

GPIO Commit (GPIOCR)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x524
Type -, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CRreserved

--------ROROROROROROROROType
--------00000000Reset

February 24, 2009324
Preliminary

General-Purpose Input/Outputs (GPIOs)

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Commit

DescriptionValue

The corresponding GPIOAFSEL, GPIOPUR, GPIOPDR, or
GPIODEN bits can be written.

1

The corresponding GPIOAFSEL, GPIOPUR, GPIOPDR, or
GPIODEN bits cannot be written.

0

Note: The default register type for the GPIOCR register is RO for
all GPIO pins with the exception of the NMI pin and the four
JTAG/SWD pins (PB7 and PC[3:0]). These five pins are
currently the only GPIOs that are protected by the GPIOCR
register. Because of this, the register type for GPIO Port B7
and GPIO Port C[3:0] is R/W.

The default reset value for the GPIOCR register is
0x0000.00FF for all GPIO pins, with the exception of the NMI
pin and the four JTAG/SWD pins (PB7 and PC[3:0]). To
ensure that the JTAG port is not accidentally programmed as
a GPIO, these four pins default to non-committable. To ensure
that the NMI pin is not accidentally programmed as the
non-maskable interrupt pin, it defaults to non-committable.
Because of this, the default reset value of GPIOCR for GPIO
Port B is 0x0000.007F while the default reset value of
GPIOCR for Port C is 0x0000.00F0.

--CR7:0

325February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 21: GPIO Analog Mode Select (GPIOAMSEL), offset 0x528

Important: This register is only valid for ports D and E, the corresponding base addresses for the
remaining ports are not valid.

If any pin is to be used as an ADC input, the appropriate bit in GPIOAMSEL must be
set to disable the analog isolation circuit.

TheGPIOAMSEL register controls isolation circuits to the analog side of a unified I/O pad. Because
the GPIOs may be driven by a 5-V source and affect analog operation, analog circuitry requires
isolation from the pins when they are not used in their analog function.

Each bit of this register controls the isolation circuitry for the corresponding GPIO signal. For
information on which GPIO pins can be used for ADC functions, refer to Table 25-5 on page 990.

GPIO Analog Mode Select (GPIOAMSEL)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x528
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedGPIOAMSELreserved

ROROROROR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

February 24, 2009326
Preliminary

General-Purpose Input/Outputs (GPIOs)

DescriptionResetTypeNameBit/Field

GPIO Analog Mode Select

DescriptionValue

The analog function of the pin is enabled, the isolation is
disabled, and the pin is capable of analog functions.

1

The analog function of the pin is disabled, the isolation is
enabled, and the pin is capable of digital functions as specified
by the other GPIO configuration registers.

0

Note: This register and bits are only valid for GPIO signals that
share analog function through a unified I/O pad.

The reset state of this register is 0 for all signals.

0x0R/WGPIOAMSEL7:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:0

327February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 22: GPIO Port Control (GPIOPCTL), offset 0x52C
TheGPIOPCTL register is used in conjunction with theGPIOAFSEL register and selects the specific
peripheral signal for each GPIO pin when using the alternate function mode. Most bits in the
GPIOAFSEL register are cleared upon reset, therefore most GPIO pins are configured as GPIOs
by default. When a bit is set in theGPIOAFSEL register, the corresponding GPIO signal is controlled
by an associated peripheral. TheGPIOPCTL register selects one out of a set of peripheral functions
for each GPIO, providing additional flexibility in signal definition. For information on the configuration
options, refer to Table 25-5 on page 990. The reset value for this register is 0x0000.0000 for GPIO
ports that are not listed in Table 9-1 on page 292.

Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0,
GPIODEN=0, GPIOPDR=0, and GPIOPUR=0) with the exception of the pins shown in
Table 9-1. A Power-On-Reset (POR) or asserting RST puts the pins back to their default
state.

Table 9-8. GPIO Pins With Non-Zero Reset Values

GPIOPCTLGPIOPURGPIOPDRGPIODENGPIOAFSELDefault StateGPIO Pins

0x10011UART0PA[1:0]

0x10011SSI0PA[5:2]

0x10011I2C0PB[3:2]

0x31011JTAGPC[3:0]

GPIO Port Control (GPIOPCTL)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0x52C
Type R/W, reset -

16171819202122232425262728293031

PMC4PMC5PMC6PMC7

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

0123456789101112131415

PMC0PMC1PMC2PMC3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
----------------Reset

February 24, 2009328
Preliminary

General-Purpose Input/Outputs (GPIOs)

DescriptionResetTypeNameBit/Field

Port Mux Control 7

This field controls the configuration for GPIO pin 7. See Table
25-5 on page 990 for configuration options.

-R/WPMC731:28

Port Mux Control 6

This field controls the configuration for GPIO pin 6.

-R/WPMC627:24

Port Mux Control 5

This field controls the configuration for GPIO pin 5.

-R/WPMC523:20

Port Mux Control 4

This field controls the configuration for GPIO pin 4.

-R/WPMC419:16

Port Mux Control 3

This field controls the configuration for GPIO pin 3.

-R/WPMC315:12

Port Mux Control 2

This field controls the configuration for GPIO pin 2.

-R/WPMC211:8

Port Mux Control 1

This field controls the configuration for GPIO pin 1.

-R/WPMC17:4

Port Mux Control 0

This field controls the configuration for GPIO pin 0.

-R/WPMC03:0

329February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 23: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFD0
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Peripheral ID Register [7:0]0x00ROPID47:0

February 24, 2009330
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 24: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFD4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID5reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Peripheral ID Register [15:8]0x00ROPID57:0

331February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 25: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFD8
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID6reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Peripheral ID Register [23:16]0x00ROPID67:0

February 24, 2009332
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 26: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFDC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID7reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Peripheral ID Register [31:24]0x00ROPID77:0

333February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 27: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFE0
Type RO, reset 0x0000.0061

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
1000011000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Peripheral ID Register [7:0]

Can be used by software to identify the presence of this peripheral.

0x61ROPID07:0

February 24, 2009334
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 28: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFE4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Peripheral ID Register [15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID17:0

335February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 29: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFE8
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Peripheral ID Register [23:16]

Can be used by software to identify the presence of this peripheral.

0x18ROPID27:0

February 24, 2009336
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 30: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFEC
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO Peripheral ID Register [31:24]

Can be used by software to identify the presence of this peripheral.

0x01ROPID37:0

337February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 31: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0
TheGPIOPCellID0,GPIOPCellID1,GPIOPCellID2, andGPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO PrimeCell ID Register [7:0]

Provides software a standard cross-peripheral identification system.

0x0DROCID07:0

February 24, 2009338
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 32: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4
TheGPIOPCellID0,GPIOPCellID1,GPIOPCellID2, andGPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO PrimeCell ID Register [15:8]

Provides software a standard cross-peripheral identification system.

0xF0ROCID17:0

339February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 33: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8
TheGPIOPCellID0,GPIOPCellID1,GPIOPCellID2, andGPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO PrimeCell ID Register [23:16]

Provides software a standard cross-peripheral identification system.

0x05ROCID27:0

February 24, 2009340
Preliminary

General-Purpose Input/Outputs (GPIOs)

Register 34: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC
TheGPIOPCellID0,GPIOPCellID1,GPIOPCellID2, andGPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

GPIO PrimeCell ID Register [31:24]

Provides software a standard cross-peripheral identification system.

0xB1ROCID37:0

341February 24, 2009
Preliminary

LM3S9B92 Microcontroller

10 External Peripheral Interface (EPI)
The External Peripheral Interface is a high-speed parallel bus for external peripherals or memory.
It has several modes of operation to interface gluelessly to many types of external devices. The
External Peripheral Interface is similar to a standard microprocessor address/data bus, except that
it must typically be connected to just one type of external device. Enhanced capabilities include
µDMA support, clocking control and support for external FIFO buffers.

The EPI has the following features:

■ 16-bit dedicated parallel bus for external peripherals and memory

■ Memory interface supports contiguous memory access independent of data bus width, thus
enabling code execution directly from SDRAM, SRAM and Flash memory

■ Blocking and non-blocking reads

■ Processor from timing details through use of an internal write FIFO

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for read and write

– Read channel request asserted by programmable levels on the internal non-blocking read
FIFO (NBRFIFO)

– Write channel request asserted by empty on the internal write FIFO (WFIFO)

The EPI supports three primary functional modes: Synchronous Dynamic Random Access Memory
(SDRAM) mode, Traditional Host-Bus mode, and General-Purpose mode. The EPI module also
provides custom GPIOs; however, unlike regular GPIOs, the EPI module uses a FIFO in the same
way as a communication mechanism and is speed-controlled using clocking.

■ Synchronous Dynamic Random Access Memory (SDRAM)

– Supports x16 (single data rate) SDRAM at up to 50 MHz

– Supports low-cost SDRAMs up to 64 MB (512 Mb)

– Includes automatic refresh and access to all banks/rows

– Includes a Sleep/Standby mode to keep contents active with minimal power draw

– Multiplexed address/data interface for reduced pin count

■ Host-bus

– Traditional x8 MCU bus interface capabilities

– Similar device compatibility options as PIC, ATmega, 8051, and others

– Access to SRAM, NOR Flash, and other devices, with up to 1 MB of addressing

– Support of both muxed and de-muxed address and data

February 24, 2009342
Preliminary

External Peripheral Interface (EPI)

– Access to a range of devices supporting the non-address FIFO x8 interface variant, with
support for external FIFO (XFIFO) EMPTY and FULL signals

– Speed controlled, with read and write data wait-state counters

– Manual chip-enable (or use extra address pins)

■ General Purpose

– Wide parallel interfaces for fast communications with CPLDs and FPGAs

– Data widths up to 32-bits

– Data rates up to 150 Mbytes/second

– Optional “address” sizes from 4-bits to 16-bits

– Optional clock output, read/write strobes, framing (with counter-based size), and clock-enable
input

■ General parallel GPIO

– 1 to 32 bits, FIFOed with speed control

– Useful for custom peripherals or for digital data acquisition and actuator controls

10.1 EPI Block Diagram
Figure 10-1 on page 343 provides a block diagram of a Stellaris® EPI module.

Figure 10-1. EPI Block Diagram

Baud
Rate
Control
(Clock)

AHB
Bus

Interface
With
DMA

Wide
Parallel
Interface

Host Bus

SDRAM

General
Parallel
GPIO

AHB EPI 31:0

NBRFIFO
8 x 32 bits

WFIFO
4 x 32 bits

343February 24, 2009
Preliminary

LM3S9B92 Microcontroller

10.2 Functional Description
The EPI controller provides a glueless, programmable interface to a variety of common external
peripherals such as SDRAM, Host Bus x8 devices, RAM, Flash memory, CPLDs and FPGAs. In
addition, the EPI controller provides custom GPIO that can use a FIFO with speed control by using
either the internal write FIFO (WFIFO) or the non-blocking read FIFO (NBRFIFO). The WFIFO can
hold 4 words of data that are written to the external interface at the rate controlled by the EPI Main
Baud Rate (EPIBAUD) register. The NBRFIFO can hold 8 words of data and samples at the rate
controlled by the EPIBAUD register. The advantage of this solution is that when using regular GPIO,
the access rate can vary due arbitration to the GPIO module and delays across any bus bridges.
Blocking reads stall the CPU until the transaction completes. Non-blocking reads are performed in
the background and allow the processor to continue operation. In addition, write data can also be
stored in the WFIFO to allow multiple writes with no stalls.

Main read and write operations can be performed in subsets of the range 0x6000.0000 to
0xCFFF.FFFF. A read from an address mapped location uses the offset and size to control the
address and size of the external operation. When performing a multi-value load, the read is done
as a burst (when available) to maximize performance. A write to an address mapped location uses
the offset and size to control the address and size of the external operation. When performing a
multi-value store, the write is done as a burst (when available) to maximize performance.

10.2.1 Non-blocking reads
The EPI Controller supports a special kind of read called a non-blocking read, also referred to as a
posted read. Where a normal read stalls the processor or μDMA until the data is returned, a
non-blocking read is performed in the background.

A non-blocking read is configured by writing the start address into a EPIRADDRx register, the size
per transaction into a EPIRSIZEx register, and then the count of operations into a EPIRPSTDx
register. After each read is completed, the result is written into the NBRFIFO and the EPIRADDRx
register is incremented by the size (1, 2, or 4).

If the NBRFIFO is filled, then the reads pause until space is made available. The NBRFIFO can be
configured to interrupt the processor or trigger the μDMA based on fullness using the EPIFIFOLVL
register. By using the trigger/interrupt method, the μDMA (or processor) can keep space available
in the NBRFIFO and allow the reads to continue unimpeded.

When performing non-blocking reads, the SDRAM controller issues two additional read transactions
after the burst request is terminated. The data for these additional transfers is discarded. This
situation is transparent to the user other than the additional EPI bus activity and can safely be
ignored.

Two non-blocking read register sets are available to allow sequencing and ping-pong use. When
one completes, the other then activates. So, for example, if 20 words are to be read from 0x100
and 10 words from 0x200, the EPIRPSTD0 register can be set up with the read from 0x100 (with a
count of 20), and the EPIRPSTD1 register can be set up with the read from 0x200 (with a count of
10). When EPIRPSTD0 finishes (count goes to 0), the EPIRPSTD1 register then starts its operation.
The NBRFIFO has then passed 30 values. When used with the μDMA, it may transfer 30 values
(simple sequence), or the primary/alternate model may be used to handle the first 20 in one way
and the second 10 in another. It is also possible to reload the EPIRPSTD0 register when it is finished
(and the EPIRPSTD1 register is active); thereby, keeping the interface constantly busy.

To cancel a non-blocking read, the EPIRPSTDx register is cleared. Care must be taken, however
if the register set was active to drain away any values read into the NBRFIFO and ensure that any
read in progress is allowed to complete.

February 24, 2009344
Preliminary

External Peripheral Interface (EPI)

To ensure that the cancel is complete, the following algorithm is used (using the EPIRPSTD0 register
for example):

EPIRPSTD0 = 0;

while ((EPISTAT & 0x11) == 0x10)

; // we are active and busy

// if here, then other one is active or interface no longer busy

cnt = (EPIRADDR0 – original_address) / EPIRSIZ0E; // count of values read

cnt -= values_read_so_far;

// cnt is now number left in FIFO

while (cnt--)

value = EPIREADFIFO; // drain

The above algorithm can be optimized in code; however, the important point is to wait for the cancel
to complete because the external interface could have been in the process of reading a value when
the cancel came in, and it must be allowed to complete.

10.2.2 DMA Operation
The µDMA can be used to efficiently transfer data to and from the NBRFIFO and the WFIFO. The
µDMA has one channel for write and one for read. The write channel can be configured to copy
values to the WFIFO when the WFIFO is empty. For non-blocking reads, the start address, the size
per transaction, and the count of elements must be programmed in the µDMA. The NBRFIFO level
at which the µDMA triggers the read accessesmust also be programmed. Note that both non-blocking
read channels can be used, and they fill the NBRFIFO such that one runs to completion, then the
next one starts (they do not interleave). For blocking reads, any µDMA channel can be used as a
memory-to-memory transfer (or memory to peripheral, where some other peripheral is used). In this
situation, the µDMA is blocked when reading, thus the µDMA is not able to service another channel
until the read is done. As a result, the arbitration size should normally be programmed to one access
at a time. See “Micro Direct Memory Access (μDMA)” on page 226 for more information on configuring
the µDMA.

10.3 Initialization and Configuration
To enable and initialize the EPI block, the following steps are necessary:

1. Enable the EPI block using the RCGC1 register. See page 167.

2. Enable the clock to the appropriate GPIO module via the RCGC2 register. See page 179. To
find out which GPIO port to enable, refer to Table 25-5 on page 990.

3. Set the GPIO AFSEL bits for the appropriate pins. See page 311. To determine which GPIOs to
configure, see Table 25-5 on page 990.

4. Set the GPIO current level and/or slew rate as specified for the mode selected. See page 313
and page 320.

5. Select the mode for the EPI block to SDRAM, HB8, or general parallel use, using the MODE field
in the EPI Configuration (EPICFG) register. Set the mode-specific details (if needed) using
the appropriate mode configuration EPI xxx Configuration (EPIxxxCFG) and EPI xxx

345February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Configuration 2 (EPIxxxCFG2) registers. Set the EPI Main Baud Rate (EPIBAUD) register if
the baud rate must be slower than the core clock rate.

6. Configure the address mapping using the EPI Address Map (EPIADDRMAP) register. The
selected start address and range is dependent on the type of external device and maximum
address (as appropriate). For example, for a 512-MB SDRAM, program the ERADR field to 0x1
for address 0x60000000 or 0x2 for address 0x80000000; and program the ERSZ field to 0x3
for 512 MB. If using a non-mode and no address at all, program the EPADR field to 0x1 for
address 0xA0000000 or 0x2 for address 0xC0000000; and program the EPSZ field to 0x0 for
256 bytes.

7. To read or write directly, use the mapped address area (configured with the EPIADDRMAP
register). Up to 4 or 5 writes can be performed at once without blocking. Each read is blocked
until the value is retrieved.

8. To perform a non-blocking read, see “Non-blocking reads” on page 344.

The following sub-sections describe the initialization and configuration for each of the modes of
operation. Care must be taken to initialize everything properly to ensure correct operation. Control
of the GPIO states is also important, as changes may cause the external device to interpret pin
states as actions or commands (see “Register Descriptions” on page 300). Normally, a pull-up or
pull-down is needed on the board to at least control the chip-select or chip-enable as the Stellaris®

GPIOs come out of reset in tri-state.

The Table 10-1 on page 346 table defines how EPI module signals should be connected to various
external peripherals. The table applies when using a x16 SDRAM up to 512 MB.

Table 10-1. EPI Signal Connections

General-
Purpose
Signal
(D32)

General-
Purpose
Signal

(D24, A4)

General-
Purpose
Signal

(D16, A12)

General-Purpose
Signal (D8, A20)

Host Bus 8
Signal

(MODE =0x3
in

EPIHB8CFG
register)

Host Bus 8
Signal

(MODE =0x1
in

EPIHB8CFG
register)

Host Bus 8
Signal

(MODE =0x0
in

EPIHB8CFG
register)

SDRAM SignalaEPI Signal

D0D0D0D0D0D0AD0D0A0EPI0

D1D1D1D1D1D1AD1D1A1EPI1

D2D2D2D2D2D2AD2D2A2EPI2

D3D3D3D3D3D3AD3D3A3EPI3

D4D4D4D4D4D4AD4D4A4EPI4

D5D5D5D5D5D5AD5D5A5EPI5

D6D6D6D6D6D6AD6D6A6EPI6

D7D7D7D7D7D7AD7D7A7EPI7

D8D8D8A0-A0A8D8A8EPI8

D9D9D9A1-A1A9D9A9EPI9

D10D10D10A2-A2A10D10A10EPI10

D11D11D11A3-A3A11D11A11EPI11

D12D12D12A4-A4A12D12A12bEPI12

D13D13D13A5-A5A13D13BA0EPI13

D14D14D14A6-A6A14D14BA1EPI14

D15D15D15A7-A7A15D15EPI15

February 24, 2009346
Preliminary

External Peripheral Interface (EPI)

General-
Purpose
Signal
(D32)

General-
Purpose
Signal

(D24, A4)

General-
Purpose
Signal

(D16, A12)

General-Purpose
Signal (D8, A20)

Host Bus 8
Signal

(MODE =0x3
in

EPIHB8CFG
register)

Host Bus 8
Signal

(MODE =0x1
in

EPIHB8CFG
register)

Host Bus 8
Signal

(MODE =0x0
in

EPIHB8CFG
register)

SDRAM SignalaEPI Signal

D16D16A1cA8-A8A16DQM0EPI16

D17D17A2A9-A9A17DQM1EPI17

D18D18A3A10-A10A18CASnEPI18

D19D19A4A11-A11A19RASnEPI19

D20D20A5A12-A12A20-EPI20

D21D21A6A13-A13A21-EPI21

D22D22A7A14-A14A22-EPI22

D23D23A8A15-A15A23-EPI23

D24A2dA9A16-A16A24-EPI24

D25A3A10A17-A17A25-EPI25

D26A4A11A18FEMPTYA18A26-EPI26

D27A5/iRDYeA12/iRDYeA19/iRDYeFFULLA19A27-EPI27

D28WRWRWRRDnRDn/OEnRDn/OEnWEnEPI28

D29RDRDRDWRnWRnWRnCSnEPI29

D30FrameFrameFrame-CSngALEfCKEEPI30

D31ClockClockClockClockClockClockCLKEPI31

a. If 2 signals are listed, connect the EPI signal to both pins.
b. Only for 256/512 Mb SDRAMs
c. A1 represents the system address bit 1 for 16-bit data access. If this signal is connected to a device that only has 16-bit

data access, then EPI16 should be connected to A0. EPI[27:17] should also be connected to A[11:1] in this case.
d. A2 represents the system address bit 2 for 32-bit data access. If this signal is connected to a device that only has 24-bit

data access then EPI24 should be connected to A0. EPI[27:25] should also be connected to A[3:1} in this case.
e. This signal is iRDY if the RDYEN bit in the EPIGPCFG register is set.
f. The CSCFG field in the EPIHB8CFG2 register should be configured to 0x0. This option creates an ALE pulse during the

address cycle preceding the read/write cycle.
g. The CSCFG field in the EPIHB8CFG2 register should be configured to 0x1. This option creates a CSn that is active during

the read/write cycle.

10.3.1 SDRAM mode
When activating the SDRAM mode, it is important to consider a few points:

1. Generally, it takes over 100 μs from when the mode is activated to when the first operation is
allowed. The SDRAM controller begins the SDRAM initialization sequence as soon as the mode
is selected and enabled via the EPICFG register. It is important that the GPIOs are properly
configured before the SDRAM mode is enabled, as the EPI Controller is relying on the GPIO
block's ability to drive the pins immediately. As part of the initialization sequence, the LOAD
MODE REGISTER command is automatically sent to the SDRAM with a value of 0x27, which
sets a CAS latency of 2 and a full page burst length.

2. The INITSEQ bit in the EPI Status (EPISTAT) register can be checked to determine when the
initialization sequence is complete.

3. When using a frequency range and/or refresh value other than the default value, It is important
to configure the FREQ and RFSH fields in the EPI SDRAM Configuration (EPISDRAMCFG)

347February 24, 2009
Preliminary

LM3S9B92 Microcontroller

register shortly after activating the mode. After the 100-μs startup time, the EPI block must be
configured properly to keep the SDRAM contents stable.

4. The SLEEP bit in the EPISDRAMCFG register may be configured to put the SDRAM into a
low-power self-refreshing state. It is important to note that the SDRAM mode must not be
disabled once enabled, or else the SDRAM is no longer be clocked and the contents are lost.

The SIZE field of the EPISDRAMCFG register must be configured correctly based on the amount
of SDRAM in the system.

The FREQ field must be configured according to the value that represents the range being used.
Based on the range selected, the number of external clocks used between certain operations (for
example, PRECHARGE or ACTIVATE) is determined. If a higher frequency is given than is used,
then the only downside is that the peripheral is slower (uses more cycles for these delays). If a lower
frequency is given, incorrect operation occurs.

The refresh count is based on the external clock speed and the number of rows per bank as well
as the refresh period. The RFSH field represents how many external clock cycles remain before an
AUTO-REFRESH is required. The normal formula is:

RFSH = (tRefresh_us / number_rows) / ext_clock_period

A refresh period is normally 64 ms, or 64000 μs. The number of rows is normally 4096 or 8192. The
ext_clock_period is a value expressed in μsec and is derived by dividing 1000 by the clock speed
expressed in MHz. So, 50 MHz is 1000/50=20 ns, or 0.02 μs. A typical SDRAM is 4096 rows per
bank if the core clock is running at 50 MHz with an EPIBAUD register value of 0:

RFSH = (64000/4096) / 0.02 = 15.625 μs / 0.02 μs = 781.25

The default value in the RFSH field is 750 decimal or 0x2EE to allow for a margin of safety and
providing 15 μs per refresh. It is important to note that this number should always be smaller or
equal to what is required by the above equation. For example, if running the external clock at 25
MHz (40 ns per clock period), 390 is the highest number that may be used. Note that the external
clock may be 25 MHz when running the core at 25 MHz or when running the core at 50 MHz and
setting the EPIBAUD register to 1 (divide by 2).

If a number larger than allowed is used, the SDRAM is not refreshed often enough, and data is lost.

See “External Peripheral Interface (EPI)” on page 1004 for timing details for the SDRAM mode.

10.3.2 Host Bus Mode
Host Bus supports the traditional 8-bit interface popularized by the 8051devices. This interface is
asynchronous and uses strobe pins to control activity.

10.3.2.1 Control Pins
The main three strobes are ALE (Address latch enable), WRn (write), and RDn (sometimes called
OEn, used for read). Note that the timings are designed for older logic and so are hold-time vs.
setup-time specific. To ensure proper operation on this bus, the EPI block uses two core clocks per
transition to allow significant skewing of control vs. data signals. So, for example, ALE rises one
EPI clock before ADDR/DA is asserted. Likewise, ALE falls (latch point) one EPI clock before DA
changes or tri-states. The same approach is used for the WRn and RDn/OEn strobes.

The ALE can be changed to CSn through the EPI Host-Bus Configuration 2 (EPIHB8CFG2)
register. The ALE is best used for Host-Bus muxed mode in which EPI address and data pins are
shared. All Host-Bus accesses have an address phase then a data phase. The ALE indicates to an

February 24, 2009348
Preliminary

External Peripheral Interface (EPI)

external latch to capture the address then hold until the data phase. CSn is best used for Host-Bus
unmuxed mode in which EPI address and data pins are separate. The CSn indicate when the
address and data phases of a read or write access is occurring.

For FIFO mode, the ALE is not used, and two input holds are optionally supported to gate input and
output to what the XFIFO can handle.

10.3.2.2 Speed of Transactions
The COUNT field EPIBAUD must be configured to set the main transaction rate based on what the
slave device can support (including wiring considerations). The main control transitions are normally
½ the baud rate (COUNT = 1) because the EPI block forces data vs. control to change on alternating
clocks.

Additionally, the Host Bus mode provides read and write wait states for the data portion to support
different classes of device. These wait states stretch the data period (hold the rising edge of data
strobe) and may be used in all four sub-modes. The wait states are set using the WRWS and RDWS
bits in the EPI Host-Bus 8 Configuration (EPIHB8CFG) register.

10.3.2.3 Sub-Modes of Host Bus 8
The EPI controller supports four variants of the host bus model using 8 bits of data in all four cases.
The four sub-modes are selected using the MODE bits in the EPIHB8CFG register, and are:

1. Address and data are muxed (address and data share EPI[7:0] with additional address at
EPI[19:8]). This scheme is used by many 8051 devices, someMicrochip PIC parts, and some
ATmega parts. When used for standard SRAMs, a latch must be used between the
microcontroller and the SRAM. This sub-mode is provided for compatibility with existing devices
that support data transfers without a latch (for example, LCD controllers or CPLDs). In general,
the de-muxed sub-mode should normally be used. The ALE configuration should be used in
this mode, as all Host-Bus accesses have an address phase followed by a data phase. The
ALE indicates to an external latch to capture the address then hold until the data phase. The
ALE configuration is controlled by configuring the CSCFG field to be 0x0 in the EPIHB8CFG2
register. The CSn is best used for Host-Bus 8 unmuxed mode which EPI address and data pins
are separate. The CSn will indicate when the address and data phases of a read or write access
is occurring.

2. Address and data are separate with 8 bits of data and up to 20 bits of address (1MB). This
scheme is used by more modern 8051 devices, as well as some PIC and ATmega parts. This
mode is generally used with real SRAMs, many EEPROMS, and many NOR Flash memory
devices. Note that there is no hardware command write support for Flash memory devices; this
mode should only be used for Flash memory devices programmed at manufacturing time. If a
Flash memory device must be written and does not support a direct programming model, the
command mechanism must be performed in software. The CSn configuration should be used
in this mode. The CSn signals indicate when the address and data phases of a read or write
access is occurring. The CSn configuration is controlled by configuring the CSCFG field to be
0x1 in the EPIHB8CFG2 register.

3. SRAM fast mode where address and data are separate. This sub-mode is used for real SRAMs
which can be read more quickly by only changing the address (and not using RDn/OEn strobing).

4. FIFO mode uses 8 bits of data, removes ALE and address pins and optionally adds external
XFIFO FULL/EMPTY flag inputs. This scheme is used by many devices, such as radios,
communication devices (including USB2 devices), and some FPGA configurations (FIFO through
block RAM). This sub-mode provides the data side of the normal Host Bus interface, but is

349February 24, 2009
Preliminary

LM3S9B92 Microcontroller

paced by the FIFO control signals. It is important to consider that the XFIFO FULL/EMPTY
control signals may stall the interface and could have an impact on blocking read latency from
the processor or μDMA.

See “External Peripheral Interface (EPI)” on page 1004 for timing details for the Host-Bus 8 mode.

10.3.3 General-Purpose Mode
The General-Purpose Mode Configuration (EPIGPCFG) register is used to control the size of
control, data, and address pins, if used. The general-purpose configuration can be used for custom
interfaces with FPGAs, CPLDs, and digital data acquisition and actuator control.

It is designed for three general types of use:

■ Extremely high-speed clocked interfaces to FPGAs and CPLDs. Three sizes of data and optional
address are supported. Framing and clock-enable functions permit more optimized interfaces.

■ General parallel GPIO. From 1 to 31 pins may be written or read, with the speed controlled by
the EPIBAUD register baud rate (when used with the WFIFO and/or the NBRFIFO) or by the
rate of accesses from software or μDMA.

■ General custom interfaces of any speed.

The configuration allows for choice of an output clock (free-running or gated), a framing signal (with
frame size), a clock-enable input (to stretch transactions), a READ and WRITE strobe, an address
(of varying sizes), and data (of varying sizes). Additionally, provisions are made for separating data
and address phases.

To understand the interface’s possibilities, it is important to understand the optional features:

■ Use of output clock or not (controlled by the CLKPIN bit in the EPIGPCFG register). Unclocked
uses include general purpose I/O and asynchronous interfaces (optionally using READ and
WRITE strobes). Clocked interfaces allow for higher speeds and are much easier to connect to
FPGAs and CPLDs (which usually include input clocks).

■ Clock, if used, may be free running or gated (using the CLKGATE bit in the EPIGPCFG register).
A free-running clock requires another method for determining when data is live, such as the
frame pin or READ/WRITE strobes. A gated clock approach uses a setup time model in which
the clock controls when transactions are starting and stopping. Note that a gated clock can only
be used when the EPIBAUD register has a value other than 0 (meaning the output clock is less
than the core clock). The gated clock is held low until a new transaction is started and goes high
at the end of the cycle where READ/WRITE/FRAME and address (and data if write) are emitted.

■ Clock-enable input (iRDY) from the external device (controlled by the RDYEN bit in the EPIGPCFG
register). The clock-enable signal uses EPI27 and may only be used with a free-running clock.
RDYEN gates transactions, no matter what state they are in. In addition, RDYEN is registered
internally and holds the transaction state across multiple clocks if clock-disabled. Generally,
RDYEN should be changed before the falling edge of the external clock. If the EPIBAUD register
is 0, an external device can stretch the current state by clearing the RDYEN bit.

■ Frame pin (controlled by the FRMPIN bit in the EPIGPCFG register). The frame pin may be used
whether the clock is output or not, and whether the clock is free running or not. It may also be
used along with the clock-enable. The frame may be a pulse (one clock) or may be 50/50 split
across the frame size (controlled by the FRM50 bit in the EPIGPCFG register). The frame count
(the size of the frame as specified by the FRMCNT field in the EPIGPCFG register) may be between

February 24, 2009350
Preliminary

External Peripheral Interface (EPI)

1 and 15 clocks for pulsed and between 2 and 30 clocks for 50/50. The frame pin counts
transactions and not clocks; a transaction is any clock where the READ or WRITE strobe is high
(if used). So, if the FRMCNT bit is set, then the frame pin pulses every other transaction; if 2-cycle
reads and writes are used, it pulses every other address phase. FRM50 must be used with this
in mind as it may hold state for many clocks waiting for the next transaction.

■ READ and WRITE strobes may be used (controlled by the RW bit in the EPIGPCFG register).
For interfaces where the direction is known (in advance, related to frame size, or other means),
these strobes are not needed. For most other interfaces, READ and WRITE are used so the
external peripheral knows what transaction is taking place, and if any transaction is taking place.
READ is used in conjunction with separating the address and data phases (2-cycle mode), as
explained below.

■ Separation of address/request and data phases may be used on reads and writes using the
WR2CYC and RD2CYC bits in the EPIGPCFG register. This configuration allows the external
peripheral extra time to act and is more commonly used on reads. When configured to use an
address as specified by the ASIZE field in the EPIGPCFG register, the address is emitted on
the READ cycle (first cycle) and data is expected to be returned on the next cycle (when READ
is not asserted). If no address is used, then READ is asserted on the first cycle and data is
captured on the second cycle (when READ is not asserted), allowing more setup time for data.
If single-cycle reads are used, then data is expected to be available on the same cycle as READ
using the specified setup time. To use single-cycle reads, the external peripheral must have
either fast combinatorial logic (relative to clock period) or must be able to setup the data in
advance.

For writes, the output may be in one or two cycles. In the two-cycle case, the address (if any) is
emitted on the first cycle with WRITE and the data is emitted on the second cycle (with WRITE
not asserted). Although split address and write data phases are not normally needed for logic
reasons, it may be useful to make read and write timings match. If 2-cycle reads or writes are
used, the RW bit is automatically set.

■ Address may be emitted (controlled by the ASIZE field in the EPIGPCFG register). The address
may be 4 bits (16 possible values), 12 bits (4096 possible values), or 20 bits (1 M possible
values). Size of address limits size of data, for example, 4 bits of address supports 20 bits data
in non-multiplex mode. Address comes from the bottom bits of the address used for the transaction
by the processor or μDMA. The address signals may be used by the external peripheral as an
address, code (command), or for other unrelated uses (such as a chip enable).

■ Data may be 8 bits, 16 bits, 24 bits, or 32 bits (controlled by the DSIZE field in the EPIGPCFG
register). 32-bit data cannot be used with address or clock or any other signal. 24-bit data can
only be used with 4-bit address or no address. 32-bit data requires that either the WR2CYC bit or
the RD2CYC bit in the EPIGPCFG register is set.

■ When using the EPI as a GPIO interface, writes are FIFOed (up to 4 can be held at any time),
and up to 32 pins are changed using the EPIBAUD clock rate. So, output pin control can be very
precisely controlled as a function of time. By contrast, when writing to normal GPIOs, writes can
only occur 8-bits at a time and take up to two clock cycles to complete. In addition, the write itself
may be further delayed by the bus due to DMA or draining of a previous write. With both GPIO
and EPI, reads may be performed directly, in which case the current pin states are read back.
With EPI, the non-blocking interface may also be used to perform reads based on a fixed time
rule via the EPIBAUD clock rate.

See “External Peripheral Interface (EPI)” on page 1004 for timing details for the General-Purpose
mode.

351February 24, 2009
Preliminary

LM3S9B92 Microcontroller

10.4 Register Map
Table 10-2 on page 352 lists the EPI registers. The offset listed is a hexadecimal increment to the
register’s address, relative to the base address of 0x400D.0000. Note that the EPI controller clock
must be enabled before the registers can be programmed (see page 167).

Note: A back-to-back write followed by a read of the same register reads the value that written
by the first write access, not the value from the second write access. (This situation only
occurs when the processor core attempts this action, the μDMA does not do this.). To read
back what was just written, another instruction must be generated between the write and
read. Read-write does not have this issue, so use of read-write for clear of error interrupt
cause is not affected.

Table 10-2. External Peripheral Interface (EPI) Register Map

See
pageDescriptionResetTypeNameOffset

354EPI Configuration0x0000.0000R/WEPICFG0x000

355EPI Main Baud Rate0x0000.0000R/WEPIBAUD0x004

356EPI SDRAM Configuration0x42EE.0000R/WEPISDRAMCFG0x010

358EPI Host-Bus 8 Configuration0x0000.FF00R/WEPIHB8CFG0x010

362EPI General-Purpose Configuration0x0000.FF00R/WEPIGPCFG0x010

366EPI Host-Bus 8 Configuration 20x0000.0000R/WEPIHB8CFG20x014

368EPI General-Purpose Configuration 20x0000.0000R/WEPIGPCFG20x014

369EPI Address Map0x0000.0000R/WEPIADDRMAP0x01C

371EPI Read Size 00x0000.0003R/WEPIRSIZE00x020

372EPI Read Address 00x0000.0000R/WEPIRADDR00x024

373EPI Non-Blocking Read Data 00x0000.0000R/WEPIRPSTD00x028

371EPI Read Size 10x0000.0003R/WEPIRSIZE10x030

372EPI Read Address 10x0000.0000R/WEPIRADDR10x034

373EPI Non-Blocking Read Data 10x0000.0000R/WEPIRPSTD10x038

375EPI Status0x0000.0000REPISTAT0x060

377EPI Read FIFO Count-REPIRFIFOCNT0x06C

378EPI Read FIFO0x0000.0000REPIREADFIFO0x070

378EPI Read FIFO Alias 10x0000.0000REPIREADFIFO10x074

378EPI Read FIFO Alias 20x0000.0000REPIREADFIFO20x078

378EPI Read FIFO Alias 30x0000.0000REPIREADFIFO30x07C

378EPI Read FIFO Alias 40x0000.0000REPIREADFIFO40x080

378EPI Read FIFO Alias 50x0000.0000REPIREADFIFO50x084

378EPI Read FIFO Alias 60x0000.0000REPIREADFIFO60x088

378EPI Read FIFO Alias 70x0000.0000REPIREADFIFO70x08C

February 24, 2009352
Preliminary

External Peripheral Interface (EPI)

See
pageDescriptionResetTypeNameOffset

379EPI FIFO Level Selects0x0000.0033R/WEPIFIFOLVL0x200

381EPI Write FIFO Count0x0000.0000REPIWFIFOCNT0x204

382EPI Interrupt Mask0x0000.0000R/WEPIIM0x210

383EPI Raw Interrupt Status0x0000.0000REPIRIS0x214

385EPI Masked Interrupt Status0x0000.0000REPIMIS0x218

386EPI Error Interrupt Status and Clear0x0000.0000R/W1CEPIEISC0x21C

10.5 Register Descriptions
This section lists and describes the EPI registers, in numerical order by address offset.

353February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: EPI Configuration (EPICFG), offset 0x000

Important: The programming of the MODE field determines which configuration register is accessed
for offsets 0x010 and 0x014. Any write to the EPICFG register resets the register
contents at offsets 0x010 and 0x014.

The configuration register is used to enable the block, select a mode, and select the basic pin use
(based on the mode). Note that attempting to program an undefined MODE field clears the BLKEN
bit and disables the EPI controller.

EPI Configuration (EPICFG)
Base 0x400D.0000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MODEBLKENreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:5

Block Enable

Setting this bit enables the EPI Controller.

0R/WBLKEN4

Mode Select

DescriptionValue

General Purpose

General-Purpose mode. Control, address, and data pins are
configured using the EPIGPCFG and EPIGPCFG2 registers.

0x0

SDRAM

Supports SDR SDRAM. Control, address, and data pins are
configured using the EPISDRAMCFG register.

0x1

8-Bit Host-Bus (HB8)

Host-bus 8-bit interface (also known as the MCU interface).
Control, address, and data pins are configured using the
EPIHB8CFG and EPIHB8CFG2 registers.

0x2

Reserved0x3-0xF

0x0R/WMODE3:0

February 24, 2009354
Preliminary

External Peripheral Interface (EPI)

Register 2: EPI Main Baud Rate (EPIBAUD), offset 0x004
The main core clock is used internally to the EPI Controller. The baud rate counter can be used to
divide the core clock down to control the speed on the external interface. If the mode selected emits
an external clock, this register defines the clock emitted. If the mode selected does not use a clock,
this register controls the speed of changes on the external interface. Care must be taken to program
this register properly so that the speed of the external bus corresponds to the speed of the external
peripheral and puts acceptable current load on the pins.

The COUNT is not a straight divider or count, but is instead calculated using the following formula:

So, for example, a COUNT of 0x0001 results in a clock rate of ½(core clock); a COUNT of 0x0002 or
0x0003 results in a clock rate of ¼(core clock).

EPI Main Baud Rate (EPIBAUD)
Base 0x400D.0000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

COUNT

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Baud Rate Counter

This bit field contains a counter used to divide the system clock by the
count. The maximum frequency for the external baud clock is 40 MHz.

A count of 0 means the system clock is used as is.

0x0000R/WCOUNT15:0

355February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: EPI SDRAM Configuration (EPISDRAMCFG), offset 0x010

Important: To access this register, the MODE field in the EPICFG register must be 0x1.

The SDRAM Configuration register is used to specify several parameters for the SDRAM controller.
Note that this register is reset when the MODE field in the EPICFG register is changed. If another
mode is selected and the SDRAM mode is selected again, the values must be reinitialized.

The SDRAM interface designed to interface to x16 SDR SDRAMs of 64 MHz or higher, with the
address and data pins overlapped (wire ORed on the board). See Table 10-1 on page 346 for pin
assignments.

EPI SDRAM Configuration (EPISDRAMCFG)
Base 0x400D.0000
Offset 0x010
Type R/W, reset 0x42EE.0000

16171819202122232425262728293031

RFSHreservedFREQ

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROR/WR/WType
0111011101000010Reset

0123456789101112131415

SIZEreservedSLEEPreserved

R/WR/WROROROROROROROR/WROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Frequency Range

Frequency range of core clock. This field must be configured correctly
to ensure proper operation. This field does not affect the refresh counting,
which is configured separately using the RFSH field (and is based on
core clock rate and number of rows per bank). The ranges are:

High (MHz)Low (MHz)Value

1500x0

30150x1

50300x2

100500x3

0x1R/WFREQ31:30

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved29:27

Refresh Counter

Refresh counter in core clocks. The reset value of 0x2EE provides a
refresh period of 64 ms when using a 50 MHz clock.

0x2EER/WRFSH26:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved15:10

February 24, 2009356
Preliminary

External Peripheral Interface (EPI)

DescriptionResetTypeNameBit/Field

Sleep Mode

DescriptionValue

The SDRAM is put into low power state, but is self-refreshed.1

No effect.0

0R/WSLEEP9

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved8:2

Size of SDRAM

The value of this field affects address pins and behavior.

DescriptionValue

64Mb (8MB)0x0

128Mb (16MB)0x1

256Mb (32MB)0x2

512Mb (64MB)0x3

0x0R/WSIZE1:0

357February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: EPI Host-Bus 8 Configuration (EPIHB8CFG), offset 0x010

Important: To access this register, the MODE field in the EPICFG register must be 0x2.

The Host Bus 8 sub-configuration register is activated when the HB8 mode is selected. The HB8
mode supports muxed address/data (overlay of lower 8 address and all 8 data pins), separated
address/data, and address-less FIFO mode. Note that this register is reset when the MODE field in
the EPICFG register is changed. If another mode is selected and the SDRAM mode is selected
again, the values must be reinitialized.

It is intended to support SRAMs, Flash memory (read), FIFOs, CPLDs/FPGAs, and devices with
an MCU/HostBus slave or 8-bit FIFO interface support.

When activated, certain pins are assigned as follows:

■ EPI31 is assigned to clock

■ EPI30 is assigned to ALE/CSn (not used when using an external FIFO)

■ EPI29 is assigned to WRn (or WR if WRHIGH is set)

■ EPI28 is assigned to RDn/OEn

■ EPI27 down to EPI8 are assigned to address for all but FIFO sub-mode

■ EPI27 is assigned to FFULL (XFIFO full) when in FIFO sub-mode and XFFEN is set

■ EPI26 is assigned to FEMPTY (XFIFO empty) when in FIFO sub-mode and XFEEN is set

■ EPI7 down to EPI0 are assigned to data (D[7:0]) in all sub-modes, and address low (A[7:0]) in
muxed AD sub-mode

See Table 10-1 on page 346 for more on pin assignments.

If less address pins are required, the corresponding GPIO’s AFSEL (page 311) should not be enabled
(so the EPI controller does not drive those pins, and they are available as standard GPIOs).

There is no direct chip enable (CE) model. Instead, CE can be handled in one of three ways:

1. Manually control via GPIOs.

2. Associate one or more upper address pins to CE. Because CE is normally CEn, lower addresses
are not used. For example, if pins EPI27 and EPI26 are used for Device 1 and 0 respectively,
then address 0x6800.0000 accesses Device 0 (Device 1 has its CEn high), and 0x6400.0000
accesses Device 1 (Device 0 has its CEn high). The pull-up behavior on the corresponding
GPIOs must be properly configured to ensure that the pins are disabled when the interface is
not in use.

3. With certain SRAMs, the ALE can be used as CEn because the address remains stable after
the ALE strobe. The subsequent WRn or RDn signals write or read when ALE is low thus
providing CEn functionality.

February 24, 2009358
Preliminary

External Peripheral Interface (EPI)

EPI Host-Bus 8 Configuration (EPIHB8CFG)
Base 0x400D.0000
Offset 0x010
Type R/W, reset 0x0000.FF00

16171819202122232425262728293031

reservedRDHIGHWRHIGHXFEENXFFENreserved

ROROROROR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MODEreservedRDWSWRWSMAXWAIT

R/WR/WROROR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000011111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:24

External FIFO FULL Enable

DescriptionValue

An external FIFO full signal can be used to control write cycles.
If this bit is set and the external FIFO full signal is high, XFIFO
writes are stalled.

1

No effect.0

0R/WXFFEN23

External FIFO EMPTY Enable

DescriptionValue

An external FIFO empty signal can be used to control read
cycles. If this bit is set and the external FIFO empty signal is
high, XFIFO reads are stalled.

1

No effect.0

0R/WXFEEN22

WRITE Strobe Polarity

DescriptionValue

The WRITE strobe is WRn (active low).1

The WRITE strobe is WR (active high).0

0R/WWRHIGH21

READ Strobe Polarity

DescriptionValue

The READ strobe is RDn (active low).1

The READ strobe is RD (active high).0

0R/WRDHIGH20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved19:16

359February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Maximum Wait

This field defines the maximum number of external clocks to wait while
an external FIFO ready signal is holding off a transaction (FFULL and
FEMPTY).

When this field is clear, the transaction is held off forever.

0xFFR/WMAXWAIT15:8

Write Wait States

This field adds wait states to the data phase (the address phase is not
affected). The effect is to delay the rising edge of WRn (or the falling
edge of WR).

DescriptionValue

No wait states0x0

1 wait state0x1

2 wait states0x2

3 wait states0x3

This field is used in conjunction with the EPIBAUD register.

0x0R/WWRWS7:6

Read Wait States

This field adds wait states to the data phase (the address phase is not
affected). The effect is to delay the rising edge of RDn/Oen (or the falling
edge of RD).

DescriptionValue

No wait states0x0

1 wait state0x1

2 wait states0x2

3 wait states0x3

This field is used in conjunction with the EPIBAUD register.

0x0R/WRDWS5:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:2

February 24, 2009360
Preliminary

External Peripheral Interface (EPI)

DescriptionResetTypeNameBit/Field

Host Bus Sub-Mode

This field determines which of four Host Bus 8 sub-modes to use.
Sub-mode use is determined by the connected external peripheral.

DescriptionValue

ADMUX – AD[7:0]

Data and Address are muxed on EPI[7:0] and additional
address is at EPI[27:8].

0x0

ADNONMUX – D[7:0]

Data and address are separate. D[7:0] are on EPI[7:0] and
A[19:0] are on EPI[27:8].

0x1

SRAM

Thismode is the same as ADNONMUX, but uses address switch
for multiple reads vs. OEn.

0x2

XFIFO – D[7:0]

This mode adds XFIFO controls with sense of XFIFO full and
XFIFO empty. This mode uses no address or ALE.

0x3

0x0R/WMODE1:0

361February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: EPI General-Purpose Configuration (EPIGPCFG), offset 0x010

Important: To access this register, the MODE field in the EPICFG register must be 0x0.

The General-Purpose configuration register is used to control the size of control, data, and address
pins, if used. This mode can be used for custom interfaces with FPGAs, CPLDs, and for digital data
acquisition and actuator control. Note that this register is reset when the MODE field in the EPICFG
register is changed. If another mode is selected and the SDRAMmode is selected again, the register
the values must be reinitialized.

This mode is designed for 3 general types of use:

■ Extremely high-speed clocked interfaces to FPGAs and CPLDs, with 3 sizes of data and optional
address. Framing and clock-enable permit more optimized interfaces.

■ General parallel GPIO. From 1 to 31 pins may be written or read, with the speed controlled by
setting the baud rate in the EPIBAUD register (when used with the NBRFIFO and/or theWFIFO)
or by rate of accesses from software or μDMA.

■ General custom interfaces of any speed.

The configuration allows for choice of an output clock (free running or gated), a framing signal (with
frame size), a clock-enable input (to stretch transactions), READ and WRITE strobes, address of
varying sizes, and data of varying sizes. Additionally, provisions are made for splitting address and
data phases on the external interface.

EPI General-Purpose Configuration (EPIGPCFG)
Base 0x400D.0000
Offset 0x010
Type R/W, reset 0x0000.FF00

16171819202122232425262728293031

reservedRD2CYCWR2CYCreservedRWFRMCNTFRM50FRMPINRDYENreservedCLKGATECLKPIN

ROROR/WR/WROR/WR/WR/WR/WR/WR/WR/WR/WROR/WR/WType
0000000000000000Reset

0123456789101112131415

DSIZEreservedASIZEreservedMAXWAIT

R/WR/WROROR/WR/WROROR/WR/WR/WR/WR/WR/WR/WR/WType
0000000011111111Reset

DescriptionResetTypeNameBit/Field

Clock Pin

DescriptionValue

EPI31 functions as a clock output.1

No clock output.0

The clock is generated from the EPIBAUD register (as is the core clock
which is divided down from it).

0R/WCLKPIN31

February 24, 2009362
Preliminary

External Peripheral Interface (EPI)

DescriptionResetTypeNameBit/Field

Clock Gated

DescriptionValue

The clock is output only when there is data to write or read
(current transaction); otherwise the clock is held low.

1

The clock is free running.0

Note that EPI27 is an iRDY signal if RDYEN is set. CLKGATE is ignored
if CLKPIN is 0 or if the EPIBAUD register is cleared.

0R/WCLKGATE30

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved29

Ready Enable

DescriptionValue

The external peripheral drives an iRDY signal into pin EPI27.1

The external peripheral does not drive an iRDY signal and is
assumed to be ready always.

0

The ready enable signal may only be used with a free-running clock
(CLKGATE=0).

The external iRDY signal is sampled on the rising edge of the clock.
Setup and hold times must be met to ensure registration on the next
rising clock edge.

This bit is ignored if CLKPIN is 0 or CLKGATE is 1.

0R/WRDYEN28

Framing Pin

DescriptionValue

A framing signal is output on EPI30.1

No framing signal.0

Framing has no impact on data itself, but forms a context for the external
peripheral. When used with a free-running clock, FRAME forms the valid
signal. When used with a gated clock, it is usually used to form a frame
size.

0R/WFRMPIN27

50/50 Frame

DescriptionValue

The FRAME signal is output as 50/50 duty cycle using count
(see FRMCNT).

1

The FRAME signal is output as a single pulse, and then held
low for the count.

0

This bit is ignored if FRMPIN is 0.

0R/WFRM5026

363February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Frame Count

This field specifies the size of the frame in clocks. The frame counter is
used to determine the frame size. The count is FRMCNT+1. So, a FRMCNT
of 0 forms a pure transaction valid signal (held high during transactions,
low otherwise).

A FRMCNT of 0 with FRM50 set inverts the FRAME signal on each
transaction. A FRMCNT of 1 means FRAME is inverted every other
transaction; a value of 15 means every sixteenth transaction.

If FRM50 is set, the frame is held high for FRMCNT+1 transactions, then
held low for that many transactions, and so on.

If FRM50 is clear, the frame is pulsed high for one clock and then low
for FRMCNT clocks.

This field is ignored if FRMPIN is 0.

0x0R/WFRMCNT25:22

Read and Write

DescriptionValue

READ and WRITE strobes are asserted on EPI29 and EPI28.
READ is asserted high on the rising edge of the clock when a
read is being performed. WRITE is asserted high on the rising
edge of the clock when a write is being performed

1

READ and WRITE strobes are not output.0

This bit is forced to 1 when RD2CYC and/or WR2CYC is 1.

0R/WRW21

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved20

2-Cycle Writes

DescriptionValue

Writes are two cycles long, with address on one cycle (with the
WRITE strobe asserted) and data written on the following cycle
(with WRITE strobe de-asserted). The next address (if any) is
in the cycle following.

1

Data is output on the same cycle as the address.0

When this bit is set, then the RW bit is forced to be set.

0R/WWR2CYC19

2-Cycle Reads

DescriptionValue

Reads are two cycles, with address on one cycle (with the READ
strobe asserted) and data captured on the following cycle (with
READ strobe de-asserted). The next address (if any) is in the
cycle following.

1

Data is captured on the cycle with READ strobe asserted.0

When this bit is set, then the RW bit is forced to be set.

0R/WRD2CYC18

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved17:16

February 24, 2009364
Preliminary

External Peripheral Interface (EPI)

DescriptionResetTypeNameBit/Field

Maximum Wait

This field defines the maximum number of external clocks to wait while
an external clock-enable (see RDYEN) is holding off a transaction. If this
field is 0, the transaction is held forever. If the maximum wait of 255
clocks (MAXWAIT=0xFF) is exceeded, an error interrupt occurs and the
transaction is aborted/ignored.

0xFFR/WMAXWAIT15:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:6

Address Bus Size

This field defines the size of the address bus (starting at EPI8, EPI16,
or EPI24, depending on size). Subsets of these numbers can be created
by disabling the AFSEL for the corresponding GPIOs. Also, if RDYEN is
1, then the address sizes are 1 smaller (3, 11, 19).

The values are:

DescriptionValue

No address0x0

4 Bits Wide (EPI24 to EPI27)0x1

12 Bits Wide (EPI16 to EPI27). This size cannot be used with
24-bit data.

0x2

20 Bits Wide

(EPI8 to EPI27). This size cannot be used with data sizes other
than 8.

0x3

0x0R/WASIZE5:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:2

Size of Data Bus

This field defines the size of the data bus (starting at EPI0). Subsets of
these numbers can be created by disabling the AFSEL for the
corresponding GPIOs. Note that size 32 may not be used with clock,
frame, address, or other control.

The values are:

DescriptionValue

8 Bits Wide (EPI0 to EPI7)0x0

16 Bits Wide (EPI0 to EPI15)0x1

24 Bits Wide (EPI0 to EPI23)0x2

32 Bits Wide (EPI0 to EPI31).This size may not be used with
a clock. This value is normally used for acquisition input and
actuator control as well as other general-purpose uses that
require 32 bits per direction.

0x3

0x0R/WDSIZE1:0

365February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 6: EPI Host-Bus 8 Configuration 2 (EPIHB8CFG2), offset 0x014
Tempest RevB

Important: To access this register, the MODE field in the EPICFG register must be 0x1.

This register is used to configure operation while in Host-Bus 8 mode. Note that this register is reset
when the MODE field in the EPICFG register is changed. If another mode is selected and the Host-Bus
8 mode is selected again, the values must be reinitialized.

EPI Host-Bus 8 Configuration 2 (EPIHB8CFG2)
Base 0x400D.0000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reservedreservedWORD

ROROROROROROROROR/WR/WROROROROROR/WType
00000000Reset

0123456789101112131415

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Word Access Mode

By default, the EPI controller uses data bits [7:0] for Host-Bus 8
accesses. When using Word Access mode, the EPI controller can
automatically route bytes of data onto the correct byte lanes such that
data can be stored in bits [31:8].

DescriptionValue

Word Access mode is disabled.0

Word Access mode is enabled.1

0x0R/WWORD31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000.0000ROreserved30:26

February 24, 2009366
Preliminary

External Peripheral Interface (EPI)

DescriptionResetTypeNameBit/Field

Chip Select Configuration

This field controls the chip select options, including an ALE format and
a chip select format.

DescriptionValue

ALE Configuration

EPI30 is used as an address latch (ALE). When using this
mode, the address and data should be muxed (HB8MODE field
in the CPIHB8CFG register should be configured to 0x0). If
needed, the address can be latched by external logic.

0x0

CSn Configuration

EPI30 is used as a Chip Select (CSn). When using this mode,
the address and data should not be muxed (HB8MODE field
in the CPIHB8CFG register should be configured to 0x1). In
this mode, theWR signal (EPI29) and the RD signal (EPI28)
are used to latch the address when CSn is low.

0x1

reserved0x2-0x3

0x0R/WCSCFG25:24

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000.0000ROreserved25:0

367February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 7: EPI General-Purpose Configuration 2 (EPIGPCFG2), offset 0x014
Tempest RevB

Important: To access this register, the MODE field in the EPICFG register must be 0x1.

This register is used to configure operation while in General-Purpose sub-mode. Note that this
register is reset when the MODE field in the EPICFG register is changed. If another mode is selected
and the General-Purpose mode is selected again, the values must be reinitialized.

EPI General-Purpose Configuration 2 (EPIGPCFG2)
Base 0x400D.0000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reservedWORD

ROROROROROROROROROROROROROROROR/WType
0000000000000000Reset

0123456789101112131415

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Word Access Mode

By default, the EPI controller uses data bits [7:0] for Host-Bus 8
accesses. When using Word Access mode, the EPI controller can
automatically route bytes of data onto the correct byte lanes such that
data can be stored in bits [31:8].

DescriptionValue

Word Access mode is disabled.0

Word Access mode is enabled.1

0x0R/WWORD31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000.0000ROreserved30:0

February 24, 2009368
Preliminary

External Peripheral Interface (EPI)

Register 8: EPI Address Map (EPIADDRMAP), offset 0x01C
This register enables address mapping. The EPI controller can directly address memory and
peripherals. In addition, the EPI controller supports address mapping to allow indirect accesses in
the External RAM and External Peripheral areas. Note that use of either one does not affect how
the EPI Controller behaves, but care must be taken not to overlap memory regions.

EPI Address Map (EPIADDRMAP)
Base 0x400D.0000
Offset 0x01C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ERADRERSZEPADREPSZreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

External Peripheral Size

This field selects the size of the external peripheral. If the size of the
external peripheral is larger, a bus fault occurs. If the size of the external
peripheral is smaller, it wraps (upper address bits unused):

DescriptionValue

0x100 (256)0x0

0x1.0000 (64 KB)0x1

0x100.0000 (16 MB)0x2

0x2000.0000 (512 MB)0x3

0x0R/WEPSZ7:6

External Peripheral Address

This field selects address mapping for the external peripheral area:

DescriptionValue

Not mapped0x0

At 0xA000.00000x1

At 0xC000.00000x2

reserved0x3

0x0R/WEPADR5:4

369February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

External RAM Size

This field selects the size of mapped RAM. If the size of the external
memory is larger, a bus fault occurs. If the size of the external memory
is smaller, it wraps (upper address bits unused):

DescriptionValue

0x100 (256)0x0

0x1.0000 (64KB)0x1

0x100.0000 (16MB)0x2

0x2000.0000 (512MB)0x3

0x0R/WERSZ3:2

External RAM Address

Selects address mapping for external RAM area:

DescriptionValue

Not mapped0x0

At 0x6000.00000x1

At 0x8000.00000x2

reserved0x3

0x0R/WERADR1:0

February 24, 2009370
Preliminary

External Peripheral Interface (EPI)

Register 9: EPI Read Size 0 (EPIRSIZE0), offset 0x020
Register 10: EPI Read Size 1 (EPIRSIZE1), offset 0x030
This register selects the size of transactions when performing non-blocking reads with the EPIRPSTD
registers. This size affects how the external address is incremented.

The SIZE field must match the external data width as configured in the EPIHB8CFG or EPIGPCFG
register (see Table 10-1 on page 346).

SDRAM mode uses a 16-bit data interface. If SIZE is 0x1, data is returned on the least significant
bits (D[7:0]), and the remaining bits D[31:8] are all zeros, therefore the data on bits D[15:8] is lost..
If SIZE is 0x2, data is returned on the least significant bits (D[15:0]), and the remaining bits D[31:16]
are all zeros.

Note that changing this register while a read is active has an unpredictable effect.

EPI Read Size 0 (EPIRSIZE0)
Base 0x400D.0000
Offset 0x020
Type R/W, reset 0x0000.0003

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

SIZEreserved

R/WR/WROROROROROROROROROROROROROROType
1100000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:2

Current Size

DescriptionValue

reserved0x0

Byte (8 bits)0x1

Half-word (16 bits)0x2

Word (32 bits)0x3

0x3R/WSIZE1:0

371February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: EPI Read Address 0 (EPIRADDR0), offset 0x024
Register 12: EPI Read Address 1 (EPIRADDR1), offset 0x034
This register holds the current address value.When performing non-blocking reads via theEPIRPSTD
registers, this register’s value forms the address (when used by the mode). That is, when a
EPIRPSTD register is written with a non-0 value, this register is used as the first address. After each
read, it is incremented by the size specified by the corresponding EPIRSIZE register. Thus at the
end of a read, this register contains the next address for the next read. For example, if the last read
was 0x20, and the size is word, then the register contains 0x24. When a non-blocking read is
cancelled, this register contains the next address that would have been read had it not been cancelled.
For example, if reading by bytes and 0x103 had been read but not 0x104, this register contains
0x104. In this manner, the system can determine the number of values in the NBRFIFO to drain.

Note that changing this register while a read is active has an unpredictable effect due to race
condition.

EPI Read Address 0 (EPIRADDR0)
Base 0x400D.0000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

ADDRreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROType
0000000000000000Reset

0123456789101112131415

ADDR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:29

Current Address

Next address to read.

0x000.0000R/WADDR28:0

February 24, 2009372
Preliminary

External Peripheral Interface (EPI)

Register 13: EPI Non-Blocking Read Data 0 (EPIRPSTD0), offset 0x028
Register 14: EPI Non-Blocking Read Data 1 (EPIRPSTD1), offset 0x038
This register sets up a non-blocking read via the external interface. A non-blocking read is started
by writing to this register with the count (other than 0). Clearing this register terminates an active
non-blocking read as well as cancelling any that are pending. This register should always be cleared
before writing a value other than 0; failure to do so can cause improper operation.

The first address is based on the corresponding EPIRADDR register. The address register is
incremented by the size specified by the EPIRSIZE register after each read. If the size is less than
a word, only the least significant bits of data are filled into the NBRFIFO; the most significant bits
are cleared.

Note that all three registers may be written using one STM instruction, such as with a structure copy
in C/C++.

The data may be read from the EPIREADFIFO register after the read cycle is completed. The
interrupt mechanism is normally used to trigger the FIFO reads via ISR or μDMA.

If the countdown has not reached 0 and the NBRFIFO is full, the external interface waits until a
NBRFIFO entry becomes available to continue.

Note: if a blocking read or write is performed through the address mapped area (at 0x6000.0000
through 0xCFFF.FFFF), any current non-blocking read is paused (at the next safe boundary), and
the blocking request is inserted. After completion of any blocking reads or writes, the non-blocking
reads continue from where they were paused.

The other way to read data is via the address mapped locations (see the EPIADDRMAP register),
but this method is blocking (core or μDMA waits until result is returned).

To cancel a non-blocking read, clear this register. To make sure that all values read are drained
from the NBRFIFO, the EPISTAT register must be consulted to be certain that bits NBRBUSY and
ACTIVE are cleared. One of these registers should not be cleared until either the other EPIRPSTDx
register becomes active or the external interface is not busy. At that point, the corresponding
EPIRADDR register indicates how many values were read.

EPI Non-Blocking Read Data 0 (EPIRPSTD0)
Base 0x400D.0000
Offset 0x028
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

POSTCNTreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.0ROreserved31:13

373February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Post Count

A write of a non-zero value starts a read operation for that count. Note
that it is the software's responsibility to handle address wraparound.

Reading this register provides the current count.

A write of 0 cancels a non-blocking read (whether active now or pending).

Prior to writing a non-zero value, this register must first be cleared.

0x000R/WPOSTCNT12:0

February 24, 2009374
Preliminary

External Peripheral Interface (EPI)

Register 15: EPI Status (EPISTAT), offset 0x060
This register indicates which non-blocking read register is currently active; it also indicates whether
the external interface is busy performing a write or non-blocking read (it cannot be performing a
blocking read, as the bus would be blocked and as a result, this register could not be accessed).

This register is useful to determining which non-blocking read register is active when both are loaded
with values and when implementing sequencing or sharing.

This register is also useful when canceling non-blocking reads, as it shows how many values were
read by the canceled side.

EPI Status (EPISTAT)
Base 0x400D.0000
Offset 0x060
Type R, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ACTIVEreservedNBRBUSYWBUSYINITSEQXFEMPTYXFFULLCELOWreserved

RRORORORRRRRRROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:10

Clock Enable Low

This bit provides information on the clock status when in general-purpose
mode and the RDYEN bit is set.

DescriptionValue

The external device is gating the clock (iRDY is low).

Attempts to read or write in this situation are stalled until the
clock is enabled or the counter times-out on MAXWAIT.

1

The external device is not gating the clock.0

0RCELOW9

External FIFO Full

This bit provides information on the XFIFO when in the FIFO sub-mode
of the Host Bus 8 mode with the XFFEN bit set in the EPIHB8CFG
register. The EPI26 signal reflects the status of this bit.

DescriptionValue

The XFIFO is signaling as full (the FIFO full signal is high).

Attempts to write in this case are stalled until the XFIFO full
signal goes low or the counter times-out on MAXWAIT.

1

The external device is not gating the clock.0

0RXFFULL8

375February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

External FIFO Empty

This bit provides information on the XFIFO when in the FIFO sub-mode
of the Host Bus 8 mode with the XFEEN bit set in the EPIHB8CFG
register. The EPI27 signal reflects the status of this bit.

DescriptionValue

The XFIFO is signaling as empty (the FIFO empty signal is
high).

Attempts to read in this case are stalled until the XFIFO empty
signal goes low or the counter times-out on MAXWAIT.

1

The external device is not gating the clock.0

0RXFEMPTY7

Initialization Sequence

DescriptionValue

The SDRAM interface is running through the wakeup period
(greater than 100 μs).

If an attempt is made to read or write the SDRAM during this
period, the access is held off until the wakeup period is
complete.

1

The SDRAM interface is not in the wakeup period.0

0RINITSEQ6

Write Busy

DescriptionValue

The external interface is performing a write.1

The external interface is not performing a write.0

0RWBUSY5

Non-Blocking Read Busy

DescriptionValue

The external interface is performing a non-blocking read, or if
the non-blocking read is paused due to a write.

1

The external interface is not performing a non-blocking read.0

0RNBRBUSY4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:1

Register Active

DescriptionValue

The EPIRPSTD1 register is active.1

If NBRBUSY is set, the EPIRPSTD0 register is active.

If the NBRBUSY bit is clear, then neither EPIRPSTDx register is
active.

0

0RACTIVE0

February 24, 2009376
Preliminary

External Peripheral Interface (EPI)

Register 16: EPI Read FIFO Count (EPIRFIFOCNT), offset 0x06C
This register returns the number of values in the NBRFIFO (the data in the NBRFIFO can be read
via the EPIREADFIFO register). A race is possible, but that only means that more values may come
in after this register has been read.

EPI Read FIFO Count (EPIRFIFOCNT)
Base 0x400D.0000
Offset 0x06C
Type R, reset -

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

COUNTreserved

RRRROROROROROROROROROROROROROType
---0000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:3

FIFO Count

Number of filled entries in the NBRFIFO.

-RCOUNT2:0

377February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 17: EPI Read FIFO (EPIREADFIFO), offset 0x070
Register 18: EPI Read FIFO Alias 1 (EPIREADFIFO1), offset 0x074
Register 19: EPI Read FIFO Alias 2 (EPIREADFIFO2), offset 0x078
Register 20: EPI Read FIFO Alias 3 (EPIREADFIFO3), offset 0x07C
Register 21: EPI Read FIFO Alias 4 (EPIREADFIFO4), offset 0x080
Register 22: EPI Read FIFO Alias 5 (EPIREADFIFO5), offset 0x084
Register 23: EPI Read FIFO Alias 6 (EPIREADFIFO6), offset 0x088
Register 24: EPI Read FIFO Alias 7 (EPIREADFIFO7), offset 0x08C
This register returns the contents of the NBRFIFO or 0 if the NBRFIFO is empty. Each read returns
the data that is at the top of the NBRFIFO, and then empties that value from the NBRFIFO. The
alias registers can be used with the LDMIA instruction for more efficient operation (for up to 8
registers). See ARM®Cortex™-M3 Technical Reference Manual for more information on the LDMIA
instruction.

EPI Read FIFO (EPIREADFIFO)
Base 0x400D.0000
Offset 0x070
Type R, reset 0x0000.0000

16171819202122232425262728293031

DATA

RRRRRRRRRRRRRRRRType
0000000000000000Reset

0123456789101112131415

DATA

RRRRRRRRRRRRRRRRType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Reads Data

This field contains the data that is at the top of the NBRFIFO. After being
read, the NBRFIFO entry is removed.

0x0000.0000RDATA31:0

February 24, 2009378
Preliminary

External Peripheral Interface (EPI)

Register 25: EPI FIFO Level Selects (EPIFIFOLVL), offset 0x200
This register allows selection of the FIFO levels which trigger an interrupt to the core or, more
efficiently, a DMA request to the μDMA. The NBRFIFO select triggers on fullness such that it triggers
on match or above (more full). The WFIFO triggers on emptiness such that it triggers on match or
below (less entries).

It should be noted that the FIFO triggers are not identical to other such FIFOs in Stellaris® peripherals.
In particular, empty and full triggers are provided to avoid wait states when using blocking operations.

The settings in this register are only meaningful if the μDMA is active or the interrupt is enabled.

Additionally, this register allows protection against writes stalling and notification of performing
blocking reads which stall for extra time due to preceding writes. The two functions behave in a
non-orthogonal way because read and write are not orthogonal.

The write error bit configures the system such that an attempted write to an already full WFIFO
abandons the write and signals an error interrupt to prevent accidental latencies due to stalling
writes.

The read error bit configures the system such that after a read has been stalled due to any preceding
writes in the WFIFO, the error interrupt is generated. Note that the excess stall is not prevented,
but an interrupt is generated after the fact to notify that it has happened.

EPI FIFO Level Selects (EPIFIFOLVL)
Base 0x400D.0000
Offset 0x200
Type R/W, reset 0x0000.0033

16171819202122232425262728293031

RSERRWFERRreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RDFIFOreservedWRFIFOreserved

R/WR/WR/WROR/WR/WR/WROROROROROROROROROType
1100110000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved31:18

Write Full Error

DescriptionValue

This bit enables the Write Full error interrupt (WTFULL in the
EPIIC register) to be generated when a write is attempted and
the WFIFO is full. The write stalls until a WFIFO entry becomes
available.

1

TheWrite Full error interrupt is disabled. Writes are stalled when
the WFIFO is full until a space becomes available but an error
is not generated. Note that the Cortex-M3 write buffer may hide
that stall if no other memory transactions are attempted during
that time.

0

0R/WWFERR17

379February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Read Stall Error

DescriptionValue

This bit enables the Read Stalled error interrupt (RSTALL in the
EPIIC register) to be generated when a read is attempted and
the WFIFO is not empty. The read is still stalled during the time
the WFIFO drains, but this error notifies the application that this
excess delay has occurred.

1

The Read Stalled error interrupt is disabled. Reads behave as
normal and are stalled until any preceding writes have completed
and the read has returned a result.

0

Note that the configuration of this bit has no effect on non-blocking reads.

0R/WRSERR16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:7

Write FIFO

This field configures the trigger point for the WFIFO.

DescriptionValue

Trigger when there are 1 to 4 spaces available in the WFIFO.0x0

reserved0x1

Trigger when there are 1 to 3 spaces available in the WFIFO.0x2

Trigger when there are 1 to 2 spaces available in the WFIFO.0x3

Trigger when there is 1 space available in the WFIFO.0x4

reserved0x5-0x7

0x3R/WWRFIFO6:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

Read FIFO

This field configures the trigger point for the NBRFIFO.

DescriptionValue

reserved0x0

Trigger when there are 1 or more entries in the NBRFIFO.0x1

Trigger when there are 2 or more entries in the NBRFIFO.0x2

Trigger when there are 4 or more entries in the NBRFIFO.0x3

Trigger when there are 6 or more entries in the NBRFIFO.0x4

Trigger when there are 7 or more entries in the NBRFIFO.0x5

Trigger when there are 8 entries in the NBRFIFO.0x6

reserved0x7

0x3R/WRDFIFO2:0

February 24, 2009380
Preliminary

External Peripheral Interface (EPI)

Register 26: EPI Write FIFO Count (EPIWFIFOCNT), offset 0x204
This register contains the number of slots currently available in the WFIFO. This register may be
used for polled writes to avoid stalling and for blocking reads to avoid excess stalling (due to
undrained writes). An example use for writes may be:

for (idx = 0; idx < cnt; idx++) {
while (EPIWFIFOCNT == 0) ;
*ext_ram = *mydata++;
}

The above code ensures that writes to the address mapped location do not occur unless theWFIFO
has room. Although polling makes the code wait (spinning in the loop), it does not prevent interrupts
being serviced due to bus stalling.

EPI Write FIFO Count (EPIWFIFOCNT)
Base 0x400D.0000
Offset 0x204
Type R, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

WTAVreserved

RRRROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:3

Available Write Transactions

The number of write transactions available in the WFIFO.

When clear, a write is stalled waiting for a slot to become free (from a
preceding write completing).

0x0RWTAV2:0

381February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 27: EPI Interrupt Mask (EPIIM), offset 0x210
This register is the interrupt mask set or clear register. For each interrupt source (read, write, and
error), a mask value of 1 allows the interrupt source to trigger an interrupt to the interrupt controller;
a mask value of 0 prevents the interrupt source from triggering an interrupt.

Note that interrupt masking has no effect on μDMA, which operates off the raw source of the read
and write interrupts.

EPI Interrupt Mask (EPIIM)
Base 0x400D.0000
Offset 0x210
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ERRIMRDIMWRIMreserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:3

Write Interrupt Mask

DescriptionValue

WRRIS in the EPIRIS register is not masked and can trigger an
interrupt to the interrupt controller.

1

WRRIS in the EPIRIS register is masked and does not cause
an interrupt.

0

0R/WWRIM2

Read Interrupt Mask

DescriptionValue

RDRIS in the EPIRIS register is not masked and can trigger an
interrupt to the interrupt controller.

1

RDRIS in the EPIRIS register is masked and does not cause
an interrupt.

0

0R/WRDIM1

Error Interrupt Mask

DescriptionValue

ERRIS in the EPIRIS register is not masked and can trigger an
interrupt to the interrupt controller.

1

ERRIS in the EPIRIS reigister is masked and does not cause
an interrupt.

0

0R/WERRIM0

February 24, 2009382
Preliminary

External Peripheral Interface (EPI)

Register 28: EPI Raw Interrupt Status (EPIRIS), offset 0x214
This register is the raw interrupt status register. On a read, it gives the current state of each interrupt
source. A write has no effect.

Note that raw status for read and write is set or cleared based on FIFO fullness as controlled by
EPIFIFOLVL.

Raw status for error is held until the error is cleared by writing to the EPIIC register.

EPI Raw Interrupt Status (EPIRIS)
Base 0x400D.0000
Offset 0x214
Type R, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ERRRISRDRISWRRISreserved

RRRROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:3

Write Raw Interrupt Status

DescriptionValue

The number of available entries in theWFIFO is within the range
specified by the trigger level (the WRFIFO field in the
EPIFIFOLVL register).

1

The number of available entries in theWFIFO is above the range
specified by the trigger level.

0

This bit is cleared when the level in theWFIFO is above the trigger point
programmed by the WRFIFO field.

0RWRRIS2

Read Raw Interrupt Status

DescriptionValue

The number of valid entries in the NBRFIFO is within the range
specified by the trigger level (the RDFIFO field in the
EPIFIFOLVL register).

1

The number of valid entries in the NBRFIFO is below the range
specified by the trigger level.

0

This bit is cleared when the level in the NBRFIFO is below the trigger
point programmed by the RDFIFO field.

0RRDRIS1

383February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Error Raw Interrupt Status

The error interrupt occurs in the following situations:

■ WFIFO Full. For a full WFIFO to generate an error interrupt, the
WFERR bit in the EPIFIFOLVL register must be set.

■ Read Stalled. For a stalled read to generate an error interrupt, the
RSERR bit in the EPIFIFOLVL register must be set.

■ Timeout. If the MAXWAIT field in the EPIGPCFG register is
configured to a value other than 0, a timeout error occurs when
iRDY or XFIFO not-ready signals hold a transaction for more than
the count in MAXWAIT.

DescriptionValue

AWFIFO Full, a Read Stalled, or a Timeout error has occurred.1

An error has not occurred.0

To determine which error occurred, read the status of the EPI Error
Interrupt Status and Clear (EPIEISC) register. This bit is cleared by
writing a 1 to the bit in the EPIEISC register that caused the interrupt.

0RERRRIS0

February 24, 2009384
Preliminary

External Peripheral Interface (EPI)

Register 29: EPI Masked Interrupt Status (EPIMIS), offset 0x218
This register is the masked interrupt status register. On read, it gives the current state of each
interrupt source (read, write, and error) after being masked via the EPIIM register. A write has no
effect.

The values returned are the ANDing of the EPIIM and EPIRIS registers. If a bit is set in this register,
the interrupt is sent to the interrupt controller.

EPI Masked Interrupt Status (EPIMIS)
Base 0x400D.0000
Offset 0x218
Type R, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ERRMISRDMISWRMISreserved

RRRROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:3

Write Masked Interrupt Status

DescriptionValue

The number of available entries in theWFIFO is within the range
specified by the trigger level (the WRFIFO field in the
EPIFIFOLVL register) and the WRIM bit in the EPIIM register is
set, triggering an interrupt to the interrupt controller.

1

The number of available entries in theWFIFO is above the range
specified by the trigger level or the interrupt is masked.

0

0RWRMIS2

Read Masked Interrupt Status

DescriptionValue

The number of valid entries in the NBRFIFO is within the range
specified by the trigger level (the RDFIFO field in the
EPIFIFOLVL register) and the RDIM bit in the EPIIM register is
set, triggering an interrupt to the interrupt controller.

1

The number of valid entries in the NBRFIFO is below the range
specified by the trigger level or the interrupt is masked.

0

0RRDMIS1

Error Masked Interrupt Status

DescriptionValue

A WFIFO Full, a Read Stalled, or a Timeout error has occurred
and the ERIM bit in the EPIIM register is set, triggering an
interrupt to the interrupt controller.

1

An error has not occurred or the interrupt is masked.0

0RERRMIS0

385February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 30: EPI Error Interrupt Status and Clear (EPIEISC), offset 0x21C
This register is used to clear a pending error interrupt. If any of these bits are set, the ERRRIS bit
in the EPIRIS register is set, and an EPI controller error is sent to the interrupt controller if the ERIM
bit in the EPIIM register is set. Clearing any defined bit has no effect; setting a bit clears the error
source and the raw error returns to 0. Note that writing to this register and reading back immediately
(pipelined by the processor) returns the old register contents. One cycle is needed between write
and read.

EPI Error Interrupt Status and Clear (EPIEISC)
Base 0x400D.0000
Offset 0x21C
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TOUTRSTALLWTFULLreserved

R/W1CR/W1CR/W1CROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:3

Write FIFO Full Error

DescriptionValue

The WFERR bit is enabled and a write is stalled due to theWFIFO
being full.

1

The WFERR bit is not enabled or no writes are stalled.0

Writing a 1 to this bit clears it and the WFERR bit in the EPIFIFOLVL
register.

0R/W1CWTFULL2

Read Stalled Error

DescriptionValue

The RSERR bit is enabled and a pending read is stalled due to
writes in the WFIFO.

1

The RSERR bit is not enabled pr no pending reads are stalled.0

Writing a 1 to this bit clears it and the RSERR bit in the EPIFIFOLVL
register.

0R/W1CRSTALL1

February 24, 2009386
Preliminary

External Peripheral Interface (EPI)

DescriptionResetTypeNameBit/Field

Timeout Error

This bit is the timeout error source. The timeout error occurs when the
iRDY or XFIFO not-ready signals hold a transaction for more than the
count in MAXWAIT (when not 0).

DescriptionValue

A timeout error has occurred.1

No timeout error has occurred.0

Writing a 1 to bit this clears it.

0R/W1CTOUT0

387February 24, 2009
Preliminary

LM3S9B92 Microcontroller

11 General-Purpose Timers
Programmable timers can be used to count or time external events that drive the Timer input pins.
The Stellaris® General-Purpose Timer Module (GPTM) contains four GPTM blocks (Timer 0, Timer
1, Timer 2, and Timer 3). Each GPTM block provides two 16-bit timers/counters (referred to as
Timer A and Timer B) that can be configured to operate independently as timers or event counters,
or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also
be used to trigger μDMA transfers.

In addition, timers can be used to trigger analog-to-digital conversions (ADC). The ADC trigger
signals from all of the general-purpose timers are ORed together before reaching the ADC module,
so only one timer should be used to trigger ADC events.

The GPT Module is one timing resource available on the Stellaris® microcontrollers. Other timer
resources include the System Timer (SysTick) (see “System Timer (SysTick)” on page 69) and the
PWM timer in the PWM module (see “PWM Timer” on page 885).

The General-Purpose Timers provide the following features:

■ Count up or down

■ 16- or 32-bit programmable one-shot timer

■ 16- or 32-bit programmable periodic timer

■ 16-bit general-purpose timer with an 8-bit prescaler

■ 32-bit Real-Time Clock (RTC) when using an external 32.768-KHz clock as the input

■ Daisy chaining of timer modules to allow a single timer to initiate multiple timing events

■ ADC event trigger

■ User-enabled stalling when the controller asserts CPU Halt flag during debug (excluding RTC
mode)

■ 16-bit input-edge count- or time-capture modes

■ 16-bit PWM mode with software-programmable output inversion of the PWM signal

■ Ability to determine the elapsed time between the assertion of the timer interrupt and entry into
the interrupt service routine.

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Dedicated channel for each timer

– Burst request generated on timer interrupt

11.1 Block Diagram
Note: In Figure 11-1 on page 389, the specific CCP pins available depend on the Stellaris® device.

See Table 11-1 on page 389 for the available CCPs.

February 24, 2009388
Preliminary

General-Purpose Timers

Figure 11-1. GPTM Module Block Diagram

TA Comparator

TB Comparator

GPTMTBR

GPTMAR

Clock / Edge
Detect

RTC Divider

Clock / Edge
Detect

TimerA
Interrupt

TimerB
Interrupt

System
Clock

0x0000 (Down Counter Modes)

0x0000 (Down Counter Modes)

32 KHz or
Even CCP Pin

Odd CCP Pin

En

En

TimerA Control

GPTMTAILR

GPTMTAMATCHR

GPTMTAPR

GPTMTAMR

TimerB Control

GPTMTBILR

GPTMTBMATCHR

GPTMTBPR

GPTMTBMR

Interrupt / Config

GPTMCFG

GPTMRIS

GPTMICR

GPTMMIS

GPTMIMR

GPTMCTL

Table 11-1. Available CCP Pins

Odd CCP PinEven CCP Pin16-Bit Up/Down CounterTimer

-CCP0Timer ATimer 0

CCP1-Timer B

-CCP2Timer ATimer 1

CCP3-Timer B

-CCP4Timer ATimer 2

CCP5-Timer B

-CCP6Timer ATimer 3

CCP7-Timer B

11.2 Functional Description
The main components of each GPTM block are two free-running 16-bit up/down counters (referred
to as Timer A and Timer B), two 16-bit match registers, 2 16-bit shadow registers, and two 16-bit
load/initialization registers and their associated control functions. The exact functionality of each
GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using theGPTMConfiguration (GPTMCFG) register (see page 401),
the GPTM Timer A Mode (GPTMTAMR) register (see page 402), and the GPTM Timer B Mode
(GPTMTBMR) register (see page 404). When in one of the 32-bit modes, the timer can only act as
a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers
configured in any combination of the 16-bit modes.

389February 24, 2009
Preliminary

LM3S9B92 Microcontroller

11.2.1 GPTM Reset Conditions
After reset has been applied to the GPTM module, the module is in an inactive state, and all control
registers are cleared and in their default states. Counters Timer A and Timer B are initialized to
0xFFFF, along with their corresponding load registers: the GPTM Timer A Interval Load
(GPTMTAILR) register (see page 417) and theGPTMTimer B Interval Load (GPTMTBILR) register
(see page 418) and shadow registers: theGPTMTimer A Value (GPTMTAV) register (see page 425)
and the GPTM Timer B Value (GPTMTBV) register (see page 426). The prescale counters are
initialized to 0x00: theGPTMTimer A Prescale (GPTMTAPR) register (see page 421) and theGPTM
Timer B Prescale (GPTMTBPR) register (see page 422).

11.2.2 32-Bit Timer Operating Modes
This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their
configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1
(RTCmode) to theGPTMConfiguration (GPTMCFG) register. In both configurations, certain GPTM
registers are concatenated to form pseudo 32-bit registers. These registers include:

■ GPTM Timer A Interval Load (GPTMTAILR) register [15:0], see page 417

■ GPTM Timer B Interval Load (GPTMTBILR) register [15:0], see page 418

■ GPTM Timer A (GPTMTAR) register [15:0], see page 423

■ GPTM Timer B (GPTMTBR) register [15:0], see page 424

■ GPTM Timer A Value (GPTMTAV) register [15:0], see page 425

■ GPTM Timer B Value (GPTMTBV) register [15:0], see page 426

In the 32-bit modes, the GPTM translates a 32-bit write access to GPTMTAILR into a write access
to both GPTMTAILR and GPTMTBILR. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

A read access to GPTMTAV returns the value:

GPTMTBV[15:0]:GPTMTAV[15:0]

11.2.2.1 32-Bit One-Shot/Periodic Timer Mode
In 32-bit one-shot and periodic timer modes, the concatenated versions of the Timer A and Timer
B registers are configured as a 32-bit up or down counter. The selection of one-shot or periodic
mode is determined by the value written to the TAMR field of theGPTM Timer AMode (GPTMTAMR)
register (see page 402), and there is no need to write to the GPTM Timer B Mode (GPTMTBMR)
register.

When software sets the TAEN bit in the GPTM Control (GPTMCTL) register (see page 406), the
timer begins counting up or down from its preloaded value. Alternatively, if the TAWOT bit is set in
the GPTMTAMR register, once the TAEN bit is set, the timer waits for the trigger from the previous
timer to begin counting. This mode allows the timer modules to be daisy chained such that a single

February 24, 2009390
Preliminary

General-Purpose Timers

timer can initiate multiple timing events. Care must be taken not to set the TAWOT bit in the
GPTMTAMR register of GP Timer Module 0.

Once the time-out event (0x0000.0000 when counting down, 0xFFFF.FFFF when counting up) is
reached, the timer reloads its start value from the concatenated GPTMTAILR on the next cycle. If
configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in theGPTMCTL
register. If configured as a periodic timer, it continues counting. If the TnSNAPS bit in theGPTMTnMR
register is set, the actual free-running value of the timer at the time-out event is loaded into the
GPTMTAR register. In this manner, software can determine the time elapsed from the interrupt
assertion to the ISR entry.

In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches
the time-out event. The GPTM sets the TATORIS bit in theGPTMRaw Interrupt Status (GPTMRIS)
register (see page 411), and holds it until it is cleared by writing theGPTM Interrupt Clear (GPTMICR)
register (see page 415). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR)
register (see page 409), the GPTM also sets the TATOMIS bit in theGPTMMasked Interrupt Status
(GPTMMIS) register (see page 413). By setting the TAMIE bit in theGPTMTAMR register, an interrupt
can also be generated when the Timer A value equals the value loaded into the GPTM Timer A
Match (GPTMTAMATCH) register. This interrupt has the same status, masking, and clearing
functions as the time-out interrupt. The ADC trigger is enabled by setting the TAOTE bit inGPTMCTL.
The μDMA trigger is enabled by configuring and enabling the appropriate μDMA channel. See
“Channel Configuration” on page 230.

If software reloads theGPTMTAILR register while the counter is running, the counter loads the new
value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the GPTMCTL register is asserted, the timer freezes counting until the signal
is deasserted.

11.2.2.2 32-Bit Real-Time Clock Timer Mode
In Real-Time Clock (RTC) mode, the concatenated versions of the Timer A and Timer B registers
are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is
loaded with a value of 0x0000.0001. All subsequent load values must be written to theGPTM Timer
A Match (GPTMTAMATCHR) register (see page 419) by the controller.

The input clock on the CCP0, CCP2, or CCP4 pin is required to be 32.768 KHz in RTC mode. The
clock signal is then divided down to a 1-Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the GPTMCTL register, the counter starts counting up from
its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in
the GPTMTAMATCHR register, it rolls over to a value of 0x0000.0000 and continues counting until
either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs,
the GPTM asserts the RTCRIS bit in GPTMRIS. If the RTC interrupt is enabled in GPTIMR, the
GPTM also sets the RTCMIS bit in GPTMISR and generates a controller interrupt. The status flags
are cleared by writing the RTCCINT bit in GPTMICR.

In addition to generating interrupts, a μDMA trigger can be generated. The μDMA trigger is enabled
by configuring and enabling the appropriate μDMA channel. See “Channel Configuration” on page 230.

If the TASTALL and/or TBSTALL bits in the GPTMCTL register are set, the timer does not freeze if
the RTCEN bit is set in GPTMCTL.

11.2.3 16-Bit Timer Operating Modes
The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the GPTM Configuration
(GPTMCFG) register (see page 401). This section describes each of the GPTM 16-bit modes of

391February 24, 2009
Preliminary

LM3S9B92 Microcontroller

operation. Timer A and Timer B have identical modes, so a single description is given using an n
to reference both.

11.2.3.1 16-Bit One-Shot/Periodic Timer Mode
In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit up or down-counter
with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits.
The selection of one-shot or periodic mode is determined by the value written to the TnMR field of
the GPTMTnMR register. The optional prescaler is loaded into the GPTM Timer n Prescale
(GPTMTnPR) register.

When software sets the TnEN bit in the GPTMCTL register, the timer begins counting up or down
from its preloaded value. Alternatively, if the TnWOT bit is set in the GPTMTnMR register, once the
TnEN bit is set, the timer waits for the external trigger to begin counting. This mode allows the timer
modules to be daisy chained such that a single timer can initiate multiple timing events.

Once the time-out event (0x0000 when counting down, 0xFFFF when counting up) is reached, the
timer reloads its start value from GPTMTnILR and GPTMTnPR on the next cycle. If configured to
be a one-shot timer, the timer stops counting and clears the TnEN bit in the GPTMCTL register. If
configured as a periodic timer, it continues counting. If the TnSNAPS bit in the GPTMTnMR register
is set, the actual free-running value of the timer at the time-out event is loaded into the GPTMTAR
register. In this manner, software can determine the time elapsed from the interrupt assertion to the
ISR entry.

In addition to reloading the count value, the timer generates interrupts and triggers when it reaches
the time-out event. The GPTM sets the TnTORIS bit in the GPTMRIS register, and holds it until it
is cleared by writing the GPTMICR register. If the time-out interrupt is enabled in GPTIMR, the
GPTM also sets the TnTOMIS bit in GPTMISR and generates a controller interrupt. By setting the
TnMIE bit in the GPTMTnMR register, an interrupt can also be generated when the timer value
equals the value loaded into the GPTM Timer n Match (GPTMTnMATCH) register. This interrupt
has the same status, masking, and clearing functions as the time-out interrupt. The ADC trigger is
enabled by setting the TnOTE bit in the GPTMCTL register. The μDMA trigger is enabled by
configuring and enabling the appropriate μDMA channel. See “Channel Configuration” on page 230.

If software reloads theGPTMTAILR register while the counter is running, the counter loads the new
value on the next clock cycle and continues counting from the new value.

If the TnSTALL bit in the GPTMCTL register is enabled, the timer freezes counting until the signal
is deasserted.

The following example shows a variety of configurations for a 16-bit free-running timer while using
the prescaler. All values assume an 80-MHz clock with Tc=12.5 ns (clock period).

Table 11-2. 16-Bit Timer With Prescaler Configurations

UnitsMax Time#Clock (Tc)aPrescale

mS0.8192100000000

mS1.6385200000001

mS2.4576300000010

mS208.076825411111100

mS208.89625511111110

mS209.715225611111111

a. Tc is the clock period.

February 24, 2009392
Preliminary

General-Purpose Timers

11.2.3.2 16-Bit Input Edge-Count Mode
Note: For rising-edge detection, the input signal must be High for at least two system clock periods

following the rising edge. Similarly, for falling-edge detection, the input signal must be Low
for at least two system clock periods following the falling edge. Based on this criteria, the
maximum input frequency for edge detection is 1/4 of the system frequency.

In Edge-Count mode, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler
that effectively extends the counting range of the timer to 24 bits. In this mode, the timer is capable
of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge-Count
mode, the TnCMR bit of the GPTMTnMR register must be set to 0. The type of edge that the timer
counts is determined by the TnEVENT fields of the GPTMCTL register. During initialization, the
GPTM Timer n Match (GPTMTnMATCHR) register is configured so that the difference between
the value in the GPTMTnILR register and the GPTMTnMATCHR register equals the number of
edge events that must be counted. The optional prescaler is loaded into theGPTM Timer n Prescale
(GPTMTnPR) register.

When software writes the TnEN bit in the GPTM Control (GPTMCTL) register, the timer is enabled
for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count
matches GPTMTnMATCHR. When the counts match, the GPTM asserts the CnMRIS bit in the
GPTMRIS register (and the CnMMIS bit, if the interrupt is not masked).

In addition to generating interrupts, a μDMA trigger can be generated. The μDMA trigger is enabled
by configuring and enabling the appropriate μDMA channel. See “Channel Configuration” on page 230.

The counter is then reloaded using the value in GPTMTnILR, and stopped because the GPTM
automatically clears the TnEN bit in theGPTMCTL register. Once the event count has been reached,
all further events are ignored until TnEN is re-enabled by software. The GPTMTnV contains the
free-running timer value and can be read to determine the time that elapsed between the interrupt
assertion and the entry into the ISR.

Figure 11-2 on page 394 shows how Input Edge-Count mode works. In this case, the timer start
value is set to GPTMnILR =0x000A and the match value is set to GPTMnMATCHR =0x0006 so
that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after
the current count matches the value in the GPTMnMR register.

393February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 11-2. 16-Bit Input Edge-Count Mode Example

Input Signal

Timer stops,
flags

asserted

Timer reload
on next cycle Ignored IgnoredCount

0x000A

0x0006
0x0007
0x0008
0x0009

11.2.3.3 16-Bit Input Edge-Time Mode
Note: For rising-edge detection, the input signal must be High for at least two system clock periods

following the rising edge. Similarly, for falling edge detection, the input signal must be Low
for at least two system clock periods following the falling edge. Based on this criteria, the
maximum input frequency for edge detection is 1/4 of the system frequency.

In Edge-Time mode, the timer is configured as a 16-bit free-running down-counter with an optional
8-bit prescaler that effectively extends the counting range of the timer to 24 bits. In this mode, the
timer is initialized to the value loaded in the GPTMTnILR register (or 0xFFFF at reset). This mode
allows for event capture of either rising or falling edges, but not both. The timer is placed into
Edge-Time mode by setting the TnCMR bit in the GPTMTnMR register, and the type of event that
the timer captures is determined by the TnEVENT fields of the GPTMCnTL register. The optional
prescaler is loaded into the GPTM Timer n Prescale (GPTMTnPR) register.

When software writes the TnEN bit in theGPTMCTL register, the timer is enabled for event capture.
When the selected input event is detected, the current Tn counter value is captured in theGPTMTnR
register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and
the CnEMIS bit, if the interrupt is not masked). The GPTMTnV is the free-running value of the timer
and can be read to determine the time that elapsed between the interrupt assertion and the entry
into the ISR.

In addition to generating interrupts, a μDMA trigger can be generated. The μDMA trigger is enabled
by configuring and enabling the appropriate μDMA channel. See “Channel Configuration” on page 230.

After an event has been captured, the timer does not stop counting. It continues to count until the
TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the
GPTMnILR register.

Figure 11-3 on page 395 shows how input edge timing mode works. In the diagram, it is assumed
that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture
rising edge events.

February 24, 2009394
Preliminary

General-Purpose Timers

Each time a rising edge event is detected, the current count value is loaded into the GPTMTnR
register, and is held there until another rising edge is detected (at which point the new count value
is loaded into GPTMTnR).

Figure 11-3. 16-Bit Input Edge-Time Mode Example

GPTMTnR=Y

Input Signal

Time

Count
GPTMTnR=X GPTMTnR=Z

Z

X

Y

0xFFFF

11.2.3.4 16-Bit PWM Mode
Note: The prescaler is not available in 16-Bit PWM mode.

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a
down-counter with a start value (and thus period) defined by GPTMTnILR. PWM mode is enabled
with the GPTMTnMR register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR
field to 0x2.

When software writes the TnEN bit in the GPTMCTL register, the counter begins counting down
until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from
GPTMTnILR and continues counting until disabled by software clearing the TnEN bit in theGPTMCTL
register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the GPTMTnILR register (its
start state), and is deasserted when the counter value equals the value in theGPTM Timer n Match
Register (GPTMnMATCHR). Software has the capability of inverting the output PWM signal by
setting the TnPWML bit in the GPTMCTL register.

Figure 11-4 on page 396 shows how to generate an output PWMwith a 1-ms period and a 66% duty
cycle assuming a 50-MHz input clock and TnPWML =0 (duty cycle would be 33% for the TnPWML
=1 configuration). For this example, the start value is GPTMnIRL=0xC350 and the match value is
GPTMnMR=0x411A.

395February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 11-4. 16-Bit PWM Mode Example

Output
Signal

Time

Count GPTMTnR=GPTMnMR GPTMTnR=GPTMnMR

0xC350

0x411A

TnPWML = 0

TnPWML = 1

TnEN set

11.2.4 DMA Operation
The timers each have a dedicated μDMA channel and can provide a request signal to the μDMA
controller. The request signal is a burst type, and will occur whenever a timer raw interrupt condition
occurs. The arbitration size of the μDMA transfer should be set to the amount of data that should
be transferred whenever a timer event occurs.

For example, to transfer 256 items, 8 items at a time every 10 ms, configure a timer to generate a
periodic timeout at 10 ms. Configure the μDMA transfer for a total of 256 items, with a burst size of
8 items. Each time the timer times out, the μDMA controller will transfer 8 items, until all 256 items
have been transferred.

No other special steps are needed to enable Timers for μDMA operation. Refer to “Micro Direct
Memory Access (μDMA)” on page 226 for more details about programming the μDMA controller.

11.3 Initialization and Configuration
To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMER0,
TIMER1, TIMER2, and TIMER3 bits in the RCGC1 register. See page 167. If using any CCP pins,
the clock to the appropriate GPIO module must be enabled via the RCGC2 register in the System
Control module. See page 179. To find out which GPIO port to enable, refer to Table 25-5 on page 990.

This section shows module initialization and configuration examples for each of the supported timer
modes.

11.3.1 32-Bit One-Shot/Periodic Timer Mode
The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

February 24, 2009396
Preliminary

General-Purpose Timers

1. Ensure the timer is disabled (the TAEN bit in the GPTMCTL register is cleared) before making
any changes.

2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.

3. Configure the TAMR field in the GPTM Timer A Mode Register (GPTMTAMR):

a. Write a value of 0x1 for One-Shot mode.

b. Write a value of 0x2 for Periodic mode.

4. Optionally configure the TASNAPS, TAWOT, TAMTE, and TACDIR bits in theGPTMTAMR register
to select whether to capture the value of the free-running timer at time-out, use an external
trigger to start counting, configure an additional trigger or interrupt, and count up or down.

5. Load the start value into the GPTM Timer A Interval Load Register (GPTMTAILR).

6. If interrupts are required, set the appropriate bits in the GPTM Interrupt Mask Register
(GPTMIMR).

7. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

8. Poll the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases,
the status flags are cleared by writing a 1 to the appropriate bit of the GPTM Interrupt Clear
Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 397. To re-enable the timer, repeat
the sequence. A timer configured in Periodic mode does not stop counting after it times out.

11.3.2 32-Bit Real-Time Clock (RTC) Mode
To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4
pins. To enable the RTC feature, follow these steps:

1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.

2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.

3. Write the desired match value to the GPTM Timer A Match Register (GPTMTAMATCHR).

4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.

5. If interrupts are required, set the RTCIM bit in theGPTM Interrupt Mask Register (GPTMIMR).

6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the GPTMTAMATCHR register, the counter is re-loaded
with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

11.3.3 16-Bit One-Shot/Periodic Timer Mode
A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.

2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.

397February 24, 2009
Preliminary

LM3S9B92 Microcontroller

3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:

a. Write a value of 0x1 for One-Shot mode.

b. Write a value of 0x2 for Periodic mode.

4. Optionally configure the TnSNAPS, TnWOT, TnMTE and TnCDIR bits in theGPTMTnMR register
to select whether to capture the value of the free-running timer at time-out, use an external
trigger to start counting, configure an additional trigger or interrupt, and count up or down.

5. If a prescaler is to be used, write the prescale value to the GPTM Timer n Prescale Register
(GPTMTnPR).

6. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).

7. If interrupts are required, set the appropriate bit in the GPTM Interrupt Mask Register
(GPTMIMR).

8. Set the TnEN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start
counting.

9. Poll the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases,
the status flags are cleared by writing a 1 to the appropriate bit of the GPTM Interrupt Clear
Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 398. To re-enable the timer, repeat
the sequence. A timer configured in Periodic mode does not stop counting after it times out.

11.3.4 16-Bit Input Edge-Count Mode
A timer is configured to Input Edge-Count mode by the following sequence:

1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.

2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.

3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR
field to 0x3.

4. Configure the type of event(s) that the timer captures by writing the TnEVENT field of the GPTM
Control (GPTMCTL) register.

5. If a prescaler is to be used, write the prescale value to the GPTM Timer n Prescale Register
(GPTMTnPR).

6. Load the timer start value into the GPTM Timer n Interval Load (GPTMTnILR) register.

7. Load the desired event count into the GPTM Timer n Match (GPTMTnMATCHR) register.

8. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.

9. Set the TnEN bit in theGPTMCTL register to enable the timer and begin waiting for edge events.

10. Poll the CnMRIS bit in theGPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM
Interrupt Clear (GPTMICR) register.

February 24, 2009398
Preliminary

General-Purpose Timers

In Input Edge-Count Mode, the timer stops after the desired number of edge events has been
detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 398
through step 9 on page 398.

11.3.5 16-Bit Input Edge Timing Mode
A timer is configured to Input Edge Timing mode by the following sequence:

1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.

2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.

3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR
field to 0x3.

4. Configure the type of event that the timer captures by writing the TnEVENT field of the GPTM
Control (GPTMCTL) register.

5. If a prescaler is to be used, write the prescale value to the GPTM Timer n Prescale Register
(GPTMTnPR).

6. Load the timer start value into the GPTM Timer n Interval Load (GPTMTnILR) register.

7. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.

8. Set the TnEN bit in theGPTMControl (GPTMCTL) register to enable the timer and start counting.

9. Poll the CnERIS bit in theGPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the GPTM
Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained
by reading the GPTM Timer n (GPTMTnR) register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected,
but the timer interval can be changed at any time by writing the GPTMTnILR register. The change
takes effect at the next cycle after the write.

11.3.6 16-Bit PWM Mode
A timer is configured to PWM mode using the following sequence:

1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.

2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.

3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to
0x0, and the TnMR field to 0x2.

4. Configure the output state of the PWM signal (whether or not it is inverted) in the TnEVENT field
of the GPTM Control (GPTMCTL) register.

5. Load the timer start value into the GPTM Timer n Interval Load (GPTMTnILR) register.

6. Load the GPTM Timer n Match (GPTMTnMATCHR) register with the desired value.

7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin
generation of the output PWM signal.

399February 24, 2009
Preliminary

LM3S9B92 Microcontroller

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The
PWM period can be adjusted at any time by writing the GPTMTnILR register, and the change takes
effect at the next cycle after the write.

11.4 Register Map
Table 11-3 on page 400 lists the GPTM registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that timer’s base address:

■ Timer0: 0x4003.0000
■ Timer1: 0x4003.1000
■ Timer2: 0x4003.2000
■ Timer3: 0x4003.3000

Note that the GP Timer module clock must be enabled before the registers can be programmed
(see page 167).

Table 11-3. Timers Register Map

See
pageDescriptionResetTypeNameOffset

401GPTM Configuration0x0000.0000R/WGPTMCFG0x000

402GPTM Timer A Mode0x0000.0000R/WGPTMTAMR0x004

404GPTM Timer B Mode0x0000.0000R/WGPTMTBMR0x008

406GPTM Control0x0000.0000R/WGPTMCTL0x00C

409GPTM Interrupt Mask0x0000.0000R/WGPTMIMR0x018

411GPTM Raw Interrupt Status0x0000.0000ROGPTMRIS0x01C

413GPTM Masked Interrupt Status0x0000.0000ROGPTMMIS0x020

415GPTM Interrupt Clear0x0000.0000W1CGPTMICR0x024

417GPTM Timer A Interval Load0xFFFF.FFFFR/WGPTMTAILR0x028

418GPTM Timer B Interval Load0x0000.FFFFR/WGPTMTBILR0x02C

419GPTM Timer A Match0xFFFF.FFFFR/WGPTMTAMATCHR0x030

420GPTM Timer B Match0x0000.FFFFR/WGPTMTBMATCHR0x034

421GPTM Timer A Prescale0x0000.0000R/WGPTMTAPR0x038

422GPTM Timer B Prescale0x0000.0000R/WGPTMTBPR0x03C

423GPTM Timer A0xFFFF.FFFFROGPTMTAR0x048

424GPTM Timer B0x0000.FFFFROGPTMTBR0x04C

425GPTM Timer A Value0xFFFF.FFFFROGPTMTAV0x050

426GPTM Timer B Value0x0000.FFFFROGPTMTBV0x054

11.5 Register Descriptions
The remainder of this section lists and describes the GPTM registers, in numerical order by address
offset.

February 24, 2009400
Preliminary

General-Purpose Timers

Register 1: GPTM Configuration (GPTMCFG), offset 0x000
This register configures the global operation of the GPTM module. The value written to this register
determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GPTMCFGreserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

GPTM Configuration

The GPTMCFG values are defined as follows:

DescriptionValue

32-bit timer configuration.0x0

32-bit real-time clock (RTC) counter configuration.0x1

Reserved0x2-0x3

16-bit timer configuration, function is controlled by bits 1:0 of
GPTMTAMR and GPTMTBMR.

0x4-0x7

0x0R/WGPTMCFG2:0

401February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: GPTM Timer A Mode (GPTMTAMR), offset 0x004
This register configures the GPTM based on the configuration selected in the GPTMCFG register.
When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to
0x2.

In 16-bit timer configuration, TAMR controls the 16-bit timer modes for Timer A. In 32-bit timer
configuration, this register controls the mode, and the contents of GPTMTBMR are ignored.

GPTM Timer A Mode (GPTMTAMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TAMRTACMRTAAMSTACDIRTAMIETAWOTTASNAPSreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPTM Timer A Snap-Shot Mode

DescriptionValue

Snap-shot mode is disabled.0

If Timer A is configured in the periodic mode, the actual
free-running value of Timer A is loaded at the time-out event
into the GPTM Timer A (GPTMTAR) register.

1

0R/WTASNAPS7

GPTM Timer A Wait-on-Trigger

DescriptionValue

Timer A begins counting as soon as it is enabled.0

If Timer A is enabled (TAEN is set in the GPTMCTL register),
Timer A does not begin counting until it receives a trigger from
the timer in the previous position in the daisy chain. This function
is valid for both one-shot and periodic modes.

This bit must be clear for GP Timer Module 0, Timer A.

1

0R/WTAWOT6

February 24, 2009402
Preliminary

General-Purpose Timers

DescriptionResetTypeNameBit/Field

GPTM Timer A Match Interrupt Enable

DescriptionValue

The match interrupt is disabled.0

An interrupt is generated when the match value in the
GPTMTAMATCHR register is reached in the one-shot and
periodic modes.

1

0R/WTAMIE5

GPTM Timer A Count Direction

DescriptionValue

The timer counts down.0

When in one-shot or periodic mode, the timer counts up. When
counting up, the timer starts from a value of 0x0000.

1

0R/WTACDIR4

GPTM Timer A Alternate Mode Select

The TAAMS values are defined as follows:

DescriptionValue

Capture mode is enabled.0

PWM mode is enabled.1

Note: To enable PWMmode, youmust also clear the TACMR
bit and set the TAMR field to 0x2.

0R/WTAAMS3

GPTM Timer A Capture Mode

The TACMR values are defined as follows:

DescriptionValue

Edge-Count mode0

Edge-Time mode1

0R/WTACMR2

GPTM Timer A Mode

The TAMR values are defined as follows:

DescriptionValue

Reserved0x0

One-Shot Timer mode0x1

Periodic Timer mode0x2

Capture mode0x3

The Timer mode is based on the timer configuration defined by bits 2:0
in the GPTMCFG register (16-or 32-bit).

0x0R/WTAMR1:0

403February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: GPTM Timer B Mode (GPTMTBMR), offset 0x008
This register configures the GPTM based on the configuration selected in the GPTMCFG register.
When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to
0x2.

In 16-bit timer configuration, these bits control the 16-bit timer modes for Timer B. In 32-bit timer
configuration, this register’s contents are ignored, and GPTMTAMR is used.

GPTM Timer B Mode (GPTMTBMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBMRTBCMRTBAMSTBCDIRTBMIETBWOTTBSNAPSreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPTM Timer B Snap-Shot Mode

DescriptionValue

Snap-shot mode is disabled.0

If Timer B is configured in the periodic mode, the actual
free-running value of Timer B is loaded at the time-out event
into the GPTM Timer B (GPTMTBR) register.

1

0R/WTBSNAPS7

GPTM Timer B Wait-on-Trigger

DescriptionValue

Timer B begins counting as soon as it is enabled.0

If Timer B is enabled (TBEN is set in the GPTMCTL register),
Timer B does not begin counting until it receives an it receives
a trigger from the timer in the previous position in the daisy
chain. This function is valid for both one-shot and periodic
modes.

1

0R/WTBWOT6

February 24, 2009404
Preliminary

General-Purpose Timers

DescriptionResetTypeNameBit/Field

GPTM Timer B Match Interrupt Enable

DescriptionValue

The match interrupt is disabled.0

An interrupt is generated when the match value in the
GPTMTBMATCHR register is reached in the one-shot and
periodic modes.

1

0R/WTBMIE5

GPTM Timer B Count Direction

DescriptionValue

The timer counts down.0

When in one-shot or periodic mode, the timer counts up. When
counting up, the timer starts from a value of 0x0000.

1

0R/WTBCDIR4

GPTM Timer B Alternate Mode Select

The TBAMS values are defined as follows:

DescriptionValue

Capture mode is enabled.0

PWM mode is enabled.1

Note: To enable PWMmode, youmust also clear the TBCMR
bit and set the TBMR field to 0x2.

0R/WTBAMS3

GPTM Timer B Capture Mode

The TBCMR values are defined as follows:

DescriptionValue

Edge-Count mode0

Edge-Time mode1

0R/WTBCMR2

GPTM Timer B Mode

The TBMR values are defined as follows:

DescriptionValue

Reserved0x0

One-Shot Timer mode0x1

Periodic Timer mode0x2

Capture mode0x3

The timer mode is based on the timer configuration defined by bits 2:0
in the GPTMCFG register.

0x0R/WTBMR1:0

405February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: GPTM Control (GPTMCTL), offset 0x00C
This register is used alongside the GPTMCFG and GMTMTnMR registers to fine-tune the timer
configuration, and to enable other features such as timer stall and the output trigger. The output
trigger can be used to initiate transfers on the ADC module.

GPTM Control (GPTMCTL)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TAENTASTALLTAEVENTRTCENTAOTETAPWMLreservedTBENTBSTALLTBEVENTreservedTBOTETBPWMLreserved

R/WR/WR/WR/WR/WR/WR/WROR/WR/WR/WR/WROR/WR/WROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:15

GPTM Timer B PWM Output Level

The TBPWML values are defined as follows:

DescriptionValue

Output is unaffected.0

Output is inverted.1

0R/WTBPWML14

GPTM Timer B Output Trigger Enable

The TBOTE values are defined as follows:

DescriptionValue

The output Timer B ADC trigger is disabled.0

The output Timer B ADC trigger is enabled.1

In addition, the ADCmust be enabled and the timer selected as a trigger
source with the EMn bit in the ADCEMUX register (see page 477).

0R/WTBOTE13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved12

February 24, 2009406
Preliminary

General-Purpose Timers

DescriptionResetTypeNameBit/Field

GPTM Timer B Event Mode

The TBEVENT values are defined as follows:

DescriptionValue

Positive edge0x0

Negative edge0x1

Reserved0x2

Both edges0x3

0x0R/WTBEVENT11:10

GPTM Timer B Stall Enable

The TBSTALL values are defined as follows:

DescriptionValue

Timer B stalling is disabled.0

Timer B stalling is enabled.1

0R/WTBSTALL9

GPTM Timer B Enable

The TBEN values are defined as follows:

DescriptionValue

Timer B is disabled.0

Timer B is enabled and begins counting or the capture logic is
enabled based on the GPTMCFG register.

1

0R/WTBEN8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

GPTM Timer A PWM Output Level

The TAPWML values are defined as follows:

DescriptionValue

Output is unaffected.0

Output is inverted.1

0R/WTAPWML6

GPTM Timer A Output Trigger Enable

The TAOTE values are defined as follows:

DescriptionValue

The output Timer A ADC trigger is disabled.0

The output Timer A ADC trigger is enabled.1

In addition, the ADCmust be enabled and the timer selected as a trigger
source with the EMn bit in the ADCEMUX register (see page 477).

0R/WTAOTE5

407February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

GPTM RTC Enable

The RTCEN values are defined as follows:

DescriptionValue

RTC counting is disabled.0

RTC counting is enabled.1

0R/WRTCEN4

GPTM Timer A Event Mode

The TAEVENT values are defined as follows:

DescriptionValue

Positive edge0x0

Negative edge0x1

Reserved0x2

Both edges0x3

0x0R/WTAEVENT3:2

GPTM Timer A Stall Enable

The TASTALL values are defined as follows:

DescriptionValue

Timer A stalling is disabled.0

Timer A stalling is enabled.1

0R/WTASTALL1

GPTM Timer A Enable

The TAEN values are defined as follows:

DescriptionValue

Timer A is disabled.0

Timer A is enabled and begins counting or the capture logic is
enabled based on the GPTMCFG register.

1

0R/WTAEN0

February 24, 2009408
Preliminary

General-Purpose Timers

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018
This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables
the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x018
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TATOIMCAMIMCAEIMRTCIMTAMIMreservedTBTOIMCBMIMCBEIMTBMIMreserved

R/WR/WR/WR/WR/WROROROR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

GPTM Timer B Mode Match Interrupt Mask

The TBMIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WTBMIM11

GPTM Capture B Event Interrupt Mask

The CBEIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WCBEIM10

GPTM Capture B Match Interrupt Mask

The CBMIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WCBMIM9

409February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

GPTM Timer B Time-Out Interrupt Mask

The TBTOIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WTBTOIM8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7:5

GPTM Timer A Mode Match Interrupt Mask

The TAMIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WTAMIM4

GPTM RTC Interrupt Mask

The RTCIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WRTCIM3

GPTM Capture A Event Interrupt Mask

The CAEIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WCAEIM2

GPTM Capture A Match Interrupt Mask

The CAMIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WCAMIM1

GPTM Timer A Time-Out Interrupt Mask

The TATOIM values are defined as follows:

DescriptionValue

Interrupt is disabled.0

Interrupt is enabled.1

0R/WTATOIM0

February 24, 2009410
Preliminary

General-Purpose Timers

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C
This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or
not the interrupt is masked in the GPTMIMR register. Each bit can be cleared by writing a 1 to its
corresponding bit in GPTMICR.

GPTM Raw Interrupt Status (GPTMRIS)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x01C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TATORISCAMRISCAERISRTCRISTAMRISreservedTBTORISCBMRISCBERISTBMRISreserved

ROROROROR/WROROROROROROR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

GPTM Timer B Mode Match Raw Interrupt

This is the Timer B mode match interrupt status prior to masking.

When the TBMIE bit is set in the GPTMTBMR register, an interrupt is
generated when the match value in the GPTMTBMATCHR register is
reached when in the one-shot and periodic modes.

0R/WTBMRIS11

GPTM Capture B Event Raw Interrupt

This is the Capture B event interrupt status prior to masking.

0ROCBERIS10

GPTM Capture B Match Raw Interrupt

This is the Capture B match interrupt status prior to masking.

0ROCBMRIS9

GPTM Timer B Time-Out Raw Interrupt

This is the Timer B time-out interrupt status prior to masking.

0ROTBTORIS8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:5

GPTM Timer A Mode Match Raw Interrupt

This is the Timer A mode match interrupt status prior to masking.

When the TAMIE bit is set in the GPTMTAMR register, an interrupt is
generated when the match value in the GPTMTAMATCHR register is
reached when in the one-shot and periodic modes.

0R/WTAMRIS4

GPTM RTC Raw Interrupt

This is the RTC event interrupt status prior to masking.

0RORTCRIS3

411February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

GPTM Capture A Event Raw Interrupt

This is the Capture A event interrupt status prior to masking.

0ROCAERIS2

GPTM Capture A Match Raw Interrupt

This is the Capture A match interrupt status prior to masking.

0ROCAMRIS1

GPTM Timer A Time-Out Raw Interrupt

This the Timer A time-out interrupt status prior to masking.

0ROTATORIS0

February 24, 2009412
Preliminary

General-Purpose Timers

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020
This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in
GPTMIMR, and there is an event that causes the interrupt to be asserted, the corresponding bit is
set in this register. All bits are cleared by writing a 1 to the corresponding bit in GPTMICR.

GPTM Masked Interrupt Status (GPTMMIS)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x020
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TATOMISCAMMISCAEMISRTCMISTAMMISreservedTBTOMISCBMMISCBEMISTBMMISreserved

ROROROROR/WROROROROROROR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

GPTM Timer B Mode Match Masked Interrupt

This is the Timer B Mode Match interrupt status after masking.

0R/WTBMMIS11

GPTM Capture B Event Masked Interrupt

This is the Capture B event interrupt status after masking.

0ROCBEMIS10

GPTM Capture B Match Masked Interrupt

This is the Capture B match interrupt status after masking.

0ROCBMMIS9

GPTM Timer B Time-Out Masked Interrupt

This is the Timer B time-out interrupt status after masking.

0ROTBTOMIS8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:5

GPTM Timer A Mode Match Masked Interrupt

This is the Timer A Mode Match interrupt status after masking.

0R/WTAMMIS4

GPTM RTC Masked Interrupt

This is the RTC event interrupt status after masking.

0RORTCMIS3

GPTM Capture A Event Masked Interrupt

This is the Capture A event interrupt status after masking.

0ROCAEMIS2

GPTM Capture A Match Masked Interrupt

This is the Capture A match interrupt status after masking.

0ROCAMMIS1

413February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

GPTM Timer A Time-Out Masked Interrupt

This is the Timer A time-out interrupt status after masking.

0ROTATOMIS0

February 24, 2009414
Preliminary

General-Purpose Timers

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024
This register is used to clear the status bits in the GPTMRIS and GPTMMIS registers. Writing a 1
to a bit clears the corresponding bit in the GPTMRIS and GPTMMIS registers.

GPTM Interrupt Clear (GPTMICR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x024
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TATOCINTCAMCINTCAECINTRTCCINTTAMCINTreservedTBTOCINTCBMCINTCBECINTTBMCINTreserved

W1CW1CW1CW1CW1CROROROW1CW1CW1CW1CROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

GPTM Timer B Mode Match Interrupt Clear

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CTBMCINT11

GPTM Capture B Event Interrupt Clear

The CBECINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CCBECINT10

GPTM Capture B Match Interrupt Clear

The CBMCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CCBMCINT9

415February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

GPTM Timer B Time-Out Interrupt Clear

The TBTOCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CTBTOCINT8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:5

GPTM Timer A Mode Match Interrupt Clear

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CTAMCINT4

GPTM RTC Interrupt Clear

The RTCCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CRTCCINT3

GPTM Capture A Event Interrupt Clear

The CAECINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CCAECINT2

GPTM Capture A Match Interrupt Clear

The CAMCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CCAMCINT1

GPTM Timer A Time-Out Raw Interrupt

The TATOCINT values are defined as follows:

DescriptionValue

The interrupt is unaffected.0

The interrupt is cleared.1

0W1CTATOCINT0

February 24, 2009416
Preliminary

General-Purpose Timers

Register 9: GPTM Timer A Interval Load (GPTMTAILR), offset 0x028
This register is used to load the starting count value into the timer. When GPTM is configured to
one of the 32-bit modes, GPTMTAILR appears as a 32-bit register (the upper 16-bits correspond
to the contents of the GPTM Timer B Interval Load (GPTMTBILR) register). In 16-bit mode, the
upper 16 bits of this register read as 0s and have no effect on the state of GPTMTBILR.

GPTM Timer A Interval Load (GPTMTAILR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x028
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

TAILRH

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

TAILRL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

GPTM Timer A Interval Load Register High

When configured for 32-bit mode via theGPTMCFG register, theGPTM
Timer B Interval Load (GPTMTBILR) register loads this value on a
write. A read returns the current value of GPTMTBILR.

In 16-bit mode, this field reads as 0 and does not have an effect on the
state of GPTMTBILR.

0xFFFFR/WTAILRH31:16

GPTM Timer A Interval Load Register Low

For both 16- and 32-bit modes, writing this field loads the counter for
Timer A. A read returns the current value of GPTMTAILR.

0xFFFFR/WTAILRL15:0

417February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 10: GPTM Timer B Interval Load (GPTMTBILR), offset 0x02C
This register is used to load the starting count value into Timer B. When the GPTM is configured to
a 32-bit mode, GPTMTBILR returns the current value of Timer B and ignores writes.

GPTM Timer B Interval Load (GPTMTBILR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x02C
Type R/W, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBILRL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

GPTM Timer B Interval Load Register

When the GPTM is not configured as a 32-bit timer, a write to this field
updates GPTMTBILR. In 32-bit mode, writes are ignored, and reads
return the current value of GPTMTBILR.

0xFFFFR/WTBILRL15:0

February 24, 2009418
Preliminary

General-Purpose Timers

Register 11: GPTM Timer A Match (GPTMTAMATCHR), offset 0x030
This register is loaded with a match value. Interrupts can be generated when the timer value is equal
to the value in this register in one-shot or periodic mode. In 16-bit Edge-Count mode, this register
along withGPTMTAILR, determines how many edge events are counted. The total number of edge
events counted is equal to the value in GPTMTAILR minus this value.

GPTM Timer A Match (GPTMTAMATCHR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x030
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

TAMRH

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

TAMRL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

GPTM Timer A Match Register High

When the timer is configured for 32-bit mode via theGPTMCFG register,
this value is compared to the upper half of GPTMTAR to determine
match events.

In 16-bit mode, this field reads as 0 and does not have an effect on the
state of GPTMTBMATCHR.

0xFFFFR/WTAMRH31:16

GPTM Timer A Match Register Low

When the timer is configured for 32-bit mode via theGPTMCFG register,
this value is compared to the lower half of GPTMTAR, to determine
match events.

When the timer is configured for 16-bit mode via theGPTMCFG register,
this value is compared to GPTMTAR to determine match events.

When configured for 16-bit mode, this value along with GPTMTAILR,
determines how many edge events are counted. The total number of
edge events counted is equal to the value in GPTMTAILR minus this
value.

When configured for PWM mode, this value along with GPTMTAILR,
determines the duty cycle of the output PWM signal.

0xFFFFR/WTAMRL15:0

419February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 12: GPTM Timer B Match (GPTMTBMATCHR), offset 0x034
This register is loaded with a match value. Interrupts can be generated when the timer value is equal
to the value in this register in one-shot or periodic mode. In 16-bit Edge-Count mode, this register
along withGPTMTAILR, determines how many edge events are counted. The total number of edge
events counted is equal to the value in GPTMTAILR minus this value.

GPTM Timer B Match (GPTMTBMATCHR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x034
Type R/W, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBMRL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

GPTM Timer B Match Register Low

When the timer is configured for 16-bit mode via theGPTMCFG register,
this value is compared to GPTMTBR to determine match events.

When configured for 16-bit mode, this value along with GPTMTBILR,
determines how many edge events are counted. The total number of
edge events counted is equal to the value in GPTMTBILR minus this
value.

When configured for PWM mode, this value along with GPTMTBILR,
determines the duty cycle of the output PWM signal.

0xFFFFR/WTBMRL15:0

February 24, 2009420
Preliminary

General-Purpose Timers

Register 13: GPTM Timer A Prescale (GPTMTAPR), offset 0x038
This register allows software to extend the range of the 16-bit timers.

GPTM Timer A Prescale (GPTMTAPR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x038
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TAPSRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPTM Timer A Prescale

The register loads this value on a write. A read returns the current value
of the register.

Refer to Table 11-2 on page 392 for more details and an example.

0x00R/WTAPSR7:0

421February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 14: GPTM Timer B Prescale (GPTMTBPR), offset 0x03C
This register allows software to extend the range of the 16-bit timers.

GPTM Timer B Prescale (GPTMTBPR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x03C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBPSRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

GPTM Timer B Prescale

The register loads this value on a write. A read returns the current value
of this register.

Refer to Table 11-2 on page 392 for more details and an example.

0x00R/WTBPSR7:0

February 24, 2009422
Preliminary

General-Purpose Timers

Register 15: GPTM Timer A (GPTMTAR), offset 0x048
This register shows the current value of the Timer A counter in all cases except for Input Edge-Count
mode. When in this mode, this register contains the time at which the last edge event took place.

GPTM Timer A (GPTMTAR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x048
Type RO, reset 0xFFFF.FFFF

16171819202122232425262728293031

TARH

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

0123456789101112131415

TARL

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

GPTM Timer A Register High

If the GPTMCFG is in a 32-bit mode, Timer B value is read. If the
GPTMCFG is in a 16-bit mode, this is read as zero.

0xFFFFROTARH31:16

GPTM Timer A Register Low

A read returns the current value of theGPTM Timer A Count Register,
except in Input Edge-Count mode, when it returns the timestamp from
the last edge event.

0xFFFFROTARL15:0

423February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 16: GPTM Timer B (GPTMTBR), offset 0x04C
This register shows the current value of the Timer B counter in all cases except for Input Edge-Count
mode. When in this mode, this register contains the time at which the last edge event took place.

GPTM Timer B (GPTMTBR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x04C
Type RO, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBRL

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

GPTM Timer B

A read returns the current value of theGPTM Timer B Count Register,
except in Input Edge-Count mode, when it returns the timestamp from
the last edge event.

0xFFFFROTBRL15:0

February 24, 2009424
Preliminary

General-Purpose Timers

Register 17: GPTM Timer A Value (GPTMTAV), offset 0x050
This register shows the current, free-running value of Timer A in all modes. Software can use this
value to determine the time elapsed between an interrupt and the ISR entry.

GPTM Timer A Value (GPTMTAV)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x050
Type RO, reset 0xFFFF.FFFF

16171819202122232425262728293031

TAVH

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

0123456789101112131415

TAVL

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

GPTM Timer A Value High

If the GPTMCFG is configured for 32-bit mode, the Timer B value is
read. If the GPTMCFG is configured for 16-bit mode, this is read as
zero.

0xFFFFROTAVH31:16

GPTM Timer A Register Low

A read returns the current value of Timer A.

0xFFFFROTAVL15:0

425February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 18: GPTM Timer B Value (GPTMTBV), offset 0x054
This register shows the current, free-running value of Timer B in all modes. Software can use this
value to determine the time elapsed between an interrupt and the ISR entry.

GPTM Timer B Value (GPTMTBV)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x054
Type RO, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TBVL

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

GPTM Timer B Register

A read returns the current value of Timer B.

0xFFFFROTBVL15:0

February 24, 2009426
Preliminary

General-Purpose Timers

12 Watchdog Timer
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is
reached. The watchdog timer is used to regain control when a system has failed due to a software
error or due to the failure of an external device to respond in the expected way. The LM3S9B92
microcontroller has two Watchdog Timer Modules, one module is clocked by the system clock
(Watchdog Timer 0) and the other is clocked by the PIOSC (Watchdog Timer 1). The two modules
are identical except that WDT1 is in a different clock domain, and therefore requires synchronizers.
As a result, WDT1 has a bit defined in theWatchdog Timer Control (WDTCTL) register to indicate
when a write to a WDT1 register is complete. Software can use this bit to ensure that the previous
access has completed before starting the next access.

The Stellaris® Watchdog Timer module has the following features:

■ 32-bit down counter with a programmable load register

■ Separate watchdog clock with an enable

■ Programmable interrupt generation logic with interrupt masking

■ Lock register protection from runaway software

■ Reset generation logic with an enable/disable

■ User-enabled stalling when the controller asserts the CPU Halt flag during debug

TheWatchdog Timer can be configured to generate an interrupt to the controller on its first time-out,
and to generate a reset signal on its second time-out. Once theWatchdog Timer has been configured,
the lock register can be written to prevent the timer configuration from being inadvertently altered.

427February 24, 2009
Preliminary

LM3S9B92 Microcontroller

12.1 Block Diagram

Figure 12-1. WDT Module Block Diagram

Control / Clock /
Interrupt

Generation

WDTCTL

WDTICR

WDTRIS

WDTMIS

WDTLOCK

WDTTEST

WDTLOAD

WDTVALUE

Comparator

32-Bit Down
Counter

0x0000.0000

Interrupt

System Clock/
PIOSC

Identification Registers

WDTPCellID0 WDTPeriphID0 WDTPeriphID4

WDTPCellID1 WDTPeriphID1 WDTPeriphID5

WDTPCellID2 WDTPeriphID2 WDTPeriphID6

WDTPCellID3 WDTPeriphID3 WDTPeriphID7

12.2 Functional Description
The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches
the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt.
After the first time-out event, the 32-bit counter is re-loaded with the value of theWatchdog Timer
Load (WDTLOAD) register, and the timer resumes counting down from that value. Once the
Watchdog Timer has been configured, theWatchdog Timer Lock (WDTLOCK) register is written,
which prevents the timer configuration from being inadvertently altered by software.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the
reset signal has been enabled by setting the RESEN bit in theWDTCTL register, the Watchdog timer
asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its
second time-out, the 32-bit counter is loaded with the value in theWDTLOAD register, and counting
resumes from that value.

IfWDTLOAD is written with a new value while the Watchdog Timer counter is counting, then the
counter is loaded with the new value and continues counting.

February 24, 2009428
Preliminary

Watchdog Timer

Writing toWDTLOAD does not clear an active interrupt. An interrupt must be specifically cleared
by writing to theWatchdog Interrupt Clear (WDTICR) register.

TheWatchdog module interrupt and reset generation can be enabled or disabled as required. When
the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its
last state.

12.2.1 Register Access Timing
Because the Watchdog Timer 1 module has an independent clocking domain, its registers must be
written with a timing gap between accesses. Software must guarantee that this delay is inserted
between back-to-back writes toWDT1 registers or between a write followed by a read to the registers.
The timing for back-to-back reads from the WDT1 module has no restrictions. The WRC bit in the
Watchdog Control (WDTCTL) register for WDT1 indicates that the required timing gap has elapsed.
This bit is cleared on a write operation and set once the write completes, indicating to software that
another write or read may be started safely. Software should pollWDTCTL for WRC=1 prior to
accessing another register. Note that WDT0 does not have this restriction as it runs off the system
clock.

12.3 Initialization and Configuration
To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the RCGC0 register.
See page 158.

The Watchdog Timer is configured using the following sequence:

1. Load theWDTLOAD register with the desired timer load value.

2. If WDT1, wait for the WRC bit in theWDTCTL register to be set.

3. If theWatchdog is configured to trigger system resets, set the RESEN bit in theWDTCTL register.

4. If WDT1, wait for the WRC bit in theWDTCTL register to be set.

5. Set the INTEN bit in theWDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can
be fully locked by writing any value to theWDTLOCK register. To unlock the Watchdog Timer, write
a value of 0x1ACC.E551.

12.4 Register Map
Table 12-1 on page 430 lists the Watchdog registers. The offset listed is a hexadecimal increment
to the register’s address, relative to the Watchdog Timer base address:

■ WDT0: 0x4000.0000

■ WDT1: 0x4000.1000

Note that theWatchdog Timer module clockmust be enabled before the registers can be programmed
(see page 158).

429February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Table 12-1. Watchdog Timer Register Map

See
pageDescriptionResetTypeNameOffset

431Watchdog Load0xFFFF.FFFFR/WWDTLOAD0x000

432Watchdog Value0xFFFF.FFFFROWDTVALUE0x004

433Watchdog Control

0x0000.0000 for
WDT0,R/WWDTCTL0x008 0x8000.0000 for
WDT1

435Watchdog Interrupt Clear-WOWDTICR0x00C

436Watchdog Raw Interrupt Status0x0000.0000ROWDTRIS0x010

437Watchdog Masked Interrupt Status0x0000.0000ROWDTMIS0x014

438Watchdog Test0x0000.0000R/WWDTTEST0x418

439Watchdog Lock0x0000.0000R/WWDTLOCK0xC00

440Watchdog Peripheral Identification 40x0000.0000ROWDTPeriphID40xFD0

441Watchdog Peripheral Identification 50x0000.0000ROWDTPeriphID50xFD4

442Watchdog Peripheral Identification 60x0000.0000ROWDTPeriphID60xFD8

443Watchdog Peripheral Identification 70x0000.0000ROWDTPeriphID70xFDC

444Watchdog Peripheral Identification 00x0000.0005ROWDTPeriphID00xFE0

445Watchdog Peripheral Identification 10x0000.0018ROWDTPeriphID10xFE4

446Watchdog Peripheral Identification 20x0000.0018ROWDTPeriphID20xFE8

447Watchdog Peripheral Identification 30x0000.0001ROWDTPeriphID30xFEC

448Watchdog PrimeCell Identification 00x0000.000DROWDTPCellID00xFF0

449Watchdog PrimeCell Identification 10x0000.00F0ROWDTPCellID10xFF4

450Watchdog PrimeCell Identification 20x0000.0006ROWDTPCellID20xFF8

451Watchdog PrimeCell Identification 30x0000.00B1ROWDTPCellID30xFFC

12.5 Register Descriptions
The remainder of this section lists and describes the WDT registers, in numerical order by address
offset.

February 24, 2009430
Preliminary

Watchdog Timer

Register 1: Watchdog Load (WDTLOAD), offset 0x000
This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the
value is immediately loaded and the counter restarts counting down from the new value. If the
WDTLOAD register is loaded with 0x0000.0000, an interrupt is immediately generated.

Watchdog Load (WDTLOAD)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0x000
Type R/W, reset 0xFFFF.FFFF

16171819202122232425262728293031

WDTLOAD

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

0123456789101112131415

WDTLOAD

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Watchdog Load Value0xFFFF.FFFFR/WWDTLOAD31:0

431February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: Watchdog Value (WDTVALUE), offset 0x004
This register contains the current count value of the timer.

Watchdog Value (WDTVALUE)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0x004
Type RO, reset 0xFFFF.FFFF

16171819202122232425262728293031

WDTVALUE

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

0123456789101112131415

WDTVALUE

ROROROROROROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Watchdog Value

Current value of the 32-bit down counter.

0xFFFF.FFFFROWDTVALUE31:0

February 24, 2009432
Preliminary

Watchdog Timer

Register 3: Watchdog Control (WDTCTL), offset 0x008
This register is the watchdog control register. The watchdog timer can be configured to generate a
reset signal (on second time-out) or an interrupt on time-out.

When the watchdog interrupt has been enabled, all subsequent writes to the control register are
ignored. The only mechanism that can re-enable writes is a hardware reset.

Important: Because the Watchdog Timer 1 module has an independent clocking domain, its
registers must be written with a timing gap between accesses. Software must guarantee
that this delay is inserted between back-to-back writes to WDT1 registers or between
a write followed by a read to the registers. The timing for back-to-back reads from the
WDT1 module has no restrictions. The WRC bit in theWatchdog Control (WDTCTL)
register for WDT1 indicates that the required timing gap has elapsed. This bit is cleared
on a write operation and set once the write completes, indicating to software that another
write or read may be started safely. Software should pollWDTCTL for WRC=1 prior to
accessing another register. Note that WDT0 does not have this restriction as it runs off
the system clock and therefore does not have a WRC bit.

Watchdog Control (WDTCTL)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0x008
Type R/W, reset 0x0000.0000 for WDT0, 0x8000.0000 for WDT1

16171819202122232425262728293031

reservedWRC

ROROROROROROROROROROROROROROROROType
0000000000000001Reset

0123456789101112131415

INTENRESENreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Write Complete

The WRC values are defined as follows:

DescriptionValue

A write access to one of the WDT1 registers is in progress.0

The write access has completed, and WDT1 registers can be
read or written.

1

Note: This bit is reserved for WDT0 and has a reset value of 0.

1ROWRC31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000.000ROreserved30:2

433February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Watchdog Reset Enable

The RESEN values are defined as follows:

DescriptionValue

Disabled.0

Enable the Watchdog module reset output.1

0R/WRESEN1

Watchdog Interrupt Enable

The INTEN values are defined as follows:

DescriptionValue

Interrupt event disabled (once this bit is set, it can only be
cleared by a hardware reset).

0

Interrupt event enabled. Once enabled, all writes are ignored.1

0R/WINTEN0

February 24, 2009434
Preliminary

Watchdog Timer

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C
This register is the interrupt clear register. A write of any value to this register clears the Watchdog
interrupt and reloads the 32-bit counter from theWDTLOAD register. Value for a read or reset is
indeterminate.

Watchdog Interrupt Clear (WDTICR)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0x00C
Type WO, reset -

16171819202122232425262728293031

WDTINTCLR

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

0123456789101112131415

WDTINTCLR

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Watchdog Interrupt Clear-WOWDTINTCLR31:0

435February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010
This register is the raw interrupt status register. Watchdog interrupt events can be monitored via
this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

WDTRISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Watchdog Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of theWatchdog interrupt.

0ROWDTRIS0

February 24, 2009436
Preliminary

Watchdog Timer

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014
This register is the masked interrupt status register. The value of this register is the logical AND of
the raw interrupt bit and the Watchdog interrupt enable bit.

Watchdog Masked Interrupt Status (WDTMIS)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0x014
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

WDTMISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Watchdog Masked Interrupt Status

Gives the masked interrupt state (after masking) of the Watchdog
interrupt.

0ROWDTMIS0

437February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 7: Watchdog Test (WDTTEST), offset 0x418
This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag
during debug.

Watchdog Test (WDTTEST)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0x418
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedSTALLreserved

ROROROROROROROROR/WROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:9

Watchdog Stall Enable

When set to 1, if the Stellaris® microcontroller is stopped with a
debugger, the watchdog timer stops counting. Once the microcontroller
is restarted, the watchdog timer resumes counting.

0R/WSTALL8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:0

February 24, 2009438
Preliminary

Watchdog Timer

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00
Writing 0x1ACC.E551 to theWDTLOCK register enables write access to all other registers. Writing
any other value to theWDTLOCK register re-enables the locked state for register writes to all the
other registers. Reading theWDTLOCK register returns the lock status rather than the 32-bit value
written. Therefore, when write accesses are disabled, reading theWDTLOCK register returns
0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

Watchdog Lock (WDTLOCK)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xC00
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

WDTLOCK

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

WDTLOCK

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Watchdog Lock

A write of the value 0x1ACC.E551 unlocks the watchdog registers for
write access. A write of any other value reapplies the lock, preventing
any register updates.

A read of this register returns the following values:

DescriptionValue

Locked0x0000.0001

Unlocked0x0000.0000

0x0000R/WWDTLOCK31:0

439February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9:Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 4 (WDTPeriphID4)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFD0
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

WDT Peripheral ID Register [7:0]0x00ROPID47:0

February 24, 2009440
Preliminary

Watchdog Timer

Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset
0xFD4
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFD4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID5reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

WDT Peripheral ID Register [15:8]0x00ROPID57:0

441February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset
0xFD8
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFD8
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID6reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

WDT Peripheral ID Register [23:16]0x00ROPID67:0

February 24, 2009442
Preliminary

Watchdog Timer

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset
0xFDC
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFDC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID7reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

WDT Peripheral ID Register [31:24]0x00ROPID77:0

443February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset
0xFE0
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFE0
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog Peripheral ID Register [7:0]0x05ROPID07:0

February 24, 2009444
Preliminary

Watchdog Timer

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset
0xFE4
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFE4
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog Peripheral ID Register [15:8]0x18ROPID17:0

445February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset
0xFE8
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFE8
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog Peripheral ID Register [23:16]0x18ROPID27:0

February 24, 2009446
Preliminary

Watchdog Timer

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset
0xFEC
TheWDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFEC
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog Peripheral ID Register [31:24]0x01ROPID37:0

447February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0
TheWDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog PrimeCell Identification 0 (WDTPCellID0)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog PrimeCell ID Register [7:0]0x0DROCID07:0

February 24, 2009448
Preliminary

Watchdog Timer

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4
TheWDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog PrimeCell ID Register [15:8]0xF0ROCID17:0

449February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8
TheWDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog PrimeCell Identification 2 (WDTPCellID2)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFF8
Type RO, reset 0x0000.0006

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
0110000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog PrimeCell ID Register [23:16]0x06ROCID27:0

February 24, 2009450
Preliminary

Watchdog Timer

Register 20:Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC
TheWDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.

Watchdog PrimeCell Identification 3 (WDTPCellID3)
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Watchdog PrimeCell ID Register [31:24]0xB1ROCID37:0

451February 24, 2009
Preliminary

LM3S9B92 Microcontroller

13 Analog-to-Digital Converter (ADC)
An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a
discrete digital number. Two identical converter units are included, which share sixteen input channels.
The two converter units may be sampled in the same processor clock or out of phase with each
other.

The Stellaris® ADCmodule features 10-bit conversion resolution and supports sixteen input channels,
plus an internal temperature sensor. The ADC module contains four programmable sequencers
allowing the sampling of multiple analog input sources without controller intervention. Each sample
sequencer provides flexible programming with fully configurable input source, trigger events, interrupt
generation, and sequencer priority. A digital comparator function is included which allows the
conversion value to be diverted to a digital comparator module. The digital comparator module
provides digital comparator. The comparator module measures the ADC conversion value against
two user-defined values to determine the operational range of the signal.

The Stellaris® ADC module provides the following features:

■ Sixteen analog input channels

■ Single-ended and differential-input configurations

■ On-chip internal temperature sensor

■ Sample rate of one million samples/second

■ Flexible, configurable analog-to-digital conversion

■ Four programmable sample conversion sequencers from one to eight entries long, with
corresponding conversion result FIFOs

■ Flexible trigger control

– Controller (software)

– Timers

– Analog Comparators

– PWM

– GPIO

■ Hardware averaging of up to 64 samples for improved accuracy

■ Digital comparison unit providing digital comparator

■ Converter uses an internal 3-V reference or an external reference

■ Power and ground for the analog circuitry is separate from the digital power and ground

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Dedicated channel for each sample sequencer

– Burst request asserted when interrupt is triggered

February 24, 2009452
Preliminary

Analog-to-Digital Converter (ADC)

13.1 Block Diagram
The Stellaris® microcontroller contains two identical Analog-to-Digital Converter units. These two
modules, ADC0 and ADC1, share the same sixteen analog input channels. Each ADC module
operates independently and can therefore execute different sample sequences, sample any of the
analog input channels at any time, and generate different interrupts and triggers. Figure 13-1 on page
453 shows how the two modules are connected to analog inputs and the system bus.

Figure 13-1. Implementation of Two ADC Blocks

Input
Channels

Triggers

Interrupts/
Triggers

ADC 0

ADC 1

Interrupts/
Triggers

Figure 13-2 on page 453 provides details on the internal configuration of the ADC controls and data
registers.

Figure 13-2. ADC Module Block Diagram

Analog InputsTrigger Events

SS0 Interrupt
SS1 Interrupt
SS2 Interrupt
SS3 Interrupt

ADCISC

ADCRIS

ADCIM

Interrupt Control

ADCDCISC

SS0

SS1

SS2

SS3

Comparator
GPIO (PB4)

Timer
PWM

Comparator
GPIO (PB4)

Timer
PWM

Comparator
GPIO (PB4)

Timer
PWM

Comparator
GPIO (PB4)

Timer
PWM

ADCEMUX

ADCPSSI

Control/Status

ADCUSTAT

ADCOSTAT

ADCACTSS

ADCSSPRI

Digital
Comparator

ADCSSOPn

ADCSSDCn

ADCDCCTLn

ADCDCCMPn

Analog-to-Digital
Converter

Hardware Averager

ADCSAC

FIFO Block

ADCSSFIFO0

ADCSSFIFO1

ADCSSFIFO2

ADCSSFIFO3

ADCSSFSTAT0

ADCSSCTL0

ADCSSMUX0

Sample
Sequencer 0

ADCSSFSTAT1

ADCSSCTL1

ADCSSMUX1

Sample
Sequencer 1

ADCSSFSTAT2

ADCSSCTL2

ADCSSMUX2

Sample
Sequencer 2

ADCSSFSTAT3

ADCSSCTL3

ADCSSMUX3

Sample
Sequencer 3

PWM Trigger

DC Interrupts

453February 24, 2009
Preliminary

LM3S9B92 Microcontroller

13.2 Functional Description
The Stellaris® ADC collects sample data by using a programmable sequence-based approach
instead of the traditional single or double-sampling approaches found on many ADCmodules. Each
sample sequence is a fully programmed series of consecutive (back-to-back) samples, allowing the
ADC to collect data from multiple input sources without having to be re-configured or serviced by
the processor. The programming of each sample in the sample sequence includes parameters such
as the input source and mode (differential versus single-ended input), interrupt generation on sample
completion, and the indicator for the last sample in the sequence. The μDMA can be used to more
efficiently move data from the sample sequencers without CPU intervention.

13.2.1 Sample Sequencers
The sampling control and data capture is handled by the sample sequencers. All of the sequencers
are identical in implementation except for the number of samples that can be captured and the depth
of the FIFO. Table 13-1 on page 454 shows the maximum number of samples that each sequencer
can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit
word, with the lower 10 bits containing the conversion result.

Table 13-1. Samples and FIFO Depth of Sequencers

Depth of FIFONumber of SamplesSequencer

11SS3

44SS2

44SS1

88SS0

For a given sample sequence, each sample is defined by two 4-bit nibbles in the ADC Sample
Sequence Input Multiplexer Select (ADCSSMUXn) and ADC Sample Sequence Control
(ADCSSCTLn) registers, where "n" corresponds to the sequence number. The ADCSSMUXn
nibbles select the input pin, while the ADCSSCTLn nibbles contain the sample control bits
corresponding to parameters such as temperature sensor selection, interrupt enable, end of
sequence, and differential input mode. Sample sequencers are enabled by setting the respective
ASENn bit in the ADC Active Sample Sequencer (ADCACTSS) register and should be configured
before being enabled. Sampling is then initiated by setting the SSn bit in theADCProcessor Sample
Sequence Initiate (ADCPSSI) register. In addition, sample sequences may be initiated on multiple
ADC modules simultaneously using the GSYNC and SYNCWAIT bits in the ADCPSSI register during
the configuration of each ADC module. For more information on using these bits, refer to page 484.

When configuring a sample sequence, multiple uses of the same input pin within the same sequence
is allowed. In the ADCSSCTLn register, the IEn bits can be set for any combination of samples,
allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END
bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END
bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete
execution of the sample sequence after the fifth sample.

After a sample sequence completes execution, the result data can be retrieved from the ADC
Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers
that read a single address to "pop" result data. For software debug purposes, the positions of the
FIFO head and tail pointers are visible in theADCSample Sequence FIFOStatus (ADCSSFSTATn)
registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored
using the ADCOSTAT and ADCUSTAT registers.

February 24, 2009454
Preliminary

Analog-to-Digital Converter (ADC)

13.2.2 Module Control
Outside of the sample sequencers, the remainder of the control logic is responsible for tasks such
as:

■ Interrupt generation
■ Sequence prioritization
■ Trigger configuration
■ Comparator configuration

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider
is configured automatically by hardware when the system XTAL is selected. The automatic clock
divider configuration targets 16.667 MHz operation for all Stellaris® devices.

13.2.2.1 Interrupts
The register configurations of the sample sequencers and digital comparators dictate which events
generate raw interrupts, but do not have control over whether the interrupt is actually sent to the
interrupt controller. The ADC module's interrupt signals are controlled by the state of the MASK bits
in the ADC Interrupt Mask (ADCIM) register. Interrupt status can be viewed at two locations: the
ADC Raw Interrupt Status (ADCRIS) register, which shows the raw status of the various interrupt
signals; and the ADC Interrupt Status and Clear (ADCISC) register, which shows active interrupts
that are enabled by the ADCIM register. Sequencer interrupts are cleared by writing a 1 to the
corresponding IN bit in ADCISC. Digital comparator interrupts are cleared by writing a 1 to the ADC
Digital Comparator Interrupt Status and Clear (ADCDCISC) register.

13.2.2.2 DMA Operation
The ADC module provides a request signal to the μDMA controller for each sample sequencer.
Each sample sequencer has a dedicated μDMA channel. The request signal is a burst type and is
asserted whenever an interrupt is enabled in a sample sequence (IE bit in theADCSSCTLn register
is set). Single requests are not supported.

The arbitration size of the μDMA transfer must be a power of 2, and the associated IE bits in the
ADDSSCTLn register must be set. For example, if the μDMA channel of SS0 has an arbitration
size of four, the IE3 bit (4th sample) and the IE7 bit (8th sample) must be set. Thus the μDMA
request occurs every time 4 samples have been acquired. No other special steps are needed to
enable the ADC module for μDMA operation.

Refer to the “Micro Direct Memory Access (μDMA)” on page 226 for more details about programming
the μDMA controller.

13.2.2.3 Prioritization
When sampling events (triggers) happen concurrently, they are prioritized for processing by the
values in the ADC Sample Sequencer Priority (ADCSSPRI) register. Valid priority values are in
the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active sample
sequencer units with the same priority do not provide consistent results, so software must ensure
that all active sample sequencer units have a unique priority value.

13.2.2.4 Sampling Events
Sample triggering for each sample sequencer is defined in the ADC Event Multiplexer Select
(ADCEMUX) register. Trigger sources include processor (default), analog comparators, an external
signal on GPIO PB4, a GP Timer, PWM2, and continuous sampling.

455February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Care must be taken when using the continuous sampling trigger. If a sequencer's priority is too high,
it is possible to starve other lower priority sequencers.

13.2.2.5 External Voltage Reference
An external reference voltagemay be provided to serve as the maximum conversion value reference.
The VREF bit in the ADCControl (ADCCTL) register specifies whether to use the internal or external
reference. The useful range for the external voltage reference is 2.4 V - VDDA. Ground is always
used as the reference level for the minimum conversion value. Care must be taken to supply a
reference voltage of acceptable quality.

13.2.3 Hardware Sample Averaging Circuit
Higher precision results can be generated using the hardware averaging circuit, however, the
improved results are at the cost of throughput. Up to 64 samples can be accumulated and averaged
to form a single data entry in the sequencer FIFO. Throughput is decreased proportionally to the
number of samples in the averaging calculation. For example, if the averaging circuit is configured
to average 16 samples, the throughput is decreased by a factor of 16.

By default the averaging circuit is off, and all data from the converter passes through to the sequencer
FIFO. The averaging hardware is controlled by the ADC Sample Averaging Control (ADCSAC)
register (see page 486). A single averaging circuit has been implemented, thus all input channels
receive the same amount of averaging whether they are single-ended or differential.

13.2.4 Analog-to-Digital Converter
The Analog-to-Digital Converter (ADC) module uses a Successive Approximation Register (SAR)
architecture to deliver a 10-bit, low-power, high-precision conversion value. The
successive-approximation algorithm uses a current mode D/A converter to achieve lower settling
time, resulting in higher conversion speeds for the A/D converter. In addition, built-in sample-and-hold
circuitry with offset-calibration circuitry improves conversion accuracy. The sample-and-hold circuitry
is open for the first time period of a conversion as specified by TADCCAH and requires that the ADC
be run from the PLL or a 16-MHz clock source.

The ADC operates from the 3.3-V analog and 1.2-V digital power supply. Integrated shutdown
modes are available to reduce power consumption when ADC conversions are not required. The
analog inputs are connected to the ADC through custom pads and specially balanced input paths
to minimize the distortion on the inputs. Detailed information on the ADC power supplies and analog
inputs can be found in “Analog-to-Digital Converter” on page 1012.

13.2.4.1 Internal Voltage Reference
The band-gap circuitry generates an internal 3.0 V reference that can be used by the ADC to produce
a conversion value from the selected analog input. The range of this conversion value is from 0x000
to 0x3FF. In single-ended-input mode, the 0x000 value corresponds to an analog input voltage of
0.0 V; the 0x3FF value corresponds to an analog input voltage of 3.0 V. This configuration results
in a resolution of approximately 2.9 mV per ADC code. While the analog input pads can handle
voltages beyond this range, the ADC conversions saturate in under-voltage and over-voltage cases.
Figure 13-3 on page 457 shows the ADC conversion function of the analog inputs.

February 24, 2009456
Preliminary

Analog-to-Digital Converter (ADC)

Figure 13-3. Internal Voltage Conversion Result

ADC Conversion Result

0x3FF

VIN

0x2FF

0x1FF

0x0FF

0.00 V 3.00 V1.50 V0.75 V 2.25 V

- Input Saturation

13.2.4.2 External Voltage Reference
The ADC can use an external voltage reference to produce the conversion value from the selected
analog input by setting the VREF bit in the ADC Control (ADCCTL) register. While the range of the
conversion value remains the same (0x000 to 0x3FF), the analog voltage associated with the 0x3FF
value corresponds to the value of the external voltage reference, resulting in a smaller voltage
resolution per ADC code. Analog input voltages above the external voltage reference saturate to
0x3FF while those below 0.0 V continue to saturate at 0x000. Figure 13-4 on page 458 shows the
ADC conversion function of the analog inputs when using an external voltage reference.

457February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 13-4. External Voltage Conversion Result

ADC Conversion Result

0x3FF

VIN

0x2FF

0x1FF

0x0FF

0.00 V 3.00 V

- Input Saturation

VREFA½ VREFA

The external voltage reference can be useful in circuits where the maximum analog input voltage
is significantly lower than 3.0 V (3.3 V). In this case, the maximum value of the analog input can be
used as the external voltage reference. The result is conversions covering the entire 10-bit range
and a smaller voltage resolution per bit. There is a physical limit to how far the external voltage
reference can be lowered before the quantization resolution of the ADC is exceeded and accuracy
starts to be affected. “Analog-to-Digital Converter” on page 1012 provides detailed information on the
tradeoffs between voltage reference and conversion accuracy.

13.2.5 Differential Sampling
In addition to traditional single-ended sampling, the ADC module supports differential sampling of
two analog input channels. To enable differential sampling, software must set the Dn bit in the
ADCSSCTL0n register in a step's configuration nibble.

When a sequence step is configured for differential sampling, the input pair to sample must be
configured in theADCSSMUXn register. Differential pair 0 samples analog inputs 0 and 1; differential
pair 1 samples analog inputs 2 and 3; and so on (see Table 13-2 on page 458). The ADC does not
support other differential pairings such as analog input 0 with analog input 3.

Table 13-2. Differential Sampling Pairs

Analog InputsDifferential Pair

0 and 10

2 and 31

4 and 52

6 and 73

8 and 94

February 24, 2009458
Preliminary

Analog-to-Digital Converter (ADC)

Analog InputsDifferential Pair

10 and 115

12 and 136

14 and 157

The voltage sampled in differential mode is the difference between the odd and even channels:

∆V (differential voltage) = VIN_EVEN (even channels) – VIN_ODD (odd channels), therefore:

■ If ∆V = 0, then the conversion result = 0x1FF

■ If ∆V > 0, then the conversion result > 0x1FF (range is 0x1FF–0x3FF)

■ If ∆V < 0, then the conversion result < 0x1FF (range is 0–0x1FF)

The differential pairs assign polarities to the analog inputs: the even-numbered input is always
positive, and the odd-numbered input is always negative. In order for a valid conversion result to
appear, the negative input must be in the range of ± 1.5 V of the positive input. If an analog input
is greater than 3 V or less than 0 V (the valid range for analog inputs), the input voltage is clipped,
meaning it appears as either 3 V or 0 V, respectively, to the ADC.

Figure 13-5 on page 459 shows an example of the negative input centered at 1.5 V. In this
configuration, the differential range spans from -1.5 V to 1.5 V. Figure 13-6 on page 460 shows an
example where the negative input is centered at -0.75 V, meaning inputs on the positive input
saturate past a differential voltage of -0.75 V since the input voltage is less than 0 V. Figure
13-7 on page 460 shows an example of the negative input centered at 2.25 V, where inputs on the
positive channel saturate past a differential voltage of 0.75 V since the input voltage would be greater
than 3 V.

Figure 13-5. Differential Sampling Range, VIN_ODD = 1.5 V

0 V 1.5 V 3.0 V
-1.5 V 0 V 1.5 V

VIN_EVEN

V
VIN_ODD = 1.5 V

0x3FF

0x1FF

ADC Conversion Result

- Input Saturation

459February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 13-6. Differential Sampling Range, VIN_ODD = 0.75 V

ADC Conversion Result

0x3FF

0x1FF

0x0FF

0 V +0.75 V +2.25 V VIN_EVEN

V-1.5 V -0.75 V +1.5 V

- Input Saturation

Figure 13-7. Differential Sampling Range, VIN_ODD = 2.25 V

ADC Conversion Result

0x3FF

0x2FF

0x1FF

0.75 V 2.25 V 3.0 V VIN_EVEN

V-1.5 V 0.75 V 1.5 V

- Input Saturation

February 24, 2009460
Preliminary

Analog-to-Digital Converter (ADC)

13.2.6 Internal Temperature Sensor
The temperature sensor's primary purpose is to notify the system that the internal temperature is
too high or low for reliable operation.

The temperature sensor does not have a separate enable, because it also contains the bandgap
reference and must always be enabled. The reference is supplied to other analog modules; not just
the ADC.

The internal temperature sensor provides an analog temperature reading as well as a reference
voltage. The voltage at the output terminal SENSO is given by the following equation:

SENSO = 2.7 - ((T + 55) / 75)

This relation is shown in Figure 13-8 on page 461.

Figure 13-8. Internal Temperature Sensor Characteristic

Sensor

Sensor = 2.7 V – (T+55)
75

2.7 V

1.633 V

0.3 V

Temp125° C-55° C 25° C

13.2.7 Digital Comparator Unit
An ADC is commonly used to sample an external signal and to monitor its value to ensure that it
remains in a given range. To automate this monitoring procedure and reduce the amount of processor
overhead that is required, atwothreefourfivesixseveneight dual-level value digital comparators are
provided. Conversions from the ADC that are sent to the digital comparators are compared against
the user programmable limits in the ADC Digital Comparator Range (ADCDCCMPn) registers. If
the observed signal moves out of the acceptable range, a processor interrupt can be generated
and/or a trigger can be sent to the PWM module. The digital comparators four operational modes
(Once, Always, Hysteresis Once, Hysteresis Always) can be applied to three separate regions (low
band, mid band, high band) as defined by the user.

461February 24, 2009
Preliminary

LM3S9B92 Microcontroller

13.2.7.1 Output Functions
ADC conversions can either be stored in the ADC Sample Sequence FIFOs or compared using the
digital comparator resources as defined by the SnDCOP bits in the ADC Sample Sequence n
Operation (ADCSSOPn) register. These selected ADC conversions are used by their respective
digital comparator to monitor the external signal. Each comparator has two possible output functions:
processor interrupts and triggers.

Each function has its own state machine to track the monitored signal. Even though the interrupt
and trigger functions can be enabled individually or both at the same time, the same conversion
data is used by each function to determine if the right conditions have been met to assert the
associated output.

Interrupts

The digital comparator interrupt function is enabled by setting the CIE bit in the ADC Digital
Comparator Control (ADCDCCTLn) register. This bit enables the interrupt function state machine
to start monitoring the incoming ADC conversions. When the appropriate set of conditions is met,
and the DCONSSx bit is set in the ADCIM register, an interrupt is sent to the interrupt controller.

Triggers

The digital comparator trigger function is enabled by setting the CTE bit in theADCDCCTLn register.
This bit enables the trigger function state machine to start monitoring the incoming ADC conversions.
When the appropriate set of conditions is met, the corresponding digital comparator trigger to the
PWM module is asserted

13.2.7.2 Operational Modes
Four operational modes are provided to support a broad range of applications and multiple possible
signaling requirements: Always, Once, Hysteresis Always, and Hysteresis Once. The operational
mode is selected using the CIM or CTM field in the ADCDCCTLn register.

Always Mode

In the Always operational mode, the associated interrupt or trigger is asserted whenever the ADC
conversion value meets its comparison criteria. The result is a string of assertions on the interrupt
or trigger while the conversions are within the appropriate range.

Once Mode

In the Once operational mode, the associated interrupt or trigger is asserted whenever the ADC
conversion value meets its comparison criteria, and the previous ADC conversion value did not.
The result is a single assertion of the interrupt or trigger when the conversions are within the
appropriate range.

Hysteresis-Always Mode

The Hysteresis-Always operational mode can only be used in conjunction with the low-band or
high-band regions because the mid-band region must be crossed and the opposite region entered
to clear the hysteresis condition. In the Hysteresis-Always mode, the associated interrupt or trigger
is asserted in the following cases: 1) the ADC conversion value meets its comparison criteria or 2)
a previous ADC conversion value has met the comparison criteria, and the hysteresis condition has
not been cleared by entering the opposite region. The result is a string of assertions on the interrupt
or trigger that continue until the opposite region is entered.

February 24, 2009462
Preliminary

Analog-to-Digital Converter (ADC)

Hysteresis-Once Mode

The Hysteresis-Once operational mode can only be used in conjunction with the low-band or
high-band regions because the mid-band region must be crossed and the opposite region entered
to clear the hysteresis condition. In the Hysteresis-Once mode, the associated interrupt or trigger
is asserted only when the ADC conversion value meets its comparison criteria, the hysteresis
condition is clear, and the previous ADC conversion did not meet the comparison criteria. The result
is a single assertion on the interrupt or trigger.

13.2.7.3 Function Ranges
The two comparison values, COMP0 and COMP1, in the ADC Digital Comparator Range
(ADCDCCMPn) register effectively break the conversion area into three distinct regions. These
regions are referred to as the low-band (less than or equal to COMP0), mid-band (greater than COMP0
but less than or equal to COMP1), and high-band (greater than COMP1) regions. COMP0 and COMP1
may be programmed to the same value, effectively creating two regions, but COMP1 must always
be greater than or equal to the value of COMP0. A COMP1 value that is less than COMP0 generates
unpredictable results.

Low-Band Operation

To operate in the low-band region, either the CIC field or the CTC field in the ADCDCCTLn register
must be programmed to 0x0. This setting causes interrupts or triggers to be generated in the low-band
region as defined by the programmed operational mode. An example of the state of the
interrupt/trigger signal in the low-band region for each of the operational modes is shown in Figure
13-9 on page 463. Note that a "0" in a column following the operational mode name (Always, Once,
Hysteresis Always, and Hysteresis Once) indicates that the interrupt or trigger signal is de-asserted
and a "1" indicates that the signal is asserted.

Figure 13-9. Low-Band Operation (CIC=0x0 and/or CTC=0x0)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

Always –

Once –

Hysteresis Always –

Hysteresis Once –

COMP0

COMP1

463February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Mid-Band Operation

To operate in the mid-band region, either the CIC field or the CTC field in the ADCDCCTLn register
must be programmed to 0x1. This setting causes interrupts or triggers to be generated in themid-band
region according the operation mode. Only the Always and Once operational modes are available
in the mid-band region. An example of the state of the interrupt/trigger signal in the mid-band region
for each of the allowed operational modes is shown in Figure 13-10 on page 464. Note that a "0" in
a column following the operational mode name (Always or Once) indicates that the interrupt or
trigger signal is de-asserted and a "1" indicates that the signal is asserted.

Figure 13-10. Mid-Band Operation (CIC=0x1 and/or CTC=0x1)

0

0

-

-

0

0

-

-

1

1

-

-

1

0

-

-

0

0

-

-

0

0

-

-

0

0

-

-

1

1

-

-

1

0

-

-

1

0

-

-

0

0

-

-

0

0

-

-

1

1

-

-

1

0

-

-

0

0

-

-

0

0

-

-

Always –

Once –

Hysteresis Always –

Hysteresis Once –

COMP0

COMP1

High-Band Operation

To operate in the high-band region, either the CIC field or the CTC field in the ADCDCCTLn register
must be programmed to 0x3. This setting causes interrupts or triggers to be generated in the
high-band region according the operation mode. An example of the state of the interrupt/trigger
signal in the high-band region for each of the allowed operational modes is shown in Figure
13-11 on page 465. Note that a "0" in a column following the operational mode name (Always, Once,
Hysteresis Always, and Hysteresis Once) indicates that the interrupt or trigger signal is de-asserted
and a "1" indicates that the signal is asserted.

February 24, 2009464
Preliminary

Analog-to-Digital Converter (ADC)

Figure 13-11. High-Band Operation (CIC=0x3 and/or CTC=0x3)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

1

0

Always –

Once –

Hysteresis Always –

Hysteresis Once –

COMP0

COMP1

13.3 Initialization and Configuration
In order for the ADC module to be used, the PLL must be enabled and programmed to a supported
crystal frequency in the RCC register (see page 113). Using unsupported frequencies can cause
faulty operation in the ADC module.

13.3.1 Module Initialization
Initialization of the ADC module is a simple process with very few steps: enabling the clock to the
ADC, disabling the analog isolation circuit associated with all inputs that are to be used, and
reconfiguring the sample sequencer priorities (if needed).

The initialization sequence for the ADC is as follows:

1. Enable the ADC clock by writing a value of 0x0001.0000 to the RCGC0 register (see page 158).

2. Enable the clock to the appropriate GPIO module via the RCGC2 register (see page 179). To
find out which GPIO port to enable, refer to Table 25-5 on page 990.

3. Disable the analog isolation circuit for all ADC input pins that are to be used by writing a 1 to
the appropriate bits of the GPIOAMSEL register (see page 326) in the associated GPIO block.

4. If required by the application, reconfigure the sample sequencer priorities in the ADCSSPRI
register. The default configuration has Sample Sequencer 0 with the highest priority and Sample
Sequencer 3 as the lowest priority.

13.3.2 Sample Sequencer Configuration
Configuration of the sample sequencers is slightly more complex than the module initialization
because each sample sequencer is completely programmable.

465February 24, 2009
Preliminary

LM3S9B92 Microcontroller

The configuration for each sample sequencer should be as follows:

1. Ensure that the sample sequencer is disabled by clearing the corresponding ASENn bit in the
ADCACTSS register. Programming of the sample sequencers is allowed without having them
enabled. Disabling the sequencer during programming prevents erroneous execution if a trigger
event were to occur during the configuration process.

2. Configure the trigger event for the sample sequencer in the ADCEMUX register.

3. For each sample in the sample sequence, configure the corresponding input source in the
ADCSSMUXn register.

4. For each sample in the sample sequence, configure the sample control bits in the corresponding
nibble in the ADCSSCTLn register. When programming the last nibble, ensure that the END bit
is set. Failure to set the END bit causes unpredictable behavior.

5. If interrupts are to be used, set the corresponding MASK bit in the ADCIM register.

6. Enable the sample sequencer logic by setting the corresponding ASENn bit in the ADCACTSS
register.

13.4 Register Map
Table 13-3 on page 466 lists the ADC registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that ADC module's base address of:

■ ADC0: 0x4003.8000
■ ADC1: 0x4003.9000

Note that the ADC module clock must be enabled before the registers can be programmed (see
page 158).

Table 13-3. ADC Register Map

See
pageDescriptionResetTypeNameOffset

469ADC Active Sample Sequencer0x0000.0000R/WADCACTSS0x000

470ADC Raw Interrupt Status0x0000.0000ROADCRIS0x004

472ADC Interrupt Mask0x0000.0000R/WADCIM0x008

474ADC Interrupt Status and Clear0x0000.0000R/W1CADCISC0x00C

476ADC Overflow Status0x0000.0000R/W1CADCOSTAT0x010

477ADC Event Multiplexer Select0x0000.0000R/WADCEMUX0x014

481ADC Underflow Status0x0000.0000R/W1CADCUSTAT0x018

482ADC Sample Sequencer Priority0x0000.3210R/WADCSSPRI0x020

484ADC Processor Sample Sequence Initiate-WOADCPSSI0x028

486ADC Sample Averaging Control0x0000.0000R/WADCSAC0x030

487ADC Digital Comparator Interrupt Status and Clear0x0000.0000R/W1CADCDCISC0x034

489ADC Control0x0000.0000R/WADCCTL0x038

February 24, 2009466
Preliminary

Analog-to-Digital Converter (ADC)

See
pageDescriptionResetTypeNameOffset

490ADC Sample Sequence Input Multiplexer Select 00x0000.0000R/WADCSSMUX00x040

492ADC Sample Sequence Control 00x0000.0000R/WADCSSCTL00x044

495ADC Sample Sequence Result FIFO 00x0000.0000ROADCSSFIFO00x048

496ADC Sample Sequence FIFO 0 Status0x0000.0100ROADCSSFSTAT00x04C

498ADC Sample Sequence 0 Operation0x0000.0000R/WADCSSOP00x050

500ADC Sample Sequence 0 Digital Comparator Select0x0000.0000R/WADCSSDC00x054

502ADC Sample Sequence Input Multiplexer Select 10x0000.0000R/WADCSSMUX10x060

503ADC Sample Sequence Control 10x0000.0000R/WADCSSCTL10x064

495ADC Sample Sequence Result FIFO 10x0000.0000ROADCSSFIFO10x068

496ADC Sample Sequence FIFO 1 Status0x0000.0100ROADCSSFSTAT10x06C

505ADC Sample Sequence 1 Operation0x0000.0000R/WADCSSOP10x070

506ADC Sample Sequence 1 Digital Comparator Select0x0000.0000R/WADCSSDC10x074

502ADC Sample Sequence Input Multiplexer Select 20x0000.0000R/WADCSSMUX20x080

503ADC Sample Sequence Control 20x0000.0000R/WADCSSCTL20x084

495ADC Sample Sequence Result FIFO 20x0000.0000ROADCSSFIFO20x088

496ADC Sample Sequence FIFO 2 Status0x0000.0100ROADCSSFSTAT20x08C

505ADC Sample Sequence 2 Operation0x0000.0000R/WADCSSOP20x090

506ADC Sample Sequence 2 Digital Comparator Select0x0000.0000R/WADCSSDC20x094

508ADC Sample Sequence Input Multiplexer Select 30x0000.0000R/WADCSSMUX30x0A0

509ADC Sample Sequence Control 30x0000.0002R/WADCSSCTL30x0A4

495ADC Sample Sequence Result FIFO 30x0000.0000ROADCSSFIFO30x0A8

496ADC Sample Sequence FIFO 3 Status0x0000.0100ROADCSSFSTAT30x0AC

510ADC Sample Sequence 3 Operation0x0000.0000R/WADCSSOP30x0B0

511ADC Sample Sequence 3 Digital Comparator Select0x0000.0000R/WADCSSDC30x0B4

512ADC Digital Comparator Reset Initial Conditions0x0000.0000R/WADCDCRIC0xD00

516ADC Digital Comparator Control 00x0000.0000R/WADCDCCTL00xE00

516ADC Digital Comparator Control 10x0000.0000R/WADCDCCTL10xE04

516ADC Digital Comparator Control 20x0000.0000R/WADCDCCTL20xE08

516ADC Digital Comparator Control 30x0000.0000R/WADCDCCTL30xE0C

516ADC Digital Comparator Control 40x0000.0000R/WADCDCCTL40xE10

516ADC Digital Comparator Control 50x0000.0000R/WADCDCCTL50xE14

516ADC Digital Comparator Control 60x0000.0000R/WADCDCCTL60xE18

516ADC Digital Comparator Control 70x0000.0000R/WADCDCCTL70xE1C

467February 24, 2009
Preliminary

LM3S9B92 Microcontroller

See
pageDescriptionResetTypeNameOffset

519ADC Digital Comparator Range 00x0000.0000R/WADCDCCMP00xE40

519ADC Digital Comparator Range 10x0000.0000R/WADCDCCMP10xE44

519ADC Digital Comparator Range 20x0000.0000R/WADCDCCMP20xE48

519ADC Digital Comparator Range 30x0000.0000R/WADCDCCMP30xE4C

519ADC Digital Comparator Range 40x0000.0000R/WADCDCCMP40xE50

519ADC Digital Comparator Range 50x0000.0000R/WADCDCCMP50xE54

519ADC Digital Comparator Range 60x0000.0000R/WADCDCCMP60xE58

519ADC Digital Comparator Range 70x0000.0000R/WADCDCCMP70xE5C

13.5 Register Descriptions
The remainder of this section lists and describes the ADC registers, in numerical order by address
offset.

February 24, 2009468
Preliminary

Analog-to-Digital Converter (ADC)

Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000
This register controls the activation of the sample sequencers. Each sample sequencer can be
enabled or disabled independently.

ADC Active Sample Sequencer (ADCACTSS)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ASEN0ASEN1ASEN2ASEN3Reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROReserved31:4

ADC SS3 Enable

When set, this bit enables Sample Sequencer 3.

When clear, this bit disables Sample Sequencer 3.

0R/WASEN33

ADC SS2 Enable

When set, this bit enables Sample Sequencer 2.

When clear, this bit disables Sample Sequencer 2.

0R/WASEN22

ADC SS1 Enable

When set, this bit enables Sample Sequencer 1.

When clear, this bit disables Sample Sequencer 1.

0R/WASEN11

ADC SS0 Enable

When set, this bit enables Sample Sequencer 0.

When clear, this bit disables Sample Sequencer 0.

0R/WASEN00

469February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004
This register shows the status of the raw interrupt signal of each sample sequencer. These bits may
be polled by software to look for interrupt conditions without sending the interrupts to the interrupt
controller.

ADC Raw Interrupt Status (ADCRIS)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

INRDCReserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

INR0INR1INR2INR3Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROReserved31:17

Digital Comparator Raw Interrupt Status

This bit is set when at least one bit in the ADCDCISC register is set,
meaning that a digital comparator interrupt has occurred.

This bit is clear when all bits in the ADCDCISC register are clear.

0ROINRDC16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROReserved15:4

SS3 Raw Interrupt Status

This bit is set when a sample has completed conversion and the
respective ADCSSCTL3 IEn bit is set, enabling a raw interrupt.

This bit is cleared by writing a 1 to the IN3 bit in the ADCISC register.

0ROINR33

SS2 Raw Interrupt Status

This bit is set when a sample has completed conversion and the
respective ADCSSCTL2 IEn bit is set, enabling a raw interrupt.

This bit is cleared by writing a 1 to the IN2 bit in the ADCISC register.

0ROINR22

SS1 Raw Interrupt Status

This bit is set when a sample has completed conversion and the
respective ADCSSCTL1 IEn bit is set, enabling a raw interrupt.

This bit is cleared by writing a 1 to the IN1 bit in the ADCISC register.

0ROINR11

February 24, 2009470
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

SS0 Raw Interrupt Status

This bit is set when a sample has completed conversion and the
respective ADCSSCTL0 IEn bit is set, enabling a raw interrupt.

This bit is cleared by writing a 1 to the IN0 bit in the ADCISC register.

0ROINR00

471February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: ADC Interrupt Mask (ADCIM), offset 0x008
This register controls whether the sample sequencer and digital comparator raw interrupt signals
are sent to the interrupt controller. Each raw interrupt signal can be masked independently. Only a
single DCONSSn bit should be set at any given time. Setting more than one of these bits results in
the INRDC bit from the ADCRIS register being masked, and no interrupt is generated on any of the
sample sequencer interrupt lines.

ADC Interrupt Mask (ADCIM)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

DCONSS0DCONSS1DCONSS2DCONSS3Reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MASK0MASK1MASK2MASK3Reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROReserved31:20

Digital Comparator Interrupt on SS3

When this bit is set, the raw interrupt signal from the digital comparators
(INRDC bit in the ADCRIS register) is sent to the interrupt controller on
the SS3 interrupt line.

When this bit is clear, the status of the digital comparators does not
affect the SS3 interrupt status.

0R/WDCONSS319

Digital Comparator Interrupt on SS2

When this bit is set, the raw interrupt signal from the digital comparators
(INRDC bit in the ADCRIS register) is sent to the interrupt controller on
the SS2 interrupt line.

When this bit is clear, the status of the digital comparators does not
affect the SS2 interrupt status.

0R/WDCONSS218

Digital Comparator Interrupt on SS1

When this bit is set, the raw interrupt signal from the digital comparators
(INRDC bit in the ADCRIS register) is sent to the interrupt controller on
the SS1 interrupt line.

When this bit is clear, the status of the digital comparators does not
affect the SS1 interrupt status.

0R/WDCONSS117

February 24, 2009472
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

Digital Comparator Interrupt on SS0

When this bit is set, the raw interrupt signal from the digital comparators
(INRDC bit in the ADCRIS register) is sent to the interrupt controller on
the SS0 interrupt line.

When this bit is clear, the status of the digital comparators does not
affect the SS0 interrupt status.

0R/WDCONSS016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROReserved15:4

SS3 Interrupt Mask

When this bit is set, the raw interrupt signal from Sample Sequencer 3
(ADCRIS register INR3 bit) is sent to the interrupt controller.

When this bit is clear, the status of Sample Sequencer 3 does not affect
the SS3 interrupt status.

0R/WMASK33

SS2 Interrupt Mask

When this bit is set, the raw interrupt signal from Sample Sequencer 2
(ADCRIS register INR2 bit) is sent to the interrupt controller.

When this bit is clear, the status of Sample Sequencer 2 does not affect
the SS2 interrupt status.

0R/WMASK22

SS1 Interrupt Mask

When this bit is set, the raw interrupt signal from Sample Sequencer 1
(ADCRIS register INR1 bit) is sent to the interrupt controller.

When this bit is clear, the status of Sample Sequencer 1 does not affect
the SS1 interrupt status.

0R/WMASK11

SS0 Interrupt Mask

When this bit is set, the raw interrupt signal from Sample Sequencer 0
(ADCRIS register INR0 bit) is sent to the interrupt controller.

When this bit is clear, the status of Sample Sequencer 0 does not affect
the SS0 interrupt status.

0R/WMASK00

473February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C
This register provides the mechanism for clearing sample sequencer interrupt conditions and shows
the status of interrupts generated by the sample sequencers and the digital comparators which have
been sent to the interrupt controller. When read, each bit field is the logical AND of the respective
INR and MASK bits. Sample sequencer interrupts are cleared by writing a 1 to the corresponding
bit position. Digital comparator interrupts are cleared by writing a 1 to the appropriate bits in the
ADCDCISC register. If software is polling the ADCRIS instead of generating interrupts, the sample
sequence INRn bits are still cleared via the ADCISC register, even if the INn bit is not set.

ADC Interrupt Status and Clear (ADCISC)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x00C
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

DCINSS0DCINSS1DCINSS2DCINSS3Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IN0IN1IN2IN3Reserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROReserved31:20

Digital Comparator Interrupt Status on SS3

This bit is set when both the INRDC bit in the ADCRIS register and the
DCONSS3 bit in the ADCIM register are set, providing a level-base
interrupt to the interrupt controller.

This bit is cleared by writing a 1 to the appropriate location in the
ADCDCISC register. Clearing the ADCDCISC register clears the INRDC
bit.

0RODCINSS319

Digital Comparator Interrupt Status on SS2

This bit is set when both the INRDC bit in the ADCRIS register and the
DCONSS2 bit in the ADCIM register are set, providing a level-base
interrupt to the interrupt controller.

This bit is cleared by writing a 1 to the appropriate location in the
ADCDCISC register. Clearing the ADCDCISC register clears the INRDC
bit.

0RODCINSS218

Digital Comparator Interrupt Status on SS1

This bit is set when both the INRDC bit in the ADCRIS register and the
DCONSS1 bit in the ADCIM register are set, providing a level-base
interrupt to the interrupt controller.

This bit is cleared by writing a 1 to the appropriate location in the
ADCDCISC register. Clearing the ADCDCISC register clears the INRDC
bit.

0RODCINSS117

February 24, 2009474
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

Digital Comparator Interrupt Status on SS0

This bit is set when both the INRDC bit in the ADCRIS register and the
DCONSS0 bit in the ADCIM register are set, providing a level-base
interrupt to the interrupt controller.

This bit is cleared by writing a 1 to the appropriate location in the
ADCDCISC register. Clearing the ADCDCISC register clears the INRDC
bit.

0RODCINSS016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROReserved15:4

SS3 Interrupt Status and Clear

This bit is set when both the INR3 bit in the ADCRIS register and the
MASK3 bit in theADCIM register are set, providing a level-based interrupt
to the interrupt controller.

This bit is cleared by writing a 1. Clearing this bit also clears the INR3
bit.

0R/W1CIN33

SS2 Interrupt Status and Clear

This bit is set when both the INR2 bit in the ADCRIS register and the
MASK2 bit in theADCIM register are set, providing a level-based interrupt
to the interrupt controller.

This bit is cleared by writing a 1. Clearing this bit also clears the INR2
bit.

0R/W1CIN22

SS1 Interrupt Status and Clear

This bit is set when both the INR1 bit in the ADCRIS register and the
MASK1 bit in theADCIM register are set, providing a level-based interrupt
to the interrupt controller.

This bit is cleared by writing a 1. Clearing this bit also clears the INR1
bit.

0R/W1CIN11

SS0 Interrupt Status and Clear

This bit is set when both the INR0 bit in the ADCRIS register and the
MASK0 bit in theADCIM register are set, providing a level-based interrupt
to the interrupt controller.

This bit is cleared by writing a 1. Clearing this bit also clears the INR0
bit.

0R/W1CIN00

475February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010
This register indicates overflow conditions in the sample sequencer FIFOs. Once the overflow
condition has been handled by software, the condition can be cleared by writing a 1 to the
corresponding bit position.

ADC Overflow Status (ADCOSTAT)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x010
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

OV0OV1OV2OV3Reserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROReserved31:4

SS3 FIFO Overflow

This bit is set when the FIFO for Sample Sequencer 3 has hit an overflow
condition, meaning that the FIFO is full and a write was requested. When
an overflow is detected, the most recent write is dropped.

This bit is cleared by writing a 1.

0R/W1COV33

SS2 FIFO Overflow

This bit is set when the FIFO for Sample Sequencer 2 has hit an overflow
condition, meaning that the FIFO is full and a write was requested. When
an overflow is detected, the most recent write is dropped.

This bit is cleared by writing a 1.

0R/W1COV22

SS1 FIFO Overflow

This bit is set when the FIFO for Sample Sequencer 1 has hit an overflow
condition, meaning that the FIFO is full and a write was requested. When
an overflow is detected, the most recent write is dropped.

This bit is cleared by writing a 1.

0R/W1COV11

SS0 FIFO Overflow

This bit is set when the FIFO for Sample Sequencer 0 has hit an overflow
condition, meaning that the FIFO is full and a write was requested. When
an overflow is detected, the most recent write is dropped.

This bit is cleared by writing a 1.

0R/W1COV00

February 24, 2009476
Preliminary

Analog-to-Digital Converter (ADC)

Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014
The ADCEMUX selects the event (trigger) that initiates sampling for each sample sequencer. Each
sample sequencer can be configured with a unique trigger source.

ADC Event Multiplexer Select (ADCEMUX)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

EM0EM1EM2EM3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved31:16

SS3 Trigger Select

This field selects the trigger source for Sample Sequencer 3.

The valid configurations for this field are:

EventValue

Processor (default)0x0

Analog Comparator 00x1

Analog Comparator 10x2

Analog Comparator 20x3

External (GPIO PB4)0x4

Note: PB4 can be used to trigger the ADC. However, the
PB4/AIN10 pin cannot be used as both a GPIO
and an analog input.

Timer

In addition, the trigger must be enabled with the TnOTE bit
in the GPTMCTL register (see page 406).

0x5

PWM00x6

PWM10x7

PWM20x8

PWM30x9

Reserved0xA-0xE

Always (continuously sample)0xF

0x0R/WEM315:12

477February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

SS2 Trigger Select

This field selects the trigger source for Sample Sequencer 2.

The valid configurations for this field are:

EventValue

Processor (default)0x0

Analog Comparator 00x1

Analog Comparator 10x2

Analog Comparator 20x3

External (GPIO PB4)0x4

Note: PB4 can be used to trigger the ADC. However, the
PB4/AIN10 pin cannot be used as both a GPIO
and an analog input.

Timer

In addition, the trigger must be enabled with the TnOTE bit
in the GPTMCTL register (see page 406).

0x5

PWM00x6

PWM10x7

PWM20x8

PWM30x9

Reserved0xA-0xE

Always (continuously sample)0xF

0x0R/WEM211:8

February 24, 2009478
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

SS1 Trigger Select

This field selects the trigger source for Sample Sequencer 1.

The valid configurations for this field are:

EventValue

Processor (default)0x0

Analog Comparator 00x1

Analog Comparator 10x2

Analog Comparator 20x3

External (GPIO PB4)0x4

Note: PB4 can be used to trigger the ADC. However, the
PB4/AIN10 pin cannot be used as both a GPIO
and an analog input.

Timer

In addition, the trigger must be enabled with the TnOTE bit
in the GPTMCTL register (see page 406).

0x5

PWM00x6

PWM10x7

PWM20x8

PWM30x9

Reserved0xA-0xE

Always (continuously sample)0xF

0x0R/WEM17:4

479February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

SS0 Trigger Select

This field selects the trigger source for Sample Sequencer 0.

The valid configurations for this field are:

EventValue

Processor (default)0x0

Analog Comparator 00x1

Analog Comparator 10x2

Analog Comparator 20x3

External (GPIO PB4)0x4

Note: PB4 can be used to trigger the ADC. However, the
PB4/AIN10 pin cannot be used as both a GPIO
and an analog input.

Timer

In addition, the trigger must be enabled with the TnOTE bit
in the GPTMCTL register (see page 406).

0x5

PWM00x6

PWM10x7

PWM20x8

PWM30x9

Reserved0xA-0xE

Always (continuously sample)0xF

0x0R/WEM03:0

February 24, 2009480
Preliminary

Analog-to-Digital Converter (ADC)

Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018
This register indicates underflow conditions in the sample sequencer FIFOs. The corresponding
underflow condition is cleared by writing a 1 to the relevant bit position.

ADC Underflow Status (ADCUSTAT)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x018
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

UV0UV1UV2UV3Reserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROReserved31:4

SS3 FIFO Underflow

This bit is set when the FIFO for Sample Sequencer 3 has hit an
underflow condition, meaning that the FIFO is empty and a read was
requested. The problematic read does not move the FIFO pointers, and
0s are returned.

This bit is cleared by writing a 1.

0R/W1CUV33

SS2 FIFO Underflow

This bit is set when the FIFO for Sample Sequencer 2 has hit an
underflow condition, meaning that the FIFO is empty and a read was
requested. The problematic read does not move the FIFO pointers, and
0s are returned.

This bit is cleared by writing a 1.

0R/W1CUV22

SS1 FIFO Underflow

This bit is set when the FIFO for Sample Sequencer 1 has hit an
underflow condition, meaning that the FIFO is empty and a read was
requested. The problematic read does not move the FIFO pointers, and
0s are returned.

This bit is cleared by writing a 1.

0R/W1CUV11

SS0 FIFO Underflow

This bit is set when the FIFO for Sample Sequencer 0 has hit an
underflow condition, meaning that the FIFO is empty and a read was
requested. The problematic read does not move the FIFO pointers, and
0s are returned.

This bit is cleared by writing a 1.

0R/W1CUV00

481February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020
This register sets the priority for each of the sample sequencers. Out of reset, Sequencer 0 has the
highest priority, and Sequencer 3 has the lowest priority. When reconfiguring sequence priorities,
each sequence must have a unique priority for the ADC to operate properly.

ADC Sample Sequencer Priority (ADCSSPRI)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x020
Type R/W, reset 0x0000.3210

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

SS0ReservedSS1ReservedSS2ReservedSS3Reserved

R/WR/WROROR/WR/WROROR/WR/WROROR/WR/WROROType
0000100001001100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.0ROReserved31:14

SS3 Priority

This field contains a binary-encoded value that specifies the priority
encoding of Sample Sequencer 3. A priority encoding of 0x0 is highest
and 0x3 is lowest. The priorities assigned to the sequencers must be
uniquely mapped. The ADC may not operate properly if two or more
fields are equal.

0x3R/WSS313:12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved11:10

SS2 Priority

This field contains a binary-encoded value that specifies the priority
encoding of Sample Sequencer 2. A priority encoding of 0x0 is highest
and 0x3 is lowest. The priorities assigned to the sequencers must be
uniquely mapped. The ADC may not operate properly if two or more
fields are equal.

0x2R/WSS29:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved7:6

SS1 Priority

This field contains a binary-encoded value that specifies the priority
encoding of Sample Sequencer 1. A priority encoding of 0x0 is highest
and 0x3 is lowest. The priorities assigned to the sequencers must be
uniquely mapped. The ADC may not operate properly if two or more
fields are equal.

0x1R/WSS15:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved3:2

February 24, 2009482
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

SS0 Priority

This field contains a binary-encoded value that specifies the priority
encoding of Sample Sequencer 0. A priority encoding of 0x0 is highest
and 0x3 is lowest. The priorities assigned to the sequencers must be
uniquely mapped. The ADC may not operate properly if two or more
fields are equal.

0x0R/WSS01:0

483February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028
This register provides a mechanism for application software to initiate sampling in the sample
sequencers. Sample sequences can be initiated individually or in any combination. When multiple
sequences are triggered simultaneously, the priority encodings in ADCSSPRI dictate execution
order.

This register also provides a means to configure and then initiate concurrent sampling on all ADC
modules. To do this, the first ADC module should be configured. The ADCPSSI register for that
module should then be written. The appropriate SS bits should be set along with the SYNCWAIT bit.
Additional ADC modules should then be configured following the same procedure. Once the final
ADC module is configured, its ADCPSSI register should be written with the appropriate SS bits set
along with the GSYNC bit. All of the ADC modules then begin concurrent sampling according to their
configuration.

ADC Processor Sample Sequence Initiate (ADCPSSI)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x028
Type WO, reset -

16171819202122232425262728293031

ReservedSYNCWAITReservedGSYNC

WOWOWOWOWOWOWOWOWOWOWOR/WWOWOWOR/WType
-----------0---0Reset

0123456789101112131415

SS0SS1SS2SS3Reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
----------------Reset

DescriptionResetTypeNameBit/Field

Global Synchronize

When set, this bit initiates sampling in multiple ADC modules at the
same time. Any ADCmodule that has been initialized by setting an SSn
bit and the SYNCWAIT bit starts sampling once this bit is written.

This bit is cleared once sampling has been initiated.

0R/WGSYNC31

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

-WOReserved30:28

Synchronize Wait

When set, this bit allows the sample sequences to be initiated, but delays
sampling until the GSYNC bit is set.

When this bit is clear, sampling begins when a sample sequence has
been initiated.

0R/WSYNCWAIT27

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

-WOReserved26:4

February 24, 2009484
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

SS3 Initiate

Setting this bit triggers sampling on Sample Sequencer 3, if the
sequencer is enabled in the ADCACTSS register.

Only a write by software is valid; a read of this register returns no
meaningful data.

-WOSS33

SS2 Initiate

Setting this bit triggers sampling on Sample Sequencer 2, if the
sequencer is enabled in the ADCACTSS register.

Only a write by software is valid; a read of this register returns no
meaningful data.

-WOSS22

SS1 Initiate

Setting this bit triggers sampling on Sample Sequencer 1, if the
sequencer is enabled in the ADCACTSS register.

Only a write by software is valid; a read of this register returns no
meaningful data.

-WOSS11

SS0 Initiate

Setting, this bit triggers sampling on Sample Sequencer 0, if the
sequencer is enabled in the ADCACTSS register.

Only a write by software is valid; a read of this register returns no
meaningful data.

-WOSS00

485February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030
This register controls the amount of hardware averaging applied to conversion results. The final
conversion result stored in the FIFO is averaged from 2AVG consecutive ADC samples at the specified
ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If AVG=6,
then 64 consecutive ADC samples are averaged to generate one result in the sequencer FIFO. An
AVG = 7 provides unpredictable results.

ADC Sample Averaging Control (ADCSAC)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x030
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

AVGReserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROReserved31:3

Hardware Averaging Control

Specifies the amount of hardware averaging that will be applied to ADC
samples. The AVG field can be any value between 0 and 6. Entering a
value of 7 creates unpredictable results.

DescriptionValue

No hardware oversampling0x0

2x hardware oversampling0x1

4x hardware oversampling0x2

8x hardware oversampling0x3

16x hardware oversampling0x4

32x hardware oversampling0x5

64x hardware oversampling0x6

Reserved0x7

0x0R/WAVG2:0

February 24, 2009486
Preliminary

Analog-to-Digital Converter (ADC)

Register 11: ADC Digital Comparator Interrupt Status and Clear (ADCDCISC),
offset 0x034
This register provides status and acknowledgement of digital comparator interrupts. One bit is
provided for each comparator.

ADC Digital Comparator Interrupt Status and Clear (ADCDCISC)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x034
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DCINT0DCINT1DCINT2DCINT3DCINT4DCINT5DCINT6DCINT7Reserved

R/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CR/W1CROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROReserved31:8

Digital Comparator 7 Interrupt Status and Clear

This bit is set when Digital Comparator 7 generates an interrupt.

This bit is cleared by writing a 1.

0R/W1CDCINT77

Digital Comparator 6 Interrupt Status and Clear

This bit is set when Digital Comparator 6 generates an interrupt.

This bit is cleared by writing a 1.

0R/W1CDCINT66

Digital Comparator 5 Interrupt Status and Clear

This bit is set when Digital Comparator 5 generates an interrupt.

This bit is cleared by writing a 1.

0R/W1CDCINT55

Digital Comparator 4 Interrupt Status and Clear

This bit is set when Digital Comparator 4 generates an interrupt.

This bit is cleared by writing a 1.

0R/W1CDCINT44

Digital Comparator 3 Interrupt Status and Clear

This bit is set when Digital Comparator 3 generates an interrupt.

This bit is cleared by writing a 1.

0R/W1CDCINT33

Digital Comparator 2 Interrupt Status and Clear

This bit is set when Digital Comparator 2 generates an interrupt.

This bit is cleared by writing a 1.

0R/W1CDCINT22

487February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Digital Comparator 1 Interrupt Status and Clear

This bit is set when Digital Comparator 1 generates an interrupt.

This bit is cleared by writing a 1.

0R/W1CDCINT11

Digital Comparator 0 Interrupt Status and Clear

This bit is set when Digital Comparator 0 generates an interrupt.

This bit is cleared by writing a 1.

0R/W1CDCINT00

February 24, 2009488
Preliminary

Analog-to-Digital Converter (ADC)

Register 12: ADC Control (ADCCTL), offset 0x038
This register selects the voltage reference.

ADC Control (ADCCTL)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x038
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

VREFReserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROReserved31:1

Voltage Reference Select

When set, this bit selects the external VREFA input as the voltage
reference.

When clear, this bit selects the internal reference as the voltage
reference.

0R/WVREF0

489February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 13: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0),
offset 0x040
This register defines the analog input configuration for each sample in a sequence executed with
Sample Sequencer 0. This register is 32 bits wide and contains information for eight possible
samples.

ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x040
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

MUX4MUX5MUX6MUX7

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

MUX0MUX1MUX2MUX3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

8th Sample Input Select

The MUX7 field is used during the eighth sample of a sequence executed
with the sample sequencer. It specifies which of the analog inputs is
sampled for the analog-to-digital conversion. The value set here indicates
the corresponding pin, for example, a value of 0x1 indicates the input
is AIN1.

0x0R/WMUX731:28

7th Sample Input Select

The MUX6 field is used during the seventh sample of a sequence
executed with the sample sequencer. It specifies which of the analog
inputs is sampled for the analog-to-digital conversion.

0x0R/WMUX627:24

6th Sample Input Select

The MUX5 field is used during the sixth sample of a sequence executed
with the sample sequencer. It specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0x0R/WMUX523:20

5th Sample Input Select

The MUX4 field is used during the fifth sample of a sequence executed
with the sample sequencer. It specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0x0R/WMUX419:16

4th Sample Input Select

The MUX3 field is used during the fourth sample of a sequence executed
with the sample sequencer. It specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0x0R/WMUX315:12

3rd Sample Input Select

The MUX2 field is used during the third sample of a sequence executed
with the sample sequencer. It specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0x0R/WMUX211:8

February 24, 2009490
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

2nd Sample Input Select

The MUX1 field is used during the second sample of a sequence
executed with the sample sequencer. It specifies which of the analog
inputs is sampled for the analog-to-digital conversion.

0x0R/WMUX17:4

1st Sample Input Select

The MUX0 field is used during the first sample of a sequence executed
with the sample sequencer. It specifies which of the analog inputs is
sampled for the analog-to-digital conversion.

0x0R/WMUX03:0

491February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 14: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044
This register contains the configuration information for each sample for a sequence executed with
a sample sequencer. When configuring a sample sequence, the END bit must be set for the final
sample, whether it be after the first sample, eighth sample, or any sample in between. This register
is 32 bits wide and contains information for eight possible samples.

ADC Sample Sequence Control 0 (ADCSSCTL0)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x044
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

D4END4IE4TS4D5END5IE5TS5D6END6IE6TS6D7END7IE7TS7

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

8th Sample Temp Sensor Select

When this bit is set, the temperature sensor is read during the eighth
sample of the sample sequence.

When this bit is clear, the input pin specified by the ADCSSMUXn
register is read during the eighth sample of the sample sequence.

0R/WTS731

8th Sample Interrupt Enable

When this bit is set, the raw interrupt signal (INR0 bit) is asserted at the
end of the eighth sample's conversion. If the MASK0 bit in the ADCIM
register is set, the interrupt is promoted to the interrupt controller.

When this bit is clear, the raw interrupt is not asserted to the interrupt
controller.

It is legal to havemultiple samples within a sequence generate interrupts.

0R/WIE730

8th Sample is End of Sequence

When this bit is set, the eighth sample is the last sample of the sequence.
It is possible to end the sequence on any sample position. Samples
defined after the sample containing a set ENDn bit are not requested for
conversion even though the fields may be non-zero.

When this bit is clear, another sample is the sequence is the final sample.
Software must set an ENDn bit somewhere within the sequence.

0R/WEND729

8th Sample Diff Input Select

When this bit is set, the analog input is differentially sampled. The
corresponding ADCSSMUXn nibble must be set to the pair number "i",
where the paired inputs are "2i and 2i+1".

When this bit is clear, the analog inputs are not differentially sampled.

Because the temperature sensor does not have a differential option,
this bit must not be set when the TS7 bit is set.

0R/WD728

February 24, 2009492
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

7th Sample Temp Sensor Select

Same definition as TS7 but used during the seventh sample.

0R/WTS627

7th Sample Interrupt Enable

Same definition as IE7 but used during the seventh sample.

0R/WIE626

7th Sample is End of Sequence

Same definition as END7 but used during the seventh sample.

0R/WEND625

7th Sample Diff Input Select

Same definition as D7 but used during the seventh sample.

0R/WD624

6th Sample Temp Sensor Select

Same definition as TS7 but used during the sixth sample.

0R/WTS523

6th Sample Interrupt Enable

Same definition as IE7 but used during the sixth sample.

0R/WIE522

6th Sample is End of Sequence

Same definition as END7 but used during the sixth sample.

0R/WEND521

6th Sample Diff Input Select

Same definition as D7 but used during the sixth sample.

0R/WD520

5th Sample Temp Sensor Select

Same definition as TS7 but used during the fifth sample.

0R/WTS419

5th Sample Interrupt Enable

Same definition as IE7 but used during the fifth sample.

0R/WIE418

5th Sample is End of Sequence

Same definition as END7 but used during the fifth sample.

0R/WEND417

5th Sample Diff Input Select

Same definition as D7 but used during the fifth sample.

0R/WD416

4th Sample Temp Sensor Select

Same definition as TS7 but used during the fourth sample.

0R/WTS315

4th Sample Interrupt Enable

Same definition as IE7 but used during the fourth sample.

0R/WIE314

4th Sample is End of Sequence

Same definition as END7 but used during the fourth sample.

0R/WEND313

4th Sample Diff Input Select

Same definition as D7 but used during the fourth sample.

0R/WD312

493February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

3rd Sample Temp Sensor Select

Same definition as TS7 but used during the third sample.

0R/WTS211

3rd Sample Interrupt Enable

Same definition as IE7 but used during the third sample.

0R/WIE210

3rd Sample is End of Sequence

Same definition as END7 but used during the third sample.

0R/WEND29

3rd Sample Diff Input Select

Same definition as D7 but used during the third sample.

0R/WD28

2nd Sample Temp Sensor Select

Same definition as TS7 but used during the second sample.

0R/WTS17

2nd Sample Interrupt Enable

Same definition as IE7 but used during the second sample.

0R/WIE16

2nd Sample is End of Sequence

Same definition as END7 but used during the second sample.

0R/WEND15

2nd Sample Diff Input Select

Same definition as D7 but used during the second sample.

0R/WD14

1st Sample Temp Sensor Select

Same definition as TS7 but used during the first sample.

0R/WTS03

1st Sample Interrupt Enable

Same definition as IE7 but used during the first sample.

0R/WIE02

1st Sample is End of Sequence

Same definition as END7 but used during the first sample.

0R/WEND01

1st Sample Diff Input Select

Same definition as D7 but used during the first sample.

0R/WD00

February 24, 2009494
Preliminary

Analog-to-Digital Converter (ADC)

Register 15: ADCSample SequenceResult FIFO 0 (ADCSSFIFO0), offset 0x048
Register 16: ADCSample SequenceResult FIFO 1 (ADCSSFIFO1), offset 0x068
Register 17: ADCSample SequenceResult FIFO 2 (ADCSSFIFO2), offset 0x088
Register 18: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset
0x0A8
This register contains the conversion results for samples collected with the sample sequencer (the
ADCSSFIFO0 register is used for Sample Sequencer 0, ADCSSFIFO1 for Sequencer 1,
ADCSSFIFO2 for Sequencer 2, and ADCSSFIFO3 for Sequencer 3). Reads of this register return
conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the
FIFO is not properly handled by software, overflow and underflow conditions are registered in the
ADCOSTAT and ADCUSTAT registers.

ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x048
Type RO, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAReserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.0ROReserved31:10

Conversion Result Data0x000RODATA9:0

495February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 19: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset
0x04C
Register 20: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset
0x06C
Register 21: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset
0x08C
Register 22: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset
0x0AC
This register provides a window into the sample sequencer, providing full/empty status information
as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty
FIFO. The ADCSSFSTAT0 register provides status on FIFO0, which has 8 entries; ADCSSFSTAT1
on FIFO1, which has 4 entries;ADCSSFSTAT2 on FIFO2, which has 4 entries; andADCSSFSTAT3
on FIFO3 which has a single entry.

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x04C
Type RO, reset 0x0000.0100

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TPTRHPTREMPTYReservedFULLReserved

ROROROROROROROROROROROROROROROROType
0000000010000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.0ROReserved31:13

FIFO Full

When this bit is set, the FIFO is currently full.

When this bit is clear, the FIFO is not currently full.

0ROFULL12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved11:9

FIFO Empty

When this bit is set, the FIFO is currently empty.

When this bit is clear, the FIFO is not currently empty.

1ROEMPTY8

FIFO Head Pointer

This field contains the current "head" pointer index for the FIFO, that is,
the next entry to be written.

0x0ROHPTR7:4

February 24, 2009496
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

FIFO Tail Pointer

This field contains the current "tail" pointer index for the FIFO, that is,
the next entry to be read.

0x0ROTPTR3:0

497February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 23: ADC Sample Sequence 0 Operation (ADCSSOP0), offset 0x050
This register determines whether the sample from the given conversion on Sample Sequence 0 is
saved in the Sample Sequence FIFO0 or sent to the digital comparator unit.

ADC Sample Sequence 0 Operation (ADCSSOP0)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x050
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

S4DCOPReservedS5DCOPReservedS6DCOPReservedS7DCOPReserved

R/WROROROR/WROROROR/WROROROR/WROROROType
0000000000000000Reset

0123456789101112131415

S0DCOPReservedS1DCOPReservedS2DCOPReservedS3DCOPReserved

R/WROROROR/WROROROR/WROROROR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved31:29

Sample 7 Digital Comparator Operation

When this bit is set, the eighth sample is sent to the digital comparator
unit specified by the S7DCSEL bit in the ADCSSDC0 register, and the
value is not written to the FIFO.

When this bit is clear, the eighth sample is saved in Sample Sequence
FIFO0.

0R/WS7DCOP28

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved27:25

Sample 6 Digital Comparator Operation

Same definition as S7DCOP but used during the seventh sample.

0R/WS6DCOP24

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved23:21

Sample 5 Digital Comparator Operation

Same definition as S7DCOP but used during the sixth sample.

0R/WS5DCOP20

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved19:17

Sample 4 Digital Comparator Operation

Same definition as S7DCOP but used during the fifth sample.

0R/WS4DCOP16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved15:13

February 24, 2009498
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

Sample 3 Digital Comparator Operation

Same definition as S7DCOP but used during the fourth sample.

0R/WS3DCOP12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved11:9

Sample 2 Digital Comparator Operation

Same definition as S7DCOP but used during the third sample.

0R/WS2DCOP8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved7:5

Sample 1 Digital Comparator Operation

Same definition as S7DCOP but used during the second sample.

0R/WS1DCOP4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved3:1

Sample 0 Digital Comparator Operation

Same definition as S7DCOP but used during the first sample.

0R/WS0DCOP0

499February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 24: ADCSample Sequence 0 Digital Comparator Select (ADCSSDC0),
offset 0x054
This register determines which digital comparator receives the sample from the given conversion
on Sample Sequence 0, if the corresponding SnDCOP bit in the ADCSSOP0 register is set.

ADC Sample Sequence 0 Digital Comparator Select (ADCSSDC0)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x054
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

S4DCSELS5DCSELS6DCSELS7DCSEL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

S0DCSELS1DCSELS2DCSELS3DCSEL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Sample 7 Digital Comparator Select

When the S7DCOP bit in the ADCSSOP0 register is set, this field
indicates which digital comparator unit (and its associated set of control
registers) receives the eighth sample from Sample Sequencer 0.

Note: Values not listed are reserved.

DescriptionValue

Digital Comparator Unit 0 (ADCDCCMP0 and ADCCCTL0)0x0

Digital Comparator Unit 1 (ADCDCCMP1 and ADCCCTL1)0x1

Digital Comparator Unit 2 (ADCDCCMP2 and ADCCCTL2)0x2

Digital Comparator Unit 3 (ADCDCCMP3 and ADCCCTL3)0x3

Digital Comparator Unit 4 (ADCDCCMP4 and ADCCCTL4)0x4

Digital Comparator Unit 5 (ADCDCCMP5 and ADCCCTL5)0x5

Digital Comparator Unit 6 (ADCDCCMP6 and ADCCCTL6)0x6

Digital Comparator Unit 7 (ADCDCCMP7 and ADCCCTL7)0x7

0x0R/WS7DCSEL31:28

Sample 6 Digital Comparator Select

This field has the same encodings as S7DCSEL but is used during the
seventh sample.

0x0R/WS6DCSEL27:24

Sample 5 Digital Comparator Select

This field has the same encodings as S7DCSEL but is used during the
sixth sample.

0x0R/WS5DCSEL23:20

Sample 4 Digital Comparator Select

This field has the same encodings as S7DCSEL but is used during the
fifth sample.

0x0R/WS4DCSEL19:16

February 24, 2009500
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

Sample 3 Digital Comparator Select

This field has the same encodings as S7DCSEL but is used during the
fourth sample.

0x0R/WS3DCSEL15:12

Sample 2 Digital Comparator Select

This field has the same encodings as S7DCSEL but is used during the
third sample.

0x0R/WS2DCSEL11:8

Sample 1 Digital Comparator Select

This field has the same encodings as S7DCSEL but is used during the
second sample.

0x0R/WS1DCSEL7:4

Sample 0 Digital Comparator Select

This field has the same encodings as S7DCSEL but is used during the
first sample.

0x0R/WS0DCSEL3:0

501February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 25: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1),
offset 0x060
Register 26: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2),
offset 0x080
This register defines the analog input configuration for each sample in a sequence executed with
Sample Sequencer 1 or 2. These registers are 16 bits wide and contain information for four possible
samples. See theADCSSMUX0 register on page 490 for detailed bit descriptions. TheADCSSMUX1
register affects Sample Sequencer 1 and the ADCSSMUX2 register affects Sample Sequencer 2.

ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x060
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MUX0MUX1MUX2MUX3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROReserved31:16

4th Sample Input Select0x0R/WMUX315:12

3rd Sample Input Select0x0R/WMUX211:8

2nd Sample Input Select0x0R/WMUX17:4

1st Sample Input Select0x0R/WMUX03:0

February 24, 2009502
Preliminary

Analog-to-Digital Converter (ADC)

Register 27: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064
Register 28: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084
These registers contain the configuration information for each sample for a sequence executed with
Sample Sequencer 1 or 2. When configuring a sample sequence, the END bit must be set for the
final sample, whether it be after the first sample, fourth sample, or any sample in between. These
registers are 16-bits wide and contain information for four possible samples. See the ADCSSCTL0
register on page 492 for detailed bit descriptions. The ADCSSCTL1 register configures Sample
Sequencer 1 and the ADCSSCTL2 register configures Sample Sequencer 2.

ADC Sample Sequence Control 1 (ADCSSCTL1)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x064
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROReserved31:16

4th Sample Temp Sensor Select

Same definition as TS7 but used during the fourth sample.

0R/WTS315

4th Sample Interrupt Enable

Same definition as IE7 but used during the fourth sample.

0R/WIE314

4th Sample is End of Sequence

Same definition as END7 but used during the fourth sample.

0R/WEND313

4th Sample Diff Input Select

Same definition as D7 but used during the fourth sample.

0R/WD312

3rd Sample Temp Sensor Select

Same definition as TS7 but used during the third sample.

0R/WTS211

3rd Sample Interrupt Enable

Same definition as IE7 but used during the third sample.

0R/WIE210

3rd Sample is End of Sequence

Same definition as END7 but used during the third sample.

0R/WEND29

3rd Sample Diff Input Select

Same definition as D7 but used during the third sample.

0R/WD28

503February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

2nd Sample Temp Sensor Select

Same definition as TS7 but used during the second sample.

0R/WTS17

2nd Sample Interrupt Enable

Same definition as IE7 but used during the second sample.

0R/WIE16

2nd Sample is End of Sequence

Same definition as END7 but used during the second sample.

0R/WEND15

2nd Sample Diff Input Select

Same definition as D7 but used during the second sample.

0R/WD14

1st Sample Temp Sensor Select

Same definition as TS7 but used during the first sample.

0R/WTS03

1st Sample Interrupt Enable

Same definition as IE7 but used during the first sample.

0R/WIE02

1st Sample is End of Sequence

Same definition as END7 but used during the first sample.

0R/WEND01

1st Sample Diff Input Select

Same definition as D7 but used during the first sample.

0R/WD00

February 24, 2009504
Preliminary

Analog-to-Digital Converter (ADC)

Register 29: ADC Sample Sequence 1 Operation (ADCSSOP1), offset 0x070
Register 30: ADC Sample Sequence 2 Operation (ADCSSOP2), offset 0x090
This register determines whether the sample from the given conversion on Sample Sequence n is
saved in the Sample Sequence n FIFO or sent to the digital comparator unit. The ADCSSOP1
register controls Sample Sequencer 1 and the ADCSSOP2 register controls Sample Sequencer 2.

ADC Sample Sequence 1 Operation (ADCSSOP1)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x070
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

S0DCOPReservedS1DCOPReservedS2DCOPReservedS3DCOPReserved

R/WROROROR/WROROROR/WROROROR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved31:13

Sample 3 Digital Comparator Operation

When this bit is set, the fourth sample is sent to the digital comparator
unit specified by the S3DCSEL bit in the ADCSSDCn register, and the
value is not written to the FIFO.

When this bit is clear, the fourth sample is saved in Sample Sequence
FIFOn.

0R/WS3DCOP12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved11:9

Sample 2 Digital Comparator Operation

Same definition as S3DCOP but used during the third sample.

0R/WS2DCOP8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved7:5

Sample 1 Digital Comparator Operation

Same definition as S3DCOP but used during the second sample.

0R/WS1DCOP4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved3:1

Sample 0 Digital Comparator Operation

Same definition as S3DCOP but used during the first sample.

0R/WS0DCOP0

505February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 31: ADCSample Sequence 1 Digital Comparator Select (ADCSSDC1),
offset 0x074
Register 32: ADCSample Sequence 2 Digital Comparator Select (ADCSSDC2),
offset 0x094
These registers determine which digital comparator receives the sample from the given conversion
on Sample Sequence n if the corresponding SnDCOP bit in the ADCSSOPn register is set. The
ADCSSDC1 register controls the selection for Sample Sequencer 1 and the ADCSSDC2 register
controls the selection for Sample Sequencer 2.

ADC Sample Sequence 1 Digital Comparator Select (ADCSSDC1)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x074
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

S0DCSELS1DCSELS2DCSELS3DCSEL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved31:16

Sample 3 Digital Comparator Select

When the S3DCOP bit in the ADCSSOPn register is set, this field
indicates which digital comparator unit (and its associated set of control
registers) receives the eighth sample from Sample Sequencer n.

Note: Values not listed are reserved.

DescriptionValue

Digital Comparator Unit 0 (ADCDCCMP0 and ADCCCTL0)0x0

Digital Comparator Unit 1 (ADCDCCMP1 and ADCCCTL1)0x1

Digital Comparator Unit 2 (ADCDCCMP2 and ADCCCTL2)0x2

Digital Comparator Unit 3 (ADCDCCMP3 and ADCCCTL3)0x3

Digital Comparator Unit 4 (ADCDCCMP4 and ADCCCTL4)0x4

Digital Comparator Unit 5 (ADCDCCMP5 and ADCCCTL5)0x5

Digital Comparator Unit 6 (ADCDCCMP6 and ADCCCTL6)0x6

Digital Comparator Unit 7 (ADCDCCMP7 and ADCCCTL7)0x7

0x0R/WS3DCSEL15:12

Sample 2 Digital Comparator Select

This field has the same encodings as S3DCSEL but is used during the
third sample.

0x0R/WS2DCSEL11:8

February 24, 2009506
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

Sample 1 Digital Comparator Select

This field has the same encodings as S3DCSEL but is used during the
second sample.

0x0R/WS1DCSEL7:4

Sample 0 Digital Comparator Select

This field has the same encodings as S3DCSEL but is used during the
first sample.

0x0R/WS0DCSEL3:0

507February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 33: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3),
offset 0x0A0
This register defines the analog input configuration for the sample executed with Sample Sequencer
3. This register is 4 bits wide and contains information for one possible sample. See theADCSSMUX0
register on page 490 for detailed bit descriptions.

ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x0A0
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MUX0Reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROReserved31:4

1st Sample Input Select0R/WMUX03:0

February 24, 2009508
Preliminary

Analog-to-Digital Converter (ADC)

Register 34: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4
This register contains the configuration information for a sample executed with Sample Sequencer
3. The END0 bit is always set as this sequencer can execute only one sample. This register is 4 bits
wide and contains information for one possible sample. See the ADCSSCTL0 register on page 492
for detailed bit descriptions.

ADC Sample Sequence Control 3 (ADCSSCTL3)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x0A4
Type R/W, reset 0x0000.0002

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

D0END0IE0TS0Reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0100000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROReserved31:4

1st Sample Temp Sensor Select

Same definition as TS7 but used during the first sample.

0R/WTS03

1st Sample Interrupt Enable

Same definition as IE7 but used during the first sample.

0R/WIE02

1st Sample is End of Sequence

Same definition as END7 but used during the first sample.

Because this sequencer has only one entry, this bit must be set.

1R/WEND01

1st Sample Diff Input Select

Same definition as D7 but used during the first sample.

0R/WD00

509February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 35: ADC Sample Sequence 3 Operation (ADCSSOP3), offset 0x0B0
This register determines whether the sample from the given conversion on Sample Sequence 3 is
saved in the Sample Sequence 3 FIFO or sent to the digital comparator unit.

ADC Sample Sequence 3 Operation (ADCSSOP3)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x0B0
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

S0DCOPReserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved31:1

Sample 0 Digital Comparator Operation

When this bit is set, the sample is sent to the digital comparator unit
specified by the S0DCSEL bit in the ADCSSDC3 register, and the value
is not written to the FIFO.

When this bit is clear, the sample is saved in Sample Sequence FIFO3.

0R/WS0DCOP0

February 24, 2009510
Preliminary

Analog-to-Digital Converter (ADC)

Register 36: ADCSample Sequence 3 Digital Comparator Select (ADCSSDC3),
offset 0x0B4
This register determines which digital comparator receives the sample from the given conversion
on Sample Sequence 3 if the corresponding SnDCOP bit in the ADCSSOP3 register is set.

ADC Sample Sequence 3 Digital Comparator Select (ADCSSDC3)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0x0B4
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

S0DCSELReserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved31:4

Sample 0 Digital Comparator Select

When the S0DCOP bit in the ADCSSOP3 register is set, this field
indicates which digital comparator unit (and its associated set of control
registers) receives the sample from Sample Sequencer 3.

Note: Values not listed are reserved.

DescriptionValue

Digital Comparator Unit 0 (ADCDCCMP0 and ADCCCTL0)0x0

Digital Comparator Unit 1 (ADCDCCMP1 and ADCCCTL1)0x1

Digital Comparator Unit 2 (ADCDCCMP2 and ADCCCTL2)0x2

Digital Comparator Unit 3 (ADCDCCMP3 and ADCCCTL3)0x3

Digital Comparator Unit 4 (ADCDCCMP4 and ADCCCTL4)0x4

Digital Comparator Unit 5 (ADCDCCMP5 and ADCCCTL5)0x5

Digital Comparator Unit 6 (ADCDCCMP6 and ADCCCTL6)0x6

Digital Comparator Unit 7 (ADCDCCMP7 and ADCCCTL7)0x7

0x0R/WS0DCSEL3:0

511February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 37: ADC Digital Comparator Reset Initial Conditions (ADCDCRIC),
offset 0xD00
This register provides the ability to reset any of the digital comparator interrupt or trigger functions
back to their initial conditions. Resetting these functions ensures that the data that is being used by
the interrupt and trigger functions in the digital comparator unit is not stale.

ADC Digital Comparator Reset Initial Conditions (ADCDCRIC)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0xD00
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

DCTRIG0DCTRIG1DCTRIG2DCTRIG3DCTRIG4DCTRIG5DCTRIG6DCTRIG7Reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DCINT0DCINT1DCINT2DCINT3DCINT4DCINT5DCINT6DCINT7Reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROReserved31:24

Digital Comparator Trigger 7

When this bit is set, the Digital Comparator 7 trigger unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the trigger, it is important
to reset the digital comparator to initial conditions when starting a new
sequence so that stale data is not used.

0R/WDCTRIG723

Digital Comparator Trigger 6

When this bit is set, the Digital Comparator 6 trigger unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the trigger, it is important
to reset the digital comparator to initial conditions when starting a new
sequence so that stale data is not used.

0R/WDCTRIG622

Digital Comparator Trigger 5

When this bit is set, the Digital Comparator 5 trigger unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the trigger, it is important
to reset the digital comparator to initial conditions when starting a new
sequence so that stale data is not used.

0R/WDCTRIG521

February 24, 2009512
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

Digital Comparator Trigger 4

When this bit is set, the Digital Comparator 4 trigger unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the trigger, it is important
to reset the digital comparator to initial conditions when starting a new
sequence so that stale data is not used.

0R/WDCTRIG420

Digital Comparator Trigger 3

When this bit is set, the Digital Comparator 3 trigger unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the trigger, it is important
to reset the digital comparator to initial conditions when starting a new
sequence so that stale data is not used.

0R/WDCTRIG319

Digital Comparator Trigger 2

When this bit is set, the Digital Comparator 2 trigger unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the trigger, it is important
to reset the digital comparator to initial conditions when starting a new
sequence so that stale data is not used.

0R/WDCTRIG218

Digital Comparator Trigger 1

When this bit is set, the Digital Comparator 1 trigger unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the trigger, it is important
to reset the digital comparator to initial conditions when starting a new
sequence so that stale data is not used.

0R/WDCTRIG117

Digital Comparator Trigger 0

When this bit is set, the Digital Comparator 0 trigger unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the trigger, it is important
to reset the digital comparator to initial conditions when starting a new
sequence so that stale data is not used.

0R/WDCTRIG016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROReserved15:8

Digital Comparator Trigger 7

When this bit is set, the Digital Comparator 7 interrupt unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the interrupt, it is
important to reset the digital comparator to initial conditions when starting
a new sequence so that stale data is not used.

0R/WDCINT77

513February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Digital Comparator Trigger 6

When this bit is set, the Digital Comparator 6 interrupt unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the interrupt, it is
important to reset the digital comparator to initial conditions when starting
a new sequence so that stale data is not used.

0R/WDCINT66

Digital Comparator Trigger 5

When this bit is set, the Digital Comparator 5 interrupt unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the interrupt, it is
important to reset the digital comparator to initial conditions when starting
a new sequence so that stale data is not used.

0R/WDCINT55

Digital Comparator Trigger 4

When this bit is set, the Digital Comparator 4 interrupt unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the interrupt, it is
important to reset the digital comparator to initial conditions when starting
a new sequence so that stale data is not used.

0R/WDCINT44

Digital Comparator Trigger 3

When this bit is set, the Digital Comparator 3 interrupt unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the interrupt, it is
important to reset the digital comparator to initial conditions when starting
a new sequence so that stale data is not used.

0R/WDCINT33

Digital Comparator Trigger 2

When this bit is set, the Digital Comparator 2 interrupt unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the interrupt, it is
important to reset the digital comparator to initial conditions when starting
a new sequence so that stale data is not used.

0R/WDCINT22

Digital Comparator Trigger 1

When this bit is set, the Digital Comparator 1 interrupt unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the interrupt, it is
important to reset the digital comparator to initial conditions when starting
a new sequence so that stale data is not used.

0R/WDCINT11

February 24, 2009514
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

Digital Comparator Trigger 0

When this bit is set, the Digital Comparator 0 interrupt unit is reset to its
initial conditions.

Because the digital comparators use the current and previous ADC
conversion values to determine when to assert the interrupt, it is
important to reset the digital comparator to initial conditions when starting
a new sequence so that stale data is not used.

0R/WDCINT00

515February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 38: ADC Digital Comparator Control 0 (ADCDCCTL0), offset 0xE00
Register 39: ADC Digital Comparator Control 1 (ADCDCCTL1), offset 0xE04
Register 40: ADC Digital Comparator Control 2 (ADCDCCTL2), offset 0xE08
Register 41: ADC Digital Comparator Control 3 (ADCDCCTL3), offset 0xE0C
Register 42: ADC Digital Comparator Control 4 (ADCDCCTL4), offset 0xE10
Register 43: ADC Digital Comparator Control 5 (ADCDCCTL5), offset 0xE14
Register 44: ADC Digital Comparator Control 6 (ADCDCCTL6), offset 0xE18
Register 45: ADC Digital Comparator Control 7 (ADCDCCTL7), offset 0xE1C
This register provides the comparison encodings that generate an interrupt or PWM trigger.

ADC Digital Comparator Control 0 (ADCDCCTL0)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0xE00
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CIMCICCIEReservedCTMCTCCTEReserved

R/WR/WR/WR/WR/WROROROR/WR/WR/WR/WR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.0ROReserved31:13

Comparison Trigger Enable

When set, this bit enables the trigger function state machine. The ADC
conversion data is used to determine if a trigger should be generated
according to the programming of the CTC and CTM fields.

When clear, this bit disables the trigger function state machine. ADC
conversion data is ignored by the trigger function.

0R/WCTE12

February 24, 2009516
Preliminary

Analog-to-Digital Converter (ADC)

DescriptionResetTypeNameBit/Field

Comparison Trigger Condition

This field specifies the operational region in which a trigger is generated
when the ADC conversion data is compared against the values of COMP0
and COMP1. The COMP0 and COMP1 fields are defined in the
ADCDCCMPx registers.

ModeValue

Low Band

ADC Data < COMP0 and < COMP1

0x0

Mid Band

COMP0 ≤ ADC Data < COMP1

0x1

Reserved0x2

High Band

COMP0 ≤ COMP1 ≤ ADC Data

0x3

0x0R/WCTC11:10

Comparison Trigger Mode

This field specifies the mode by which the trigger comparison is made.

ModeValue

Always

This mode generates a trigger every time the ADC conversion
data falls within the selected operational region.

0x0

Once

This mode generates a trigger the first time that the ADC
conversion data enters the selected operational region.

0x1

Hysteresis Always

This mode generates a trigger when the ADC conversion data
falls within the selected operational region and continues to
generate the trigger until the hysteresis condition is cleared by
entering the opposite operational region.

Note that the hysteresis modes are only defined for CTC
encodings of 0x0 and 0x3.

0x2

Hysteresis Once

This mode generates a trigger the first time that the ADC
conversion data falls within the selected operational region. No
additional triggers are generated until the hysteresis condition
is cleared by entering the opposite operational region.

Note that the hysteresis modes are only defined for CTC
encodings of 0x0 and 0x3.

0x3

0x0R/WCTM9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved7:5

517February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Comparison Interrupt Enable

When set, this bit enables the comparison interrupt. The ADC conversion
data is used to determine if an interrupt should be generated according
to the programming of the CIC and CIM fields.

When clear, this bit disables the comparison interrupt. ADC conversion
data has no effect on interrupt generation.

0R/WCIE4

Comparison Interrupt Condition

This field specifies the operational region in which an interrupt is
generated when the ADC conversion data is compared against the
values of COMP0 and COMP1. The COMP0 and COMP1 fields are defined
in the ADCDCCMPx registers.

ModeValue

Low Band

ADC Data < COMP0 and < COMP1

0x0

Mid Band

COMP0 ≤ ADC Data < COMP1

0x1

Reserved0x2

High Band

COMP0 < COMP1 ≤ ADC Data

0x3

0x0R/WCIC3:2

Comparison Interrupt Mode

This field specifies the mode by which the interrupt comparison is made.

ModeValue

Always

This mode generates an interrupt every time the ADC conversion
data falls within the selected operational region.

0x0

Once

This mode generates an interrupt the first time that the ADC
conversion data enters the selected operational region.

0x1

Hysteresis Always

This mode generates an interrupt when the ADC conversion
data falls within the selected operational region and continues
to generate the interrupt until the hysteresis condition is cleared
by entering the opposite operational region.

Note that the hysteresis modes are only defined for CTC
encodings of 0x0 and 0x3.

0x2

Hysteresis Once

This mode generates an interrupt the first time that the ADC
conversion data falls within the selected operational region. No
additional interrupts are generated until the hysteresis condition
is cleared by entering the opposite operational region.

Note that the hysteresis modes are only defined for CTC
encodings of 0x0 and 0x3.

0x3

0x0R/WCIM1:0

February 24, 2009518
Preliminary

Analog-to-Digital Converter (ADC)

Register 46: ADC Digital Comparator Range 0 (ADCDCCMP0), offset 0xE40
Register 47: ADC Digital Comparator Range 1 (ADCDCCMP1), offset 0xE44
Register 48: ADC Digital Comparator Range 2 (ADCDCCMP2), offset 0xE48
Register 49: ADC Digital Comparator Range 3 (ADCDCCMP3), offset 0xE4C
Register 50: ADC Digital Comparator Range 4 (ADCDCCMP4), offset 0xE50
Register 51: ADC Digital Comparator Range 5 (ADCDCCMP5), offset 0xE54
Register 52: ADC Digital Comparator Range 6 (ADCDCCMP6), offset 0xE58
Register 53: ADC Digital Comparator Range 7 (ADCDCCMP7), offset 0xE5C
This register defines the comparison values that are used to determine if the ADC conversion data
falls in the appropriate operating region. Note that the value in the COMP1 field must be greater than
or equal to the value in the COMP0 field or unexpected results can occur.

ADC Digital Comparator Range 0 (ADCDCCMP0)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000
Offset 0xE40
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

COMP1Reserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROROROType
0000000000000000Reset

0123456789101112131415

COMP0Reserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved31:26

Compare 1

The value in this field is compared against the ADC conversion data.
The result of the comparison is used to determine if the data lies within
the high-band region.

Note that the value of COMP1 must be greater than or equal to the value
of COMP0.

0x000R/WCOMP125:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROReserved15:10

Compare 0

The value in this field is compared against the ADC conversion data.
The result of the comparison is used to determine if the data lies within
the low-band region.

0x000R/WCOMP09:0

519February 24, 2009
Preliminary

LM3S9B92 Microcontroller

14 Universal Asynchronous Receivers/Transmitters
(UARTs)
Each Stellaris® Universal Asynchronous Receiver/Transmitter (UART) has the following features:

■ Programmable baud-rate generator allowing speeds up to 5 Mbps for regular speed (divide by
16) and 10 Mbps for high speed (divide by 8)

■ Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading

■ LIN protocol support

■ Programmable FIFO length, including 1-byte deep operation providing conventional
double-buffered interface

■ FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8

■ Standard asynchronous communication bits for start, stop, and parity

■ False-start bit detection

■ Line-break generation and detection

■ Fully programmable serial interface characteristics

– 5, 6, 7, or 8 data bits

– Even, odd, stick, or no-parity bit generation/detection

– 1 or 2 stop bit generation

■ IrDA serial-IR (SIR) encoder/decoder providing

– Programmable use of IrDA Serial Infrared (SIR) or UART input/output

– Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex

– Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations

– Programmable internal clock generator enabling division of reference clock by 1 to 256 for
low-power mode bit duration

■ Support for communication with ISO 7816 smart cards

■ Full modem handshake support (on UART1)

■ Standard FIFO-level and End-of-Transmission interrupts

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive

– Receive single request asserted when data is in the FIFO; burst request asserted at
programmed FIFO level

February 24, 2009520
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

– Transmit single request asserted when there is space in the FIFO; burst request asserted at
programmed FIFO level

14.1 Block Diagram

Figure 14-1. UART Module Block Diagram

TxFIFO
16 x 8

.

.

.

RxFIFO
16 x 8

.

.

.

DMA Control

UARTDMACTL

Identification
Registers

UARTPCellID0
UARTPCellID1
UARTPCellID2
UARTPCellID3
UARTPeriphID0
UARTPeriphID1
UARTPeriphID2
UARTPeriphID3
UARTPeriphID4
UARTPeriphID5
UARTPeriphID6
UARTPeriphID7

Interrupt Control

UARTDR

Control/Status

Transmitter
(with SIR
Transmit
Encoder)Baud Rate

Generator

Receiver
(with SIR
Receive
Decoder)

UnTx

UnRx

DMA Request

System Clock

Interrupt

UARTIFLS
UARTIM
UARTMIS
UARTRIS
UARTICR

UARTIBRD
UARTFBRD

UARTRSR/ECR
UARTFR

UARTLCRH
UARTCTL
UARTILPR

14.2 Functional Description
Each Stellaris® UART performs the functions of parallel-to-serial and serial-to-parallel conversions.
It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the UART Control
(UARTCTL) register (see page 541). Transmit and receive are both enabled out of reset. Before any
control registers are programmed, the UART must be disabled by clearing the UARTEN bit in
UARTCTL. If the UART is disabled during a TX or RX operation, the current transaction is completed
prior to the UART stopping.

The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected
to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed
using the UARTCTL register.

14.2.1 Transmit/Receive Logic
The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO.
The control logic outputs the serial bit stream beginning with a start bit, and followed by the data

521February 24, 2009
Preliminary

LM3S9B92 Microcontroller

bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control
registers. See Figure 14-2 on page 522 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start
pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also
performed, and their status accompanies the data that is written to the receive FIFO.

Figure 14-2. UART Character Frame

1
0 5-8 data bits

LSB MSB

Parity bit
if enabled

1-2
stop bits

UnTX

n

Start

14.2.2 Baud-Rate Generation
The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part.
The number formed by these two values is used by the baud-rate generator to determine the bit
period. Having a fractional baud-rate divider allows the UART to generate all the standard baud
rates.

The 16-bit integer is loaded through the UART Integer Baud-Rate Divisor (UARTIBRD) register
(see page 537) and the 6-bit fractional part is loaded with the UART Fractional Baud-Rate Divisor
(UARTFBRD) register (see page 538). The baud-rate divisor (BRD) has the following relationship
to the system clock (where BRDI is the integer part of the BRD and BRDF is the fractional part,
separated by a decimal place.)

BRD = BRDI + BRDF = UARTSysClk / (ClkDiv * Baud Rate)

where UARTSysClk is the system clock connected to the UART, and ClkDiv is either 16 (if HSE
in UARTCTL is clear) or 8 (if HSE is set).

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in theUARTFBRD register)
can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and
adding 0.5 to account for rounding errors:

UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)

The UART generates an internal baud-rate reference clock at 8x or 16x the baud-rate (referred to
as Baud8 and Baud16, depending upon the setting of the HSE bit (bit 5) inUARTCTL). This reference
clock is divided by 8 or 16 to generate the transmit clock, and is used for error detection during
receive operations.

Along with theUARTLineControl, HighByte (UARTLCRH) register (see page 539), theUARTIBRD
and UARTFBRD registers form an internal 30-bit register. This internal register is only updated
when a write operation to UARTLCRH is performed, so any changes to the baud-rate divisor must
be followed by a write to the UARTLCRH register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

■ UARTIBRD write, UARTFBRD write, and UARTLCRH write

■ UARTFBRD write, UARTIBRD write, and UARTLCRH write

■ UARTIBRD write and UARTLCRH write

February 24, 2009522
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

■ UARTFBRD write and UARTLCRH write

14.2.3 Data Transmission
Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra
four bits per character for status information. For transmission, data is written into the transmit FIFO.
If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated
in the UARTLCRH register. Data continues to be transmitted until there is no data left in the transmit
FIFO. The BUSY bit in the UART Flag (UARTFR) register (see page 534) is asserted as soon as
data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while
data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the
last character has been transmitted from the shift register, including the stop bits. The UART can
indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has
been received), the receive counter begins running and data is sampled on the eighth cycle of
Baud16 or fourth cycle of Baud8 depending upon the setting of the HSE bit (bit 5) in UARTCTL
(described in “Transmit/Receive Logic” on page 521).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16 (HSE clear) or the fourth cycle
of Baud 8 (HSE set), otherwise a false start bit is detected and it is ignored. Start bit errors can be
viewed in the UART Receive Status (UARTRSR) register (see page 532). If the start bit was valid,
successive data bits are sampled on every 16th cycle of Baud16 or 8th cycle of Baud8 (that is, one
bit period later) according to the programmed length of the data characters and value of the HSE
bit in UARTCTL. The parity bit is then checked if parity mode was enabled. Data length and parity
are defined in the UARTLCRH register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When
a full word is received, the data is stored in the receive FIFO, with any error bits associated with
that word.

14.2.4 Serial IR (SIR)
The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block
provides functionality that converts between an asynchronous UART data stream, and half-duplex
serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to
provide a digital encoded output, and decoded input to the UART. The UART signal pins can be
connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block
has two modes of operation:

■ In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the
selected baud rate bit period on the output pin, while logic one levels are transmitted as a static
LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light
for each zero. On the reception side, the incoming light pulses energize the photo transistor base
of the receiver, pulling its output LOW. This drives the UART input pin LOW.

■ In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the
period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz
frequency) by changing the appropriate bit in the UARTCR register. See page 536 for more
information on IrDA low-power pulse-duration configuration.

Figure 14-3 on page 524 shows the UART transmit and receive signals, with and without IrDA
modulation.

523February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 14-3. IrDA Data Modulation

10 10 0 0 1 1 0 1

Data bits

10 10 0 0 1 1 0 1

Data bitsStart
bit

Start Stop

Bit period Bit period3
16

UnTx

UnTx with IrDA

UnRx with IrDA

UnRx

Stop
bit

In both normal and low-power IrDA modes:

■ During transmission, the UART data bit is used as the base for encoding

■ During reception, the decoded bits are transferred to the UART receive logic

The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay
between transmission and reception. This delay must be generated by software because it is not
automatically supported by the UART. The delay is required because the infrared receiver electronics
might become biased, or even saturated from the optical power coupled from the adjacent transmitter
LED. This delay is known as latency, or receiver setup time.

14.2.5 ISO 7816 Support
The UART offers basic support to allow communication with an ISO 7816 smartcard. When bit 3
(SMART) of the UARTCTL register is set, the UnTX line is used as a bit clock, and UnRX is used as
the half-duplex communication line connected to the smartcard.

When using ISO 7816 mode, the UARTLCRH register must be set to transmit 8-bit words (WLEN
bits 6:5 set to 0x3) with EVEN parity (PEN set to 1 and EPS set to 1). In this mode, the UART is
automatically set to use 2 stop bits, and the STP2 bit of the UARTLCRH register is ignored.

If a parity error is detected during transmission, the data line (UARTRXD) will be pulled Low during
the second stop bit. This will trigger the UART to abort the transmission, flushing the transmit FIFO
and discarding any data it contains, and raise a parity error interrupt, allowing software to detect
the problem and initiate retransmission of the affected data. Note that the UART does not support
automatic retransmission in this case.

14.2.6 LIN Support
The UART module offers hardware support for the LIN protocol as either a master or a slave. The
LIN mode is enabled by setting the LIN bit in the UARTCTL register. A LIN message is identified
by the use of a Sync Break at the beginning of the message. The Sync Break is a transmission of
a series of 0s. The Sync Break is followed by the Sync data field (0x55).

The UART should be configured as followed to operate in LIN mode:

1. Configure the UART for 1 start bit, 8 data bits, no parity, and 1 stop bit. Enable the Transmit
FIFO.

February 24, 2009524
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

2. Set the LIN bit in the UARTCTL register.

When preparing to send a LIN message, the TXFIFO should contain the Sync data (0x55) at FIFO
location 0, the Identifier data at location 1, the data to be transmitted, and the checksum in the final
FIFO entry.

14.2.6.1 LIN Master
The UART is enabled to be the LIN master by setting the MASTER bit in the UARTLCTL register.
The length of the Sync Break is programmable using the BLEN field in the UARTLCTL register and
can be 13-16 bits (baud clock cycles).

14.2.6.2 LIN Slave
The LIN UART slave is required to adjust its baud rate to that of the LIN master. In slave mode, the
LIN UART recognizes the Sync Break, which must be at least 13 bits in duration. A timer is provided
to capture timing data on the 1st and 5th falling edges of the Sync field so that the baud rate can
be adjusted to match the master.

After detecting a Sync Break, the UART waits for the synchronization field. The first falling edge
generates an interrupt using the LME1RIS bit in the UARTRIS register, and the timer value is
captured and stored in the UARTLSS register (T1). On the fifth falling edge, a second interrupt is
generated using the LME5RIS bit in the UARTRIS register, and the timer value is captured again
(T2). The actual baud rate can be calculated using (T2-T1)/8, and the local baud rate should be
adjusted as needed.

14.2.7 FIFO Operation
The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed
via the UART Data (UARTDR) register (see page 530). Read operations of the UARTDR register
return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data
in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are
enabled by setting the FEN bit in UARTLCRH (page 539).

FIFO status can be monitored via the UART Flag (UARTFR) register (see page 534) and the UART
Receive Status (UARTRSR) register. Hardware monitors empty, full and overrun conditions. The
UARTFR register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the
UARTRSR register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the UART Interrupt FIFO
Level Select (UARTIFLS) register (see page 544). Both FIFOs can be individually configured to
trigger interrupts at different levels. Available configurations include 1/8, ¼, ½, ¾, and 7/8. For
example, if the ¼ option is selected for the receive FIFO, the UART generates a receive interrupt
after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the
½ mark.

14.2.8 Interrupts
The UART can generate interrupts when the following conditions are observed:

■ Overrun Error

■ Break Error

■ Parity Error

525February 24, 2009
Preliminary

LM3S9B92 Microcontroller

■ Framing Error

■ Receive Timeout

■ Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met, or, if
the EOT bit in UARTCTRL is set, when the last bit of all transmitted data leaves the serializer)

■ Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the
UART can only generate a single interrupt request to the controller at any given time. Software can
service multiple interrupt events in a single interrupt service routine by reading the UART Masked
Interrupt Status (UARTMIS) register (see page 550).

The interrupt events that can trigger a controller-level interrupt are defined in the UART Interrupt
Mask (UARTIM) register (see page 546) by setting the corresponding IM bit to 1. If interrupts are
not used, the raw interrupt status is always visible via the UART Raw Interrupt Status (UARTRIS)
register (see page 548).

Interrupts are always cleared (for both the UARTMIS and UARTRIS registers) by setting the
corresponding bit in the UART Interrupt Clear (UARTICR) register (see page 552).

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data
is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO
becomes empty through reading all the data (or by reading the holding register), or when a 1 is
written to the corresponding bit in the UARTICR register.

14.2.9 Loopback Operation
The UART can be placed into an internal loopback mode for diagnostic or debug work. This is
accomplished by setting the LBE bit in the UARTCTL register (see page 541). In loopback mode,
data transmitted on UnTx is received on the UnRx input.

14.2.10 DMA Operation
The UART provides an interface connected to the μDMA controller. The DMA operation of the UART
is enabled through the UART DMA Control (UARTDMACTL) register. When DMA operation is
enabled, the UART will assert a DMA request on the receive or transmit channel when the associated
FIFO can transfer data. For the receive channel, a single transfer request is asserted whenever
there is any data in the receive FIFO. A burst transfer request is asserted whenever the amount of
data in the receive FIFO is at or above the FIFO trigger level. For the transmit channel, a single
transfer request is asserted whenever there is at least one empty location in the transmit FIFO. The
burst request is asserted whenever the transmit FIFO contains fewer characters than the FIFO
trigger level. The single and burst DMA transfer requests are handled automatically by the μDMA
controller depending how the DMA channel is configured.

To enable DMA operation for the receive channel, the RXDMAE bit of the DMA Control
(UARTDMACTL) register should be set. To enable DMA operation for the transmit channel, the
TXDMAE bit of UARTDMACTL should be set. The UART can also be configured to stop using DMA
for the receive channel if a receive error occurs. If the DMAERR bit of UARTDMACR is set, then
when a receive error occurs, the DMA receive requests will be automatically disabled. This error
condition can be cleared by clearing the UART error interrupt.

If DMA is enabled, then the μDMA controller will trigger an interrupt when a transfer is complete.
The interrupt will occur on the UART interrupt vector. Therefore, if interrupts are used for UART

February 24, 2009526
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

operation and DMA is enabled, the UART interrupt handler must be designed to handle the μDMA
completion interrupt.

See “Micro Direct Memory Access (μDMA)” on page 226 for more details about programming the
μDMA controller.

14.2.11 IrDA SIR block
The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the
SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR
transceiver.

The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same
time. Transmission must be stopped before data can be received. The IrDA SIR physical layer
specifies a minimum 10-ms delay between transmission and reception.

14.3 Initialization and Configuration
To use the UARTs, the peripheral clock must be enabled by setting the UART0, UART1, or UART2
bits in the RCGC1 register. See page 167. In addition, the clock to the appropriate GPIO module
must be enabled via the RCGC2 register in the System Control module. See page 179. To find out
which GPIO port to enable, refer to Table 25-5 on page 990.

This section discusses the steps that are required to use a UART module. For this example, the
UART clock is assumed to be 20 MHz and the desired UART configuration is:

■ 115200 baud rate

■ Data length of 8 bits

■ One stop bit

■ No parity

■ FIFOs disabled

■ No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the
UARTIBRD and UARTFBRD registers must be written before the UARTLCRH register. Using the
equation described in “Baud-Rate Generation” on page 522, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the UARTIBRD register (see page 537) should be set to 10.
The value to be loaded into the UARTFBRD register (see page 538) is calculated by the equation:

UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54

With the BRD values in hand, the UART configuration is written to the module in the following order:

1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.

2. Write the integer portion of the BRD to the UARTIBRD register.

3. Write the fractional portion of the BRD to the UARTFBRD register.

527February 24, 2009
Preliminary

LM3S9B92 Microcontroller

4. Write the desired serial parameters to the UARTLCRH register (in this case, a value of
0x0000.0060).

5. Optionally, configure the uDMA channel (see “Micro Direct Memory Access (μDMA)” on page 226)
and enable the DMA option(s) in the UARTDMACTL register.

6. Enable the UART by setting the UARTEN bit in the UARTCTL register.

14.4 Register Map
Table 14-1 on page 528 lists the UART registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that UART’s base address:

■ UART0: 0x4000.C000
■ UART1: 0x4000.D000
■ UART2: 0x4000.E000

Note that the UART module clock must be enabled before the registers can be programmed (see
page 167).

Note: The UART must be disabled (see the UARTEN bit in the UARTCTL register on page 541)
before any of the control registers are reprogrammed. When the UART is disabled during
a TX or RX operation, the current transaction is completed prior to the UART stopping.

Table 14-1. UART Register Map

See
pageDescriptionResetTypeNameOffset

530UART Data0x0000.0000R/WUARTDR0x000

532UART Receive Status/Error Clear0x0000.0000R/WUARTRSR/UARTECR0x004

534UART Flag0x0000.0090ROUARTFR0x018

536UART IrDA Low-Power Register0x0000.0000R/WUARTILPR0x020

537UART Integer Baud-Rate Divisor0x0000.0000R/WUARTIBRD0x024

538UART Fractional Baud-Rate Divisor0x0000.0000R/WUARTFBRD0x028

539UART Line Control0x0000.0000R/WUARTLCRH0x02C

541UART Control0x0000.0300R/WUARTCTL0x030

544UART Interrupt FIFO Level Select0x0000.0012R/WUARTIFLS0x034

546UART Interrupt Mask0x0000.0000R/WUARTIM0x038

548UART Raw Interrupt Status0x0000.000FROUARTRIS0x03C

550UART Masked Interrupt Status0x0000.0000ROUARTMIS0x040

552UART Interrupt Clear0x0000.0000W1CUARTICR0x044

554UART DMA Control0x0000.0000R/WUARTDMACTL0x048

555UART LIN Control0x0000.0000R/WUARTLCTL0x090

556UART LIN Snap Shot0x0000.0000ROUARTLSS0x094

557UART LIN Timer0x0000.0000ROUARTLTIM0x098

February 24, 2009528
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

See
pageDescriptionResetTypeNameOffset

558UART Peripheral Identification 40x0000.0000ROUARTPeriphID40xFD0

559UART Peripheral Identification 50x0000.0000ROUARTPeriphID50xFD4

560UART Peripheral Identification 60x0000.0000ROUARTPeriphID60xFD8

561UART Peripheral Identification 70x0000.0000ROUARTPeriphID70xFDC

562UART Peripheral Identification 00x0000.0060ROUARTPeriphID00xFE0

563UART Peripheral Identification 10x0000.0000ROUARTPeriphID10xFE4

564UART Peripheral Identification 20x0000.0018ROUARTPeriphID20xFE8

565UART Peripheral Identification 30x0000.0001ROUARTPeriphID30xFEC

566UART PrimeCell Identification 00x0000.000DROUARTPCellID00xFF0

567UART PrimeCell Identification 10x0000.00F0ROUARTPCellID10xFF4

568UART PrimeCell Identification 20x0000.0005ROUARTPCellID20xFF8

569UART PrimeCell Identification 30x0000.00B1ROUARTPCellID30xFFC

14.5 Register Descriptions
The remainder of this section lists and describes the UART registers, in numerical order by address
offset.

529February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: UART Data (UARTDR), offset 0x000
This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs
are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO).
A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity,
and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and
status are stored in the receiving holding register (the bottom word of the receive FIFO). The received
data can be retrieved by reading this register.

UART Data (UARTDR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAFEPEBEOEreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:12

UART Overrun Error

The OE values are defined as follows:

DescriptionValue

There has been no data loss due to a FIFO overrun.0

New data was received when the FIFO was full, resulting in
data loss.

1

0ROOE11

UART Break Error

This bit is set to 1 when a break condition is detected, indicating that
the receive data input was held Low for longer than a full-word
transmission time (defined as start, data, parity, and stop bits).

In FIFO mode, this error is associated with the character at the top of
the FIFO. When a break occurs, only one 0 character is loaded into the
FIFO. The next character is only enabled after the received data input
goes to a 1 (marking state) and the next valid start bit is received.

0ROBE10

February 24, 2009530
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Parity Error

This bit is set to 1 when the parity of the received data character does
not match the parity defined by bits 2 and 7 of the UARTLCRH register.

In FIFO mode, this error is associated with the character at the top of
the FIFO.

0ROPE9

UART Framing Error

This bit is set to 1 when the received character does not have a valid
stop bit (a valid stop bit is 1).

0ROFE8

Data Transmitted or Received

When written, the data that is to be transmitted via the UART. When
read, the data that was received by the UART.

0R/WDATA7:0

531February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset
0x004
The UARTRSR/UARTECR register is the receive status register/error clear register.

In addition to the UARTDR register, receive status can also be read from the UARTRSR register.
If the status is read from this register, then the status information corresponds to the entry read from
UARTDR prior to reading UARTRSR. The status information for overrun is set immediately when
an overrun condition occurs.

The UARTRSR register cannot be written.

A write of any value to the UARTECR register clears the framing, parity, break, and overrun errors.
All the bits are cleared to 0 on reset.

Reads

UART Receive Status/Error Clear (UARTRSR/UARTECR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FEPEBEOEreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:4

UART Overrun Error

When this bit is set to 1, data is received and the FIFO is already full.
This bit is cleared to 0 by a write to UARTECR.

The FIFO contents remain valid since no further data is written when
the FIFO is full, only the contents of the shift register are overwritten.
The CPU must now read the data in order to empty the FIFO.

0ROOE3

UART Break Error

This bit is set to 1 when a break condition is detected, indicating that
the received data input was held Low for longer than a full-word
transmission time (defined as start, data, parity, and stop bits).

This bit is cleared to 0 by a write to UARTECR.

In FIFO mode, this error is associated with the character at the top of
the FIFO. When a break occurs, only one 0 character is loaded into the
FIFO. The next character is only enabled after the receive data input
goes to a 1 (marking state) and the next valid start bit is received.

0ROBE2

February 24, 2009532
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Parity Error

This bit is set to 1 when the parity of the received data character does
not match the parity defined by bits 2 and 7 of the UARTLCRH register.

This bit is cleared to 0 by a write to UARTECR.

0ROPE1

UART Framing Error

This bit is set to 1 when the received character does not have a valid
stop bit (a valid stop bit is 1).

This bit is cleared to 0 by a write to UARTECR.

In FIFO mode, this error is associated with the character at the top of
the FIFO.

0ROFE0

Writes

UART Receive Status/Error Clear (UARTRSR/UARTECR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x004
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

DATAreserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0WOreserved31:8

Error Clear

A write to this register of any data clears the framing, parity, break, and
overrun flags.

0WODATA7:0

533February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: UART Flag (UARTFR), offset 0x018
The UARTFR register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and
TXFE and RXFE bits are 1. The RI, DCD, DSR and CTS bits indicate the modem status.

UART Flag (UARTFR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x018
Type RO, reset 0x0000.0090

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CTSDSRDCDBUSYRXFETXFFRXFFTXFERIreserved

ROROROROROROROROROROROROROROROROType
0000100100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:9

Ring Indicator

This bit is 1 if the U1RI signal is asserted, or 0 otherwise.

0RORI8

UART Transmit FIFO Empty

The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.

If the FIFO is disabled (FEN is 0), this bit is set when the transmit holding
register is empty.

If the FIFO is enabled (FEN is 1), this bit is set when the transmit FIFO
is empty.

1ROTXFE7

UART Receive FIFO Full

The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.

If the FIFO is disabled, this bit is set when the receive holding register
is full.

If the FIFO is enabled, this bit is set when the receive FIFO is full.

0RORXFF6

UART Transmit FIFO Full

The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.

If the FIFO is disabled, this bit is set when the transmit holding register
is full.

If the FIFO is enabled, this bit is set when the transmit FIFO is full.

0ROTXFF5

February 24, 2009534
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Receive FIFO Empty

The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.

If the FIFO is disabled, this bit is set when the receive holding register
is empty.

If the FIFO is enabled, this bit is set when the receive FIFO is empty.

1RORXFE4

UART Busy

When this bit is 1, the UART is busy transmitting data. This bit remains
set until the complete byte, including all stop bits, has been sent from
the shift register.

This bit is set as soon as the transmit FIFO becomes non-empty
(regardless of whether UART is enabled).

0ROBUSY3

Data Carrier Detect

This bit is 1 if the U1DCD signal is asserted, or 0 otherwise.

0RODCD2

Data Set Ready

This bit is 1 if the U1DSR signal is asserted, or 0 otherwise.

0RODSR1

Clear To Send

This bit is 1 if the U1CTS signal is asserted, or 0 otherwise.

0ROCTS0

535February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020
The UARTILPR register is an 8-bit read/write register that stores the low-power counter divisor
value used to derive the low-power SIR pulse width clock by dividing down the system clock (SysClk).
All the bits are cleared to 0 when reset.

The internal IrLPBaud16 clock is generated by dividing down SysClk according to the low-power
divisor value written to UARTILPR. The duration of SIR pulses generated when low-power mode
is enabled is three times the period of the IrLPBaud16 clock. The low-power divisor value is
calculated as follows:

ILPDVSR = SysClk / FIrLPBaud16

where FIrLPBaud16 is nominally 1.8432 MHz.

Youmust choose the divisor so that 1.42 MHz < FIrLPBaud16 < 2.12 MHz, which results in a low-power
pulse duration of 1.41–2.11 μs (three times the period of IrLPBaud16). The minimum frequency
of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that
pulses greater than 1.4 μs are accepted as valid pulses.

Note: Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being
generated.

UART IrDA Low-Power Register (UARTILPR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ILPDVSRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

IrDA Low-Power Divisor

This is an 8-bit low-power divisor value.

0x00R/WILPDVSR7:0

February 24, 2009536
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024
The UARTIBRD register is the integer part of the baud-rate divisor value. All the bits are cleared
on reset. Theminimum possible divide ratio is 1 (whenUARTIBRD=0), in which case theUARTFBRD
register is ignored. When changing the UARTIBRD register, the new value does not take effect until
transmission/reception of the current character is complete. Any changes to the baud-rate divisor
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 522
for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DIVINT

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:16

Integer Baud-Rate Divisor0x0000R/WDIVINT15:0

537February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028
The UARTFBRD register is the fractional part of the baud-rate divisor value. All the bits are cleared
on reset. When changing the UARTFBRD register, the new value does not take effect until
transmission/reception of the current character is complete. Any changes to the baud-rate divisor
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 522
for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x028
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DIVFRACreserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

Fractional Baud-Rate Divisor0x000R/WDIVFRAC5:0

February 24, 2009538
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 7: UART Line Control (UARTLCRH), offset 0x02C
The UARTLCRH register is the line control register. Serial parameters such as data length, parity,
and stop bit selection are implemented in this register.

When updating the baud-rate divisor (UARTIBRD and/or UARTIFRD), the UARTLCRH register
must also be written. The write strobe for the baud-rate divisor registers is tied to the UARTLCRH
register.

UART Line Control (UARTLCRH)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x02C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BRKPENEPSSTP2FENWLENSPSreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

UART Stick Parity Select

When bits 1, 2, and 7 ofUARTLCRH are set, the parity bit is transmitted
and checked as a 0. When bits 1 and 7 are set and 2 is cleared, the
parity bit is transmitted and checked as a 1.

When this bit is cleared, stick parity is disabled.

0R/WSPS7

UART Word Length

The bits indicate the number of data bits transmitted or received in a
frame as follows:

DescriptionValue

8 bits0x3

7 bits0x2

6 bits0x1

5 bits (default)0x0

0R/WWLEN6:5

UART Enable FIFOs

If this bit is set to 1, transmit and receive FIFO buffers are enabled (FIFO
mode).

When cleared to 0, FIFOs are disabled (Character mode). The FIFOs
become 1-byte-deep holding registers.

0R/WFEN4

539February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

UART Two Stop Bits Select

If this bit is set to 1, two stop bits are transmitted at the end of a frame.
The receive logic does not check for two stop bits being received. The
setting of this bit is ignored if the SMART bit is set in the UARTCTL
register. When in 7816 smartcard mode, the number of stop bits is forced
to 2.

0R/WSTP23

UART Even Parity Select

If this bit is set to 1, even parity generation and checking is performed
during transmission and reception, which checks for an even number
of 1s in data and parity bits.

When cleared to 0, then odd parity is performed, which checks for an
odd number of 1s.

This bit has no effect when parity is disabled by the PEN bit.

0R/WEPS2

UART Parity Enable

If this bit is set to 1, parity checking and generation is enabled; otherwise,
parity is disabled and no parity bit is added to the data frame.

0R/WPEN1

UART Send Break

If this bit is set to 1, a Low level is continually output on the UnTX output,
after completing transmission of the current character. For the proper
execution of the break command, the software must set this bit for at
least two frames (character periods). For normal use, this bit must be
cleared to 0.

0R/WBRK0

February 24, 2009540
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 8: UART Control (UARTCTL), offset 0x030
The UARTCTL register is the control register. All the bits are cleared on reset except for the
Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration
change in the module, the UARTEN bit must be cleared before the configuration changes are written.
If the UART is disabled during a transmit or receive operation, the current transaction is completed
prior to the UART stopping.

Note: TheUARTCTL register should not be changed while the UART is enabled or else the results
are unpredictable. The following sequence is recommended for making changes to the
UARTCTL register.

1. Disable the UART.

2. Wait for the end of transmission or reception of the current character.

3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).

4. Reprogram the control register.

5. Enable the UART.

UART Control (UARTCTL)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x030
Type R/W, reset 0x0000.0300

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

UARTENSIRENSIRLPSMARTEOTHSEreservedLINLBETXERXEDTRRTSreservedRTSENCTSEN

R/WR/WR/WR/WR/WR/WROR/WR/WR/WR/WR/WROROR/WR/WType
0000000011000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:16

Enable Clear To Send

If this bit is set to 1, CTS hardware flow control is enabled. Data is only
transmitted when the U1CTS signal is asserted.

0R/WCTSEN15

Enable Request to Send

If this but is set to 1, RTS hardware flow control is enabled. Data is only
requested (by asserting U1RTS) when there is space in the receive FIFO
for it to be stored.

0R/WRTSEN14

541February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved13:12

Request to Send

This bit sets the state of the U1RTS output. If RTSEN is set to 1, the
UART controls the state of U1RTS automatically and this bit is ignored.
When flow control is selected, this bit becomes read-only. Read it to
determine the state of the RTS handshake that is being controlled by
the hardware.

0R/WRTS11

Data Terminal Ready

This bit sets the state of the U1DTR output.

0R/WDTR10

UART Receive Enable

If this bit is set to 1, the receive section of the UART is enabled. When
the UART is disabled in the middle of a receive, it completes the current
character before stopping.

Note: To enable reception, the UARTEN bit must also be set.

1R/WRXE9

UART Transmit Enable

If this bit is set to 1, the transmit section of the UART is enabled. When
the UART is disabled in the middle of a transmission, it completes the
current character before stopping.

Note: To enable transmission, the UARTEN bit must also be set.

1R/WTXE8

UART Loop Back Enable

If this bit is set to 1, the UnTX path is fed through the UnRX path.

0R/WLBE7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved6

LIN Mode Enable

If set, the UART operates in LIN mode.

0R/WLIN6

High-Speed Enable

If set, the UART is clocked using the system clock divided by 8. If clear,
the system clock divided by 16 is used.

Note: System clock used is also dependent on the baud-rate divisor
configuration (see page 537) and page 538).

0R/WHSE5

End of Transmission

This bit determines the behavior of the TXRIS bit in the UARTRIS
register. If the EOT bit is clear, the TXRIS bit is set when the transmit
FIFO condition specified in UARTIFLS is met. If the EOT bit is set, the
TXRIS bit is set only once all transmitted data, including stop bits, have
cleared the serializer.

0R/WEOT4

February 24, 2009542
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

ISO 7816 Smart Card Support

The application must ensure that it sets 8-bit word length (WLEN set to
0x3) and even parity (PEN set to 1, EPS set to 1, SPS set to 0) in
UARTLCRH when using ISO 7816 mode.

In this mode, the value of the STP2 bit in UARTLCRH is ignored and
the number of stop bits is forced to 2. Note that the UART does not
support automatic retransmission on parity errors. If a parity error is
detected on transmission, all further transmit operations are aborted
and software must handle retransmission of the affected byte or
message.

0R/WSMART3

UART SIR Low Power Mode

This bit selects the IrDA encoding mode. If this bit is cleared to 0,
low-level bits are transmitted as an active High pulse with a width of
3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted
with a pulse width which is 3 times the period of the IrLPBaud16 input
signal, regardless of the selected bit rate. Setting this bit uses less power,
but might reduce transmission distances. See page 536 for more
information.

0R/WSIRLP2

UART SIR Enable

If this bit is set to 1, the IrDA SIR block is enabled, and the UART will
transmit and receive data using SIR protocol.

0R/WSIREN1

UART Enable

If this bit is set to 1, the UART is enabled. When the UART is disabled
in the middle of transmission or reception, it completes the current
character before stopping.

0R/WUARTEN0

543February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034
The UARTIFLS register is the interrupt FIFO level select register. You can use this register to define
the FIFO level at which the TXRIS and RXRIS bits in the UARTRIS register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the
level. That is, the interrupts are generated when the fill level progresses through the trigger level.
For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the
module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt
at the half-way mark.

UART Interrupt FIFO Level Select (UARTIFLS)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x034
Type R/W, reset 0x0000.0012

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TXIFLSELRXIFLSELreserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
0100100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

UART Receive Interrupt FIFO Level Select

The trigger points for the receive interrupt are as follows:

DescriptionValue

RX FIFO ≥ 1/8 full0x0

RX FIFO ≥ ¼ full0x1

RX FIFO ≥ ½ full (default)0x2

RX FIFO ≥ ¾ full0x3

RX FIFO ≥ 7/8 full0x4

Reserved0x5-0x7

0x2R/WRXIFLSEL5:3

February 24, 2009544
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Transmit Interrupt FIFO Level Select

The trigger points for the transmit interrupt are as follows:

DescriptionValue

TX FIFO ≤ 1/8 full0x0

TX FIFO ≤ ¼ full0x1

TX FIFO ≤ ½ full (default)0x2

TX FIFO ≤ ¾ full0x3

TX FIFO ≤ 7/8 full0x4

Reserved0x5-0x7

Note: If the EOT bit in UARTCTL is set (see page 541), the transmit
interrupt is generated once the FIFO is completely empty and
all data including stop bits have left the transmit serializer. In
this case, the setting of TXIFLSEL is ignored.

0x2R/WTXIFLSEL2:0

545February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 10: UART Interrupt Mask (UARTIM), offset 0x038
The UARTIM register is the interrupt mask set/clear register.

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to
a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a
0 prevents the raw interrupt signal from being sent to the interrupt controller.

UART Interrupt Mask (UARTIM)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x038
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedRXIMTXIMRTIMFEIMPEIMBEIMOEIMreservedLMSBIMLME1IMLME5IM

ROROROROR/WR/WR/WR/WR/WR/WR/WROROR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

LIN Mode Edge 5 Interrupt Mask

On a read, the current mask for the LME5IM interrupt is returned.

Setting this bit to 1 promotes the LME5IM interrupt to the interrupt
controller.

0R/WLME5IM15

LIN Mode Edge 1 Interrupt Mask

On a read, the current mask for the LME1IM interrupt is returned.

Setting this bit to 1 promotes the LME1IM interrupt to the interrupt
controller.

0R/WLME1IM14

LIN Mode Sync Break Interrupt Mask

On a read, the current mask for the LMSBIM interrupt is returned.

Setting this bit to 1 promotes the LMSBIM interrupt to the interrupt
controller.

0R/WLMSBIM13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved12:11

UART Overrun Error Interrupt Mask

On a read, the current mask for the OEIM interrupt is returned.

Setting this bit to 1 promotes the OEIM interrupt to the interrupt controller.

0R/WOEIM10

February 24, 2009546
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Break Error Interrupt Mask

On a read, the current mask for the BEIM interrupt is returned.

Setting this bit to 1 promotes the BEIM interrupt to the interrupt controller.

0R/WBEIM9

UART Parity Error Interrupt Mask

On a read, the current mask for the PEIM interrupt is returned.

Setting this bit to 1 promotes the PEIM interrupt to the interrupt controller.

0R/WPEIM8

UART Framing Error Interrupt Mask

On a read, the current mask for the FEIM interrupt is returned.

Setting this bit to 1 promotes the FEIM interrupt to the interrupt controller.

0R/WFEIM7

UART Receive Time-Out Interrupt Mask

On a read, the current mask for the RTIM interrupt is returned.

Setting this bit to 1 promotes the RTIM interrupt to the interrupt controller.

0R/WRTIM6

UART Transmit Interrupt Mask

On a read, the current mask for the TXIM interrupt is returned.

Setting this bit to 1 promotes the TXIM interrupt to the interrupt controller.

0R/WTXIM5

UART Receive Interrupt Mask

On a read, the current mask for the RXIM interrupt is returned.

Setting this bit to 1 promotes the RXIM interrupt to the interrupt controller.

0R/WRXIM4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved3:0

547February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C
The UARTRIS register is the raw interrupt status register. On a read, this register gives the current
raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x03C
Type RO, reset 0x0000.000F

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedRXRISTXRISRTRISFERISPERISBERISOERISreservedLMSBRISLME1RISLME5RIS

ROROROROROROROROROROROROROR/WR/WR/WType
1111000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

LIN Mode Edge 5 Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0R/WLME5RIS15

LIN Mode Edge 1 Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0R/WLME1RIS14

LIN Mode Sync Break Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0R/WLMSBRIS13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved12:11

UART Overrun Error Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROOERIS10

UART Break Error Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROBERIS9

UART Parity Error Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROPERIS8

UART Framing Error Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROFERIS7

UART Receive Time-Out Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0RORTRIS6

February 24, 2009548
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Transmit Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0ROTXRIS5

UART Receive Raw Interrupt Status

Gives the raw interrupt state (prior to masking) of this interrupt.

0RORXRIS4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0xFROreserved3:0

549February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040
The UARTMIS register is the masked interrupt status register. On a read, this register gives the
current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x040
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedRXMISTXMISRTMISFEMISPEMISBEMISOEMISreservedLMSBMISLME1MISLME5MIS

ROROROROROROROROROROROROROR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

LIN Mode Edge 5 Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0R/WLME5MIS15

LIN Mode Edge 1 Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0R/WLME1MIS14

LIN Mode Sync Break Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0R/WLMSBMIS13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved12:11

UART Overrun Error Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROOEMIS10

UART Break Error Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROBEMIS9

UART Parity Error Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROPEMIS8

UART Framing Error Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROFEMIS7

UART Receive Time-Out Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0RORTMIS6

February 24, 2009550
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

UART Transmit Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0ROTXMIS5

UART Receive Masked Interrupt Status

Gives the masked interrupt state of this interrupt.

0RORXMIS4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3:0

551February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 13: UART Interrupt Clear (UARTICR), offset 0x044
The UARTICR register is the interrupt clear register. On a write of 1, the corresponding interrupt
(both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

UART Interrupt Clear (UARTICR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x044
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedRXICTXICRTICFEICPEICBEICOEICreserved

ROROROROW1CW1CW1CW1CW1CW1CW1CROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:11

Overrun Error Interrupt Clear

The OEIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1COEIC10

Break Error Interrupt Clear

The BEIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CBEIC9

Parity Error Interrupt Clear

The PEIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CPEIC8

February 24, 2009552
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

DescriptionResetTypeNameBit/Field

Framing Error Interrupt Clear

The FEIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CFEIC7

Receive Time-Out Interrupt Clear

The RTIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CRTIC6

Transmit Interrupt Clear

The TXIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CTXIC5

Receive Interrupt Clear

The RXIC values are defined as follows:

DescriptionValue

No effect on the interrupt.0

Clears interrupt.1

0W1CRXIC4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved3:0

553February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 14: UART DMA Control (UARTDMACTL), offset 0x048
The UARTDMACTL register is the DMA control register.

UART DMA Control (UARTDMACTL)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x048
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXDMAETXDMAEDMAERRreserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

DMA on Error

If this bit is set to 1, DMA receive requests are automatically disabled
when a receive error occurs.

0R/WDMAERR2

Transmit DMA Enable

If this bit is set to 1, DMA for the transmit FIFO is enabled.

0R/WTXDMAE1

Receive DMA Enable

If this bit is set to 1, DMA for the receive FIFO is enabled.

0R/WRXDMAE0

February 24, 2009554
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 15: UART LIN Control (UARTLCTL), offset 0x090
The UARTLCTL register is the configures the operation of the UART when in LIN mode.

UART LIN Control (UARTLCTL)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x090
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MASTERreservedBLENreserved

R/WROROROR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

Sync Break Length

DescriptionValue

Sync break length is 16T bits0x3

Sync break length is 15T bits0x2

Sync break length is 14T bits0x1

Sync break length is 13T bits (default)0x0

0R/WBLEN5:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:1

LIN Master Enable

When this bit is set, the UART begins operation as a LIN master.

When this bit is clear, the UART operates as a LIN slave.

0R/WMASTER0

555February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 16: UART LIN Snap Shot (UARTLSS), offset 0x094
The UARTLSS register captures the free-running timer value when either the Sync Edge 1 or the
Sync Edge 5 is detected in LIN mode.

UART LIN Snap Shot (UARTLSS)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x094
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TSS

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Timer Snap Shot

This field contains the value of the free-running timer when either the
Sync Edge 5 or the Sync Edge 1 was detected.

0ROTSS15:0

February 24, 2009556
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 17: UART LIN Timer (UARTLTIM), offset 0x098
The UARTLTIM register contains the current timer value for the free-running timer that is used to
calculate the baud rate when in LIN slave mode. The value in this register is used along with the
value in the UART LIN Snap Shot (UARTLSS) register to adjust the baud rate to match that of the
master.

UART LIN Timer (UARTLTIM)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0x098
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TIMER

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Timer Value

This field contains the value of the free-running timer.

0ROTIMER15:0

557February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 18: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 4 (UARTPeriphID4)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFD0
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x00ROPID47:0

February 24, 2009558
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 19: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 5 (UARTPeriphID5)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFD4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID5reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID57:0

559February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 20: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 6 (UARTPeriphID6)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFD8
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID6reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART Peripheral ID Register[23:16]

Can be used by software to identify the presence of this peripheral.

0x00ROPID67:0

February 24, 2009560
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 21: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 7 (UARTPeriphID7)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFDC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID7reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART Peripheral ID Register[31:24]

Can be used by software to identify the presence of this peripheral.

0x00ROPID77:0

561February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 22: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 0 (UARTPeriphID0)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFE0
Type RO, reset 0x0000.0060

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
0000011000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x60ROPID07:0

February 24, 2009562
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 23: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 1 (UARTPeriphID1)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFE4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID17:0

563February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 24: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 2 (UARTPeriphID2)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFE8
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART Peripheral ID Register[23:16]

Can be used by software to identify the presence of this peripheral.

0x18ROPID27:0

February 24, 2009564
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 25: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.

UART Peripheral Identification 3 (UARTPeriphID3)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFEC
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART Peripheral ID Register[31:24]

Can be used by software to identify the presence of this peripheral.

0x01ROPID37:0

565February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 26: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

UART PrimeCell Identification 0 (UARTPCellID0)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART PrimeCell ID Register[7:0]

Provides software a standard cross-peripheral identification system.

0x0DROCID07:0

February 24, 2009566
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 27: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

UART PrimeCell Identification 1 (UARTPCellID1)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART PrimeCell ID Register[15:8]

Provides software a standard cross-peripheral identification system.

0xF0ROCID17:0

567February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 28: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

UART PrimeCell Identification 2 (UARTPCellID2)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART PrimeCell ID Register[23:16]

Provides software a standard cross-peripheral identification system.

0x05ROCID27:0

February 24, 2009568
Preliminary

Universal Asynchronous Receivers/Transmitters (UARTs)

Register 29: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.

UART PrimeCell Identification 3 (UARTPCellID3)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

UART PrimeCell ID Register[31:24]

Provides software a standard cross-peripheral identification system.

0xB1ROCID37:0

569February 24, 2009
Preliminary

LM3S9B92 Microcontroller

15 Synchronous Serial Interface (SSI)
The Stellaris® microcontroller includes two Synchronous Serial Interface (SSI) modules. Each SSI
is a master or slave interface for synchronous serial communication with peripheral devices that
have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

Each Stellaris® SSI module has the following features:

■ Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments
synchronous serial interfaces

■ Master or slave operation

■ Programmable clock bit rate and prescaler

■ Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep

■ Programmable data frame size from 4 to 16 bits

■ Internal loopback test mode for diagnostic/debug testing

■ Standard FIFO-based interrupts and End-of-Transmission interrupt

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive

– Receive single request asserted when data is in the FIFO; burst request asserted when FIFO
contains 4 entries

– Transmit single request asserted when there is space in the FIFO; burst request asserted
when FIFO contains 4 entries

February 24, 2009570
Preliminary

Synchronous Serial Interface (SSI)

15.1 Block Diagram

Figure 15-1. SSI Module Block Diagram

Identification Registers

SSIPCellID0
SSIPCellID1
SSIPCellID2
SSIPCellID3

SSIPeriphID0
SSIPeriphID1
SSIPeriphID2
SSIPeriphID3

SSIPeriphID4
SSIPeriphID5
SSIPeriphID6
SSIPeriphID7

Clock Prescaler

SSICPSR

Control/Status

Interrupt Control

SSIDR

TxFIFO
8 x 16

.

.

.

RxFIFO
8 x 16

.

.

.

Transmit/
Receive
Logic

SSITx

SSIRx

SSIClk

SSIFss

DMA Control

SSIDMACTL

DMA Request

Interrupt

System Clock

SSISR
SSICR1
SSICR0

SSIRIS
SSIMIS
SSIIM

SSIICR

15.2 Functional Description
The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU
accesses data, control, and status information. The transmit and receive paths are buffered with
internal FIFOmemories allowing up to eight 16-bit values to be stored independently in both transmit
and receive modes. The SSI also supports the DMA interface. The transmit and receive FIFOs can
be programmed as destination/source addresses in the DMA module. DMA operation is enabled
by setting the appropriate bit(s) in the SSIDMACTL register (see page 597).

571February 24, 2009
Preliminary

LM3S9B92 Microcontroller

15.2.1 Bit Rate Generation
The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output
clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by
peripheral devices.

The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided
by an even prescale value CPSDVSR from 2 to 254, which is programmed in the SSI Clock Prescale
(SSICPSR) register (see page 591). The clock is further divided by a value from 1 to 256, which is
1 + SCR, where SCR is the value programmed in the SSI Control0 (SSICR0) register (see page 584).

The frequency of the output clock SSIClk is defined by:

SSIClk = FSysClk / (CPSDVSR * (1 + SCR))

Note: Although the SSIClk transmit clock can theoretically be 40 MHz, the module may not be
able to operate at that speed. For master mode, the system clock must be at least two times
faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster
than the SSIClk.

See “Synchronous Serial Interface (SSI)” on page 1013 to view SSI timing parameters.

15.2.2 FIFO Operation

15.2.2.1 Transmit FIFO
The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The
CPU writes data to the FIFO by writing the SSI Data (SSIDR) register (see page 588), and data is
stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial
conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

15.2.2.2 Receive FIFO
The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer.
Received data from the serial interface is stored in the buffer until read out by the CPU, which
accesses the read FIFO by reading the SSIDR register.

When configured as a master or slave, serial data received through the SSIRx pin is registered
prior to parallel loading into the attached slave or master receive FIFO, respectively.

15.2.3 Interrupts
The SSI can generate interrupts when the following conditions are observed:

■ Transmit FIFO service

■ Receive FIFO service

■ Receive FIFO time-out

■ Receive FIFO overrun

■ End of transmission

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI
can only generate a single interrupt request to the controller at any given time. You can mask each

February 24, 2009572
Preliminary

Synchronous Serial Interface (SSI)

of the four individual maskable interrupts by setting the appropriate bits in the SSI Interrupt Mask
(SSIIM) register (see page 592). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a
global interrupt service routine, or modular device drivers to handle interrupts. The transmit and
receive dynamic dataflow interrupts have been separated from the status interrupts so that data
can be read or written in response to the FIFO trigger levels. The status of the individual interrupt
sources can be read from the SSI Raw Interrupt Status (SSIRIS) and SSI Masked Interrupt Status
(SSIMIS) registers (see page 594 and page 595, respectively).

15.2.4 Frame Formats
Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is
transmitted starting with the MSB. There are three basic frame types that can be selected:

■ Texas Instruments synchronous serial

■ Freescale SPI

■ MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk
transitions at the programmed frequency only during active transmission or reception of data. The
idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive
FIFO still contains data after a timeout period.

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFss) pin is active Low,
and is asserted (pulled down) during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SSIFss pin is pulsed for one serial
clock period starting at its rising edge, prior to the transmission of each frame. For this frame format,
both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and
latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a
special master-slave messaging technique, which operates at half-duplex. In this mode, when a
frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no
incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes
it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent,
responds with the requested data. The returned data can be 4 to 16 bits in length, making the total
frame length anywhere from 13 to 25 bits.

15.2.4.1 Texas Instruments Synchronous Serial Frame Format
Figure 15-2 on page 574 shows the Texas Instruments synchronous serial frame format for a single
transmitted frame.

573February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 15-2. TI Synchronous Serial Frame Format (Single Transfer)

SSIClk

SSIFss

SSITx/SSIRx MSB LSB

4 to 16 bits

In this mode, SSIClk and SSIFss are forced Low, and the transmit data line SSITx is tristated
whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFss is
pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit
FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB
of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data
is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on
the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive
FIFO on the first rising edge of SSIClk after the LSB has been latched.

Figure 15-3 on page 574 shows the Texas Instruments synchronous serial frame format when
back-to-back frames are transmitted.

Figure 15-3. TI Synchronous Serial Frame Format (Continuous Transfer)

MSB LSB

SSIClk

SSIFss

SSITx/SSIRx

4 to 16 bits

15.2.4.2 Freescale SPI Frame Format
The Freescale SPI interface is a four-wire interface where the SSIFss signal behaves as a slave
select. The main feature of the Freescale SPI format is that the inactive state and phase of the
SSIClk signal are programmable through the SPO and SPH bits within the SSISCR0 control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk
pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not
being transferred.

February 24, 2009574
Preliminary

Synchronous Serial Interface (SSI)

SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state.
It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition
before the first data capture edge. When the SPH phase control bit is Low, data is captured on the
first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

15.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0
Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and
SPH=0 are shown in Figure 15-4 on page 575 and Figure 15-5 on page 575.

Figure 15-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

SSIClk

SSIFss

SSIRx Q

SSITx MSB

MSB

LSB

LSB
4 to 16 bits

Note: Q is undefined.

Figure 15-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0

SSIClk

SSIFss

SSIRx LSB

SSITx MSB LSB

LSB MSB

MSB

MSB

LSB

4 to16 bits

In this configuration, during idle periods:

■ SSIClk is forced Low

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

■ When the SSI is configured as a master, it enables the SSIClk pad

■ When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto
the SSIRx input line of the master. The master SSITx output pad is enabled.

575February 24, 2009
Preliminary

LM3S9B92 Microcontroller

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the
master and slave data have been set, the SSIClk master clock pin goes High after one further half
SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the
SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed
High between each data word transfer. This is because the slave select pin freezes the data in its
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,
the master device must raise the SSIFss pin of the slave device between each data transfer to
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin
is returned to its idle state one SSIClk period after the last bit has been captured.

15.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1
The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure
15-6 on page 576, which covers both single and continuous transfers.

Figure 15-6. Freescale SPI Frame Format with SPO=0 and SPH=1

SSIClk

SSIFss

SSIRx

SSITx

Q

MSB

QMSB

LSB

LSB
4 to 16 bits

Q

Note: Q is undefined.

In this configuration, during idle periods:

■ SSIClk is forced Low

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

■ When the SSI is configured as a master, it enables the SSIClk pad

■ When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After
a further one half SSIClk period, both master and slave valid data is enabled onto their respective
transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.

In the case of a single word transfer, after all bits have been transferred, the SSIFss line is returned
to its idle High state one SSIClk period after the last bit has been captured.

February 24, 2009576
Preliminary

Synchronous Serial Interface (SSI)

For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words
and termination is the same as that of the single word transfer.

15.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0
Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and
SPH=0 are shown in Figure 15-7 on page 577 and Figure 15-8 on page 577.

Figure 15-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0

SSIClk

SSIFss

SSIRx

SSITx

QMSB

MSB LSB

LSB

4 to 16 bits

Note: Q is undefined.

Figure 15-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

SSIClk

SSIFss

SSITx/SSIRx MSB LSBLSB MSB

4 to 16 bits

In this configuration, during idle periods:

■ SSIClk is forced High

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

■ When the SSI is configured as a master, it enables the SSIClk pad

■ When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low, which causes slave data to be immediately
transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master
and slave data have been set, the SSIClk master clock pin becomes Low after one further half
SSIClk period. This means that data is captured on the falling edges and propagated on the rising
edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFss
line is returned to its idle High state one SSIClk period after the last bit has been captured.

577February 24, 2009
Preliminary

LM3S9B92 Microcontroller

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed
High between each data word transfer. This is because the slave select pin freezes the data in its
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,
the master device must raise the SSIFss pin of the slave device between each data transfer to
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin
is returned to its idle state one SSIClk period after the last bit has been captured.

15.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1
The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure
15-9 on page 578, which covers both single and continuous transfers.

Figure 15-9. Freescale SPI Frame Format with SPO=1 and SPH=1

SSIClk

SSIFss

SSIRx

SSITx

Q

MSB

MSB

LSB

LSB
4 to 16 bits

Q

Note: Q is undefined.

In this configuration, during idle periods:

■ SSIClk is forced High

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

■ When the SSI is configured as a master, it enables the SSIClk pad

■ When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled.
After a further one-half SSIClk period, both master and slave data are enabled onto their respective
transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then
captured on the rising edges and propagated on the falling edges of the SSIClk signal.

After all bits have been transferred, in the case of a single word transmission, the SSIFss line is
returned to its idle high state one SSIClk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFss pin remains in its active Low state, until
the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words
and termination is the same as that of the single word transfer.

15.2.4.7 MICROWIRE Frame Format
Figure 15-10 on page 579 shows the MICROWIRE frame format, again for a single frame. Figure
15-11 on page 580 shows the same format when back-to-back frames are transmitted.

February 24, 2009578
Preliminary

Synchronous Serial Interface (SSI)

Figure 15-10. MICROWIRE Frame Format (Single Frame)

SSIClk

SSIFss

SSIRx 0

SSITx

8-bit control

4 to 16 bits
output data

LSB

MSB

MSB

LSB

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of
full-duplex, using a master-slave message passing technique. Each serial transmission begins with
an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this
transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip
slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has
been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the
total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

■ SSIClk is forced Low

■ SSIFss is forced High

■ The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFss
causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial
shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the
SSITx pin. SSIFss remains Low for the duration of the frame transmission. The SSIRx pin remains
tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of
each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a
one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven
onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising
edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one
clock period after the last bit has been latched in the receive serial shifter, which causes the data
to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk
after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the samemanner as a single transfer.
However, the SSIFss line is continuously asserted (held Low) and transmission of data occurs
back-to-back. The control byte of the next frame follows directly after the LSB of the received data
from the current frame. Each of the received values is transferred from the receive shifter on the
falling edge of SSIClk, after the LSB of the frame has been latched into the SSI.

579February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 15-11. MICROWIRE Frame Format (Continuous Transfer)

SSIClk

SSIFss

LSBMSBSSIRx 0

SSITx LSBLSB

MSB
4 to 16 bits
output data

8-bit control

MSB

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of
SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that
the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 15-12 on page 580 illustrates these setup and hold time requirements. With respect to the
SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss
must have a setup of at least two times the period of SSIClk on which the SSI operates. With
respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one
SSIClk period.

Figure 15-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements

SSIClk

SSIFss

SSIRx

First RX data to be
sampled by SSI slave

tSetup=(2*tSSIClk)

tHold=tSSIClk

15.2.5 DMA Operation
The SSI peripheral provides an interface connected to the μDMA controller. The DMA operation of
the SSI is enabled through the SSI DMA Control (SSIDMACTL) register. When DMA operation is
enabled, the SSI will assert a DMA request on the receive or transmit channel when the associated
FIFO can transfer data. For the receive channel, a single transfer request is asserted whenever
there is any data in the receive FIFO. A burst transfer request is asserted whenever the amount of
data in the receive FIFO is 4 or more items. For the transmit channel, a single transfer request is
asserted whenever there is at least one empty location in the transmit FIFO. The burst request is
asserted whenever the transmit FIFO has 4 or more empty slots. The single and burst DMA transfer
requests are handled automatically by the μDMA controller depending how the DMA channel is
configured. To enable DMA operation for the receive channel, the RXDMAE bit of the DMA Control
(SSIDMACTL) register should be set. To enable DMA operation for the transmit channel, the TXDMAE
bit of SSIDMACTL should be set. If DMA is enabled, then the μDMA controller will trigger an interrupt
when a transfer is complete. The interrupt will occur on the SSI interrupt vector. Therefore, if interrupts
are used for SSI operation and DMA is enabled, the SSI interrupt handler must be designed to
handle the μDMA completion interrupt.

February 24, 2009580
Preliminary

Synchronous Serial Interface (SSI)

See “Micro Direct Memory Access (μDMA)” on page 226 for more details about programming the
μDMA controller.

15.3 Initialization and Configuration
To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.
See page 167. In addition, the clock to the appropriate GPIOmodule must be enabled via theRCGC2
register in the System Control module. See page 179. To find out which GPIO port to enable, refer
to Table 25-5 on page 990.

For each of the frame formats, the SSI is configured using the following steps:

1. Ensure that the SSE bit in the SSICR1 register is disabled before making any configuration
changes.

2. Select whether the SSI is a master or slave:

a. For master operations, set the SSICR1 register to 0x0000.0000.

b. For slave mode (output enabled), set the SSICR1 register to 0x0000.0004.

c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.

3. Configure the clock prescale divisor by writing the SSICPSR register.

4. Write the SSICR0 register with the following configuration:

■ Serial clock rate (SCR)

■ Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)

■ The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)

■ The data size (DSS)

5. Optionally, configure the μDMA channel (see “Micro Direct Memory Access (μDMA)” on page 226)
and enable the DMA option(s) in the SSIDMACTL register.

6. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

■ Master operation

■ Freescale SPI mode (SPO=1, SPH=1)

■ 1 Mbps bit rate

■ 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))

In this case, if CPSDVSR=2, SCR must be 9.

581February 24, 2009
Preliminary

LM3S9B92 Microcontroller

The configuration sequence would be as follows:

1. Ensure that the SSE bit in the SSICR1 register is disabled.

2. Write the SSICR1 register with a value of 0x0000.0000.

3. Write the SSICPSR register with a value of 0x0000.0002.

4. Write the SSICR0 register with a value of 0x0000.09C7.

5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

15.4 Register Map
Table 15-1 on page 582 lists the SSI registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that SSI module’s base address:

■ SSI0: 0x4000.8000
■ SSI1: 0x4000.9000

Note that the SSI module clock must be enabled before the registers can be programmed (see
page 167).

Note: The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control
registers are reprogrammed.

Table 15-1. SSI Register Map

See
pageDescriptionResetTypeNameOffset

584SSI Control 00x0000.0000R/WSSICR00x000

586SSI Control 10x0000.0000R/WSSICR10x004

588SSI Data0x0000.0000R/WSSIDR0x008

589SSI Status0x0000.0003ROSSISR0x00C

591SSI Clock Prescale0x0000.0000R/WSSICPSR0x010

592SSI Interrupt Mask0x0000.0000R/WSSIIM0x014

594SSI Raw Interrupt Status0x0000.0008ROSSIRIS0x018

595SSI Masked Interrupt Status0x0000.0000ROSSIMIS0x01C

596SSI Interrupt Clear0x0000.0000W1CSSIICR0x020

597SSI DMA Control0x0000.0000R/WSSIDMACTL0x024

598SSI Peripheral Identification 40x0000.0000ROSSIPeriphID40xFD0

599SSI Peripheral Identification 50x0000.0000ROSSIPeriphID50xFD4

600SSI Peripheral Identification 60x0000.0000ROSSIPeriphID60xFD8

601SSI Peripheral Identification 70x0000.0000ROSSIPeriphID70xFDC

602SSI Peripheral Identification 00x0000.0022ROSSIPeriphID00xFE0

603SSI Peripheral Identification 10x0000.0000ROSSIPeriphID10xFE4

February 24, 2009582
Preliminary

Synchronous Serial Interface (SSI)

See
pageDescriptionResetTypeNameOffset

604SSI Peripheral Identification 20x0000.0018ROSSIPeriphID20xFE8

605SSI Peripheral Identification 30x0000.0001ROSSIPeriphID30xFEC

606SSI PrimeCell Identification 00x0000.000DROSSIPCellID00xFF0

607SSI PrimeCell Identification 10x0000.00F0ROSSIPCellID10xFF4

608SSI PrimeCell Identification 20x0000.0005ROSSIPCellID20xFF8

609SSI PrimeCell Identification 30x0000.00B1ROSSIPCellID30xFFC

15.5 Register Descriptions
The remainder of this section lists and describes the SSI registers, in numerical order by address
offset.

583February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: SSI Control 0 (SSICR0), offset 0x000
SSICR0 is control register 0 and contains bit fields that control various functions within the SSI
module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

SSI Control 0 (SSICR0)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DSSFRFSPOSPHSCR

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

SSI Serial Clock Rate

The value SCR is used to generate the transmit and receive bit rate of
the SSI. The bit rate is:

BR=FSSIClk/(CPSDVSR * (1 + SCR))

where CPSDVSR is an even value from 2-254 programmed in the
SSICPSR register, and SCR is a value from 0-255.

0x0000R/WSCR15:8

SSI Serial Clock Phase

This bit is only applicable to the Freescale SPI Format.

The SPH control bit selects the clock edge that captures data and allows
it to change state. It has the most impact on the first bit transmitted by
either allowing or not allowing a clock transition before the first data
capture edge.

When the SPH bit is 0, data is captured on the first clock edge transition.
If SPH is 1, data is captured on the second clock edge transition.

0R/WSPH7

SSI Serial Clock Polarity

This bit is only applicable to the Freescale SPI Format.

When the SPO bit is 0, it produces a steady state Low value on the
SSIClk pin. If SPO is 1, a steady state High value is placed on the
SSIClk pin when data is not being transferred.

0R/WSPO6

February 24, 2009584
Preliminary

Synchronous Serial Interface (SSI)

DescriptionResetTypeNameBit/Field

SSI Frame Format Select

The FRF values are defined as follows:

Frame FormatValue

Freescale SPI Frame Format0x0

Texas Instruments Synchronous Serial Frame Format0x1

MICROWIRE Frame Format0x2

Reserved0x3

0x0R/WFRF5:4

SSI Data Size Select

The DSS values are defined as follows:

Data SizeValue

Reserved0x0-0x2

4-bit data0x3

5-bit data0x4

6-bit data0x5

7-bit data0x6

8-bit data0x7

9-bit data0x8

10-bit data0x9

11-bit data0xA

12-bit data0xB

13-bit data0xC

14-bit data0xD

15-bit data0xE

16-bit data0xF

0x00R/WDSS3:0

585February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: SSI Control 1 (SSICR1), offset 0x004
SSICR1 is control register 1 and contains bit fields that control various functions within the SSI
module. Master and slave mode functionality is controlled by this register.

SSI Control 1 (SSICR1)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LBMSSEMSSODEOTreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:5

End of Transmission

When set to 1, this bit enables the End of Transmit interrupt mode for
the TXIM interrupt.

0R/WEOT4

SSI Slave Mode Output Disable

This bit is relevant only in the Slave mode (MS=1). In multiple-slave
systems, it is possible for the SSI master to broadcast a message to all
slaves in the system while ensuring that only one slave drives data onto
the serial output line. In such systems, the TXD lines frommultiple slaves
could be tied together. To operate in such a system, the SOD bit can be
configured so that the SSI slave does not drive the SSITx pin.

The SOD values are defined as follows:

DescriptionValue

SSI can drive SSITx output in Slave Output mode.0

SSI must not drive the SSITx output in Slave mode.1

0R/WSOD3

SSI Master/Slave Select

This bit selects Master or Slave mode and can be modified only when
SSI is disabled (SSE=0).

The MS values are defined as follows:

DescriptionValue

Device configured as a master.0

Device configured as a slave.1

0R/WMS2

February 24, 2009586
Preliminary

Synchronous Serial Interface (SSI)

DescriptionResetTypeNameBit/Field

SSI Synchronous Serial Port Enable

Setting this bit enables SSI operation.

The SSE values are defined as follows:

DescriptionValue

SSI operation disabled.0

SSI operation enabled.1

Note: This bit must be set to 0 before any control registers
are reprogrammed.

0R/WSSE1

SSI Loopback Mode

Setting this bit enables Loopback Test mode.

The LBM values are defined as follows:

DescriptionValue

Normal serial port operation enabled.0

Output of the transmit serial shift register is connected internally
to the input of the receive serial shift register.

1

0R/WLBM0

587February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: SSI Data (SSIDR), offset 0x008
SSIDR is the data register and is 16-bits wide. When SSIDR is read, the entry in the receive FIFO
(pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI
receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed
to by the current FIFO write pointer).

When SSIDR is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written
to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is
loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed
bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the
transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is
automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is
eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer.
The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the SSICR1
register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI Data (SSIDR)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

SSI Receive/Transmit Data

A read operation reads the receive FIFO. A write operation writes the
transmit FIFO.

Software must right-justify data when the SSI is programmed for a data
size that is less than 16 bits. Unused bits at the top are ignored by the
transmit logic. The receive logic automatically right-justifies the data.

0x0000R/WDATA15:0

February 24, 2009588
Preliminary

Synchronous Serial Interface (SSI)

Register 4: SSI Status (SSISR), offset 0x00C
SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

SSI Status (SSISR)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x00C
Type RO, reset 0x0000.0003

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TFETNFRNERFFBSYreserved

R0ROROROROROROROROROROROROROROROType
1100000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:5

SSI Busy Bit

The BSY values are defined as follows:

DescriptionValue

SSI is idle.0

SSI is currently transmitting and/or receiving a frame, or the
transmit FIFO is not empty.

1

0ROBSY4

SSI Receive FIFO Full

The RFF values are defined as follows:

DescriptionValue

Receive FIFO is not full.0

Receive FIFO is full.1

0RORFF3

SSI Receive FIFO Not Empty

The RNE values are defined as follows:

DescriptionValue

Receive FIFO is empty.0

Receive FIFO is not empty.1

0RORNE2

589February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

SSI Transmit FIFO Not Full

The TNF values are defined as follows:

DescriptionValue

Transmit FIFO is full.0

Transmit FIFO is not full.1

1ROTNF1

SSI Transmit FIFO Empty

The TFE values are defined as follows:

DescriptionValue

Transmit FIFO is not empty.0

Transmit FIFO is empty.1

1R0TFE0

February 24, 2009590
Preliminary

Synchronous Serial Interface (SSI)

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010
SSICPSR is the clock prescale register and specifies the division factor by which the system clock
must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The
least-significant bit of the programmed number is hard-coded to zero. If an odd number is written
to this register, data read back from this register has the least-significant bit as zero.

SSI Clock Prescale (SSICPSR)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CPSDVSRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Clock Prescale Divisor

This value must be an even number from 2 to 254, depending on the
frequency of SSIClk. The LSB always returns 0 on reads.

0x00R/WCPSDVSR7:0

591February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014
The SSIIM register is the interrupt mask set or clear register. It is a read/write register and all bits
are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to
the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding
mask.

SSI Interrupt Mask (SSIIM)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RORIMRTIMRXIMTXIMreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SSI Transmit FIFO Interrupt Mask

The TXIM values are defined as follows:

DescriptionValue

TX FIFO half-full or less condition interrupt is masked.0

TX FIFO half-full or less condition interrupt is not masked.1

0R/WTXIM3

SSI Receive FIFO Interrupt Mask

The RXIM values are defined as follows:

DescriptionValue

RX FIFO half-full or more condition interrupt is masked.0

RX FIFO half-full or more condition interrupt is not masked.1

0R/WRXIM2

SSI Receive Time-Out Interrupt Mask

The RTIM values are defined as follows:

DescriptionValue

RX FIFO time-out interrupt is masked.0

RX FIFO time-out interrupt is not masked.1

0R/WRTIM1

February 24, 2009592
Preliminary

Synchronous Serial Interface (SSI)

DescriptionResetTypeNameBit/Field

SSI Receive Overrun Interrupt Mask

The RORIM values are defined as follows:

DescriptionValue

RX FIFO overrun interrupt is masked.0

RX FIFO overrun interrupt is not masked.1

0R/WRORIM0

593February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018
The SSIRIS register is the raw interrupt status register. On a read, this register gives the current
raw status value of the corresponding interrupt prior to masking. A write has no effect.

SSI Raw Interrupt Status (SSIRIS)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x018
Type RO, reset 0x0000.0008

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RORRISRTRISRXRISTXRISreserved

ROROROROROROROROROROROROROROROROType
0001000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

SSI Transmit FIFO Raw Interrupt Status

If the EOT bit in the SSICR1 register is set to 0, this bit indicates that the
transmit FIFO is half full or less. If the EOT bit is set to 1, this bit indicates
that the transmit FIFO is empty, and the last bit has been transmitted
out of the serializer.

1ROTXRIS3

SSI Receive FIFO Raw Interrupt Status

Indicates that the receive FIFO is half full or more, when set.

0RORXRIS2

SSI Receive Time-Out Raw Interrupt Status

Indicates that the receive time-out has occurred, when set.

0RORTRIS1

SSI Receive Overrun Raw Interrupt Status

Indicates that the receive FIFO has overflowed, when set.

0RORORRIS0

February 24, 2009594
Preliminary

Synchronous Serial Interface (SSI)

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C
The SSIMIS register is the masked interrupt status register. On a read, this register gives the current
masked status value of the corresponding interrupt. A write has no effect.

SSI Masked Interrupt Status (SSIMIS)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x01C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RORMISRTMISRXMISTXMISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:4

SSI Transmit FIFO Masked Interrupt Status

If the EOT bit in the SSICR1 register is set to 0, this bit indicates that the
transmit FIFO is half full or less. If the EOT bit is set to 1, this bit indicates
that the transmit FIFO is empty, and the last bit has been transmitted
out of the serializer.

0ROTXMIS3

SSI Receive FIFO Masked Interrupt Status

Indicates that the receive FIFO is half full or more, when set.

0RORXMIS2

SSI Receive Time-Out Masked Interrupt Status

Indicates that the receive time-out has occurred, when set.

0RORTMIS1

SSI Receive Overrun Masked Interrupt Status

Indicates that the receive FIFO has overflowed, when set.

0RORORMIS0

595February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020
The SSIICR register is the interrupt clear register. On a write of 1, the corresponding interrupt is
cleared. A write of 0 has no effect.

SSI Interrupt Clear (SSIICR)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x020
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RORICRTICreserved

W1CW1CROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:2

SSI Receive Time-Out Interrupt Clear

The RTIC values are defined as follows:

DescriptionValue

No effect on interrupt.0

Clears interrupt.1

0W1CRTIC1

SSI Receive Overrun Interrupt Clear

The RORIC values are defined as follows:

DescriptionValue

No effect on interrupt.0

Clears interrupt.1

0W1CRORIC0

February 24, 2009596
Preliminary

Synchronous Serial Interface (SSI)

Register 10: SSI DMA Control (SSIDMACTL), offset 0x024
The SSIDMACTL register is the DMA control register.

SSI DMA Control (SSIDMACTL)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXDMAETXDMAEreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:2

Transmit DMA Enable

If this bit is set to 1, DMA for the transmit FIFO is enabled.

0R/WTXDMAE1

Receive DMA Enable

If this bit is set to 1, DMA for the receive FIFO is enabled.

0R/WRXDMAE0

597February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 4 (SSIPeriphID4)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFD0
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID4reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x00ROPID47:0

February 24, 2009598
Preliminary

Synchronous Serial Interface (SSI)

Register 12: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 5 (SSIPeriphID5)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFD4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID5reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register[15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID57:0

599February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 13: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 6 (SSIPeriphID6)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFD8
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID6reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register[23:16]

Can be used by software to identify the presence of this peripheral.

0x00ROPID67:0

February 24, 2009600
Preliminary

Synchronous Serial Interface (SSI)

Register 14: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 7 (SSIPeriphID7)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFDC
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID7reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register[31:24]

Can be used by software to identify the presence of this peripheral.

0x00ROPID77:0

601February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 15: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 0 (SSIPeriphID0)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFE0
Type RO, reset 0x0000.0022

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID0reserved

ROROROROROROROROROROROROROROROROType
0100010000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

SSI Peripheral ID Register[7:0]

Can be used by software to identify the presence of this peripheral.

0x22ROPID07:0

February 24, 2009602
Preliminary

Synchronous Serial Interface (SSI)

Register 16: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 1 (SSIPeriphID1)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFE4
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID1reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register [15:8]

Can be used by software to identify the presence of this peripheral.

0x00ROPID17:0

603February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 17: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 2 (SSIPeriphID2)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFE8
Type RO, reset 0x0000.0018

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID2reserved

ROROROROROROROROROROROROROROROROType
0001100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register [23:16]

Can be used by software to identify the presence of this peripheral.

0x18ROPID27:0

February 24, 2009604
Preliminary

Synchronous Serial Interface (SSI)

Register 18: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.

SSI Peripheral Identification 3 (SSIPeriphID3)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFEC
Type RO, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PID3reserved

ROROROROROROROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI Peripheral ID Register [31:24]

Can be used by software to identify the presence of this peripheral.

0x01ROPID37:0

605February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 19: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0
The SSIPCellIDn registers are hard-coded, and the fields within the register determine the reset
value.

SSI PrimeCell Identification 0 (SSIPCellID0)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFF0
Type RO, reset 0x0000.000D

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID0reserved

ROROROROROROROROROROROROROROROROType
1011000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI PrimeCell ID Register [7:0]

Provides software a standard cross-peripheral identification system.

0x0DROCID07:0

February 24, 2009606
Preliminary

Synchronous Serial Interface (SSI)

Register 20: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4
The SSIPCellIDn registers are hard-coded, and the fields within the register determine the reset
value.

SSI PrimeCell Identification 1 (SSIPCellID1)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFF4
Type RO, reset 0x0000.00F0

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID1reserved

ROROROROROROROROROROROROROROROROType
0000111100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI PrimeCell ID Register [15:8]

Provides software a standard cross-peripheral identification system.

0xF0ROCID17:0

607February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 21: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8
The SSIPCellIDn registers are hard-coded, and the fields within the register determine the reset
value.

SSI PrimeCell Identification 2 (SSIPCellID2)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFF8
Type RO, reset 0x0000.0005

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID2reserved

ROROROROROROROROROROROROROROROROType
1010000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI PrimeCell ID Register [23:16]

Provides software a standard cross-peripheral identification system.

0x05ROCID27:0

February 24, 2009608
Preliminary

Synchronous Serial Interface (SSI)

Register 22: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC
The SSIPCellIDn registers are hard-coded, and the fields within the register determine the reset
value.

SSI PrimeCell Identification 3 (SSIPCellID3)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000
Offset 0xFFC
Type RO, reset 0x0000.00B1

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CID3reserved

ROROROROROROROROROROROROROROROROType
1000110100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SSI PrimeCell ID Register [31:24]

Provides software a standard cross-peripheral identification system.

0xB1ROCID37:0

609February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16 Inter-Integrated Circuit (I2C) Interface
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design
(a serial data line SDA and a serial clock line SCL), and interfaces to external I2C devices such as
serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I2C
bus may also be used for system testing and diagnostic purposes in product development and
manufacture. The LM3S9B92 microcontroller includes two I2C modules, providing the ability to
interact (both send and receive) with other I2C devices on the bus.

The Stellaris® I2C interface has the following features:

■ Devices on the I2C bus can be designated as either a master or a slave

– Supports both sending and receiving data as either a master or a slave

– Supports simultaneous master and slave operation

■ Four I2C modes

– Master transmit

– Master receive

– Slave transmit

– Slave receive

■ Two transmission speeds: Standard (100 Kbps) and Fast (400 Kbps)

■ Master and slave interrupt generation

– Master generates interrupts when a transmit or receive operation completes (or aborts due
to an error)

– Slave generates interrupts when data has been sent or requested by a master or when a
START or STOP condition is detected

■ Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing
mode

February 24, 2009610
Preliminary

Inter-Integrated Circuit (I2C) Interface

16.1 Block Diagram

Figure 16-1. I2C Block Diagram

I2C I/O Select

I2C Master Core

Interrupt

I2C Slave Core

I2CSCL

I2CSDA

I2CSDA

I2CSCL

I2CSDA

I2CSCL

I2CMSA

I2CMCS

I2CMDR

I2CMTPR

I2CMIMR

I2CMRIS

I2CMICR

I2CMCR

I2CSOAR

I2CSCSR

I2CSDR

I2CSIM

I2CSRIS

I2CSMIS

I2CSICRI2CMMIS

I2C Control

16.2 Functional Description
Each I2Cmodule is comprised of both master and slave functions which are implemented as separate
peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional
open-drain pads. A typical I2C bus configuration is shown in Figure 16-2 on page 611.

See “Inter-Integrated Circuit (I2C) Interface” on page 1014 for I2C timing diagrams.

Figure 16-2. I2C Bus Configuration

RPUP

StellarisTM

I2CSCL I2CSDA

RPUP

3rd Party Device
with I2C Interface

SCL SDA

I2C Bus
SCL
SDA

3rd Party Device
with I2C Interface

SCL SDA

16.2.1 I2C Bus Functional Overview
The I2C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris®

microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock
line. The bus is considered idle when both lines are High.

Every transaction on the I2C bus is nine bits long, consisting of eight data bits and a single
acknowledge bit. The number of bytes per transfer (defined as the time between a valid START
and STOP condition, described in “START and STOP Conditions” on page 612) is unrestricted, but
each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When
a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the
transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

611February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16.2.1.1 START and STOP Conditions
The protocol of the I2C bus defines two states to begin and end a transaction: START and STOP.
A High-to-Low transition on the SDA line while the SCL is High is defined as a START condition,
and a Low-to-High transition on the SDA line while SCL is High is defined as a STOP condition.
The bus is considered busy after a START condition and free after a STOP condition. See Figure
16-3 on page 612.

Figure 16-3. START and STOP Conditions

START
condition

SDA

SCL
STOP

condition

SDA

SCL

When operating in slave mode, two bits in the I2CSRIS register indicate detection of start and stop
conditions on the bus; while two bits in the I2CSMIS register allow start and stop conditions to be
promoted to controller interrupts (when interrupts are enabled).

16.2.1.2 Data Format with 7-Bit Address
Data transfers follow the format shown in Figure 16-4 on page 612. After the START condition, a
slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction
bit (R/S bit in the I2CMSA register). A zero indicates a transmit operation (send), and a one indicates
a request for data (receive). A data transfer is always terminated by a STOP condition generated
by the master, however, a master can initiate communications with another device on the bus by
generating a repeated START condition and addressing another slave without first generating a
STOP condition. Various combinations of receive/send formats are then possible within a single
transfer.

Figure 16-4. Complete Data Transfer with a 7-Bit Address

DataSlave address

ACKLSBMSBACKR/SLSBMSBSDA

SCL 1 2 7 8 9 1 2 7 8 9

The first seven bits of the first byte make up the slave address (see Figure 16-5 on page 612). The
eighth bit determines the direction of the message. A zero in the R/S position of the first byte means
that the master will write (send) data to the selected slave, and a one in this position means that
the master will receive data from the slave.

Figure 16-5. R/S Bit in First Byte

R/S

LSB

Slave address

MSB

February 24, 2009612
Preliminary

Inter-Integrated Circuit (I2C) Interface

16.2.1.3 Data Validity
The data on the SDA line must be stable during the high period of the clock, and the data line can
only change when SCL is Low (see Figure 16-6 on page 613).

Figure 16-6. Data Validity During Bit Transfer on the I2C Bus

Change
of data
allowed

Dataline
stable

SDA

SCL

16.2.1.4 Acknowledge
All bus transactions have a required acknowledge clock cycle that is generated by the master. During
the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line.
To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock
cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data
validity requirements described in “Data Validity” on page 613.

When a slave receiver does not acknowledge the slave address, SDAmust be left High by the slave
so that the master can generate a STOP condition and abort the current transfer. If the master
device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer
made by the slave. Since the master controls the number of bytes in the transfer, it signals the end
of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave
transmitter must then release SDA to allow the master to generate the STOP or a repeated START
condition.

16.2.1.5 Arbitration
A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate
a START condition within minimum hold time of the START condition. In these situations, an
arbitration scheme takes place on the SDA line, while SCL is High. During arbitration, the first of
the competing master devices to place a '1' (High) on SDA while another master transmits a '0'
(Low) will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if
both masters are trying to address the same device, arbitration continues on to the comparison of
data bits.

16.2.2 Available Speed Modes
The I2C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.

where:

CLK_PRD is the system clock period

SCL_LP is the low phase of SCL (fixed at 6)

SCL_HP is the high phase of SCL (fixed at 4)

TIMER_PRD is the programmed value in the I2C Master Timer Period (I2CMTPR) register (see
page 631).

The I2C clock period is calculated as follows:

613February 24, 2009
Preliminary

LM3S9B92 Microcontroller

SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD

For example:

CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4

yields a SCL frequency of:

1/T = 333 Khz

Table 16-1 on page 614 gives examples of timer period, system clock, and speed mode (Standard
or Fast).

Table 16-1. Examples of I2C Master Timer Period versus Speed Mode

Fast ModeTimer PeriodStandard ModeTimer PeriodSystem Clock

--100 Kbps0x014 MHz

--100 Kbps0x026 MHz

312 Kbps0x0189 Kbps0x0612.5 MHz

278 Kbps0x0293 Kbps0x0816.7 MHz

333 Kbps0x02100 Kbps0x0920 MHz

312 Kbps0x0396.2 Kbps0x0C25 MHz

330 Kbps0x0497.1 Kbps0x1033 MHz

400 Kbps0x04100 Kbps0x1340 MHz

357 Kbps0x06100 Kbps0x1850 MHz

16.2.3 Interrupts
The I2C can generate interrupts when the following conditions are observed:

■ Master transaction completed

■ Master transaction error

■ Slave transaction received

■ Slave transaction requested

■ Stop condition on bus detected

■ Start condition on bus detected

There is a separate interrupt signal for the I2C master and I2C slave modules. While both modules
can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt
controller.

16.2.3.1 I2C Master Interrupts
The I2C master module generates an interrupt when a transaction completes (either transmit or
receive), or when an error occurs during a transaction. To enable the I2C master interrupt, software
must write a '1' to the I2C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition

February 24, 2009614
Preliminary

Inter-Integrated Circuit (I2C) Interface

is met, software must check the ERROR bit in the I2C Master Control/Status (I2CMCS) register to
verify that an error didn't occur during the last transaction. An error condition is asserted if the last
transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of
the bus due to a lost arbitration round with another master. If an error is not detected, the application
can proceed with the transfer. The interrupt is cleared by writing a '1' to the I2C Master Interrupt
Clear (I2CMICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via
the I2C Master Raw Interrupt Status (I2CMRIS) register.

16.2.3.2 I2C Slave Interrupts
The slavemodule can generate an interrupt when data has been received or requested. This interrupt
is enabled by writing a 1 to the DATAIM bit in the I2C Slave Interrupt Mask (I2CSIMR) register.
Software determines whether the module should write (transmit) or read (receive) data from the I2C
Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I2C Slave Control/Status
(I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received,
the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a 1 to the DATAIC bit
in the I2C Slave Interrupt Clear (I2CSICR) register.

In addition, the slave module can generate an interrupt when a start and stop condition is detected.
These interrupts are enabled by writing a 1 to the STARTIM and STOPIM bits of the I2C Slave
Interrupt Mask (I2CSIMR) register and cleared by writing a 1 to the STOPIC and STARTIC bits of
the I2C Slave Interrupt Clear (I2CSICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via
the I2C Slave Raw Interrupt Status (I2CSRIS) register.

16.2.4 Loopback Operation
The I2C modules can be placed into an internal loopback mode for diagnostic or debug work. This
is accomplished by setting the LPBK bit in the I2C Master Configuration (I2CMCR) register. In
loopback mode, the SDA and SCL signals from the master and slave modules are tied together.

16.2.5 Command Sequence Flow Charts
This section details the steps required to perform the various I2C transfer types in both master and
slave mode.

16.2.5.1 I2C Master Command Sequences
The figures that follow show the command sequences available for the I2C master.

615February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 16-7. Master Single SEND

Idle

Write Slave
Address to
I2CMSA

Write data to
I2CMDR

Read I2CMCS

Sequence
may be

omitted in a
Single Master

system

BUSBSY bit=0?NO

Write ---0-111 to
I2CMCS

YES

Read I2CMCS

BUSY bit=0?

ERROR bit=0?

YES

Error Service

Idle

YES

NO

NO

February 24, 2009616
Preliminary

Inter-Integrated Circuit (I2C) Interface

Figure 16-8. Master Single RECEIVE

Idle

Write Slave
Address to
I2CMSA

Read I2CMCS

Sequence may be
omitted in a Single
Master system

BUSBSY bit=0?NO

Write ---00111 to
I2CMCS

YES

Read I2CMCS

BUSY bit=0?

ERROR bit=0?

YES

Error Service

Idle

NO

NO

Read data from
I2CMDR

YES

617February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 16-9. Master Burst SEND

Idle

Write Slave
Address to
I2CMSA

Write data to
I2CMDR

Read I2CMCS

BUSBSY bit=0?

YES

Write ---0-011 to
I2CMCS

NO

Read I2CMCS

BUSY bit=0?

YES

ERROR bit=0?

YES

ARBLST bit=1?Write data to
I2CMDR

Write ---0-100 to
I2CMCSIndex=n?

NO

Error Service

Idle

YES

Write ---0-001 to
I2CMCS

Write ---0-101 to
I2CMCS

YES

Read I2CMCS

BUSY bit=0?

ERROR bit=0?

YES

NO

Idle

YES

Error Service NO

NO

NO

NO

Sequence
may be

omitted in a
Single Master

system

February 24, 2009618
Preliminary

Inter-Integrated Circuit (I2C) Interface

Figure 16-10. Master Burst RECEIVE

Idle

Write Slave
Address to
I2CMSA

Read I2CMCS

BUSBSY bit=0?NO

Write ---01011 to
I2CMCS

YES

Read I2CMCS

BUSY bit=0? NO

ERROR bit=0?

YES

ARBLST bit=1?

Write ---0-100 to
I2CMCS

NO

Error Service

YES

Idle

Read data from
I2CMDR

Index=m-1?

Write ---00101 to
I2CMCS

YES

Idle

Read data from
I2CMDRError Service

ERROR bit=0?

YES

Write ---01001 to
I2CMCS

Read I2CMCS

BUSY bit=0? NO

YES

Sequence
may be

omitted in a
Single Master

system

NO

NO

NO

619February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 16-11. Master Burst RECEIVE after Burst SEND

Idle

Master operates in
Master Transmit mode

STOP condition is not
generated

Write Slave
Address to
I2CMSA

Write ---01011 to
I2CMCS

Master operates in
Master Receive mode

Idle

Repeated START
condition is generated
with changing data

direction

February 24, 2009620
Preliminary

Inter-Integrated Circuit (I2C) Interface

Figure 16-12. Master Burst SEND after Burst RECEIVE

Idle

Master operates in
Master Receive mode

STOP condition is not
generated

Write Slave
Address to
I2CMSA

Write ---0-011 to
I2CMCS

Master operates in
Master Transmit mode

Idle

Repeated START
condition is generated
with changing data

direction

16.2.5.2 I2C Slave Command Sequences
Figure 16-13 on page 622 presents the command sequence available for the I2C slave.

621February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 16-13. Slave Command Sequence

Idle

Write OWN Slave
Address to
I2CSOAR

Write -------1 to
I2CSCSR

Read I2CSCSR

RREQ bit=1?

Read data from
I2CSDR

YES

TREQ bit=1? NO

Write data to
I2CSDR

YES

NO

FBR is
also valid

16.3 Initialization and Configuration
The following example shows how to configure the I2C module to send a single byte as a master.
This assumes the system clock is 20 MHz.

1. Enable the I2C clock by writing a value of 0x0000.1000 to the RCGC1 register in the System
Control module. See page 167.

2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control
module. See page 179. To find out which GPIO port to enable, refer to Table 25-5 on page 990.

3. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register. Also, be sure to enable the same pins for Open Drain operation.

4. Initialize the I2C Master by writing the I2CMCR register with a value of 0x0000.0020.

5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct
value. The value written to the I2CMTPR register represents the number of system clock periods
in one SCL clock period. The TPR value is determined by the following equation:

February 24, 2009622
Preliminary

Inter-Integrated Circuit (I2C) Interface

TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1;
TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1;
TPR = 9

Write the I2CMTPR register with the value of 0x0000.0009.

6. Specify the slave address of the master and that the next operation will be a Send by writing
the I2CMSA register with a value of 0x0000.0076. This sets the slave address to 0x3B.

7. Place data (byte) to be sent in the data register by writing the I2CMDR register with the desired
data.

8. Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with
a value of 0x0000.0007 (STOP, START, RUN).

9. Wait until the transmission completes by polling the I2CMCS register’s BUSBSY bit until it has
been cleared.

16.4 Register Map
Table 16-2 on page 623 lists the I2C registers. All addresses given are relative to the I2C base
addresses for the master and slave:

■ I2C Master 0: 0x4002.0000
■ I2C Slave 0: 0x4002.0800
■ I2C Master 1: 0x4002.1000
■ I2C Slave 1: 0x4002.1800

Note that the I2C module clock must be enabled before the registers can be programmed (see
page 167).

Table 16-2. Inter-Integrated Circuit (I2C) Interface Register Map

See
pageDescriptionResetTypeNameOffset

I2C Master

625I2C Master Slave Address0x0000.0000R/WI2CMSA0x000

626I2C Master Control/Status0x0000.0000R/WI2CMCS0x004

630I2C Master Data0x0000.0000R/WI2CMDR0x008

631I2C Master Timer Period0x0000.0001R/WI2CMTPR0x00C

632I2C Master Interrupt Mask0x0000.0000R/WI2CMIMR0x010

633I2C Master Raw Interrupt Status0x0000.0000ROI2CMRIS0x014

634I2C Master Masked Interrupt Status0x0000.0000ROI2CMMIS0x018

635I2C Master Interrupt Clear0x0000.0000WOI2CMICR0x01C

636I2C Master Configuration0x0000.0000R/WI2CMCR0x020

I2C Slave

637I2C Slave Own Address0x0000.0000R/WI2CSOAR0x000

623February 24, 2009
Preliminary

LM3S9B92 Microcontroller

See
pageDescriptionResetTypeNameOffset

638I2C Slave Control/Status0x0000.0000ROI2CSCSR0x004

640I2C Slave Data0x0000.0000R/WI2CSDR0x008

641I2C Slave Interrupt Mask0x0000.0000R/WI2CSIMR0x00C

642I2C Slave Raw Interrupt Status0x0000.0000ROI2CSRIS0x010

643I2C Slave Masked Interrupt Status0x0000.0000ROI2CSMIS0x014

644I2C Slave Interrupt Clear0x0000.0000WOI2CSICR0x018

16.5 Register Descriptions (I2C Master)
The remainder of this section lists and describes the I2C master registers, in numerical order by
address offset. See also “Register Descriptions (I2C Slave)” on page 636.

February 24, 2009624
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 1: I2C Master Slave Address (I2CMSA), offset 0x000
This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which
determines if the next operation is a Receive (High), or Send (Low).

I2C Master Slave Address (I2CMSA)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

R/SSAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

I2C Slave Address

This field specifies bits A6 through A0 of the slave address.

0R/WSA7:1

Receive/Send

The R/S bit specifies if the next operation is a Receive (High) or Send
(Low).

DescriptionValue

Send.0

Receive.1

0R/WR/S0

625February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: I2C Master Control/Status (I2CMCS), offset 0x004
This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I2C bus
controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes
the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst.
To generate a single send cycle, the I2C Master Slave Address (I2CMSA) register is written with
the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1),
STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed
(or aborted due an error), the interrupt pin becomes active and the data may be read from the
I2CMDR register. When the I2C module operates in Master receiver mode, the ACK bit must be set
normally to logic 1. This causes the I2C bus controller to send an acknowledge automatically after
each byte. This bit must be reset when the I2C bus controller requires no further data to be sent
from the slave transmitter.

Reads

I2C Master Control/Status (I2CMCS)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BUSYERRORADRACKDATACKARBLSTIDLEBUSBSYreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:7

Bus Busy

This bit specifies the state of the I2C bus. If set, the bus is busy;
otherwise, the bus is idle. The bit changes based on the START and
STOP conditions.

0ROBUSBSY6

I2C Idle

This bit specifies the I2C controller state. If set, the controller is idle;
otherwise the controller is not idle.

0ROIDLE5

Arbitration Lost

This bit specifies the result of bus arbitration. If set, the controller lost
arbitration; otherwise, the controller won arbitration.

0ROARBLST4

February 24, 2009626
Preliminary

Inter-Integrated Circuit (I2C) Interface

DescriptionResetTypeNameBit/Field

Acknowledge Data

This bit specifies the result of the last data operation. If set, the
transmitted data was not acknowledged; otherwise, the data was
acknowledged.

0RODATACK3

Acknowledge Address

This bit specifies the result of the last address operation. If set, the
transmitted address was not acknowledged; otherwise, the address was
acknowledged.

0ROADRACK2

Error

This bit specifies the result of the last bus operation. If set, an error
occurred on the last operation; otherwise, no error was detected. The
error can be from the slave address not being acknowledged, the
transmit data not being acknowledged, or because the controller lost
arbitration.

0ROERROR1

I2C Busy

This bit specifies the state of the controller. If set, the controller is busy;
otherwise, the controller is idle. When the BUSY bit is set, the other status
bits are not valid.

0ROBUSY0

Writes

I2C Master Control/Status (I2CMCS)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x004
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

RUNSTARTSTOPACKreserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00WOreserved31:4

Data Acknowledge Enable

When set, causes received data byte to be acknowledged automatically
by the master. See field decoding in Table 16-3 on page 628.

0WOACK3

Generate STOP

When set, causes the generation of the STOP condition. See field
decoding in Table 16-3 on page 628.

0WOSTOP2

627February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Generate START

When set, causes the generation of a START or repeated START
condition. See field decoding in Table 16-3 on page 628.

0WOSTART1

I2C Master Enable

When set, allows the master to send or receive data. See field decoding
in Table 16-3 on page 628.

0WORUN0

Table 16-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)

DescriptionI2CMCS[3:0]I2CMSA[0]Current
State RUNSTARTSTOPACKR/S

START condition followed by SEND (master goes to the
Master Transmit state).

110Xa0Idle

START condition followed by a SEND and STOP
condition (master remains in Idle state).

111X0

START condition followed by RECEIVE operation with
negative ACK (master goes to the Master Receive state).

11001

START condition followed by RECEIVE and STOP
condition (master remains in Idle state).

11101

START condition followed by RECEIVE (master goes to
the Master Receive state).

11011

Illegal.11111

NOP.All other combinations not listed are non-operations.

SEND operation (master remains in Master Transmit
state).

100XXMaster
Transmit

STOP condition (master goes to Idle state).001XX

SEND followed by STOP condition (master goes to Idle
state).

101XX

Repeated START condition followed by a SEND (master
remains in Master Transmit state).

110X0

Repeated START condition followed by SEND and STOP
condition (master goes to Idle state).

111X0

Repeated START condition followed by a RECEIVE
operation with a negative ACK (master goes to Master
Receive state).

11001

Repeated START condition followed by a SEND and
STOP condition (master goes to Idle state).

11101

Repeated START condition followed by RECEIVE (master
goes to Master Receive state).

11011

Illegal.11111

NOP.All other combinations not listed are non-operations.

February 24, 2009628
Preliminary

Inter-Integrated Circuit (I2C) Interface

DescriptionI2CMCS[3:0]I2CMSA[0]Current
State RUNSTARTSTOPACKR/S

RECEIVE operation with negative ACK (master remains
in Master Receive state).

1000XMaster
Receive

STOP condition (master goes to Idle state).b001XX

RECEIVE followed by STOP condition (master goes to
Idle state).

1010X

RECEIVE operation (master remains in Master Receive
state).

1001X

Illegal.1011X

Repeated START condition followed by RECEIVE
operation with a negative ACK (master remains in Master
Receive state).

11001

Repeated START condition followed by RECEIVE and
STOP condition (master goes to Idle state).

11101

Repeated START condition followed by RECEIVE (master
remains in Master Receive state).

11011

Repeated START condition followed by SEND (master
goes to Master Transmit state).

110X0

Repeated START condition followed by SEND and STOP
condition (master goes to Idle state).

111X0

NOP.All other combinations not listed are non-operations.

a. An X in a table cell indicates the bit can be 0 or 1.
b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by

the master or an Address Negative Acknowledge executed by the slave.

629February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: I2C Master Data (I2CMDR), offset 0x008
This register contains the data to be transmitted when in the Master Transmit state, and the data
received when in the Master Receive state.

I2C Master Data (I2CMDR)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Data Transferred

Data transferred during transaction.

0x00R/WDATA7:0

February 24, 2009630
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 4: I2C Master Timer Period (I2CMTPR), offset 0x00C
This register specifies the period of the SCL clock.

I2C Master Timer Period (I2CMTPR)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x00C
Type R/W, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TPRreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

SCL Clock Period

This field specifies the period of the SCL clock.

SCL_PRD = 2*(1 + TPR)*(SCL_LP + SCL_HP)*CLK_PRD

where:

SCL_PRD is the SCL line period (I2C clock).

TPR is the Timer Period register value (range of 1 to 255).

SCL_LP is the SCL Low period (fixed at 6).

SCL_HP is the SCL High period (fixed at 4).

0x1R/WTPR7:0

631February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: I2C Master Interrupt Mask (I2CMIMR), offset 0x010
This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C Master Interrupt Mask (I2CMIMR)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IMreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Interrupt Mask

This bit controls whether a raw interrupt is promoted to a controller
interrupt. If set, the interrupt is not masked and the interrupt is promoted;
otherwise, the interrupt is masked.

0R/WIM0

February 24, 2009632
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 6: I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014
This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status (I2CMRIS)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x014
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Raw Interrupt Status

This bit specifies the raw interrupt state (prior to masking) of the I2C
master block. If set, an interrupt is pending; otherwise, an interrupt is
not pending.

0RORIS0

633February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 7: I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018
This register specifies whether an interrupt was signaled.

I2C Master Masked Interrupt Status (I2CMMIS)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Masked Interrupt Status

This bit specifies the raw interrupt state (after masking) of the I2Cmaster
block. If set, an interrupt was signaled; otherwise, an interrupt has not
been generated since the bit was last cleared.

0ROMIS0

February 24, 2009634
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 8: I2C Master Interrupt Clear (I2CMICR), offset 0x01C
This register clears the raw interrupt.

I2C Master Interrupt Clear (I2CMICR)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x01C
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ICreserved

WOROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Interrupt Clear

This bit controls the clearing of the raw interrupt. A write of 1 clears the
interrupt; otherwise, a write of 0 has no affect on the interrupt state. A
read of this register returns no meaningful data.

0WOIC0

635February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: I2C Master Configuration (I2CMCR), offset 0x020
This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

I2C Master Configuration (I2CMCR)
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LPBKreservedMFESFEreserved

R/WROROROR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

I2C Slave Function Enable

This bit specifies whether the interface may operate in Slave mode. If
set, Slave mode is enabled; otherwise, Slave mode is disabled.

0R/WSFE5

I2C Master Function Enable

This bit specifies whether the interface may operate in Master mode. If
set, Master mode is enabled; otherwise, Master mode is disabled and
the interface clock is disabled.

0R/WMFE4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved3:1

I2C Loopback

This bit specifies whether the interface is operating normally or in
Loopback mode. If set, the device is put in a test mode loopback
configuration; otherwise, the device operates normally.

0R/WLPBK0

16.6 Register Descriptions (I2C Slave)
The remainder of this section lists and describes the I2C slave registers, in numerical order by
address offset. See also “Register Descriptions (I2C Master)” on page 624.

February 24, 2009636
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 10: I2C Slave Own Address (I2CSOAR), offset 0x000
This register consists of seven address bits that identify the Stellaris® I2C device on the I2C bus.

I2C Slave Own Address (I2CSOAR)
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

OARreserved

R/WR/WR/WR/WR/WR/WR/WROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:7

I2C Slave Own Address

This field specifies bits A6 through A0 of the slave address.

0x00R/WOAR6:0

637February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x004
This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First
Byte Received (FBR) bit is set only after the Stellaris® device detects its own slave address
and receives the first data byte from the I2C master. The Receive Request (RREQ) bit indicates
that the Stellaris® I2C device has received a data byte from an I2C master. Read one data byte from
the I2C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit
indicates that the Stellaris® I2C device is addressed as a Slave Transmitter. Write one data byte
into the I2C Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the
Stellaris® I2C slave operation.

Reads

I2C Slave Control/Status (I2CSCSR)
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RREQTREQFBRreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

First Byte Received

Indicates that the first byte following the slave’s own address is received.
This bit is only valid when the RREQ bit is set, and is automatically cleared
when data has been read from the I2CSDR register.

Note: This bit is not used for slave transmit operations.

0ROFBR2

Transmit Request

This bit specifies the state of the I2C slave with regards to outstanding
transmit requests. If set, the I2C unit has been addressed as a slave
transmitter and uses clock stretching to delay the master until data has
been written to the I2CSDR register. Otherwise, there is no outstanding
transmit request.

0ROTREQ1

February 24, 2009638
Preliminary

Inter-Integrated Circuit (I2C) Interface

DescriptionResetTypeNameBit/Field

Receive Request

This bit specifies the status of the I2C slave with regards to outstanding
receive requests. If set, the I2C unit has outstanding receive data from
the I2C master and uses clock stretching to delay the master until the
data has been read from the I2CSDR register. Otherwise, no receive
data is outstanding.

0RORREQ0

Writes

I2C Slave Control/Status (I2CSCSR)
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800
Offset 0x004
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DAreserved

WOROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Device Active

DescriptionValue

Disables the I2C slave operation.0

Enables the I2C slave operation.1

0WODA0

639February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 12: I2C Slave Data (I2CSDR), offset 0x008
This register contains the data to be transmitted when in the Slave Transmit state, and the data
received when in the Slave Receive state.

I2C Slave Data (I2CSDR)
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Data for Transfer

This field contains the data for transfer during a slave receive or transmit
operation.

0x0R/WDATA7:0

February 24, 2009640
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C
This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C Slave Interrupt Mask (I2CSIMR)
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAIMSTARTIMSTOPIMreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Stop Condition Interrupt Mask

This bit controls whether the raw interrupt for detection of a stop condition
on the I2C bus is promoted to a controller interrupt. If set, the interrupt
is not masked and the interrupt is promoted; otherwise, the interrupt is
masked.

0ROSTOPIM2

Start Condition Interrupt Mask

This bit controls whether the raw interrupt for detection of a start condition
on the I2C bus is promoted to a controller interrupt. If set, the interrupt
is not masked and the interrupt is promoted; otherwise, the interrupt is
masked.

0ROSTARTIM1

Data Interrupt Mask

This bit controls whether the raw interrupt for data received and data
requested is promoted to a controller interrupt. If set, the interrupt is not
masked and the interrupt is promoted; otherwise, the interrupt is masked.

0R/WDATAIM0

641February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010
This register specifies whether an interrupt is pending.

I2C Slave Raw Interrupt Status (I2CSRIS)
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATARISSTARTRISSTOPRISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Stop Condition Raw Interrupt Status

This bit specifies the raw interrupt state for stop condition detect (prior
to masking) of the I2C slave block. If set, an interrupt is pending;
otherwise, an interrupt is not pending.

0ROSTOPRIS2

Start Condition Raw Interrupt Status

This bit specifies the raw interrupt state for start condition detect (prior
to masking) of the I2C slave block. If set, an interrupt is pending;
otherwise, an interrupt is not pending.

0ROSTARTRIS1

Data Raw Interrupt Status

This bit specifies the raw interrupt state for data received and data
requested (prior to masking) of the I2C slave block. If set, an interrupt
is pending; otherwise, an interrupt is not pending.

0RODATARIS0

February 24, 2009642
Preliminary

Inter-Integrated Circuit (I2C) Interface

Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014
This register specifies whether an interrupt was signaled.

I2C Slave Masked Interrupt Status (I2CSMIS)
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800
Offset 0x014
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAMISSTARTMISSTOPMISreserved

ROR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Stop Condition Masked Interrupt Status

This bit specifies the interrupt state for stop condition detect (after
masking) of the I2C slave block. If set, an interrupt was signaled;
otherwise, an interrupt has not been generated since the bit was last
cleared.

0R/WSTOPMIS2

Start Condition Masked Interrupt Status

This bit specifies the interrupt state for start condition detect (after
masking) of the I2C slave block. If set, an interrupt was signaled;
otherwise, an interrupt has not been generated since the bit was last
cleared.

0R/WSTARTMIS1

Data Masked Interrupt Status

This bit specifies the interrupt state for data received and data requested
(after masking) of the I2C slave block. If set, an interrupt was signaled;
otherwise, an interrupt has not been generated since the bit was last
cleared.

0RODATAMIS0

643February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x018
This register clears the raw interrupt. A read of this register returns no meaningful data.

I2C Slave Interrupt Clear (I2CSICR)
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800
Offset 0x018
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATAICSTARTICSTOPICreserved

WOWOWOROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Stop Condition Interrupt Clear

This bit controls the clearing of the raw interrupt for stop condition detect.
When set, it clears the STOPRIS interrupt bit; otherwise, it has no effect
on the STOPRIS bit value.

0WOSTOPIC2

Start Condition Interrupt Clear

This bit controls the clearing of the raw interrupt for start condition detect.
When set, it clears the STARTRIS interrupt bit; otherwise, it has no effect
on the STARTRIS bit value.

0WOSTARTIC1

Data Interrupt Clear

This bit controls the clearing of the raw interrupt for data received and
data requested. When set, it clears the DATARIS interrupt bit; otherwise,
it has no effect on the DATARIS bit value.

0WODATAIC0

February 24, 2009644
Preliminary

Inter-Integrated Circuit (I2C) Interface

17 Inter-Integrated Circuit Sound (I2S) Interface
The I2S module is a configurable serial audio core that contains a transmit module and a receive
module. The module is configurable for the I2S as well as Left-Justified and Right-Justified serial
audio formats. Data can be in one of four modes: Stereo, Mono, Compact 16-bit Stereo and Compact
8-Bit Stereo.

The transmit and receive modules each have an 8-entry audio-sample FIFO. An audio sample can
consist of a Left and Right Stereo sample, a Mono sample, or a Left and Right Compact Stereo
sample. In Compact 16-Bit Stereo, each FIFO entry contains both the 16-bit left and 16-bit right
samples, allowing efficient data transfers and requiring less memory space. In Compact 8-bit Stereo,
each FIFO entry contains an 8-bit left and an 8-bit right sample, reducing memory requirements
further.

Both the transmitter and receiver are capable of being a master or a slave.

The Stellaris® I2S module has the following features:

■ Configurable audio format supporting I2S, Left-justification, and Right-justification

■ Configurable sample size from 8 to 32 bits

■ Mono and Stereo support

■ 8-, 16-, and 32-bit FIFO interface for packing memory

■ Independent transmit and receive 8-entry FIFOs

■ Configurable FIFO-level interrupt and µDMA requests

■ Independent transmit and receive MCLK direction control

■ Transmit and receive internal MCLK sources

■ Independent transmit and receive control for serial clock and word select

■ MCLK and SCLK can be independently set to master or slave

■ Configurable transmit zero or last sample when FIFO empty

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive

– Burst requests

– Channel requests asserted when FIFO contains required amount of data

645February 24, 2009
Preliminary

LM3S9B92 Microcontroller

17.1 Block Diagram

Figure 17-1. I2S Block Diagram

I2S0TXMCLK

System
AHB Bus

SysClk

I2SRXCFG

Receive FIFO

Receive FIFO
8 entry

I2S0RXSCK

I2SRXSD

I2S0RXWS

I2S0RXMCLK

I2SRXFIFO

I2SRXFIFOCFG

I2SRXLIMIT

I2SRXLEV

Serial
Decoder

BitClk/WdSel
Generation

I2SRXISM

Interrupts/
DMA

Registers

I2SIC

I2SIM

I2SRIS

I2SMIS

I2SCFG I2STXISM Transmit FIFO

Transmit FIFO
8 entry

Serial
Encoder

I2STXSD

I2S0TXSCK
BitClk/WdSel
Generation

I2S0TXWS
I2STXFIFO

I2STXFIFOCFG

I2STXLIMIT

I2STXLEV

I2STXCFG

17.2 Functional Description
The Inter-Integrated Circuit Sound (I2S) module contains separate transmit and receive engines.
Each engine consists of the following:

■ Serial encoder for the transmitter; serial decoder for the receiver

■ 8-entry FIFO to store sample data

■ Independent configuration of all programmable settings

The basic programming model of the I2S block is as follows:

■ Configuration

– Overall I2S module configuration in the I2S Module Configuration (I2SCFG) register. This
register is used to select the MCLK source and enable the receiver and transmitter.

February 24, 2009646
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

– Transmit and receive configuration in the I2S Transmit Module Configuration (I2STXCFG)
and I2S Receive Module Configuration (I2SRXCFG) registers. These registers set the basic
parameters for the receiver and transmitter such as data configuration (justification, delay,
read mode, sample size, and system data size); SCLK (polarity and source); and word select
polarity.

– Transmit and receive FIFO configuration in the I2S Transmit FIFO Configuration
(I2STXFIFOCFG) and I2S Receive FIFO Configuration (I2SRXFIFOCFG) registers. These
registers select the Compact Stereo mode size (16-bit or 8-bit), provide indication of whether
the next sample is Left or Right, and select mono mode for the receiver.

■ FIFO

– Transmit and receive FIFO data in the I2S Transmit FIFO Data (I2STXFIFO) and I2S Receive
FIFO Data (I2SRXFIFO) registers

– Information on FIFO data levels in the I2S Transmit FIFO Level (I2STXLEV) and I2S Receive
FIFO Level (I2SRXLEV) registers

– Configuration for FIFO service requests based on FIFO levels in the I2S Transmit FIFO Limit
(I2STXLIMIT) and I2S Receive FIFO Limit (I2SRXLIM) registers

■ Interrupt Control

– Interrupt masking configuration in the I2S Interrupt Mask (I2SIM) register

– Raw and masked interrupt status in the I2S Raw Interrupt Status (I2SRIS) and I2S Masked
Interrupt Status (I2SMIS) registers

– Interrupt clearing through the I2S Interrupt Clear (I2SIC) register

– Configuration for FIFO service requests interrupts and transmit/receive error interrupts in the
I2S Transmit Interrupt Status and Mask (I2STXISM) and I2S Receive Interrupt Status
and Mask (I2SRXISM) registers

Figure 17-2 on page 648 provides an example of an I2S data transfer. Figure 17-3 on page 648
provides an example of an Left-Justified data transfer. Figure 17-4 on page 648 provides an example
of an Right-Justified data transfer.

647February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 17-2. I2S Data Transfer

SCK

Word Select

Serial Data MSB LSB

WORD n+1
RIGHT

CHANNEL

WORD n
LEFT

CHANNEL

WORD n-1
RIGHT

CHANNEL

MSB

Figure 17-3. Left-Justified Data Transfer

-5MSB -3-1 -4-2 +3+4 +2+5 LSB+1

System Data Size

Left Channel

Sample Size

Word
Select

Serial
Data

SCLK

-4MSB -3-1 -2 +3+4 +2+5 LSB+1

Right Channel

Figure 17-4. Right-Justified Data Transfer

System Data Size

Left Channel
Right Channel

MSB -3-2 -4-1 -5 +5 +4 +3 +2 +1 LSB -2-1MSB -3 -4 -5 +4+5 +3 +1+2 LSB0

Sample Size

Serial
Data

Word
Select

SCLK

+6+7 +6+7

17.2.1 Transmit
The transmitter consists of a serial encoder, an 8-entry FIFO, and control logic. The transmitter has
independent MCLK (I2S0TXMCLK), SCLK (I2S0TXSCK), and Word-Select (I2S0TXWS) signals.

17.2.1.1 Serial Encoder
The serial encoder reads audio samples from the receive FIFO and converts them into an audio
stream. By configuring the serial encoder, common audio formats I2S, Left-Justified, and
Right-Justified are supported. The MSB is transmitted first. The sample size and system data size
are configurable with the SSZ and SDSZ bits in the I2S Transmit Module Configuration (I2STXCFG)
register. The sample size is the number of bits of data being transmitted, and the system data size
is the number of I2S0TXSCK transitions between the word select transitions. The system data size
must be large enough to accommodate the maximum sample size. In Mono mode, the sample data
is repeated in both the left and right channels. When the FIFO is empty, the user may select either

February 24, 2009648
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

transmission of zeros or of the last sample. The serial encoder is enabled using the TXEN bit in the
I2S Module Configuration (I2SCFG) register.

17.2.1.2 FIFO Operation
The transmit FIFO stores eight Mono samples or eight Stereo sample-pairs of data and is accessed
through the I2S Transmit FIFO Data (I2STXFIFO) register. The FIFO interface for the audio data
is different based on the Write mode, defined by the I2S Transmit FIFO Configuration
(I2STXFIFOCFG)Compact Stereo Sample Size bit (CSS) and the I2STXCFGWrite Mode field (WM).
All data samples are MSB-aligned. Table 17-1 on page 649 defines the interface for eachWrite mode.
Stereo samples are written first left then right. The next sample (right or left) to be written is indicated
by the LRS bit in the I2STXFIFOCFG register.

Table 17-1. I2S Transmit FIFO Interface

Data AlignmentSamples per
FIFO Write

Sample WidthWrite ModeCSS bit in
I2STXFIFOCFG

WM field in
I2STXCFG

MSB18-32 bitsStereodon't care0x0

MSB Right [31:16], Left
[15:0]

28-16 bitsCompact Stereo - 16 bit00x1

Right [15:8], Left[7:0]28 bitsCompact Stereo - 8 bit10x1

MSB18-32 bitsMonodon't care0x2

The number of samples in the transmit FIFO can be read using the I2S Transmit FIFO Level
(I2STXLEV) register. The value ranges from 0 to 16. Stereo and compact stereo sample pairs are
counted as two. The mono samples also increment the count by two, therefore, four mono samples
will have a count of eight.

17.2.1.3 Clock Control
The transmitter MCLK and SCLK can be independently programmed to be the master or slave. The
transmitter is programmed to be the master or slave of the SCLK using the MSL bit in the I2STXCFG
register. When the transmitter is the master, the I2S0TXSCK frequency is the specified I2S0TXMCLK
divided by four. The I2S0TXSCK may be inverted using the SCP bit in the I2STXCFG register.

The transmitter can also be the master or slave of the MCLK. When the transmitter is the master,
the PLL must be active and a fractional clock divider must be programmed. See page 129 for the
setup for the master I2S0TXMCLK source. An external transmit I2S0TXMCLK is selected using the
TXSLV bit in the I2SCFG register.

The following tables show combinations of the TXINT and TXFRAC bits in the I2S MCLK
Configuration (I2SMCLKCFG) register that provide MCLK frequencies within acceptable error
limits. In the table, Fs is the sampling frequency in kHz and possible crystal frequencies are shown
in MHz across the top row of the table. The words "not supported" in the table mean that it is not
possible to obtain the specified sampling frequencies with the specified crystal frequency within the
error tolerance of 0.3%. The values in the table are based on the following values:

MCLK = Fs * 256
VCO = 400 MHz

The Integer value is taken from the result of the following calculation:

ROUND(VCO/MCLK)

649February 24, 2009
Preliminary

LM3S9B92 Microcontroller

The remaining fractional component is converted to binary, and the first four bits are the Fractional
value.

Table 17-2. Crystal Frequency (Values from 3.5795 MHz to 5 MHz)

Crystal Frequency (MHz)

5.00004.91524.09604.00003.68643.5795Fs (kHz)

FractionalIntegerFractionalIntegerFractionalIntegerFractionalIntegerFractionalIntegerFractionalInteger

51956194019651956194111958

1114111414142111411141114211.025

997397098997397139716

1370770271137077007122.05

2651264565265126446524

12489480491248948144832

73553583573553583544.056

73543583573543573544.1

1331432333133143223347.25

832632103283263293248

43123163143123153150

101791711171017917111788.2

41631651641631651696

312212412312212412128

138128138138128138176.4

28Not supported3828Not supportedNot supported192

Table 17-3. Crystal Frequency (Values from 5.12 MHz to 8.192 MHz)

Crystal Frequency (MHz)

8.19287.37286.14465.12Fs (kHz)

FractionalIntegerFractionalIntegerFractionalIntegerFractionalIntegerFractionalIntegerFractionalInteger

10194519561940195519501958

4141111411141814111141814111.025

59799739779799779716

970137077011701370117022.05

1364265126406526506524

1048124894811481248114832

63573553573573573544.056

53573543563573563544.1

1432133143203313303347.25

73283263273283273248

23143123133143133150

1017101791710171017101788.2

41641631641641641696

312312212312312312128

128138128Not supported138Not supported176.4

2828Not supported282828192

February 24, 2009650
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Table 17-4. Crystal Frequency (Values from 10 MHz to 14.3181 MHz)

Crystal Frequency (MHz)

14.318113.5612.2881210Fs (kHz)

FractionalIntegerFractionalIntegerFractionalIntegerFractionalIntegerFractionalInteger

1119541940196519551958

1142151404142111411114111.025

139729709869899716

0717702711370137022.05

465116456526526524

14488480491248124832

83543583573573544.056

73543583573573544.1

233133233313313347.25

932632103283283248

53113163143143150

111791711171017101788.2

51631651641641696

412212412312312128

1381281381381398176.4

Not supportedNot supported282828192

Table 17-5. Crystal Frequency (Values from 16 MHz to 16.384 MHz)

Crystal Frequency (MHz)

16.38416Fs (kHz)

FractionalIntegerFractionalInteger

019251958

51391114111.025

09699716

1069137022.05

06426524

048124832

133473544.056

123573544.1

73213347.25

03283248

113043150

717101788.2

01641696

012312128

108138176.4

0828192

651February 24, 2009
Preliminary

LM3S9B92 Microcontroller

17.2.1.4 Interrupt Control
There is one I2S interrupt to the CPU. The interrupt is asserted to the CPU whenever any of the
transmit or receive sources is asserted. The transmit module has two interrupt sources: the FIFO
service request and write error. The interrupts may be masked using the TXFSR and TXWE bits in
the I2S Interrupt Mask (I2SIM) register. The status of the interrupt source is indicated by the I2S
Raw Interrupt Status (I2SRIS) register. The status of enabled interrupts is indicated by the I2S
Masked Interrupt Status (I2SMIS) register. The FIFO level interrupt has a second level of masking
using the FFM bit in the I2S Transmit Interrupt Status and Mask (I2STXISM) register.

The FIFO service request interrupt is asserted when the FIFO level (indicated by the LEVEL field
in the I2S Transmit FIFO Level (I2STXLEV) register) is below the FIFO limit (programmed using
the I2S Transmit FIFO Limit (I2STXLIMIT) register) and both the TXFSR and FFM bits are set. If
software attempts to write to a full FIFO, a Transmit FIFO Write error occurs (indicated by the TXWE
bit in the I2S Raw Interrupt Status (I2SRIS) register). The TXWE bit in the I2SRIS/I2SMIS registers
is cleared by setting the TXWE bit in the I2S Interrupt Clear (I2SIC) register.

17.2.1.5 DMA Support
The µDMA can be used to more efficiently stream data to and from the I2S bus. The FIFO Interrupt
Mask bit (FFM) in the I2STXISM register must be set for the request signaling to propagate to the
µDMA module. See “Micro Direct Memory Access (μDMA)” on page 226 for channel configuration.

The I2Smodule uses the µDMA burst request signal, not the single request. Thus each time a µDMA
request is made, the µDMA controller transfers the number of items specified as the burst size for
the µDMA channel. Therefore, the µDMA channel burst size and the I2S FIFO service request limit
must be set to the same value (using the LIMIT field in the I2STXLIMIT register).

17.2.2 Receive

17.2.2.1 Serial Decoder
The serial decoder accepts incoming audio stream data and places the sample data in the receive
FIFO. By configuring the serial decoder, common audio formats I2S, Left-Justified, and Right-Justified
are supported. The MSB is transmitted first. The sample size and system data size are configurable
with the SSZ and SDSZ bits in the I2S Receive Module Configuration (I2SRXCFG) register. The
sample size is the number of bits of data being received, and the system data size is the number
of I2S0TXSCK transitions between the word select transitions. The system data size must be large
enough to accommodate the maximum sample size. Any bits received after the LSB are 0s. If the
FIFO is full, the incoming sample (in Mono) or sample-pairs (Stereo) are dropped until the FIFO has
space. The serial decoder is enabled using the RXEN bit in the I2SCFG register.

17.2.2.2 FIFO Operation
The receive FIFO stores eight Mono samples or eight Stereo sample-pairs of data and is accessed
through the I2S Receive FIFO Data (I2SRXFIFO) register. Table 17-6 on page 653 defines the
interface for each Read mode. All data is stored MSB-aligned. The Stereo data is read left sample
then right.

In Mono mode, the FIFO interface can be configured to read the right or left channel by setting the
FIFOMono Mode bit (FMM) in the I2S Receive FIFO Configuration (I2SRXFIFOCFG) register. This
enables reads from a single channel, where the channel selected can be either the right or left as
determined by the LRS bit in the I2SRXFIFOCFG register.

February 24, 2009652
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Table 17-6. I2S Receive FIFO Interface

Data AlignmentSamples per
FIFO Write

Sample WidthRead ModeCSS bit in
I2SRXFIFOCFG

RM bit in
I2RXCFG

MSB18-32 bitsStereodon't care0

MSB Right [31:15], Left
[15:0]

28-16 bitsCompact Stereo - 16 bit01

Right [15:8] Left[7:0]28 bitsCompact Stereo - 8 bit11

MSB18-32 bitsMono (FMM bit in the
I2SRXFIFOCFG register must
be set.)

don't care0

The number of samples in the receive FIFO can be read using the I2S Receive FIFO Level
(I2SRXLEV) register. The value ranges from 0 to 16. Stereo and compact stereo sample pairs are
counted as two. The mono samples also increment the count by two, therefore four Mono samples
will have a count of eight.

17.2.2.3 Clock Control
The receiver MCLK and SCLK can be independently programmed to be the master or slave. The
receiver is programmed to be the master or slave of the SCLK using the MSL bit in the I2SRXCFG
register. When the receiver is the master, the I2S0RXSCK frequency is the specified I2S0RXMCLK
divided by four. The I2S0RXSCK may be inverted using the SCP bit in the I2SRXCFG register.

The receiver can also be the master or slave of the MCLK. When the receiver is the master, the
PLL must be active and a fractional clock divider must be programmed. See page 129 for the setup
for the master I2S0RXMCLK source. An external transmit I2S0RXMCLK is selected using the RXSLV
bit in the I2SCFG register.

Refer to “Clock Control” on page 649 for combinations of the RXINT and RXFRAC bits in the I2S
MCLK Configuration (I2SMCLKCFG) register that provide MCLK frequencies within acceptable
error limits. In the table, Fs is the sampling frequency in kHz and possible crystal frequencies are
shown in MHz across the top row of the table. The words "not supported" in the table mean that it
is not possible to obtain the specified sampling frequencies with the specified crystal frequency
within the error tolerance of 0.3%.

17.2.2.4 Interrupt Control
There is one I2S interrupt to the CPU. The interrupt is asserted to the CPU whenever any of the
transmit or receive sources is asserted. The receive module has two interrupt sources: the FIFO
service request and read error. The interrupts may be masked using the RXFSR and RXRE bits in
the I2SIM register. The status of the interrupt source is indicated by the I2SRIS register. The status
of enabled interrupts is indicated by the I2SMIS register. The FIFO service request interrupt has a
second level of masking using the FFM bit in the I2SReceive Interrupt Status andMask (I2SRXISM)
register. The sources may be masked using the I2SIM register.

The FIFO service request interrupt is asserted when the FIFO level (indicated by the LEVEL field
in the I2S Receive FIFO Level (I2SRXLEV) register) is above the FIFO limit (programmed using
the I2S Receive FIFO Limit (I2SRXLIMIT) register) and both the RXFSR and FFM bits are set. An
error occurs when reading an empty FIFO or if a stereo sample pair is not read left then right. To
clear an interrupt, write a 1 to the appropriate bit in the I2SIC register. If software attempts to read
an empty FIFO or if a stereo sample pair is not read left then right, a Receive FIFO Read error
occurs (indicated by the RXRE bit in the I2SRIS register). The RXRE bit in the I2SRIS/I2SMIS registers
is cleared by setting the RXRE bit in the I2SIC register.

653February 24, 2009
Preliminary

LM3S9B92 Microcontroller

17.2.2.5 DMA Support
The µDMA can be used to more efficiently stream data to and from the I2S bus. The FIFO Interrupt
Mask bit (FFM) in the I2SRXISM register must be set for the request signaling to propagate to the
µDMA module. See “Micro Direct Memory Access (μDMA)” on page 226 for channel configuration.

The I2Smodule uses the µDMA burst request signal, not the single request. Thus each time a µDMA
request is made, the µDMA controller transfers the number of items specified as the burst size for
the µDMA channel. Therefore, the µDMA channel burst size and the I2S FIFO service request limit
must be set to the same value (using the LIMIT field in the I2SRXLIMIT register).

17.3 Initialization and Configuration
The default setup for the I2S transmit and receive is to be using external MCLK, external SCLK,
Stereo, I2S audio format, and 32-bit data samples. The following example shows how to configure
a system using the internal MCLK, internal SCLK, Compact Stereo, and Left-Justified audio format
with 16-bit data samples.

1. Enable the I2S peripheral clock by writing a value of 0x1000.0000 to the RCGC1 register in the
System Control module. See page 167.

2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control
module. See page 179. To find out which GPIO port to enable, refer to Table 25-5 on page 990.

3. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register. See page 311.

4. Set up the MCLK sources for a 48-kHz sample rate. The input crystal is assumed to be 6 MHz
for this example (internal source).

■ Enable the PLL by clearing the PWRDWN bit in theRCC register in the System Control module.
See page 113.

■ Set the MCLK dividers and enable them by writing 0x0208.0208 to the I2SMCLKCFG register
in the System Control module. See page 129.

■ Enable the MCLK internal sources by writing 0x8208.8208 to the I2SMCLKCFG register in
the System Control module.

To allow an external MCLK to be used, set bits 4 and 5 of the I2SCFG register. Starting up the
PLL and enabling the MCLK sources is not required.

5. Set up the Serial Bit Clock SCLK source. By default, the SCLK is externally sourced.

■ Receiver: Masters the I2S0RXSCK by ORing 0x0040.0000 into the I2SRXCFG register.

■ Transmitter: Masters the I2S0TXSCK by ORing 0x0040.0000 into the I2STXCFG register.

6. Configure the Serial Encoder/Decoder (Left-Justified, Compact Stereo, 16-bit samples, 32-bit
system data size).

■ Set the audio format using the Justification (JST), Data Delay (DLY), SCLK polarity (SCP),
and Left-Right Polarity (LRP) bits written to the I2STXCFG and I2SRXCFG registers. The
settings are shown in the table below.

February 24, 2009654
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Table 17-7. Audio Formats Configuration

I2STXCFG/I2SRXCFG Register BitAudio Format

LRPSCPDLYJST

1010I2S

0000Left-Justified

0001Right-Justified

■ Write 0x0140.3DF0 to both the I2STXCFG and I2SRXCFG registers to program the following
configurations:

– Set the sample size to 16 bits using the SSZ field of the I2STXCFG and I2SRXCFG
registers.

– Set the system data size to 32 bits using the SDSZ field of the I2STXCFG and I2SRXCFG
registers.

– Set the Write and Read modes using the WM and RM fields in the I2STXCFG and
I2SRXCFG registers, respectively.

7. Set up the FIFO limits for triggering interrupts (also used for µDMA)

■ Set up the transmit FIFO to trigger when it has less than four sample pairs by writing a
0x0000.0008 to the I2STXLIMIT register.

■ Set up the receive FIFO to trigger when there are more than four sample pairs by writing a
0x0000.00008 to the I2SRXLIMIT register.

8. Enable interrupts.

■ Enable the transmit FIFO interrupt by setting the FFM bit in the I2STXISM register (write
0x0000.0001).

■ Set up the receive FIFO interrupts by setting the FFM bit in the I2SRXISM register (write
0x0000.0001).

■ Enable the TX FIFO service request, the TX Error, the RX FIFO service request, and the
RX Error interrupts to be sent to the CPU by writing a 0x0000.0033 to the I2SSIM register.

9. Enable the Serial Encoder and Serial Decoders by writing a 0x0000.0003 to the I2SCFG register.

17.4 Register Map
Table 17-8 on page 655 lists the I2S registers. The offset listed is a hexadecimal increment to the
register’s address, relative to the I2S interface base address of 0x4005.4000. Note that the I2S
module clock must be enabled before the registers can be programmed (see page 167).

Table 17-8. Inter-Integrated Circuit Sound (I2S) Interface Register Map

See
pageDescriptionResetTypeNameOffset

657I2S Transmit FIFO Data0x0000.0000WOI2STXFIFO0x000

655February 24, 2009
Preliminary

LM3S9B92 Microcontroller

See
pageDescriptionResetTypeNameOffset

658I2S Transmit FIFO Configuration0x0000.0000R/WI2STXFIFOCFG0x004

659I2S Transmit Module Configuration0x1400.7DF0R/WI2STXCFG0x008

661I2S Transmit FIFO Limit0x0000.0000R/WI2STXLIMIT0x00C

662I2S Transmit Interrupt Status and Mask0x0000.0000R/WI2STXISM0x010

663I2S Transmit FIFO Level0x0000.0000ROI2STXLEV0x018

664I2S Receive FIFO Data0x0000.0000ROI2SRXFIFO0x800

665I2S Receive FIFO Configuration0x0000.0000R/WI2SRXFIFOCFG0x804

666I2S Receive Module Configuration0x1400.7DF0R/WI2SRXCFG0x808

668I2S Receive FIFO Limit0x0000.7FFFR/WI2SRXLIMIT0x80C

669I2S Receive Interrupt Status and Mask0x0000.0000R/WI2SRXISM0x810

670I2S Receive FIFO Level0x0000.0000ROI2SRXLEV0x818

671I2S Module Configuration0x0000.0000R/WI2SCFG0xC00

672I2S Interrupt Mask0x0000.0000R/WI2SIM0xC10

673I2S Raw Interrupt Status0x0000.0000ROI2SRIS0xC14

675I2S Masked Interrupt Status0x0000.0000ROI2SMIS0xC18

676I2S Interrupt Clear0x0000.0000WOI2SIC0xC1C

17.5 Register Descriptions
The remainder of this section lists and describes the I2S registers, in numerical order by address
offset.

February 24, 2009656
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 1: I2S Transmit FIFO Data (I2STXFIFO), offset 0x000
This register is the 32-bit serial audio transmit data register. In Stereo mode, the data is written left,
right, left, right, and so on. The LRS bit in the I2S Transmit FIFO Configuration (I2STXFIFOCFG)
register can be read to verify the next position expected. In Compact 16-bit mode, bits [31:16] contain
the right sample, and bits [15:0] contain the left sample. In Compact 8-bit mode, bits [15:8] contain
the right sample, and bits [7:0] contain the left sample. In Mono mode, each 32-bit entry is a single
sample.

Note that if the FIFO is full and a write is attempted, a transmit FIFO write error is generated.

I2S Transmit FIFO Data (I2STXFIFO)
Base 0x4005.4000
Offset 0x000
Type WO, reset 0x0000.0000

16171819202122232425262728293031

TXFIFO

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

TXFIFO

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

TX Data

Serial audio sample data to be transmitted.

0x0000.0000WOTXFIFO31:0

657February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: I2S Transmit FIFO Configuration (I2STXFIFOCFG), offset 0x004
This register configures the sample for dual-channel operation. In Stereo mode, the LRS bit toggles
between left and right samples as the Transmit FIFO is written. The left sample is written first,
followed by the right.

I2S Transmit FIFO Configuration (I2STXFIFOCFG)
Base 0x4005.4000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LRSCSSreserved

R/WR/WROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:2

Compact Stereo Sample Size

When clear, this bit selects Compact 16-bit Stereo Mode, and programs
the sample size to 16 bits.

When set, this bit selects Compact 8-bit Stereo Mode, and programs
the sample size to 8 bits.

0R/WCSS1

Left-Right Sample Indicator

When clear, this bit indicates that the left sample is the next position.

When set, this bit indicates that the right sample is the next position.

In Mono mode and Compact stereo mode, this bit toggles as if it were
in Stereo mode, but it has no meaning and should be ignored.

0R/WLRS0

February 24, 2009658
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 3: I2S Transmit Module Configuration (I2STXCFG), offset 0x008
This register controls the configuration of the Transmit module.

I2S Transmit Module Configuration (I2STXCFG)
Base 0x4005.4000
Offset 0x008
Type R/W, reset 0x1400.7DF0

16171819202122232425262728293031

reservedMSLFMTWMLRPSCPDLYJSTreserved

ROROROROROROR/WR/WR/WR/WR/WR/WR/WR/WROROType
0000000000101000Reset

0123456789101112131415

reservedSDSZSSZ

ROROROROR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000111110111110Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:30

Justification of Output Data

When clear, this bit configures the data to be Left-Justified.

When set, this bit configures the data to be Right-Justified.

0R/WJST29

Data Delay

When clear, data is latched on the next latching edge of I2S0TXSCK
as defined by the SCP bit. This bit should be clear in Left-Justified or
Right-Justified mode.

When set, this bit causes a one-I2S0TXSCK delay from the edge of
I2S0TXWS before data is latched. This bit should be set in I2S mode.

1R/WDLY28

SCLK Polarity

When clear, this bit causes data to be latched on the falling edge of
I2S0TXSCK.

When set, this bit causes data to be latched on the rising edge of
I2S0TXSCK.

0R/WSCP27

Left/Right Clock Polarity

When clear, this bit causes I2S0TXWS to be high during the transmission
of the left channel data.

When set, this bit causes I2S0TXWS to be high during the transmission
of the right channel data.

1R/WLRP26

659February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Write Mode

This bit field selects the mode in which the transmit data is stored in the
FIFO and transmitted.

DescriptionValue

Stereo mode0x0

Compact Stereo mode

Left/Right sample packed. Refer to I2STXFIFOCFG for 8/16-bit
sample size selection.

0x1

Mono mode0x2

reserved0x3

0x0R/WWM25:24

FIFO Empty

When clear, this bit causes all zeroes to be transmitted if the FIFO is
empty.

When set, this bit causes the last sample to be transmitted if the FIFO
is empty.

0R/WFMT23

SCLK Master/Slave

Source of serial bit clock (I2S0TXSCK) and Word Select (I2S0TXWS).

When clear, this bit configures the transmitter as a slave using the
externally driven I2S0TXSCK and I2S0TXWS signals.

When set, this bit configures the transmitter as a master using the
internally generated I2S0TXSCK and I2S0TXWS signals.

0R/WMSL22

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved21:16

Sample Size

This field contains the number of bits minus one in the sample.

0x1FR/WSSZ15:10

System Data Size

This field contains the number of bits minus one during the high or low
phase of the I2S0TXWS signal.

0x1FR/WSDSZ9:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:0

February 24, 2009660
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 4: I2S Transmit FIFO Limit (I2STXLIMIT), offset 0x00C
This register sets the lower FIFO limit at which a FIFO service request is issued.

I2S Transmit FIFO Limit (I2STXLIMIT)
Base 0x4005.4000
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LIMITreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:5

FIFO Limit

This field sets the FIFO level at which a FIFO service request is issued,
generating an interrupt or a µDMA transfer request.

The transmit FIFO generates a service request when the number of
items in the FIFO is less than the level specified by the LIMIT field. For
example, if the LIMIT field is set to 8, then a service request is
generated when there are less than 8 samples remaining in the transmit
FIFO.

0x00R/WLIMIT4:0

661February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: I2S Transmit Interrupt Status and Mask (I2STXISM), offset 0x010
This register indicates the transmit interrupt status and interrupt masking control.

I2S Transmit Interrupt Status and Mask (I2STXISM)
Base 0x4005.4000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

FFIreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FFMreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved31:17

Transmit FIFO Service Request Interrupt

When clear, this bit indicates that the FIFO Level is equal to or above
the FIFO Limit.

When set, this bit indicates that the FIFO Level is below the FIFO Limit.

0ROFFI16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved15:1

FIFO Interrupt Mask

When clear, this bit causes the FIFO interrupt to be masked and not
sent to the CPU.

When set, this bit allows the FIFO interrupt to be sent to the CPU.

0R/WFFM0

February 24, 2009662
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 6: I2S Transmit FIFO Level (I2STXLEV), offset 0x018
The number of samples in the transmit FIFO can be read using the I2STXLEV register. The value
ranges from 0 to 16. Stereo and Compact Stereo sample-pairs are counted as two. Mono samples
also increment the count by two. For example, the LEVEL field is set to eight if there are four Mono
samples.

I2S Transmit FIFO Level (I2STXLEV)
Base 0x4005.4000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LEVELreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:5

Number of Audio Samples

This field contains the number of samples in the FIFO.

0x00ROLEVEL4:0

663February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 7: I2S Receive FIFO Data (I2SRXFIFO), offset 0x800
This register is the 32-bit serial audio receive data register. In Stereo mode, the data is read left,
right, left, right, and so on. The LRS bit in the I2S Receive FIFO Configuration (I2SRXFIFOCFG)
register can be read to verify the next position expected. In Compact 16-bit mode, bits [31:16] contain
the right sample, and bits [15:0] contain the left sample. In Compact 8-bit mode, bits [15:8] contain
the right sample, and bits [7:0] contain the left sample. In Mono mode, each 32-bit entry is a single
sample. If the FIFO is empty, a read of this register returns a value of 0x0000.0000 and generates
a receive FIFO read error.

I2S Receive FIFO Data (I2SRXFIFO)
Base 0x4005.4000
Offset 0x800
Type RO, reset 0x0000.0000

16171819202122232425262728293031

RXFIFO

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXFIFO

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

RX Data

Serial audio sample data received.

The read of an empty FIFO will return a value of 0x0.

0x0000.0000RORXFIFO31:0

February 24, 2009664
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 8: I2S Receive FIFO Configuration (I2SRXFIFOCFG), offset 0x804
This register configures the sample for dual-channel operation. In Stereo mode, the LRS bit toggles
between Left and Right as the samples are read from the receive FIFO. In Mono mode, both the
left and right samples are stored in the FIFO. The FMM bit can be used to read only the left or right
sample as determined by the LRP bit. In Compact Stereo 8- or 16-bit mode, both the left and right
samples are read in one access from the FIFO.

I2S Receive FIFO Configuration (I2SRXFIFOCFG)
Base 0x4005.4000
Offset 0x804
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LRSCSSFMMreserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:3

FIFO Mono Mode

When clear, this bit configures the receiver in Stereo Mode.

When set, this bit configures the receiver in Mono mode. In this case,
the LRP bit in the I2SRXCFG register specifies whether data is read
while the I2S0RXWS signal is high or low (Right or Left Channel) as
follows:

I2S0RXWSLRP

Low (Right)0

High (Left)1

0R/WFMM2

Compact Stereo Sample Size

When clear, this bit selects Compact 16-bit Stereo Mode, and programs
the sample size to 16 bits.

When set, this bit selects Compact 8-bit Stereo Mode, and programs
the sample size to 8 bits.

0R/WCSS1

Left-Right Sample Indicator

When clear, this bit indicates that the left sample is the next position to
be read.

When set, this bit indicates that the right sample is the next position to
be read.

This bit is only meaningful in Compact Stereo Mode.

0R/WLRS0

665February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: I2S Receive Module Configuration (I2SRXCFG), offset 0x808
This register controls the configuration of the receive module.

I2S Receive Module Configuration (I2SRXCFG)
Base 0x4005.4000
Offset 0x808
Type R/W, reset 0x1400.7DF0

16171819202122232425262728293031

reservedMSLreservedRMreservedLRPSCPDLYJSTreserved

ROROROROROROR/WROR/WROR/WR/WR/WR/WROROType
0000000000101000Reset

0123456789101112131415

reservedSDSZSSZ

ROROROROR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000111110111110Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved31:30

Justification of Input Data

When clear, this bit configures the data to be Left-Justified.

When set, this bit configures the data to be Right-Justified.

0R/WJST29

Data Delay

When clear, data is latched on the next latching edge of I2S0RXSCK
as defined by the SCP bit. This bit should be clear in Left-Justified or
Right-Justified mode.

When set, this bit causes a one-I2S0RXSCK delay from the edge of
I2S0RXWS before data is latched. This bit should be set in I2S mode.

1R/WDLY28

SCLK Polarity

When clear, this bit causes data to be latched on the falling edge of
I2S0RXSCK.

When set, this bit causes data to be latched on the rising edge of
I2S0RXSCK.

0R/WSCP27

Left/Right Clock Polarity

When clear, this bit causes I2S0RXWS to be high during the transmission
of the left channel data.

When set, this bit causes I2S0RXWS to be high during the transmission
of the right channel data.

1R/WLRP26

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved25

February 24, 2009666
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

DescriptionResetTypeNameBit/Field

Read Mode

This bit field selects the mode in which the receive data is received and
stored in the FIFO.

DescriptionValue

Stereo/Mono mode

I2SRXFIFOCFG FMM bit specifies Stereo or Mono FIFO read
behavior.

0

Compact Stereo mode

Left/Right sample packed. Refer to I2SRXFIFOCFG for 8/16-bit
sample size selection.

1

0R/WRM24

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved23

SCLK Master/Slave

Source of serial bit clock (I2S0RXSCK) and Word Select (I2S0RXWS).

When clear, this bit configures the receiver as a slave using the externally
driven I2S0RXSCK and I2S0RXWS signals.

When set, this bit configures the receiver as a master using the internally
generated I2S0RXSCK and I2S0RXWS signals.

0R/WMSL22

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved21:16

Sample Size

This field contains the number of bits minus one in the sample.

0x1FR/WSSZ15:10

System Data Size

This field contains the number of bits minus one during the high or low
phase of the I2S0RXWS signal.

0x1FR/WSDSZ9:4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:0

667February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 10: I2S Receive FIFO Limit (I2SRXLIMIT), offset 0x80C
This register sets the upper FIFO limit at which a FIFO service request is issued.

I2S Receive FIFO Limit (I2SRXLIMIT)
Base 0x4005.4000
Offset 0x80C
Type R/W, reset 0x0000.7FFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LIMITreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x7FFROreserved15:5

FIFO Limit

This field sets the FIFO level at which a FIFO service request is issued,
generating an interrupt or a µDMA transfer request.

The receive FIFO generates a service request when the number of items
in the FIFO is greater than the level specified by the LIMIT field. For
example, if the LIMIT field is set to 4, then a service request is
generated when there are less than 4 samples remaining in the transmit
FIFO.

0x1FR/WLIMIT4:0

February 24, 2009668
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 11: I2S Receive Interrupt Status and Mask (I2SRXISM), offset 0x810
This register indicates the receive interrupt status and interrupt masking control.

I2S Receive Interrupt Status and Mask (I2SRXISM)
Base 0x4005.4000
Offset 0x810
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

FFIreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FFMreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved31:17

Receive FIFO Service Request Interrupt

When clear, this bit indicates that the FIFO Level is equal to or below
the FIFO Limit.

When set, this bit indicates that the FIFO Level is above the FIFO Limit.

0ROFFI16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved15:1

FIFO Interrupt Mask

When clear, this bit causes the FIFO interrupt to be masked and not
sent to the CPU.

When set, this bit allows the FIFO interrupt to be sent to the CPU.

0R/WFFM0

669February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 12: I2S Receive FIFO Level (I2SRXLEV), offset 0x818
The number of samples in the receive FIFO can be read using the I2SRXLEV register. The value
ranges from 0 to 16. Stereo and Compact Stereo sample pairs are counted as two. Mono samples
also increment the count by two. For example, the LEVEL field is set to eight if there are four Mono
samples.

I2S Receive FIFO Level (I2SRXLEV)
Base 0x4005.4000
Offset 0x818
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LEVELreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:5

Number of Audio Samples

This field contains the number of samples in the FIFO.

0x00ROLEVEL4:0

February 24, 2009670
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 13: I2S Module Configuration (I2SCFG), offset 0xC00
This register enables the transmit and receive serial engines and sets the source of the I2S0TXMCLK
and I2S0RXMCLK signals.

I2S Module Configuration (I2SCFG)
Base 0x4005.4000
Offset 0xC00
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TXENRXENreservedTXSLVRXSLVreserved

R/WR/WROROR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:6

Use External I2S0RXMCLK

When set, this bit configures the receiver to use the externally driven
I2S0RXMCLK signal.

When clear, this bit configures the receiver to use the internally
generated MCLK as the I2S0RXMCLK signal. See “Clock
Control” on page 649 for information on how to program the I2S0RXMCLK.

0R/WRXSLV5

Use External I2S0TXMCLK

When set, this bit configures the transmitter to use the externally driven
I2S0TXMCLK signal.

When clear, this bit configures the transmitter to use the internally
generated MCLK as the I2S0TXMCLK signal. See “Clock
Control” on page 649 for information on how to program the I2S0TXMCLK.

0R/WTXSLV4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:2

Serial Receive Engine Enable

When clear, this bit disables the serial receive engine.

When set, this bit enables the serial receive engine.

0R/WRXEN1

Serial Transmit Engine Enable

When clear, this bit disables the serial transmit engine.

When set, this bit enables the serial transmit engine.

0R/WTXEN0

671February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 14: I2S Interrupt Mask (I2SIM), offset 0xC10
This register masks the interrupts to the CPU.

I2S Interrupt Mask (I2SIM)
Base 0x4005.4000
Offset 0xC10
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TXFSRTXWEreservedRXFSRRXREreserved

R/WR/WROROR/WR/WROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:6

Receive FIFO Read Error

When clear, this bit causes the receive FIFO read error interrupt to be
masked and not sent to the CPU.

When set, this bit allows the receive FIFO read error interrupt to be sent
to the CPU.

0R/WRXRE5

Receive FIFO Service Request

When clear, this bit causes the receive FIFO service request interrupt
to be masked and not sent to the CPU.

When set, this bit allows the receive FIFO service request interrupt to
be sent to the CPU.

0R/WRXFSR4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:2

Transmit FIFO Write Error

When clear, this bit causes the transmit FIFO write error interrupt to be
masked and not sent to the CPU.

When set, this bit allows the transmit FIFO write error interrupt to be
sent to the CPU.

0R/WTXWE1

Transmit FIFO Service Request

When clear, this bit causes the transmit FIFO service request interrupt
to be masked and not sent to the CPU.

When set, this bit allows the transmit FIFO service request interrupt to
be sent to the CPU.

0R/WTXFSR0

February 24, 2009672
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 15: I2S Raw Interrupt Status (I2SRIS), offset 0xC14
This register reads the unmasked interrupt status.

I2S Raw Interrupt Status (I2SRIS)
Base 0x4005.4000
Offset 0xC14
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TXFSRTXWEreservedRXFSRRXREreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:6

Receive FIFO Read Error

When set, this bit indicates that a receive FIFO read error interrupt has
occurred.

When clear, this bit indicates that no interrupt has occurred.

This bit is cleared by setting the RXRE bit in the I2SIC register.

0RORXRE5

Receive FIFO Service Request

When set, this bit indicates that a receive FIFO service request interrupt
has occurred.

When clear, this bit indicates that no interrupt has occurred.

This bit is cleared when the level in the receive FIFO has risen to a value
greater than the value programmed in the LIMIT field in the I2SRXLIMIT
register.

0RORXFSR4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:2

Transmit FIFO Write Error

When set, this bit indicates that a transmit FIFO write error interrupt has
occurred.

When clear, this bit indicates that no interrupt has occurred.

This bit is cleared by setting the TXWE bit in the I2SIC register.

0ROTXWE1

673February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Transmit FIFO Service Request

When set, this bit indicates that a transmit FIFO service request interrupt
has occurred.

When clear, this bit indicates that no interrupt has occurred.

This bit is cleared when the level in the transmit FIFO has fallen to a
value less than the value programmed in the LIMIT field in the
I2STXLIMIT register.

0ROTXFSR0

February 24, 2009674
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

Register 16: I2S Masked Interrupt Status (I2SMIS), offset 0xC18
This register reads the masked interrupt status. The mask is defined in the I2SIM register.

I2S Masked Interrupt Status (I2SMIS)
Base 0x4005.4000
Offset 0xC18
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TXFSRTXWEreservedRXFSRRXREreserved

ROROROROROROROROROROROROROROROROType
000s000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:6

Receive FIFO Read Error

When set, this bit indicates that a receive FIFO read error interrupt has
occurred and has been sent to the CPU.

When clear, this bit indicates that no interrupt has occurred or that the
interrupt is masked.

0RORXRE5

Receive FIFO Service Request

When set, this bit indicates that a receive FIFO service request interrupt
has occurred and has been sent to the CPU.

When clear, this bit indicates that no interrupt has occurred or that the
interrupt is masked.

0RORXFSR4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0s0ROreserved3:2

Transmit FIFO Write Error

When set, this bit indicates that a transmit FIFO write error interrupt has
occurred and has been sent to the CPU.

When clear, this bit indicates that no interrupt has occurred or that the
interrupt is masked.

0ROTXWE1

Transmit FIFO Service Request

When set, this bit indicates that a transmit FIFO service request interrupt
has occurred and has been sent to the CPU.

When clear, this bit indicates that no interrupt has occurred or that the
interrupt is masked.

0ROTXFSR0

675February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 17: I2S Interrupt Clear (I2SIC), offset 0xC1C
Setting a bit in this register clears the corresponding interrupt.

I2S Interrupt Clear (I2SIC)
Base 0x4005.4000
Offset 0xC1C
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

reservedTXWEreservedRXREreserved

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00WOreserved31:6

Receive FIFO Read Error

When set, this bit clears the receive FIFO read error interrupt bit (RXRE)
in the I2SRIS register.

0WORXRE5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0WOreserved4:2

Transmit FIFO Write Error

When set, this bit clears the transmit FIFO write error interrupt bit (TXWE)
in the I2SRIS register.

0WOTXWE1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0WOreserved0

February 24, 2009676
Preliminary

Inter-Integrated Circuit Sound (I2S) Interface

18 Controller Area Network (CAN) Module
Controller Area Network (CAN) is a multicast, shared serial bus standard for connecting electronic
control units (ECUs). CAN was specifically designed to be robust in electromagnetically-noisy
environments and can utilize a differential balanced line like RS-485 or a more robust twisted-pair
wire. Originally created for automotive purposes, it is also used in many embedded control
applications (such as industrial and medical). Bit rates up to 1 Mbps are possible at network lengths
less than 40 meters. Decreased bit rates allow longer network distances (for example, 125 Kbps at
500 meters).

Each Stellaris® CAN controller supports the following features:

■ CAN protocol version 2.0 part A/B

■ Bit rates up to 1 Mbps

■ 32 message objects with individual identifier masks

■ Maskable interrupt

■ Disable Automatic Retransmission mode for Time-Triggered CAN (TTCAN) applications

■ Programmable Loopback mode for self-test operation

■ Programmable FIFO mode enables storage of multiple message objects

■ Gluelessly attaches to an external CAN transceiver through the CANnTX and CANnRX signals

677February 24, 2009
Preliminary

LM3S9B92 Microcontroller

18.1 Block Diagram

Figure 18-1. CAN Controller Block Diagram

CAN Control

CAN Core

Message Object
Registers

CANNWDA2
CANMSG1INT
CANMSG2INT
CANMSG1VAL
CANMSG2VAL

CAN Tx
CANINT
CANTST
CANBRPE

CANBIT

APB
Interface

ABP
Pins

Message RAM
32 Message Objects

CANERR

CANCTL
CANSTS

CANIF2ARB2
CANIF2MCTL
CANIF2DA1

CAN Interface 2

CANIF2DA2
CANIF2DB1
CANIF2DB2

CANIF2ARB1
CANIF2MSK2

CANIF2CRQ
CANIF2CMSK
CANIF2MSK1

CAN Interface 1
CANIF1CRQ
CANIF1CMSK
CANIF1MSK1
CANIF1MSK2
CANIF1ARB1
CANIF1ARB2
CANIF1MCTL
CANIF1DA1
CANIF1DA2
CANIF1DB1
CANIF1DB2

CAN Rx

CANNWDA1

CANTXRQ1
CANTXRQ2

18.2 Functional Description
The Stellaris® CAN controller conforms to the CAN protocol version 2.0 (parts A and B). Message
transfers that include data, remote, error, and overload frames with an 11-bit identifier (standard)
or a 29-bit identifier (extended) are supported. Transfer rates can be programmed up to 1 Mbps.

The CAN module consists of three major parts:

■ CAN protocol controller and message handler
■ Message memory
■ CAN register interface

February 24, 2009678
Preliminary

Controller Area Network (CAN) Module

A data frame contains data for transmission, whereas a remote frame contains no data and is used
to request the transmission of a specific message object. The CAN data/remote frame is constructed
as shown in Figure 18-2 on page 679.

Figure 18-2. CAN Data/Remote Frame

Number
Of Bits

S
O
F

EOP IFS Bus
Idle

11 6111 or 29 0 . . . 64 15 7 31 1

A
C
K

Data FieldControl
Field

R
T
R

Message Delimiter
Bus
Idle

Bit Stuffing

CAN Data Frame

Arbitration Field

CRC Sequence

CRC
Field

Acknowledgement
Field

End of
Frame
Field

Interframe
Field

Start
Of Frame

Remote
Transmission
Request

Delimiter
Bits

CRC
Sequence

The protocol controller transfers and receives the serial data from the CAN bus and passes the data
on to the message handler. The message handler then loads this information into the appropriate
message object based on the current filtering and identifiers in the message object memory. The
message handler is also responsible for generating interrupts based on events on the CAN bus.

Themessage object memory is a set of 32 identical memory blocks that hold the current configuration,
status, and actual data for each message object. These are accessed via either of the CANmessage
object register interfaces.

The message memory is not directly accessible in the Stellaris® memory map, so the Stellaris® CAN
controller provides an interface to communicate with the message memory via two CAN interface
register sets for communicating with the message objects. As there is no direct access to the
message object memory, these two interfaces must be used to read or write to each message object.
The two message object interfaces allow parallel access to the CAN controller message objects
when multiple objects may have new information that must be processed. In general, one interface
is used for transmit data and one for receive data.

18.2.1 Initialization
To use the CAN controller, the peripheral clock must be enabled using the RCGC0 register (see
page 158). In addition, the clock to the appropriate GPIO module must be enabled via the RCGC2
register. See page 179. To find out which GPIO port to enable, refer to Table 25-5 on page 990.

Software initialization is started by setting the INIT bit in the CAN Control (CANCTL) register (with
software or by a hardware reset) or by going bus-off, which occurs when the transmitter's error
counter exceeds a count of 255. While INIT is set, all message transfers to and from the CAN bus
are stopped and the CANnTX signal is held High. Entering the initialization state does not change

679February 24, 2009
Preliminary

LM3S9B92 Microcontroller

the configuration of the CAN controller, the message objects, or the error counters. However, some
configuration registers are only accessible while in the initialization state.

To initialize the CAN controller, set the CAN Bit Timing (CANBIT) register and configure each
message object. If a message object is not needed, label it as not valid by clearing the MSGVAL bit
in the CAN IFn Arbitration 2 (CANIFnARB2) register. Otherwise, the whole message object must
be initialized, as the fields of the message object may not have valid information, causing unexpected
results. Both the INIT and CCE bits in the CANCTL register must be set in order to access the
CANBIT register and the CAN Baud Rate Prescaler Extension (CANBRPE) register to configure
the bit timing. To leave the initialization state, the INIT bit must be cleared. Afterwards, the internal
Bit Stream Processor (BSP) synchronizes itself to the data transfer on the CAN bus by waiting for
the occurrence of a sequence of 11 consecutive recessive bits (indicating a bus idle condition)
before it takes part in bus activities and starts message transfers. Message object initialization does
not require the CAN to be in the initialization state and can be done on the fly. However, message
objects should all be configured to particular identifiers or set to not valid before message transfer
starts. To change the configuration of a message object during normal operation, clear the MSGVAL
bit in the CANIFnARB2 register to indicate that the message object is not valid during the change.
When the configuration is completed, set the MSGVAL bit again to indicate that the message object
is once again valid.

18.2.2 Operation
There are two sets of CAN Interface Registers (CANIF1x and CANIF2x), which are used to access
the message objects in the Message RAM. The CAN controller coordinates transfers to and from
the Message RAM to and from the registers. The two sets are independent and identical and can
be used to queue transactions. Generally, one interface is used to transmit data and one is used to
receive data.

Once the CAN module is initialized and the INIT bit in the CANCTL register is cleared, the CAN
module synchronizes itself to the CAN bus and starts the message transfer. As each message is
received, it goes through the message handler's filtering process, and if it passes through the filter,
is stored in the message object specified by the MNUM bit in the CAN IFn Command Request
(CANIFnCRQ) register. The whole message (including all arbitration bits, data-length code, and
eight data bytes) is stored in the message object. If the Identifier Mask (the MSK bits in the CAN IFn
Mask 1 andCAN IFnMask 2 (CANIFnMSKn) registers) is used, the arbitration bits that are masked
to "don't care" may be overwritten in the message object.

The CPUmay read or write eachmessage at any time via the CAN Interface Registers. Themessage
handler guarantees data consistency in case of concurrent accesses.

The transmission of message objects is under the control of the software that is managing the CAN
hardware. These can be message objects used for one-time data transfers, or permanent message
objects used to respond in a more periodic manner. Permanent message objects have all arbitration
and control set up, and only the data bytes are updated. At the start of transmission, the appropriate
TXRQST bit in the CAN Transmission Request n (CANTXRQn) register and the NEWDAT bit in the
CAN New Data n (CANNWDAn) register are set. If several transmit messages are assigned to the
same message object (when the number of message objects is not sufficient), the whole message
object has to be configured before the transmission of this message is requested.

The transmission of any number of message objects may be requested at the same time; they are
transmitted according to their internal priority, which is based on the message identifier (MNUM) for
the message object, with 1 being the highest priority and 32 being the lowest priority. Messages
may be updated or set to not valid any time, even when their requested transmission is still pending.
The old data is discarded when a message is updated before its pending transmission has started.

February 24, 2009680
Preliminary

Controller Area Network (CAN) Module

Depending on the configuration of the message object, the transmission of a message may be
requested autonomously by the reception of a remote frame with a matching identifier.

Transmission can be automatically started by the reception of a matching remote frame. To enable
this mode, set the RMTEN bit in theCAN IFnMessage Control (CANIFnMCTL) register. A matching
received remote frame causes the TXRQST bit to be set and the message object automatically
transfers its data or generates an interrupt indicating a remote frame was requested. This can be
strictly a single message identifier, or it can be a range of values specified in the message object.
The CANmask registers, CANIFnMSKn, configure which groups of frames are identified as remote
frame requests. The UMASK bit in the CANIFnMCTL register enables the MSK bits in the
CANIFnMSKn register to filter which frames are identified as a remote frame request. The MXTD
bit in the CANIFnMSK2 register should be set if a remote frame request is expected to be triggered
by 29-bit extended identifiers.

18.2.3 Transmitting Message Objects
If the internal transmit shift register of the CAN module is ready for loading, and if there is no data
transfer occurring between the CAN Interface Registers and message RAM, the valid message
object with the highest priority that has a pending transmission request is loaded into the transmit
shift register by the message handler and the transmission is started. The message object's NEWDAT
bit in the CANNWDAn register is cleared. After a successful transmission, and if no new data was
written to the message object since the start of the transmission, the TXRQST bit in the CANTXRQn
register is cleared. If the CAN controller is set up to interrupt upon a successful transmission of a
message object, (the TXIE bit in the CAN IFn Message Control (CANIFnMCTL) register is set),
the INTPND bit in the CANIFnMCTL register is set after a successful transmission. If the CAN
module has lost the arbitration or if an error occurred during the transmission, the message is
re-transmitted as soon as the CAN bus is free again. If, meanwhile, the transmission of a message
with higher priority has been requested, the messages are transmitted in the order of their priority.

18.2.4 Configuring a Transmit Message Object
The following steps illustrate how to configure a transmit message object.

1. In the CAN IFn Command Mask (CANIFnCMASK) register:

■ Set the WRNRD bit to specify a write to the CANIFnCMASK register; specify whether to
transfer the IDMASK, DIR, and MXTD of the message object into the CAN IFn registers using
the MASK bit

■ Specify whether to transfer the ID, DIR, XTD, and MSGVAL of the message object into the
interface registers using the ARB bit

■ Specify whether to transfer the control bits into the interface registers using the CONTROL
bit

■ Specify whether to clear the INTPND bit in the CANIFnMCTL register using the CLRINTPND
bit

■ Specify whether to clear the NEWDAT bit in the CANNWDAn register using the NEWDAT bit

■ Specify which bits to transfer using the DATAA and DATAB bits

2. In the CANIFnMSK1 register, use the MSK[15:0] bits to specify which of the bits in the 29-bit
or 11-bit message identifier are used for acceptance filtering. Note that MSK[15:0] in this
register are used for bits [15:0] of the 29-bit message identifier and are not used for an 11-bit

681February 24, 2009
Preliminary

LM3S9B92 Microcontroller

identifier. A value of 0x00 enables all messages to pass through the acceptance filtering. Also
note that in order for these bits to be used for acceptance filtering, they must be enabled by
setting the UMASK bit in the CANIFnMCTL register.

3. In the CANIFnMSK2 register, use the MSK[12:0] bits to specify which of the bits in the 29-bit
or 11-bit message identifier are used for acceptance filtering. Note that MSK[12:0] are used
for bits [28:16] of the 29-bit message identifier; whereas MSK[12:2] are used for bits [10:0] of
the 11-bit message identifier. Use the MXTD and MDIR bits to specify whether to use XTD and
DIR for acceptance filtering. A value of 0x00 enables all messages to pass through the
acceptance filtering. Also note that in order for these bits to be used for acceptance filtering,
they must be enabled by setting the UMASK bit in the CANIFnMCTL register.

4. For a 29-bit identifier, configure ID[15:0] in the CANIFnARB1 register to are used for bits
[15:0] of the message identifier and ID[12:0] in the CANIFnARB2 register to are used for
bits [28:16] of the message identifier. Set the XTD bit to indicate an extended identifier; set the
DIR bit to indicate transmit; and set the MSGVAL bit to indicate that the message object is valid.

5. For an 11-bit identifier, disregard the CANIFnARB1 register and configure ID[12:2] in the
CANIFnARB2 register to are used for bits [10:0] of the message identifier. Clear the XTD bit to
indicate a standard identifier; set the DIR bit to indicate transmit; and set the MSGVAL bit to
indicate that the message object is valid.

6. In the CANIFnMCTL register:

■ Optionally set the UMASK bit to enable the mask (MSK, MXTD, and MDIR specified in the
CANIFnMSK1 and CANIFnMSK2 registers) for acceptance filtering

■ Optionally set the TXIE bit to enable the INTPND bit to be set after a successful transmission

■ Optionally set the RMTEN bit to enable the TXRQST bit to be set upon the reception of a
matching remote frame allowing automatic transmission

■ Set the EOB bit for a single message object;

■ Set the DLC[3:0] field to specify the size of the data frame. Take care during this
configuration not to set the NEWDAT, MSGLST, INTPND or TXRQST bits.

7. Load the data to be transmitted into the CAN IFn Data (CANIFnDA1, CANIFnDA2, CANIFnDB1,
CANIFnDB2) or (CANIFnDATAA and CANIFnDATAB) registers. Byte 0 of the CAN data frame
is stored in DATA[7:0] in the CANIFnDA1 register.

8. Program the number of the message object to be transmitted in the MNUM field in the CAN IFn
Command Request (CANIFnCRQ) register.

9. When everything is properly configured, set the TXRQST bit in the CANIFnMCTL register. Once
this bit is set, the message object is available to be transmitted, depending on priority and bus
availability. Note that setting the RMTEN bit in theCANIFnMCTL register can also start message
transmission if a matching remote frame has been received.

18.2.5 Updating a Transmit Message Object
The CPU may update the data bytes of a Transmit Message Object any time via the CAN Interface
Registers and neither the MSGVAL bit in the CANIFnARB2 register nor the TXRQST bits in the
CANIFnMCTL register have to be cleared before the update.

February 24, 2009682
Preliminary

Controller Area Network (CAN) Module

Even if only some of the data bytes are to be updated, all four bytes of the corresponding
CANIFnDAn/CANIFnDBn register have to be valid before the content of that register is transferred
to the message object. Either the CPU must write all four bytes into the CANIFnDAn/CANIFnDBn
register or the message object is transferred to the CANIFnDAn/CANIFnDBn register before the
CPU writes the new data bytes.

In order to only update the data in a message object, the WRNRD, DATAA and DATAB bits in the
CANIFnMSKn register are set, followed by writing the updated data intoCANIFnDA1,CANIFnDA2,
CANIFnDB1, and CANIFnDB2 registers, and then the number of the message object is written to
the MNUM field in the CAN IFn Command Request (CANIFnCRQ) register. To begin transmission
of the new data as soon as possible, set the TXRQST bit in the CANIFnMSKn register.

To prevent the clearing of the TXRQST bit in the CANIFnMCTL register at the end of a transmission
that may already be in progress while the data is updated, the NEWDAT and TXRQST bits have to be
set at the same time in theCANIFnMCTL register. When these bits are set at the same time, NEWDAT
is cleared as soon as the new transmission has started.

18.2.6 Accepting Received Message Objects
When the arbitration and control field (the ID and XTD bits in the CANIFnARB2 and the RMTEN and
DLC[3:0] bits of the CANIFnMCTL register) of an incoming message is completely shifted into
the CAN controller, the message handling capability of the controller starts scanning the message
RAM for a matching valid message object. To scan the message RAM for a matching message
object, the controller uses the acceptance filtering programmed through the mask bits in the
CANIFnMSKn register and enabled using the UMASK bit in the CANIFnMCTL register. Each valid
message object, starting with object 1, is compared with the incoming message to locate a matching
message object in the message RAM. If a match occurs, the scanning is stopped and the message
handler proceeds depending on whether it is a data frame or remote frame that was received.

18.2.7 Receiving a Data Frame
The message handler stores the message from the CAN controller receive shift register into the
matching message object in the message RAM. The data bytes, all arbitration bits, and the DLC bits
are all stored into the corresponding message object. In this manner, the data bytes are connected
with the identifier even if arbitration masks are used. The NEWDAT bit of the CANIFnMCTL register
is set to indicate that new data has been received. The CPU should clear this bit when it reads the
message object to indicate to the controller that the message has been received, and the buffer is
free to receive more messages. If the CAN controller receives a message and the NEWDAT bit is
already set, the MSGLST bit in the CANIFnMCTL register is set to indicate that the previous data
was lost. If the system requires an interrupt upon successful reception of a frame, the RXIE bit of
the CANIFnMCTL register should be set. In this case, the INTPND bit of the same register is set,
causing the CANINT register to point to the message object that just received a message. The
TXRQST bit of this message object should be cleared to prevent the transmission of a remote frame.

18.2.8 Receiving a Remote Frame
A remote frame contains no data, but instead specifies which object should be transmitted. When
a remote frame is received, three different configurations of the matching message object have to
be considered:

683February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionConfiguration in CANIFnMCTL

At the reception of a matching remote frame, the TXRQST bit of this
message object is set. The rest of the message object remains
unchanged, and the controller automatically transfers the data in
the message object as soon as possible.

■ DIR = 1 (direction = transmit); programmed in the
CANIFnARB2 register

■ RMTEN = 1 (set the TXRQST bit of the
CANIFnMCTL register at reception of the frame
to enable transmission)

■ UMASK = 1 or 0

At the reception of a matching remote frame, the TXRQST bit of this
message object remains unchanged, and the remote frame is
ignored. This remote frame is disabled, the data is not transferred
and there is no indication that the remote frame ever happened.

■ DIR = 1 (direction = transmit); programmed in the
CANIFnARB2 register

■ RMTEN = 0 (do not change the TXRQST bit of the
CANIFnMCTL register at reception of the frame)

■ UMASK = 0 (ignore mask in the CANIFnMSKn
register)

At the reception of a matching remote frame, the TXRQST bit of this
message object is cleared. The arbitration and control field (ID +
XTD + RMTEN + DLC) from the shift register is stored into the
message object in the message RAM and the NEWDAT bit of this
message object is set. The data field of the message object remains
unchanged; the remote frame is treated similar to a received data
frame. This is useful for a remote data request from another CAN
device for which the Stellaris® controller does not have readily
available data. The software must fill the data and answer the frame
manually.

■ DIR = 1 (direction = transmit); programmed in the
CANIFnARB2 register

■ RMTEN = 0 (do not change the TXRQST bit of the
CANIFnMCTL register at reception of the frame)

■ UMASK = 1 (use mask (MSK, MXTD, and MDIR in
theCANIFnMSKn register) for acceptance filtering)

18.2.9 Receive/Transmit Priority
The receive/transmit priority for the message objects is controlled by the message number. Message
object 1 has the highest priority, while message object 32 has the lowest priority. If more than one
transmission request is pending, the message objects are transmitted in order based on the message
object with the lowest message number. This should not be confused with the message identifier
as that priority is enforced by the CAN bus. This means that if message object 1 andmessage object
2 both have valid messages that need to be transmitted, message object 1 will always be transmitted
first regardless of the message identifier in the message object itself.

18.2.10 Configuring a Receive Message Object
The following steps illustrate how to configure a receive message object.

1. Program the CAN IFn Command Mask (CANIFnCMASK) register as described in the
“Configuring a Transmit Message Object” on page 681 section, except that the WRNRD bit is set
to specify a write to the message RAM.

2. Program the CANIFnMSK1and CANIFnMSK2 registers as described in the “Configuring a
Transmit Message Object” on page 681 section to configure which bits are used for acceptance
filtering. Note that in order for these bits to be used for acceptance filtering, they must be enabled
by setting the UMASK bit in the CANIFnMCTL register.

3. In the CANIFnMSK2 register, use the MSK[12:0] bits to specify which of the bits in the 29-bit
or 11-bit message identifier are used for acceptance filtering. Note that MSK[12:0] are used
for bits [28:16] of the 29-bit message identifier; whereas MSK[12:2] are used for bits [10:0] of
the 11-bit message identifier. Use the MXTD and MDIR bits to specify whether to use XTD and
DIR for acceptance filtering. A value of 0x00 enables all messages to pass through the

February 24, 2009684
Preliminary

Controller Area Network (CAN) Module

acceptance filtering. Also note that in order for these bits to be used for acceptance filtering,
they must be enabled by setting the UMASK bit in the CANIFnMCTL register.

4. Program the CANIFnARB1 and CANIFnARB2 registers as described in the “Configuring a
Transmit Message Object” on page 681 section to program XTD and ID bits for the message
identifier to be received; set the MSGVAL bit to indicate a valid message; and clear the DIR bit
to specify receive.

5. In the CANIFnMCTL register:

■ Optionally set the UMASK bit to enable the mask (MSK, MXTD, and MDIR specified in the
CANIFnMSK1 and CANIFnMSK2 registers) for acceptance filtering

■ Optionally set the RXIE bit to enable the INTPND bit to be set after a successful reception

■ Clear the RMTEN bit to leave the TXRQST bit unchanged

■ Set the EOB bit for a single message object

■ Set the DLC[3:0] field to specify the size of the data frame

Take care during this configuration not to set the NEWDAT, MSGLST, INTPND or TXRQST bits.

6. Program the number of the message object to be received in the MNUM field in the CAN IFn
Command Request (CANIFnCRQ) register. Reception of the message object begins as soon
as a matching frame is available on the CAN bus.

When the message handler stores a data frame in the message object, it stores the received Data
Length Code and eight data bytes in theCANIFnDA1,CANIFnDA2,CANIFnDB1, andCANIFnDB2
register. Byte 0 of the CAN data frame is stored in DATA[7:0] in the CANIFnDA1 register. If the
Data Length Code is less than 8, the remaining bytes of the message object are overwritten by
unspecified values.

The CAN mask registers can be used to allow groups of data frames to be received by a message
object. The CAN mask registers, CANIFnMSKn, configure which groups of frames are received by
a message object. The UMASK bit in the CANIFnMCTL register enables the MSK bits in the
CANIFnMSKn register to filter which frames are received. The MXTD bit in theCANIFnMSK2 register
should be set if only 29-bit extended identifiers are expected by this message object.

18.2.11 Handling of Received Message Objects
The CPU may read a received message any time via the CAN Interface registers because the data
consistency is guaranteed by the message handler state machine.

Typically, the CPU first writes 0x007F to the CANIFnCMSK register and then writes the number of
the message object to the CANIFnCRQ register. That combination transfers the whole received
message from the message RAM into the Message Buffer registers (CANIFnMSKn,CANIFnARBn,
and CANIFnMCTL). Additionally, the NEWDAT and INTPND bits are cleared in the message RAM,
acknowledging that the message has been read and clearing the pending interrupt generated by
this message object.

If the message object uses masks for acceptance filtering, the CANIFnARBn registers show the
full, unmasked ID for the received message.

The NEWDAT bit in the CANIFnMCTL register shows whether a new message has been received
since the last time this message object was read. The MSGLST bit in the CANIFnMCTL register
shows whether more than one message has been received since the last time this message object

685February 24, 2009
Preliminary

LM3S9B92 Microcontroller

was read. MSGLST is not automatically cleared, and should be cleared by software after reading its
status.

Using a remote frame, the CPU may request new data from another CAN node on the CAN bus.
Setting the TXRQST bit of a receive object causes the transmission of a remote frame with the receive
object's identifier. This remote frame triggers the other CAN node to start the transmission of the
matching data frame. If the matching data frame is received before the remote frame could be
transmitted, the TXRQST bit is automatically reset. This prevents the possible loss of data when the
other device on the CAN bus has already transmitted the data slightly earlier than expected.

18.2.11.1 Configuration of a FIFO Buffer
With the exception of the EOB bit in theCANIFnMCTL register, the configuration of receive message
objects belonging to a FIFO buffer is the same as the configuration of a single receive message
object (see “Configuring a Receive Message Object” on page 684). To concatenate two or more
message objects into a FIFO buffer, the identifiers and masks (if used) of these message objects
have to be programmed to matching values. Due to the implicit priority of the message objects, the
message object with the lowest message object number is the first message object in a FIFO buffer.
The EOB bit of all message objects of a FIFO buffer except the last one must be cleared. The EOB
bit of the last message object of a FIFO buffer is set, indicating it is the last entry in the buffer.

18.2.11.2 Reception of Messages with FIFO Buffers
Received messages with identifiers matching to a FIFO buffer are stored starting with the message
object with the lowest message number. When a message is stored into a message object of a
FIFO buffer, the NEWDAT of the CANIFnMCTL register bit of this message object is set. By setting
NEWDAT while EOB is clear, the message object is locked and cannot be written to by the message
handler until the CPU has cleared the NEWDAT bit. Messages are stored into a FIFO buffer until the
last message object of this FIFO buffer is reached. If none of the preceding message objects has
been released by clearing the NEWDAT bit, all further messages for this FIFO buffer will be written
into the last message object of the FIFO buffer and therefore overwrite previous messages.

18.2.11.3 Reading from a FIFO Buffer
When the CPU transfers the contents of a message object from a FIFO buffer by writing its number
to the CANIFnCRQ register, the TXRQST and CLRINTPND bits in the CANIFnCMSK register should
be set such that the NEWDAT and INTPEND bits in the CANIFnMCTL register are cleared after the
read. The values of these bits in theCANIFnMCTL register always reflect the status of the message
object before the bits are cleared. To assure the correct function of a FIFO buffer, the CPU should
read out the message objects starting with the message object with the lowest message number.
Figure 18-3 on page 687 shows how a set of message objects which are concatenated to a FIFO
Buffer can be handled by the CPU.

February 24, 2009686
Preliminary

Controller Area Network (CAN) Module

Figure 18-3. Message Objects in a FIFO Buffer

START

No

Yes

Written MNUM to IFn Command Request
(Read Message to IFn Registers,

Reset NEWDAT = 0,
Reset INTPND = 0

MNUM = Interrupt Pointer

Read IFn Message Control

Read Data from IFn Data A,B

NEWDAT = 1

EOB = 1

Read Interrupt Pointer

Status Change
Interrupt Handling

END

Message Interrupt

Yes

MNUM = MNUM + 1

Case Interrupt Pointer
else0x0000 0x8000

687February 24, 2009
Preliminary

LM3S9B92 Microcontroller

18.2.12 Handling of Interrupts
If several interrupts are pending, theCAN Interrupt (CANINT) register points to the pending interrupt
with the highest priority, disregarding their chronological order. The status interrupt has the highest
priority. Among the message interrupts, the message object's interrupt with the lowest message
number has the highest priority. A message interrupt is cleared by clearing the message object's
INTPND bit in the CANIFnMCTL register or by reading the CAN Status (CANSTS) register. The
status Interrupt is cleared by reading the CANSTS register.

The interrupt identifier INTID in the CANINT register indicates the cause of the interrupt. When no
interrupt is pending, the register reads as 0x0000. If the value of the INTID field is different from 0,
then there is an interrupt pending. If the IE bit is set in the CANCTL register, the interrupt line to
the CPU is active. The interrupt line remains active until the INTID field is 0, meaning that all interrupt
sources have been cleared (the cause of the interrupt is reset), or until IE is cleared, which disables
interrupts from the CAN controller.

The INTID field of the CANINT register points to the pending message interrupt with the highest
interrupt priority. The SIE bit in the CANCTL register controls whether a change of the RXOK, TXOK,
and LEC bits in the CANSTS register can cause an interrupt. The EIE bit in the CANCTLregister
controls whether a change of the BOFF and EWARN bits in the CANSTS register can cause an
interrupt. The IE bit in the CANCTL register controls whether any interrupt from the CAN controller
actually generates an interrupt to the microcontroller's interrupt controller. The CANINT register is
updated even when the IE bit in the CANCTL register is clear, but the interrupt will not be indicated
to the CPU.

A value of 0x8000 in the CANINT register indicates that an interrupt is pending because the CAN
module has updated, but not necessarily changed, the CANSTS register, indicating that either an
error or status interrupt has been generated. A write access to the CANSTS register can clear the
RXOK, TXOK, and LEC bits in that same register; however, the only way to clear the source of a
status interrupt is to read the CANSTS register.

There are two ways to determine the source of an interrupt during interrupt handling. The first is to
read the INTID bit in the CANINT register to determine the highest priority interrupt that is pending,
and the second is to read the CAN Message Interrupt Pending (CANMSGnINT) register to see
all of the message objects that have pending interrupts.

An interrupt service routine reading the message that is the source of the interrupt may read the
message and clear the message object's INTPND bit at the same time by setting the CLRINTPND
bit in the CANIFnCMSK register. Once the INTPND bit has been cleared, the CANINT register
contains the message number for the next message object with a pending interrupt.

18.2.13 Test Mode
A Test Mode is provided, which allows various diagnostics to be performed. Test Mode is entered
by setting the TEST bit CANCTL register. Once in Test Mode, the TX[1:0], LBACK, SILENT and
BASIC bits in the CAN Test (CANTST) register can be used to put the CAN controller into the
various diagnostic modes. The RX bit in the CANTST register allows monitoring of the CANnRX
signal. All CANTST register functions are disabled when the TEST bit is cleared.

18.2.13.1 Silent Mode
Silent Mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission
of dominant bits (Acknowledge Bits, Error Frames). The CAN Controller is put in Silent Mode setting
the SILENT bit in the CANTST register. In Silent Mode, the CAN controller is able to receive valid
data frames and valid remote frames, but it sends only recessive bits on the CAN bus and it cannot
start a transmission. If the CAN Controller is required to send a dominant bit (ACK bit, overload flag,

February 24, 2009688
Preliminary

Controller Area Network (CAN) Module

or active error flag), the bit is rerouted internally so that the CAN Controller monitors this dominant
bit, although the CAN bus remains in recessive state.

18.2.13.2 Loopback Mode
Loopback mode is useful for self-test functions. In Loopback Mode, the CAN Controller internally
routes the CANnTX signal on to the CANnRX signal and treats its own transmitted messages as
received messages and stores them (if they pass acceptance filtering) into the message buffer. The
CAN Controller is put in Loopback Mode by setting the LBACK bit in the CANTST register. To be
independent from external stimulation, the CAN Controller ignores acknowledge errors (a recessive
bit sampled in the acknowledge slot of a data/remote frame) in Loopback Mode. The actual value
of the CANnRX signal is disregarded by the CAN Controller. The transmitted messages can be
monitored on the CANnTX signal.

18.2.13.3 Loopback Combined with Silent Mode
Loopback Mode and Silent Mode can be combined to allow the CAN Controller to be tested without
affecting a running CAN system connected to the CANnTX and CANnRX signals. In this mode, the
CANnRX signal is disconnected from the CAN Controller and the CANnTX signal is held recessive.
This mode is enabled by setting both the LBACK and SILENT bits in the CANTST register.

18.2.13.4 Basic Mode
Basic Mode allows the CAN Controller to be operated without the Message RAM. In Basic Mode,
The CANIF1 registers are used as the transmit buffer. The transmission of the contents of the IF1
registers is requested by setting the BUSY bit of the CANIF1CRQ register. The CANIF1 registers
are locked while the BUSY bit is set. The BUSY bit indicates that a transmission is pending. As soon
the CAN bus is idle, the CANIF1 registers are loaded into the shift register of the CAN Controller
and transmission is started. When the transmission has completed, the BUSY bit is cleared and the
locked CANIF1 registers are released. A pending transmission can be aborted at any time by clearing
the BUSY bit in the CANIF1CRQ register while the CANIF1 registers are locked. If the CPU has
cleared the BUSY bit, a possible retransmission in case of lost arbitration or an error is disabled.

The CANIF2 Registers are used as a receive buffer. After the reception of a message, the contents
of the shift register is stored into the CANIF2 registers, without any acceptance filtering. Additionally,
the actual contents of the shift register can be monitored during the message transfer. Each time a
read message object is initiated by setting the BUSY bit of the CANIF2CRQ register, the contents
of the shift register are stored into the CANIF2 registers.

In Basic Mode, all message-object-related control and status bits and of the control bits of the
CANIFnCMSK registers are not evaluated. The message number of the CANIFnCRQ registers is
also not evaluated. In the CANIF2MCTL register, the NEWDAT and MSGLST bits retain their function,
the DLC[3:0] field shows the received DLC, the other control bits are cleared.

Basic Mode is enabled by setting the BASIC bit in the CANTST register.

18.2.13.5 Transmit Control
Software can directly override control of the CANnTX signal in four different ways.

■ CANnTX is controlled by the CAN Controller

■ The sample point is driven on the CANnTX signal to monitor the bit timing

■ CANnTX drives a low value

689February 24, 2009
Preliminary

LM3S9B92 Microcontroller

■ CANnTX drives a high value

The last two functions, combined with the readable CAN receive pin CANnRX, can be used to check
the physical layer of the CAN bus.

The Transmit Control function is enabled by programming the TX[1:0] field in theCANTST register.
The three test functions for the CANnTX signal interfere with all CAN protocol functions. TX[1:0]
must be cleared when CAN message transfer or Loopback Mode, Silent Mode, or Basic Mode are
selected.

18.2.14 Bit Timing Configuration Error Considerations
Even if minor errors in the configuration of the CAN bit timing do not result in immediate failure, the
performance of a CAN network can be reduced significantly. In many cases, the CAN bit
synchronization amends a faulty configuration of the CAN bit timing to such a degree that only
occasionally an error frame is generated. In the case of arbitration, however, when two or more
CAN nodes simultaneously try to transmit a frame, a misplaced sample point may cause one of the
transmitters to become error passive. The analysis of such sporadic errors requires a detailed
knowledge of the CAN bit synchronization inside a CAN node and of the CAN nodes' interaction on
the CAN bus.

18.2.15 Bit Time and Bit Rate
The CAN system supports bit rates in the range of lower than 1 Kbps up to 1000 Kbps. Each member
of the CAN network has its own clock generator. The timing parameter of the bit time can be
configured individually for each CAN node, creating a common bit rate even though the CAN nodes'
oscillator periods may be different.

Because of small variations in frequency caused by changes in temperature or voltage and by
deteriorating components, these oscillators are not absolutely stable. As long as the variations
remain inside a specific oscillator's tolerance range, the CAN nodes are able to compensate for the
different bit rates by periodically resynchronizing to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see Figure
18-4 on page 691): the Synchronization Segment, the Propagation Time Segment, the Phase Buffer
Segment 1, and the Phase Buffer Segment 2. Each segment consists of a specific, programmable
number of time quanta (see Table 18-1 on page 691). The length of the time quantum (tq), which is
the basic time unit of the bit time, is defined by the CAN controller's system clock (fsys) and the
Baud Rate Prescaler (BRP):

tq = BRP / fsys

The CAN module's system clock fsys is the frequency of its CAN module clock input.

The Synchronization Segment Sync_Seg is that part of the bit time where edges of the CAN bus
level are expected to occur; the distance between an edge that occurs outside of Sync_Seg and
the Sync_Seg is called the phase error of that edge.

The Propagation Time Segment Prop_Seg is intended to compensate for the physical delay times
within the CAN network.

The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample Point.

The (Re-)Synchronization Jump Width (SJW) defines how far a resynchronization may move the
Sample Point inside the limits defined by the Phase Buffer Segments to compensate for edge phase
errors.

February 24, 2009690
Preliminary

Controller Area Network (CAN) Module

A given bit rate may be met by different bit-time configurations, but for the proper function of the
CAN network, the physical delay times and the oscillator's tolerance range have to be considered.

Figure 18-4. CAN Bit Time

Sync_
Seg Prop_Seg Phase_Seg2

Sample
Point

1 Time
Quantum
(t q)q

Nominal CAN Bit Time

a. tSeg1 = Prop_Seg + Phase_Seg1
b. tSeg2 = Phase_Seg2
c. Phase_Seg1 = Phase_Seg2 or Phase_Seg1 + 1 = Phase_Seg2

tSeg1
a

tSeg2
b

Phase_Seg1c

Table 18-1. CAN Protocol Rangesa

RemarkRangeParameter

Defines the length of the time quantum tq[1 .. 32]BRP

Fixed length, synchronization of bus input to system clock1 tqSync_Seg

Compensates for the physical delay times[1 .. 8] tqProp_Seg

May be lengthened temporarily by synchronization[1 .. 8] tqPhase_Seg1

May be shortened temporarily by synchronization[1 .. 8] tqPhase_Seg2

May not be longer than either Phase Buffer Segment[1 .. 4] tqSJW

a. This table describes the minimum programmable ranges required by the CAN protocol.

The bit timing configuration is programmed in two register bytes in the CANBIT register. The sum
of Prop_Seg and Phase_Seg1 (as TSEG1) is combined with Phase_Seg2 (as TSEG2) in one byte,
and SJW and BRP are combined in the other byte.

In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to be
programmed to a numerical value that is one less than its functional value; so instead of values in
the range of [1..n], values in the range of [0..n-1] are programmed. That way, for example, SJW
(functional range of [1..4]) is represented by only two bits. Therefore, the length of the bit time is
(programmed values):

[TSEG1 + TSEG2 + 3] × tq

or (functional values):

[Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] × tq

The data in the CANBIT register is the configuration input of the CAN protocol controller. The baud
rate prescaler (configured by the BRP field) defines the length of the time quantum, the basic time
unit of the bit time; the bit timing logic (configured by TSEG1, TSEG2, and SJW) defines the number
of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the sample point, and occasional
synchronizations are controlled by the CAN controller and are evaluated once per time quantum.

691February 24, 2009
Preliminary

LM3S9B92 Microcontroller

The CAN controller translates messages to and from frames. It generates and discards the enclosing
fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC code, performs the
error management, and decides which type of synchronization is to be used. It is evaluated at the
sample point and processes the sampled bus input bit. The time after the sample point that is needed
to calculate the next bit to be sent (that is, the data bit, CRC bit, stuff bit, error flag, or idle) is called
the information processing time (IPT).

The IPT is application-specific but may not be longer than 2 tq; the CAN's IPT is 0 tq. Its length is
the lower limit of the programmed length of Phase_Seg2. In case of synchronization, Phase_Seg2
may be shortened to a value less than IPT, which does not affect bus timing.

18.2.16 Calculating the Bit Timing Parameters
Usually, the calculation of the bit timing configuration starts with a required bit rate or bit time. The
resulting bit time (1/bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta. Several combinations may lead to the required bit
time, allowing iterations of the following steps.

The first part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times
measured in the system. Amaximum bus length as well as a maximum node delay has to be defined
for expandable CAN bus systems. The resulting time for Prop_Seg is converted into time quanta
(rounded up to the nearest integer multiple of tq).

The Sync_Seg is 1 tq long (fixed), which leaves (bit time - Prop_Seg - 1) tq for the two Phase Buffer
Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same length,
that is, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may not
be shorter than the CAN controller's IPT, which is tq.

The length of the synchronization jump width is set to its maximum value, which is the minimum of
4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the formula
given below:

where:

■ df = Maximum tolerance of oscillator frequency

■ fosc = Actual oscillator frequency

■ fnom = Nominal oscillator frequency

Maximum frequency tolerance must take into account the following formulas:

where:

February 24, 2009692
Preliminary

Controller Area Network (CAN) Module

■ Phase_Seg1 and Phase_Seg2 are from Table 18-1 on page 691

■ tbit = Bit Time

■ dfmax = Maximum difference between two oscillators

If more than one configuration is possible, that configuration allowing the highest oscillator tolerance
range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same bit
rate. The calculation of the propagation time in the CAN network, based on the nodes with the
longest delay times, is done once for the whole network.

The CAN system's oscillator tolerance range is limited by the node with the lowest tolerance range.

The calculation may show that bus length or bit rate have to be decreased or that the oscillator
frequencies' stability has to be increased in order to find a protocol-compliant configuration of the
CAN bit timing.

18.2.16.1 Example for Bit Timing at High Baud Rate
In this example, the frequency of CAN clock is 25 MHz, and the bit rate is 1 Mbps.

tq 200 ns = (BRP + 1)/CAN Clock
delay of bus driver 50 ns
delay of receiver circuit 30 ns
delay of bus line (40m) 220 ns
tProp 400 ns = 2 × tq

tSJW 200 ns = 1 × tq

tTSeg1 600 ns = tProp + tSJW
tTSeg2 200 ns = (Information Processing Time + 1) × tq

tSync-Seg 200 ns = 1 × tq

bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2

In the above example, the bit field values for the CANBIT register are: TSEG2=1, TSEG1=2, SJW =0
and BRP=3. This makes the final value programmed into the CANBIT register = 0x3FC0.

18.2.16.2 Example for Bit Timing at Low Baud Rate
In this example, the frequency of the CAN clock is 50 MHz, and the bit rate is 100 Kbps.

tq 500 ns = (BRP + 1)/CAN clock
delay of bus driver 200 ns
delay of receiver circuit 80 ns
delay of bus line (40m) 220 ns
tProp 4.5 µs = 9 × tq

tSJW 2 µs = 4 × tq

tTSeg1 6.5 µs = tProp + tSJW
tTSeg2 3 µs = (Information Processing Time + 6) × tq

tSync-Seg 500 ns = 1 × tq

bit time 10 µs = tSync-Seg + tTSeg1 + tTSeg2

In the above example, the bit field values for the CANBIT register are: TSEG2=5, TSEG1=12, SJW
=3 and BRP=24. This makes the final value programmed into the CANBIT register = 0x5CD8.

693February 24, 2009
Preliminary

LM3S9B92 Microcontroller

18.3 Register Map
Table 18-2 on page 694 lists the registers. All addresses given are relative to the CAN base address
of:

■ CAN0: 0x4004.0000
■ CAN1: 0x4004.1000

Note that the CAN controller clock must be enabled before the registers can be programmed (see
page 158).

Table 18-2. CAN Register Map

See
pageDescriptionResetTypeNameOffset

696CAN Control0x0000.0001R/WCANCTL0x000

698CAN Status0x0000.0000R/WCANSTS0x004

701CAN Error Counter0x0000.0000ROCANERR0x008

702CAN Bit Timing0x0000.2301R/WCANBIT0x00C

704CAN Interrupt0x0000.0000ROCANINT0x010

705CAN Test0x0000.0000R/WCANTST0x014

707CAN Baud Rate Prescaler Extension0x0000.0000R/WCANBRPE0x018

708CAN IF1 Command Request0x0000.0001R/WCANIF1CRQ0x020

709CAN IF1 Command Mask0x0000.0000R/WCANIF1CMSK0x024

711CAN IF1 Mask 10x0000.FFFFR/WCANIF1MSK10x028

712CAN IF1 Mask 20x0000.FFFFR/WCANIF1MSK20x02C

713CAN IF1 Arbitration 10x0000.0000R/WCANIF1ARB10x030

714CAN IF1 Arbitration 20x0000.0000R/WCANIF1ARB20x034

716CAN IF1 Message Control0x0000.0000R/WCANIF1MCTL0x038

718CAN IF1 Data A10x0000.0000R/WCANIF1DA10x03C

718CAN IF1 Data A20x0000.0000R/WCANIF1DA20x040

718CAN IF1 Data B10x0000.0000R/WCANIF1DB10x044

718CAN IF1 Data B20x0000.0000R/WCANIF1DB20x048

708CAN IF2 Command Request0x0000.0001R/WCANIF2CRQ0x080

709CAN IF2 Command Mask0x0000.0000R/WCANIF2CMSK0x084

711CAN IF2 Mask 10x0000.FFFFR/WCANIF2MSK10x088

712CAN IF2 Mask 20x0000.FFFFR/WCANIF2MSK20x08C

713CAN IF2 Arbitration 10x0000.0000R/WCANIF2ARB10x090

714CAN IF2 Arbitration 20x0000.0000R/WCANIF2ARB20x094

716CAN IF2 Message Control0x0000.0000R/WCANIF2MCTL0x098

February 24, 2009694
Preliminary

Controller Area Network (CAN) Module

See
pageDescriptionResetTypeNameOffset

718CAN IF2 Data A10x0000.0000R/WCANIF2DA10x09C

718CAN IF2 Data A20x0000.0000R/WCANIF2DA20x0A0

718CAN IF2 Data B10x0000.0000R/WCANIF2DB10x0A4

718CAN IF2 Data B20x0000.0000R/WCANIF2DB20x0A8

719CAN Transmission Request 10x0000.0000ROCANTXRQ10x100

719CAN Transmission Request 20x0000.0000ROCANTXRQ20x104

720CAN New Data 10x0000.0000ROCANNWDA10x120

720CAN New Data 20x0000.0000ROCANNWDA20x124

721CAN Message 1 Interrupt Pending0x0000.0000ROCANMSG1INT0x140

721CAN Message 2 Interrupt Pending0x0000.0000ROCANMSG2INT0x144

722CAN Message 1 Valid0x0000.0000ROCANMSG1VAL0x160

722CAN Message 2 Valid0x0000.0000ROCANMSG2VAL0x164

18.4 CAN Register Descriptions
The remainder of this section lists and describes the CAN registers, in numerical order by address
offset. There are two sets of Interface Registers that are used to access the Message Objects in
the Message RAM: CANIF1x and CANIF2x. The function of the two sets are identical and are used
to queue transactions.

695February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: CAN Control (CANCTL), offset 0x000
This control register initializes the module and enables test mode and interrupts.

The bus-off recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by setting
or clearing INIT. If the device goes bus-off, it sets INIT, stopping all bus activities. Once INIT
has been cleared by the CPU, the device then waits for 129 occurrences of Bus Idle (129 * 11
consecutive High bits) before resuming normal operations. At the end of the bus-off recovery
sequence, the Error Management Counters are reset.

During the waiting time after INIT is cleared, each time a sequence of 11 High bits has been
monitored, a BITERROR0 code is written to the CANSTS register (the LEC field = 0x5), enabling
the CPU to readily check whether the CAN bus is stuck Low or continuously disturbed, and to monitor
the proceeding of the bus-off recovery sequence.

CAN Control (CANCTL)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x000
Type R/W, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

INITIESIEEIEreservedDARCCETESTreserved

R/WR/WR/WR/WROR/WR/WR/WROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Test Mode Enable

0: Normal operation

1: Test mode

0R/WTEST7

Configuration Change Enable

0: Do not allow write access to the CANBIT register.

1: Allow write access to the CANBIT register if the INIT bit is 1.

0R/WCCE6

Disable Automatic-Retransmission

0: Auto-retransmission of disturbed messages is enabled.

1: Auto-retransmission is disabled.

0R/WDAR5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved4

February 24, 2009696
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Error Interrupt Enable

0: Disabled. No error status interrupt is generated.

1: Enabled. A change in the BOFF or EWARN bits in theCANSTS register
generates an interrupt.

0R/WEIE3

Status Interrupt Enable

0: Disabled. No status interrupt is generated.

1: Enabled. An interrupt is generated when a message has successfully
been transmitted or received, or a CAN bus error has been detected. A
change in the TXOK, RXOK or LEC bits in theCANSTS register generates
an interrupt.

0R/WSIE2

CAN Interrupt Enable

0: Interrupts disabled.

1: Interrupts enabled.

0R/WIE1

Initialization

0: Normal operation.

1: Initialization started.

1R/WINIT0

697February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 2: CAN Status (CANSTS), offset 0x004
The status register contains information for interrupt servicing such as Bus-Off, error count threshold,
and error types.

The LEC field holds the code that indicates the type of the last error to occur on the CAN bus. This
field is cleared when a message has been transferred (reception or transmission) without error. The
unused error code 7 may be written by the CPU to manually set this field to an invalid error so that
it can be checked for a change later.

An error interrupt is generated by the BOFF and EWARN bits and a status interrupt is generated by
the RXOK, TXOK, and LEC bits, if the corresponding enable bits in the CAN Control (CANCTL)
register are set. A change of the EPASS bit or a write to the RXOK, TXOK, or LEC bits does not
generate an interrupt.

Reading the CAN Status (CANSTS) register clears the CAN Interrupt (CANINT) register, if it is
pending.

CAN Status (CANSTS)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LECTXOKRXOKEPASSEWARNBOFFreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Bus-Off Status

0: CAN controller is not in bus-off state.

1: CAN controller is in bus-off state.

0ROBOFF7

Warning Status

0: Both error counters are below the error warning limit of 96.

1: At least one of the error counters has reached the error warning limit
of 96.

0ROEWARN6

Error Passive

0: The CAN module is in the Error Active state, that is, the receive or
transmit error count is less than or equal to 127.

1: The CAN module is in the Error Passive state, that is, the receive or
transmit error count is greater than 127.

0ROEPASS5

February 24, 2009698
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Received a Message Successfully

0: Since this bit was last cleared, no message has been successfully
received.

1: Since this bit was last cleared, a message has been successfully
received, independent of the result of the acceptance filtering.

This bit is never cleared by the CAN module.

0R/WRXOK4

Transmitted a Message Successfully

0: Since this bit was last cleared, no message has been successfully
transmitted.

1: Since this bit was last cleared, a message has been successfully
transmitted error-free and acknowledged by at least one other node.

This bit is never cleared by the CAN module.

0R/WTXOK3

699February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Last Error Code

This is the type of the last error to occur on the CAN bus.

DefinitionValue

No Error0x0

Stuff Error

More than 5 equal bits in a sequence have occurred in a part
of a received message where this is not allowed.

0x1

Format Error

A fixed format part of the received frame has the wrong format.

0x2

ACK Error

The message transmitted was not acknowledged by another
node.

0x3

Bit 1 Error

When a message is transmitted, the CAN controller monitors
the data lines to detect any conflicts. When the arbitration field
is transmitted, data conflicts are a part of the arbitration protocol.
When other frame fields are transmitted, data conflicts are
considered errors.

A Bit 1 Error indicates that the device wanted to send a High
level (logical 1) but the monitored bus value was Low (logical
0).

0x4

Bit 0 Error

A Bit 0 Error indicates that the device wanted to send a Low
level (logical 0), but the monitored bus value was High (logical
1).

During bus-off recovery, this status is set each time a sequence
of 11 High bits has been monitored. This enables the CPU to
monitor the proceeding of the bus-off recovery sequence without
any disturbances to the bus.

0x5

CRC Error

The CRC checksum was incorrect in the received message,
indicating that the calculated value received did not match the
calculated CRC of the data.

0x6

Unused

When the LEC bit shows this value, no CAN bus event was
detected since the CPU wrote this value to LEC.

0x7

0x0R/WLEC2:0

February 24, 2009700
Preliminary

Controller Area Network (CAN) Module

Register 3: CAN Error Counter (CANERR), offset 0x008
This register contains the error counter values, which can be used to analyze the cause of an error.

CAN Error Counter (CANERR)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x008
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TECRECRP

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Received Error Passive

0: The Receive Error counter is below the Error Passive level (127 or
less).

1: The Receive Error counter has reached the Error Passive level (128
or greater).

0RORP15

Receive Error Counter

State of the receiver error counter (0 to 127).

0x00ROREC14:8

Transmit Error Counter

State of the transmit error counter (0 to 255).

0x00ROTEC7:0

701February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: CAN Bit Timing (CANBIT), offset 0x00C
This register is used to program the bit width and bit quantum. Values are programmed to the system
clock frequency. This register is write-enabled by setting the CCE and INIT bits in the CANCTL
register. See “Bit Time and Bit Rate” on page 690 for more information.

CAN Bit Timing (CANBIT)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x00C
Type R/W, reset 0x0000.2301

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BRPSJWTSEG1TSEG2reserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROType
1000000011000100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:15

Time Segment after Sample Point

0x00-0x07: The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

So, for example, a reset value of 0x2 defines that there is 3 (2+1) bit
time quanta defined for Phase_Seg2 (see Figure 18-4 on page 691).
The bit time quanta is defined by the BRP field.

0x2R/WTSEG214:12

Time Segment Before Sample Point

0x00-0x0F: The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

So, for example, the reset value of 0x3 defines that there is 4 (3+1) bit
time quanta defined for Phase_Seg1 (see Figure 18-4 on page 691).
The bit time quanta is define by the BRP field.

0x3R/WTSEG111:8

(Re)Synchronization Jump Width

0x00-0x03: The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

During the start of frame (SOF), if the CAN controller detects a phase
error (misalignment), it can adjust the length of TSEG2 or TSEG1 by the
value in SJW. So the reset value of 0 adjusts the length by 1 bit time
quanta.

0x0R/WSJW7:6

February 24, 2009702
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Baud Rate Prescaler

The value by which the oscillator frequency is divided for generating the
bit time quanta. The bit time is built up from a multiple of this quantum.

0x00-0x03F: The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

BRP defines the number of CAN clock periods that make up 1 bit time
quanta, so the reset value is 2 bit time quanta (1+1).

The CANBRPE register can be used to further divide the bit time.

0x1R/WBRP5:0

703February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: CAN Interrupt (CANINT), offset 0x010
This register indicates the source of the interrupt.

If several interrupts are pending, theCAN Interrupt (CANINT) register points to the pending interrupt
with the highest priority, disregarding the order in which the interrupts occurred. An interrupt remains
pending until the CPU has cleared it. If the INTID field is not 0x0000 (the default) and the IE bit in
the CANCTL register is set, the interrupt is active. The interrupt line remains active until the INTID
field is cleared by reading theCANSTS register, or until the IE bit in theCANCTL register is cleared.

Note: Reading the CAN Status (CANSTS) register clears the CAN Interrupt (CANINT) register,
if it is pending.

CAN Interrupt (CANINT)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

INTID

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Interrupt Identifier

The number in this field indicates the source of the interrupt.

DefinitionValue

No interrupt pending0x0000

Number of the message object that caused the
interrupt

0x0001-0x0020

Unused0x0021-0x7FFF

Status Interrupt0x8000

Unused0x8001-0xFFFF

0x0000ROINTID15:0

February 24, 2009704
Preliminary

Controller Area Network (CAN) Module

Register 6: CAN Test (CANTST), offset 0x014
This is the test mode register for self-test and external pin access. It is write-enabled by setting the
TEST bit in theCANCTL register. Different test functions may be combined, however, CAN transfers
will be affected if the TX bits in this register are not zero.

CAN Test (CANTST)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedBASICSILENTLBACKTXRXreserved

ROROR/WR/WR/WR/WR/WROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Receive Observation

Displays the value on the CANnRx pin.

0RORX7

Transmit Control

Overrides control of the CANnTx pin.

DescriptionValue

CANnTx is controlled by the CAN module; default operation0x0

The sample point is driven on the CANnTx signal. This mode is
useful to monitor bit timing.

0x1

CANnTx drives a low value. This mode is useful for checking
the physical layer of the CAN bus.

0x2

CANnTx drives a high value. This mode is useful for checking
the physical layer of the CAN bus.

0x3

0x0R/WTX6:5

Loopback Mode

0: Disabled.

1: Enabled. In loopback mode, the data from the transmitter is routed
into the receiver. Any data on the receive input is ignored.

0R/WLBACK4

Silent Mode

Do not transmit data; monitor the bus. Also known as Bus Monitor mode.

0: Disabled.

1: Enabled.

0R/WSILENT3

705February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Basic Mode

0: Disabled.

1: Use CANIF1 registers as transmit buffer, and use CANIF2 registers
as receive buffer.

0R/WBASIC2

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved1:0

February 24, 2009706
Preliminary

Controller Area Network (CAN) Module

Register 7: CAN Baud Rate Prescaler Extension (CANBRPE), offset 0x018
This register is used to further divide the bit time set with the BRP bit in the CANBIT register. It is
write-enabled by setting the CCE bit in the CANCTL register.

CAN Baud Rate Prescaler Extension (CANBRPE)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x018
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

BRPEreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:4

Baud Rate Prescaler Extension

0x00-0x0F: Extend the BRP bit in the CANBIT register to values up to
1023. The actual interpretation by the hardware is one more than the
value programmed by BRPE (MSBs) and BRP (LSBs).

0x0R/WBRPE3:0

707February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 8: CAN IF1 Command Request (CANIF1CRQ), offset 0x020
Register 9: CAN IF2 Command Request (CANIF2CRQ), offset 0x080
A message transfer is started as soon as there is a write of the message object number to the MNUM
field when the TXRQST bit in the CANIF1MCTL register is set. With this write operation, the BUSY
bit is automatically set to indicate that a transfer between the CAN Interface Registers and the
internal message RAM is in progress. After a wait time of 3 to 6 CAN_CLK periods, the transfer
between the interface register and the message RAM completes, which then clears the BUSY bit.

CAN IF1 Command Request (CANIF1CRQ)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x020
Type R/W, reset 0x0000.0001

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MNUMreservedBUSY

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
1000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Busy Flag

0: Cleared when read/write action has finished.

1: Set when a write occurs to the message number in this register.

0ROBUSY15

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved14:6

Message Number

Selects one of the 32 message objects in the message RAM for data
transfer. The message objects are numbered from 1 to 32.

DescriptionValue

0 is not a valid message number; it is interpreted as 0x20,
or object 32.

0x00

Indicates specified message object 1 to 32.0x01-0x20

Not a valid message number; values are shifted and it is
interpreted as 0x01-0x1F.

0x21-0x3F

0x01R/WMNUM5:0

February 24, 2009708
Preliminary

Controller Area Network (CAN) Module

Register 10: CAN IF1 Command Mask (CANIF1CMSK), offset 0x024
Register 11: CAN IF2 Command Mask (CANIF2CMSK), offset 0x084
Reading the CommandMask registers provides status for various functions. Writing to the Command
Mask registers specifies the transfer direction and selects which buffer registers are the source or
target of the data transfer.

Note that when a read from the message object buffer occurs when the WRNRD bit is clear and the
CLRINTPND and/or NEWDAT bits are set, the interrupt pending and/or new data flags in the message
object buffer are cleared.

CAN IF1 Command Mask (CANIF1CMSK)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATABDATAANEWDAT /
TXRQST

CLRINTPNDCONTROLARBMASKWRNRDreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Write, Not Read

Transfer the message object address specified by the CAN Command
Request (CANIFnCRQ) register to the CAN message buffer registers.

Note: Interrupt pending and new data conditions in the message
buffer can be cleared by reading from the buffer (WRNRD = 0)
when the CLRINTPND and/or NEWDAT bits are set.

0R/WWRNRD7

Access Mask Bits

0: Mask bits unchanged.

1: Transfer IDMASK + DIR + MXTD of the message object into the
Interface registers.

0R/WMASK6

Access Arbitration Bits

0: Arbitration bits unchanged.

1: Transfer ID + DIR + XTD + MSGVAL of the message object into the
Interface registers.

0R/WARB5

Access Control Bits

0: Control bits unchanged.

1: Transfer control bits from theCANIFnMCTL register into the Interface
registers.

0R/WCONTROL4

709February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Clear Interrupt Pending Bit

If WRNRD is set, this bit controls whether the INTPND bit in the
CANIFnMCTL register is changed.

0: The INTPND bit in the message object remains unchanged.

1: The INTPND bit is cleared in the message object.

If WRNRD is clear and this bit is clear, the interrupt pending status is
transferred from the message buffer into the CANIFnMCTL register.

If WRNRD is clear and this bit is set, the interrupt pending status is cleared
in the message buffer. Note that the value of this bit that is transferred
to theCANIFnMCTL register always reflects the status of the bits before
clearing.

0R/WCLRINTPND3

NEWDAT / TXRQST Bit

If WRNRD is set, this bit can act as a TXRQST bit and request a
transmission. Note that when this bit is set, the TXRQST bit in the
CANIFnMCTL register is ignored.

0: Transmission is not requested

1: Begin a transmission

If WRNRD is clear and this bit is clear, the value of the new data status
is transferred from the message buffer into the CANIFnMCTL register.

If WRNRD is clear and this bit is set, the new data status is cleared in the
message buffer. Note that the value of this bit that is transferred to the
CANIFnMCTL register always reflects the status of the bits before
clearing.

0R/WNEWDAT / TXRQST2

Access Data Byte 0 to 3

When WRNRD = 1:

0: Data bytes 0-3 are unchanged.

1: Transfer data bytes 0-3 in message object to CANIFnDA1 and
CANIFnDA2.

When WRNRD = 0:

0: Data bytes 0-3 are unchanged.

1: Transfer data bytes 0-3 in CANIFnDA1 and CANIFnDA2 to the
message object.

0R/WDATAA1

Access Data Byte 4 to 7

When WRNRD = 1:

0: Data bytes 4-7 are unchanged.

1: Transfer data bytes 4-7 in message object to CANIFnDB1 and
CANIFnDB2.

When WRNRD = 0:

0: Data bytes 4-7 are unchanged.

1: Transfer data bytes 4-7 in CANIFnDB1 and CANIFnDB2 to the
message object.

0R/WDATAB0

February 24, 2009710
Preliminary

Controller Area Network (CAN) Module

Register 12: CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028
Register 13: CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088
The mask information provided in this register accompanies the data (CANIFnDAn), arbitration
information (CANIFnARBn), and control information (CANIFnMCTL) to the message object in the
message RAM. The mask is used with the ID bit in the CANIFnARBn register for acceptance
filtering. Additional mask information is contained in the CANIFnMSK2 register.

CAN IF1 Mask 1 (CANIF1MSK1)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x028
Type R/W, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MSK

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
1111111111111111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Identifier Mask

When using a 29-bit identifier, these bits are used for bits [15:0] of the
ID. The MSK field in the CANIFnMSK2 register are used for bits [28:16]
of the ID. When using an 11-bit identifier, these bits are ignored.

0: The corresponding identifier field (ID) in the message object cannot
inhibit the match in acceptance filtering.

1: The corresponding identifier field (ID) is used for acceptance filtering.

0xFFFFR/WMSK15:0

711February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 14: CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C
Register 15: CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C
This register holds extended mask information that accompanies the CANIFnMSK1 register.

CAN IF1 Mask 2 (CANIF1MSK2)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x02C
Type R/W, reset 0x0000.FFFF

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MSKreservedMDIRMXTD

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROR/WR/WType
1111111100000111Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Mask Extended Identifier

0: The extended identifier bit (XTD in the CANIFnARB2 register) has
no effect on the acceptance filtering.

1: The extended identifier bit XTD is used for acceptance filtering.

0x1R/WMXTD15

Mask Message Direction

0: The message direction bit (DIR in the CANIFnARB2 register) has
no effect for acceptance filtering.

1: The message direction bit DIR is used for acceptance filtering.

0x1R/WMDIR14

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x1ROreserved13

Identifier Mask

When using a 29-bit identifier, these bits are used for bits [28:16] of the
ID. The MSK field in the CANIFnMSK1 register are used for bits [15:0]
of the ID. When using an 11-bit identifier, MSK[12:2] are used for bits
[10:0] of the ID.

0: The corresponding identifier field (ID) in the message object cannot
inhibit the match in acceptance filtering.

1: The corresponding identifier field (ID) is used for acceptance filtering.

0xFFR/WMSK12:0

February 24, 2009712
Preliminary

Controller Area Network (CAN) Module

Register 16: CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030
Register 17: CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090
These registers hold the identifiers for acceptance filtering.

CAN IF1 Arbitration 1 (CANIF1ARB1)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x030
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ID

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Message Identifier

This bit field is used with the ID field in the CANIFnARB2 register to
create the message identifier.

When using a 29-bit identifier, bits 15:0 of the CANIFnARB1 register
are [15:0] of the ID, while bits 12:0 of the CANIFnARB2 register are
[28:16] of the ID.

When using an 11-bit identifier, these bits are not used.

0x0000R/WID15:0

713February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 18: CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034
Register 19: CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094
These registers hold information for acceptance filtering.

CAN IF1 Arbitration 2 (CANIF1ARB2)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x034
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IDDIRXTDMSGVAL

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Message Valid

0: The message object is ignored by the message handler.

1: The message object is configured and ready to be considered by the
message handler within the CAN controller.

All unused message objects should have this bit cleared during
initialization and before clearing the INIT bit in the CANCTL register.
The MSGVAL bit must also be cleared before any of the following bits
are modified or if the message object is no longer required: the ID fields
in theCANIFnARBn registers, the XTD and DIR bits in theCANIFnARB2
register, or the DLC field in the CANIFnMCTL register.

0R/WMSGVAL15

Extended Identifier

0: An 11-bit Standard Identifier is used for this message object.

1: A 29-bit Extended Identifier is used for this message object.

0R/WXTD14

Message Direction

0: Receive. When the TXRQST bit in the CANIFnMCTL register is set,
a remote frame with the identifier of this message object is received.
On reception of a data frame with matching identifier, that message is
stored in this message object.

1: Transmit. When the TXRQST bit in the CANIFnMCTL register is set,
the respective message object is transmitted as a data frame. On
reception of a remote frame with matching identifier, the TXRQST bit of
this message object is set (if RMTEN=1).

0R/WDIR13

February 24, 2009714
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Message Identifier

This bit field is used with the ID field in the CANIFnARB2 register to
create the message identifier.

When using a 29-bit identifier, ID[15:0] of the CANIFnARB1 register
are [15:0] of the ID, while these bits, ID[12:0], are [28:16] of the ID.

When using an 11-bit identifier, ID[12:2] are used for bits [10:0] of
the ID. The ID field in the CANIFnARB1 register is ignored.

0x000R/WID12:0

715February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 20: CAN IF1 Message Control (CANIF1MCTL), offset 0x038
Register 21: CAN IF2 Message Control (CANIF2MCTL), offset 0x098
This register holds the control information associated with the message object to be sent to the
Message RAM.

CAN IF1 Message Control (CANIF1MCTL)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x038
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DLCreservedEOBTXRQSTRMTENRXIETXIEUMASKINTPNDMSGLSTNEWDAT

R/WR/WR/WR/WROROROR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

New Data

0: No new data has been written into the data portion of this message
object by the message handler since the last time this flag was cleared
by the CPU.

1: The message handler or the CPU has written new data into the data
portion of this message object.

0R/WNEWDAT15

Message Lost

0 : No message was lost since the last time this bit was cleared by the
CPU.

1: The message handler stored a new message into this object when
NEWDAT was set; the CPU has lost a message.

This bit is only valid for message objects when the DIR bit in the
CANIFnARB2 register clear (receive).

0R/WMSGLST14

Interrupt Pending

0: This message object is not the source of an interrupt.

1: This message object is the source of an interrupt. The interrupt
identifier in the CANINT register points to this message object if there
is not another interrupt source with a higher priority.

0R/WINTPND13

Use Acceptance Mask

0: Mask ignored.

1: Use mask (MSK, MXTD, and MDIR bits in the CANIFnMSKn registers)
for acceptance filtering.

0R/WUMASK12

February 24, 2009716
Preliminary

Controller Area Network (CAN) Module

DescriptionResetTypeNameBit/Field

Transmit Interrupt Enable

0: The INTPND bit in the CANIFnMCTL register is unchanged after a
successful transmission of a frame.

1: The INTPND bit in theCANIFnMCTL register is set after a successful
transmission of a frame.

0R/WTXIE11

Receive Interrupt Enable

0: The INTPND bit in the CANIFnMCTL register is unchanged after a
successful reception of a frame.

1: The INTPND bit in theCANIFnMCTL register is set after a successful
reception of a frame.

0R/WRXIE10

Remote Enable

0: At the reception of a remote frame, the TXRQST bit in the
CANIFnMCTL register is left unchanged.

1: At the reception of a remote frame, the TXRQST bit in the
CANIFnMCTL register is set.

0R/WRMTEN9

Transmit Request

0: This message object is not waiting for transmission.

1: The transmission of this message object is requested and is not yet
done.

0R/WTXRQST8

End of Buffer

0: Message object belongs to a FIFO Buffer and is not the last message
object of that FIFO Buffer.

1: Single message object or last message object of a FIFO Buffer.

This bit is used to concatenate two or more message objects (up to 32)
to build a FIFO buffer. For a single message object (thus not belonging
to a FIFO buffer), this bit must be set.

0R/WEOB7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved6:4

Data Length Code

DescriptionValue

Specifies the number of bytes in the data frame.0x0-0x8

Defaults to a data frame with 8 bytes.0x9-0xF

The DLC field in the CANIFnMCTL register of a message object must
be defined the same as in all the corresponding objects with the same
identifier at other nodes.When themessage handler stores a data frame,
it writes DLC to the value given by the received message.

0x0R/WDLC3:0

717February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 22: CAN IF1 Data A1 (CANIF1DA1), offset 0x03C
Register 23: CAN IF1 Data A2 (CANIF1DA2), offset 0x040
Register 24: CAN IF1 Data B1 (CANIF1DB1), offset 0x044
Register 25: CAN IF1 Data B2 (CANIF1DB2), offset 0x048
Register 26: CAN IF2 Data A1 (CANIF2DA1), offset 0x09C
Register 27: CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0
Register 28: CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4
Register 29: CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8
These registers contain the data to be sent or that has been received. In a CAN data frame, data
byte 0 is the first byte to be transmitted or received and data byte 7 is the last byte to be transmitted
or received. In CAN's serial bit stream, the MSB of each byte is transmitted first.

CAN IF1 Data A1 (CANIF1DA1)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x03C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Data

The CANIFnDA1 registers contain data bytes 1 and 0; CANIFnDA2
data bytes 3 and 2; CANIFnDB1 data bytes 5 and 4; and CANIFnDB2
data bytes 7 and 6.

0x0000R/WDATA15:0

February 24, 2009718
Preliminary

Controller Area Network (CAN) Module

Register 30: CAN Transmission Request 1 (CANTXRQ1), offset 0x100
Register 31: CAN Transmission Request 2 (CANTXRQ2), offset 0x104
The CANTXRQ1 and CANTXRQ2 registers hold the TXRQST bits of the 32 message objects. By
reading out these bits, the CPU can check whichmessage object has a transmission request pending.
The TXRQST bit of a specific message object can be changed by three sources: (1) the CPU via the
CANIFnMCTL register, (2) the message handler state machine after the reception of a remote
frame, or (3) the message handler state machine after a successful transmission.

The CANTXRQ1 register contains the TXRQST bits of the first 16 message objects in the message
RAM; the CANTXRQ2 register contains the TXRQST bits of the second 16 message objects.

CAN Transmission Request 1 (CANTXRQ1)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x100
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TXRQST

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Transmission Request Bits

0: The corresponding message object is not waiting for transmission.

1: The transmission of the corresponding message object is requested
and is not yet done.

0x0000ROTXRQST15:0

719February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 32: CAN New Data 1 (CANNWDA1), offset 0x120
Register 33: CAN New Data 2 (CANNWDA2), offset 0x124
The CANNWDA1 and CANNWDA2 registers hold the NEWDAT bits of the 32 message objects. By
reading these bits, the CPU can check which message object has its data portion updated. The
NEWDAT bit of a specific message object can be changed by three sources: (1) the CPU via the
CANIFnMCTL register, (2) the message handler state machine after the reception of a data frame,
or (3) the message handler state machine after a successful transmission.

The CANNWDA1 register contains the NEWDAT bits of the first 16 message objects in the message
RAM; the CANNWDA2 register contains the NEWDAT bits of the second 16 message objects.

CAN New Data 1 (CANNWDA1)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x120
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

NEWDAT

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

New Data Bits

0: No new data has been written into the data portion of the
corresponding message object by the message handler since the last
time this flag was cleared by the CPU.

1: The message handler or the CPU has written new data into the data
portion of the corresponding message object.

0x0000RONEWDAT15:0

February 24, 2009720
Preliminary

Controller Area Network (CAN) Module

Register 34: CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140
Register 35: CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144
The CANMSG1INT and CANMSG2INT registers hold the INTPND bits of the 32 message objects.
By reading these bits, the CPU can check which message object has an interrupt pending. The
INTPND bit of a specific message object can be changed through two sources: (1) the CPU via the
CANIFnMCTL register, or (2) the message handler state machine after the reception or transmission
of a frame.

This field is also encoded in the CANINT register.

TheCANMSG1INT register contains the INTPND bits of the first 16 message objects in the message
RAM; the CANMSG2INT register contains the INTPND bits of the second 16 message objects.

CAN Message 1 Interrupt Pending (CANMSG1INT)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x140
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

INTPND

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Interrupt Pending Bits

0: The corresponding message object is not the source of an interrupt.

1: The corresponding message object is the source of an interrupt.

0x0000ROINTPND15:0

721February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 36: CAN Message 1 Valid (CANMSG1VAL), offset 0x160
Register 37: CAN Message 2 Valid (CANMSG2VAL), offset 0x164
The CANMSG1VAL and CANMSG2VAL registers hold the MSGVAL bits of the 32 message objects.
By reading these bits, the CPU can check which message object is valid. The message value of a
specific message object can be changed with the CANIFnMCTL register.

TheCANMSG1VAL register contains the MSGVAL bits of the first 16 message objects in the message
RAM; the CANMSG2VAL register contains the MSGVAL bits of the second 16 message objects in
the message RAM.

CAN Message 1 Valid (CANMSG1VAL)
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000
Offset 0x160
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MSGVAL

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

Message Valid Bits

0: The corresponding message object is not configured and is ignored
by the message handler.

1: The corresponding message object is configured and should be
considered by the message handler.

0x0000ROMSGVAL15:0

February 24, 2009722
Preliminary

Controller Area Network (CAN) Module

19 Ethernet Controller
The Stellaris® Ethernet Controller consists of a fully integrated media access controller (MAC) and
network physical (PHY) interface. The Ethernet Controller conforms to IEEE 802.3 specifications
and fully supports 10BASE-T and 100BASE-TX standards.

The Stellaris® Ethernet Controller module has the following features:

■ Conforms to the IEEE 802.3-2002 specification

– 10BASE-T/100BASE-TX IEEE-802.3 compliant. Requires only a dual 1:1 isolation transformer
interface to the line

– 10BASE-T/100BASE-TX ENDEC, 100BASE-TX scrambler/descrambler

– Full-featured auto-negotiation

■ Multiple operational modes

– Full- and half-duplex 100 Mbps

– Full- and half-duplex 10 Mbps

– Power-saving and power-down modes

■ Highly configurable

– Programmable MAC address

– LED activity selection

– Promiscuous mode support

– CRC error-rejection control

– User-configurable interrupts

■ Physical media manipulation

– MDI/MDI-X cross-over support through software assist

– Register-programmable transmit amplitude

– Automatic polarity correction and 10BASE-T signal reception

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive

– Receive channel request asserted on packet receipt

– Transmit channel request asserted on empty transmit FIFO

723February 24, 2009
Preliminary

LM3S9B92 Microcontroller

19.1 Block Diagram
As shown in Figure 19-1 on page 724, the Ethernet Controller is functionally divided into two layers:
the Media Access Controller (MAC) layer and the Network Physical (PHY) layer. These layers
correspond to the OSI model layers 2 and 1. The CPU accesses the Ethernet Controller via the
MAC layer. The MAC layer provides transmit and receive processing for Ethernet frames. The MAC
layer also provides the interface to the PHY layer via an internal Media Independent Interface (MII).
The PHY layer communicates with the Ethernet bus.

Figure 19-1. Ethernet Controller

ARM Cortex M3

Ethernet ControllerMedia
Access
Controller

Physical
Layer Entity

MAC
(Layer 2)

PHY
(Layer 1)

RJ45Magnetics

Figure 19-2 on page 724 shows more detail of the internal structure of the Ethernet Controller and
how the register set relates to various functions.

Figure 19-2. Ethernet Controller Block Diagram

MACRIS
MACIACK
MACIM

Interrupt
Control

MACRCTL
MACNP

Receive
Control

MACTCTL
MACTHR
MACTR

Transmit
Control

Transmit
FIFO

Receive
FIFO

MACIA0
MACIA1

Individual
Address

MACMCTL
MACMDV

MII
Control

MACDDATA

Data
Access

MDIX

Clock
Reference

Transmit
Encoding

Pulse
Shaping

Receive
Decoding

Clock
Recovery

Auto
Negotiation

Carrier
Sense

Collision
Detect

XTALNPHY

XTALPPHY

LED0

LED1

MACMTXD
MACMRXD

Interrupt

MACIX

MACLED

MAC LED

MR4

MR0

MR3

MR1

Media Independent Interface
Management Register Set

MR2

MR5

TXOP

TXON

RXIP

RXIN

MR29

MR6

MR27

MR16 MR17

MR30

MR31

February 24, 2009724
Preliminary

Ethernet Controller

19.2 Functional Description
Note: A 12.4-kΩ resistor should be connected between the ERBIAS and ground. The 12.4-kΩ

resistor should have a 1% tolerance and should be located in close proximity to the ERBIAS
pin. Power dissipation in the resistor is low, so a chip resistor of any geometry may be used.

The functional description of the Ethernet Controller is discussed in the following sections.

19.2.1 MAC Operation
The following sections describe the operation of the MAC unit, including an overview of the Ethernet
frame format, the MAC layer FIFOs, Ethernet transmission and reception options, and LED indicators.

19.2.1.1 Ethernet Frame Format
Ethernet data is carried by Ethernet frames. The basic frame format is shown in Figure
19-3 on page 725.

Figure 19-3. Ethernet Frame

Preamble SFD Destination Address Source Address Length/
Type FCSData

7
Bytes

6
Bytes

6
Bytes

2
Bytes

1
Byte

4
Bytes

46 - 1500
Bytes

The seven fields of the frame are transmitted from left to right. The bits within the frame are
transmitted from least to most significant bit.

■ Preamble

The Preamble field is used to synchronize with the received frame’s timing. The preamble is 7
octets long.

■ Start Frame Delimiter (SFD)

The SFD field follows the preamble pattern and indicates the start of the frame. Its value is
1010.1011.

■ Destination Address (DA)

This field specifies destination addresses for which the frame is intended. The LSB (bit 16 of DA
oct 1 in the frame, see Table 19-1 on page 727) of the DA determines whether the address is an
individual (0), or group/multicast (1) address.

■ Source Address (SA)

The source address field identifies the station from which the frame was initiated.

■ Length/Type Field

The meaning of this field depends on its numeric value. This field can be interpreted as length
or type code. The maximum length of the data field is 1500 octets. If the value of the Length/Type
field is less than or equal to 1500 decimal, it indicates the number of MAC client data octets. If
the value of this field is greater than or equal to 1536 decimal, then it is type interpretation. The
meaning of the Length/Type field when the value is between 1500 and 1536 decimal is unspecified
by the IEEE 802.3 standard. However, the Ethernet Controller assumes type interpretation if the

725February 24, 2009
Preliminary

LM3S9B92 Microcontroller

value of the Length/Type field is greater than 1500 decimal. The definition of the Type field is
specified in the IEEE 802.3 standard. The first of the two octets in this field is most significant.

■ Data

The data field is a sequence of octets that is at least 46 in length, up to 1500 in length. Full data
transparency is provided so any values can appear in this field. A minimum frame size of 46
octets is required to meet the IEEE standard. If the frame size is too small, the Ethernet Controller
automatically appends extra bits (a pad), thus the pad can have a size of 0 to 46 octets. Data
padding can be disabled by clearing the PADEN bit in the Ethernet MAC Transmit Control
(MACTCTL) register.

For the Ethernet Controller, data sent/received can be larger than 1500 bytes without causing
a Frame Too Long error. Instead, a FIFO overrun error is reported using the FOV bit in the
Ethernet MAC Raw Interrupt Status(MACRIS) register when the frame received is too large
to fit into the Ethernet Controller’s 2K RAM.

■ Frame Check Sequence (FCS)

The frame check sequence carries the cyclic redundancy check (CRC) value. The CRC is
computed over the destination address, source address, length/type, and data (including pad)
fields using the CRC-32 algorithm. The Ethernet Controller computes the FCS value one nibble
at a time. For transmitted frames, this field is automatically inserted by the MAC layer, unless
disabled by clearing the CRC bit in the MACTCTL register. For received frames, this field is
automatically checked. If the FCS does not pass, the frame is not placed in the RX FIFO, unless
the FCS check is disabled by clearing the BADCRC bit in the MACRCTL register.

19.2.1.2 MAC Layer FIFOs
The Ethernet Controller is capable of simultaneous transmission and reception. This feature is
enabled by setting the DUPLEX bit in the MACTCTL register.

For Ethernet frame transmission, a 2 KB transmit FIFO is provided that can be used to store a single
frame. While the IEEE 802.3 specification limits the size of an Ethernet frame's payload section to
1500 Bytes, the Ethernet Controller places no such limit. The full buffer can be used, for a payload
of up to 2032 bytes (as the first 16 bytes in the FIFO are reserved for destination address, source
address and length/type information).

For Ethernet frame reception, a 2-KB receive FIFO is provided that can be used to store multiple
frames, up to a maximum of 31 frames. If a frame is received, and there is insufficient space in the
RX FIFO, an overflow error is indicated using the FOV bit in the MACRIS register.

For details regarding the TX and RX FIFO layout, refer to Table 19-1 on page 727. Please note the
following difference between TX and RX FIFO layout. For the TX FIFO, the Data Length field in the
first FIFO word refers to the Ethernet frame data payload, as shown in the 5th to nth FIFO positions.
For the RX FIFO, the Frame Length field is the total length of the received Ethernet frame, including
the Length/Type bytes and the FCS bits.

If FCS generation is disabled by clearing the CRC bit in the MACTCTL register, the last word in the
TX FIFO must contain the FCS bytes for the frame that has been written to the FIFO.

Also note that if the length of the data payload section is not a multiple of 4, the FCS field is not be
aligned on a word boundary in the FIFO. However, for the RX FIFO the beginning of the next frame
is always on a word boundary.

February 24, 2009726
Preliminary

Ethernet Controller

Table 19-1. TX & RX FIFO Organization

RX FIFO (Read)TX FIFO (Write)Word Bit FieldsFIFO Word Read/Write
Sequence

Frame Length Least
Significant Byte

Data Length Least Significant
Byte

7:01st

Frame LengthMost Significant
Byte

Data Length Most Significant
Byte

15:8

DA oct 123:16

DA oct 231:24

DA oct 37:02nd

DA oct 415:8

DA oct 523:16

DA oct 631:24

SA oct 17:03rd

SA oct 215:8

SA oct 323:16

SA oct 431:24

SA oct 57:04th

SA oct 615:8

Len/Type Most Significant Byte23:16

Len/Type Least Significant Byte31:24

data oct n7:05th to nth

data oct n+115:8

data oct n+223:16

data oct n+331:24

FCS 17:0last

FCS 215:8

FCS 323:16

FCS 431:24

Note: If the CRC bit in the MACTCTL register is clear, the FCS bytes must be written with the
correct CRC. If the CRC bit is set, the Ethernet Controller automatically writes the FCS bytes.

19.2.1.3 Ethernet Transmission Options
At the MAC layer, the transmitter can be configured for both full-duplex and half-duplex operation
by using the DUPLEX bit in the MACTCTL register.

The Ethernet Controller automatically generates and inserts the Frame Check Sequence (FCS) at
the end of the transmit frame when the CRC bit in the MACTCTL register is set. However, for test
purposes, this feature can be disabled in order to generate a frame with an invalid CRC by clearing
the CRC bit.

The IEEE 802.3 specification requires that the Ethernet frame payload section be a minimum of 46
bytes. The Ethernet Controller automatically pads the data section if the payload data section loaded
into the FIFO is less than the minimum 46 bytes when the PADEN bit in the MACTCTL register is
set. This feature can be disabled by clearing the PADEN bit.

The transmitter must be enabled by setting the TXEN bit in the TCTL register.

727February 24, 2009
Preliminary

LM3S9B92 Microcontroller

19.2.1.4 Ethernet Reception Options
The Ethernet Controller RX FIFO should be cleared during software initialization. The receiver should
first be disabled by clearing the RXEN bit in the Ethernet MAC Receive Control (MACRCTL)
register, then the FIFO can be cleared by setting the RSTFIFO bit in the MACRCTL register.

The receiver automatically rejects frames that contain bad CRC values in the FCS field. In this case,
a Receive Error interrupt is generated and the receive data is lost. To accept all frames, clear the
BADCRC bit in the MACRCTL register.

In normal operating mode, the receiver accepts only those frames that have a destination address
that matches the address programmed into the Ethernet MAC Individual Address 0 (MACIA0)
and Ethernet MAC Individual Address 1 (MACIA1) registers. However, the Ethernet receiver can
also be configured for Promiscuous and Multicast modes by setting the PRMS and AMUL bits in the
MACRCTL register.

19.2.1.5 LED Indicators
The Ethernet Controller supports two LED signals that can be used to indicate various states of
operation. These signals are mapped to the LED0 and LED1 pins. By default, these pins are
configured as GPIO signals (PF3 and PF2). For the Ethernet Controller to drive these signals, they
must be reconfigured to their hardware function. See “General-Purpose Input/Outputs
(GPIOs)” on page 291 for additional details. The function of these pins is programmable using the
Ethernet MAC LED Encoding (MACLED) register. Refer to page 752 for additional details on how
to program these LED functions.

19.2.2 Internal MII Operation
For the MII management interface to function properly, the MDIO signal must be connected through
a 10k Ω pull-up resistor to the +3.3 V supply. Failure to connect this pull-up resistor prevents
management transactions on this internal MII to function. Note that it is possible for data transmission
across the MII to still function since the PHY layer auto-negotiates the link parameters by default.

For the MII management interface to function properly, the internal clock must be divided down from
the system clock to a frequency no greater than 2.5 MHz. The Ethernet MACManagement Divider
(MACMDV) register contains the divider used for scaling down the system clock. See page 747 for
more details about the use of this register.

19.2.3 PHY Operation
The Physical Layer (PHY) in the Ethernet Controller includes integrated ENDECs,
scrambler/descrambler, dual-speed clock recovery, and full-featured auto-negotiation functions.
The transmitter includes an on-chip pulse shaper and a low-power line driver. The receiver has an
adaptive equalizer and a baseline restoration circuit required for accurate clock and data recovery.
The transceiver interfaces to Category-5 unshielded twisted pair (Cat-5 UTP) cabling for 100BASE-TX
applications, and Category-3 unshielded twisted pair (Cat-3 UTP) for 10BASE-T applications. The
Ethernet Controller is connected to the line media via dual 1:1 isolation transformers. No external
filter is required.

19.2.3.1 Clock Selection
The Ethernet Controller has an on-chip crystal oscillator which can also be driven by an external
oscillator. In this mode of operation, a 25-MHz crystal should be connected between the XTALPPHY
and XTALNPHY pins. Alternatively, an external 25-MHz clock input can be connected to the XTALPPHY
pin. In this mode of operation, a crystal is not required and the XTALNPHY pin must be tied to ground.

February 24, 2009728
Preliminary

Ethernet Controller

See “Ethernet Controller” on page 1016 formore information regarding the specifications of the Ethernet
Controller.

19.2.3.2 Auto-Negotiation
The Ethernet Controller supports the auto-negotiation functions of Clause 28 of the IEEE 802.3
standard for 10/100 Mbps operation over copper wiring. This function is controlled via register
settings. The auto-negotiation function is turned on by default, and the ANEGEN bit in the Ethernet
PHY Management Register 0 - Control (MR0) is set after reset. Software can disable the
auto-negotiation function by clearing the ANEGEN bit. The contents of theEthernet PHYManagement
Register - Auto-Negotiation Advertisement (MR4) are reflected to the Ethernet Controller’s link
partner during auto-negotiation via fast-link pulse coding.

Once auto-negotiation is complete, the SPEED bit in the Ethernet PHY Management Register 31
– PHY Special Control/Status (MR31) register reflects the actual speed. The AUTODONE bit in
MR31 is set to indicate that auto-negotiation is complete. Setting the RANEG bit in the MR0 register
also causes auto-negotiation to restart.

19.2.3.3 Polarity Correction
The Ethernet Controller is capable of automatic polarity reversal for 10BASE-T and auto-negotiation
functions. The XPOL bit in the Ethernet PHY Management Register 27 –Special Control/Status
(MR27) register is set to indicate the polarity has automatically been reversed.

19.2.3.4 MDI/MDI-X Configuration
The Ethernet Controller supports the MDI/MDI-X configuration as defined in IEEE 802.3-2002
specification through software assistance. The MDI/MDI-X configuration eliminates the need for
cross-over cables when connecting to another device, such as a hub. Software can implement the
MDI/MDI-X configuration by using any available timer resource such as Systick (see “System Timer
(SysTick)” on page 69 for more information) to implement this functionality. Once the Ethernet
Controller has been configured and enabled, software should check to see if the LINK bit in the
Ethernet PHY Management Register 1 - Status (MR1) has been set within approximately 60 ms;
if not, set the EN bit of the Ethernet PHY MDIX (MDIX) register to switch the reverse the transmit
and receive lines to the PHY layer.

19.2.4 Interrupts
The Ethernet Controller can generate an interrupt for one or more of the following conditions:

■ A frame has been received into an empty RX FIFO

■ A frame transmission error has occurred

■ A frame has been transmitted successfully

■ A frame has been received with inadequate room in the RX FIFO (overrun)

■ A frame has been received with one or more error conditions (for example, FCS failed)

■ An MII management transaction between the MAC and PHY layers has completed

■ One or more of the following PHY layer conditions occurs:

– Auto-Negotiate Complete

729February 24, 2009
Preliminary

LM3S9B92 Microcontroller

– Remote Fault

– Link Partner Acknowledge

– Parallel Detect Fault

– Page Received

Refer to Ethernet PHY Management Register 29 - Interrupt Source Flags (MR29) (see
page 768) for additional details regarding PHY interrupts.

19.2.5 DMA Operation
The Ethernet peripheral provides request signals to the μDMA controller, one for transmit and one
for receive. There is a dedicated μDMA channel for each. The request is a single type for both
channels. Burst requests are not supported. The RX channel request is asserted when a packet is
received while the TX channel request is asserted when the transmit FIFO becomes empty.

No special configuration is needed to enable the Ethernet peripheral for use with the μDMA controller.

Because the size of a received packet is not known until the header is examined, it is best to set
up the initial μDMA transfer to copy the first 4 words from the RX FIFO when the RX request occurs.
This will include the packet length plus the Ethernet header. The μDMA will then cause an interrupt
when this transfer is complete. Upon entering the interrupt handler, the packet length in the FIFO
and the Ethernet header will be in a buffer and can be examined. Once the packet length is known
then another μDMA transfer can be set up to transfer the remaining received packet payload from
the FIFO into a buffer. This transfer should be initiated by software. Another interrupt will occur when
this transfer is done.

Even though the TX channel will generate a TX empty request, the recommended way to handle
μDMA transfers for transmitting packets is to set up the transfer from the buffer containing the packet
to the transmit FIFO, and then to initiate the transfer with a software request. An interrupt will occur
when this transfer is complete. For both channels, the "auto-request" transfer mode should be used.
See “Micro Direct Memory Access (μDMA)” on page 226 for more details about programming the
µDMA controller.

19.3 Initialization and Configuration
The following sections describe the hardware and software configuration required to set up the
Ethernet Controller.

19.3.1 Hardware Configuration
Figure 19-4 on page 731 shows the proper method for interfacing the Ethernet Controller to a
10/100BASE-T Ethernet jack.

February 24, 2009730
Preliminary

Ethernet Controller

Figure 19-4. Interface to an Ethernet Jack

6

5

8

4

2

3

1

7

1CT: 1

TX+

TX-

RX+

RX-
1CT: 1

Y+

Y-

G+

G-

3

8

7

4

5

6

11
12

2
1

G
L

G
R

9
10

NC

GND

P2

J3011G21DNL

R5
49.9

+3.3V

C13
0.01UF

R4
49.9

R8
49.9

R9
49.9

C4

0.1UF

+3.3V

C5

0.1UF

+3.3V

C7
10pF

C2
10pF

C3
10pF

R6

330

R3

10K

+3.3V

R7

330

+3.3V

+3.3V

PF2/LED1
PF3/LED0

C6
10pF

10/100BASE-T Ethernet Jack

+3.3V

PF2/LED1 60

PF3/LED0 59

MDIO 58

TXON 46

TXOP 43

RXIP 40

RXIN 37

Stellaris
Microcontroller

The following isolation transformers have been tested and are known to successfully interface to
the Ethernet PHY layer.

■ Isolation Transformers
– TDK TLA-6T103
– Bel-Fuse S558-5999-46
– Halo TG22-3506ND
– Pulse PE-68515
– Valor ST6118
– YCL 20PMT04

■ Isolation transformers in low profile packages (0.100 in/2.5 mm or less)
– TDK TLA-6T118
– Halo TG110-S050
– PCA EPF8023G

■ Isolation transformers with integrated RJ45 connector
– TDK TLA-6T704
– Delta RJS-1A08T089A

■ Isolation transformers with integrated RJ45 connector, LEDs and termination resistors
– Pulse J0011D21B/E
– Pulse J3011G21DNL

19.3.2 Software Configuration
To use the Ethernet Controller, it must be enabled by setting the EPHY0 and EMAC0 bits in the
RCGC2 register (see page 179). In addition, the clock to the appropriate GPIO module must be
enabled via the RCGC2 register in the System Control module. See page 179. To find out which
GPIO port to enable, refer to Table 25-5 on page 990.

The following steps can then be used to configure the Ethernet Controller for basic operation.

1. Program theMACDIV register to obtain a 2.5 MHz clock (or less) on the internal MII. Assuming
a 20-MHz system clock, the MACDIV value should be 0x03 or greater.

731February 24, 2009
Preliminary

LM3S9B92 Microcontroller

2. Program the MACIA0 and MACIA1 register for address filtering.

3. Program the MACTCTL register for Auto CRC generation, padding, and full-duplex operation
using a value of 0x16.

4. Program theMACRCTL register to flush the receive FIFO and reject frames with bad FCS using
a value of 0x18.

5. Enable both the Transmitter and Receive by setting the LSB in both the MACTCTL and
MACRCTL registers.

6. To transmit a frame, write the frame into the TX FIFO using the Ethernet MACData (MACDATA)
register. Then set the NEWTX bit in the Ethernet Mac Transmission Request (MACTR) register
to initiate the transmit process. When the NEWTX bit has been cleared, the TX FIFO is available
for the next transmit frame.

7. To receive a frame, wait for the NPR field in the Ethernet MAC Number of Packets (MACNP)
register to be non-zero. Then begin reading the frame from the RX FIFO by using theMACDATA
register. When the frame (including the FCS field) has been read, the NPR field decrements by
one. When there are no more frames in the RX FIFO, the NPR field reads 0.

19.4 Ethernet Register Map
Table 19-2 on page 732 lists the Ethernet MAC registers. All addresses given are relative to the
Ethernet MAC base address of 0x4004.8000. Note that the Ethernet controller clocks must be
enabled before the registers can be programmed (see page 179).

The IEEE 802.3 standard specifies a register set for controlling and gathering status from the PHY
layer. The registers are collectively known as the MII Management registers and are detailed in
Section 22.2.4 of the IEEE 802.3 specification. Table 19-2 on page 732 also lists these MII
Management registers. All addresses given are absolute and are written directly to the REGADR field
of the Ethernet MAC Management Control (MACMCTL) register. The format of registers 0 to 15
are defined by the IEEE specification and are common to all PHY layer implementations. The only
variance allowed is for features that may or may not be supported by a specific PHY implementation.
Registers 16 to 31 are vendor-specific registers, used to support features that are specific to a
vendor's PHY implementation. Vendor-specific registers not listed are reserved.

Table 19-2. Ethernet Register Map

See
pageDescriptionResetTypeNameOffset

Ethernet MAC

734Ethernet MAC Raw Interrupt Status/Acknowledge0x0000.0000R/W1CMACRIS/MACIACK0x000

737Ethernet MAC Interrupt Mask0x0000.007FR/WMACIM0x004

738Ethernet MAC Receive Control0x0000.0008R/WMACRCTL0x008

739Ethernet MAC Transmit Control0x0000.0000R/WMACTCTL0x00C

740Ethernet MAC Data0x0000.0000R/WMACDATA0x010

742Ethernet MAC Individual Address 00x0000.0000R/WMACIA00x014

743Ethernet MAC Individual Address 10x0000.0000R/WMACIA10x018

February 24, 2009732
Preliminary

Ethernet Controller

See
pageDescriptionResetTypeNameOffset

744Ethernet MAC Threshold0x0000.003FR/WMACTHR0x01C

746Ethernet MAC Management Control0x0000.0000R/WMACMCTL0x020

747Ethernet MAC Management Divider0x0000.0080R/WMACMDV0x024

748Ethernet MAC Management Transmit Data0x0000.0000R/WMACMTXD0x02C

749Ethernet MAC Management Receive Data0x0000.0000R/WMACMRXD0x030

750Ethernet MAC Number of Packets0x0000.0000ROMACNP0x034

751Ethernet MAC Transmission Request0x0000.0000R/WMACTR0x038

752Ethernet MAC LED Encoding0x0000.0010R/WMACLED0x040

753Ethernet PHY MDIX0x0000.0000R/WMDIX0x044

MII Management

754Ethernet PHY Management Register 0 – Control0x3100R/WMR0-

756Ethernet PHY Management Register 1 – Status0x7849ROMR1-

758Ethernet PHY Management Register 2 – PHY Identifier
10x0161ROMR2-

759Ethernet PHY Management Register 3 – PHY Identifier
20xB410ROMR3-

760Ethernet PHYManagement Register 4 – Auto-Negotiation
Advertisement0x01E1R/WMR4-

762Ethernet PHYManagement Register 5 – Auto-Negotiation
Link Partner Base Page Ability0x0000ROMR5-

763Ethernet PHYManagement Register 6 – Auto-Negotiation
Expansion0x0000ROMR6-

764Ethernet PHY Management Register 16 –
Vendor-Specific0x0040R0MR16-

765Ethernet PHY Management Register 17 – Mode
Control/Status0x0002R/WMR17-

767Ethernet PHY Management Register 27 –Special
Control/Status-ROMR27-

768Ethernet PHYManagement Register 29 – Interrupt Status0x0000ROMR29-

769Ethernet PHYManagement Register 30 – Interrupt Mask0x0000R/WMR30-

770Ethernet PHY Management Register 31 – PHY Special
Control/Status0x00040R/WMR31-

19.5 Ethernet MAC Register Descriptions
The remainder of this section lists and describes the Ethernet MAC registers, in numerical order by
address offset. Also see “MII Management Register Descriptions” on page 753.

733February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: Ethernet MAC Raw Interrupt Status/Acknowledge
(MACRIS/MACIACK), offset 0x000
The MACRIS/MACIACK register is the interrupt status and acknowledge register. On a read, this
register gives the current status value of the corresponding interrupt prior to masking. On a write,
setting any bit clears the corresponding interrupt status bit.

Reads

Ethernet MAC Raw Interrupt Status/Acknowledge (MACRIS/MACIACK)
Base 0x4004.8000
Offset 0x000
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXINTTXERTXEMPFOVRXERMDINTPHYINTreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:7

PHY Interrupt

When set, indicates that an enabled interrupt in the PHY layer has
occurred.MR29 in the PHYmust be read to determine the specific PHY
event that triggered this interrupt.

0ROPHYINT6

MII Transaction Complete

When set, indicates that a transaction (read or write) on the MII interface
has completed successfully.

0ROMDINT5

Receive Error

This bit indicates that an error was encountered on the receiver. The
possible errors that can cause this interrupt bit to be set are:

■ A receive error occurs during the reception of a frame (100 Mb/s
only).

■ The frame is not an integer number of bytes (dribble bits) due to an
alignment error.

■ The CRC of the frame does not pass the FCS check.

■ The length/type field is inconsistent with the frame data size when
interpreted as a length field.

0RORXER4

FIFO Overrun

When set, indicates that an overrun was encountered on the receive
FIFO.

0ROFOV3

February 24, 2009734
Preliminary

Ethernet Controller

DescriptionResetTypeNameBit/Field

Transmit FIFO Empty

When set, indicates that the packet was transmitted and that the TX
FIFO is empty.

0ROTXEMP2

Transmit Error

When set, indicates that an error was encountered on the transmitter.
The possible errors that can cause this interrupt bit to be set are:

■ The data length field stored in the TX FIFO exceeds 2032 decimal
(buffer length - 16 bytes of header data). The frame is not sent when
this error occurs.

■ The retransmission attempts during the backoff process have
exceeded the maximum limit of 16 decimal.

0ROTXER1

Packet Received

When set, indicates that at least one packet has been received and is
stored in the receiver FIFO.

0RORXINT0

Writes

Ethernet MAC Raw Interrupt Status/Acknowledge (MACRIS/MACIACK)
Base 0x4004.8000
Offset 0x000
Type WO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXINTTXERTXEMPFOVRXERMDINTPHYINTreserved

W1CW1CW1CW1CW1CW1CW1CROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:7

Clear PHY Interrupt

Setting this bit clears the PHYINT interrupt in the MACRIS register.

0W1CPHYINT6

Clear MII Transaction Complete

Setting this bit clears the MDINT interrupt in the MACRIS register.

0W1CMDINT5

Clear Receive Error

Setting this bit clears the RXER interrupt in the MACRIS register.

0W1CRXER4

Clear FIFO Overrun

Setting this bit clears the FOV interrupt in the MACRIS register.

0W1CFOV3

735February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Clear Transmit FIFO Empty

Setting this bit clears the TXEMP interrupt in the MACRIS register.

0W1CTXEMP2

Clear Transmit Error

Setting this bit clears the TXER interrupt in the MACRIS register and
resets the TX FIFO write pointer.

0W1CTXER1

Clear Packet Received

Setting this bit clears the RXINT interrupt in the MACRIS register.

0W1CRXINT0

February 24, 2009736
Preliminary

Ethernet Controller

Register 2: Ethernet MAC Interrupt Mask (MACIM), offset 0x004
This register allows software to enable/disable Ethernet MAC interrupts. Clearing a bit disables the
interrupt, while setting the bit enables it.

Ethernet MAC Interrupt Mask (MACIM)
Base 0x4004.8000
Offset 0x004
Type R/W, reset 0x0000.007F

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXINTMTXERMTXEMPMFOVMRXERMMDINTMPHYINTMreserved

R/WR/WR/WR/WR/WR/WR/WROROROROROROROROROType
1111111000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:7

Mask PHY Interrupt

Clearing this bit masks the PHYINT bit in the MACRIS register from
being set.

1R/WPHYINTM6

Mask MII Transaction Complete

Clearing this bit masks the MDINT bit in theMACRIS register from being
set.

1R/WMDINTM5

Mask Receive Error

Clearing this bit masks the RXER bit in the MACRIS register from being
set.

1R/WRXERM4

Mask FIFO Overrun

Clearing this bit masks the FOV bit in the MACRIS register from being
set.

1R/WFOVM3

Mask Transmit FIFO Empty

Clearing this bit masks the TXEMP bit in theMACRIS register from being
set.

1R/WTXEMPM2

Mask Transmit Error

Clearing this bit masks the TXER bit in the MACRIS register from being
set.

1R/WTXERM1

Mask Packet Received

Clearing this bit masks the RXINT bit in theMACRIS register from being
set.

1R/WRXINTM0

737February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: Ethernet MAC Receive Control (MACRCTL), offset 0x008
This register configures the receiver and controls the types of frames that are received.

It is important to note that when the receiver is enabled, all valid frames with a broadcast address
of FF-FF-FF-FF-FF-FF in the Destination Address field are received and stored in the RX FIFO,
even if the AMUL bit is not set.

Ethernet MAC Receive Control (MACRCTL)
Base 0x4004.8000
Offset 0x008
Type R/W, reset 0x0000.0008

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXENAMULPRMSBADCRCRSTFIFOreserved

R/WR/WR/WR/WR/WROROROROROROROROROROROType
0001000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:5

Clear Receive FIFO

When set, this bit clears the receive FIFO. This should be done when
software initialization is performed.

It is recommended that the receiver be disabled (RXEN = 0), before a
reset is initiated (RSTFIFO = 1). This sequence flushes and resets the
RX FIFO.

This bit is automatically cleared when read.

0R/WRSTFIFO4

Enable Reject Bad CRC

When set, the BADCRC bit enables the rejection of frames with an
incorrectly calculated CRC. If a bad CRC is encountered, the RXER bit
in the MACRIS register is set and the receiver FIFO is reset.

1R/WBADCRC3

Enable Promiscuous Mode

When set, the PRMS bit enables Promiscuous mode, which accepts all
valid frames, regardless of the specified Destination Address.

0R/WPRMS2

Enable Multicast Frames

When set, the AMUL bit enables the reception of multicast frames.

0R/WAMUL1

Enable Receiver

When set the RXEN bit enables the Ethernet receiver. When this bit is
clear, the receiver is disabled and all frames are ignored.

0R/WRXEN0

February 24, 2009738
Preliminary

Ethernet Controller

Register 4: Ethernet MAC Transmit Control (MACTCTL), offset 0x00C
This register configures the transmitter and controls the frames that are transmitted.

Ethernet MAC Transmit Control (MACTCTL)
Base 0x4004.8000
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

TXENPADENCRCreservedDUPLEXreserved

R/WR/WR/WROR/WROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:5

Enable Duplex Mode

When set, this bit enables Duplex mode, allowing simultaneous
transmission and reception.

0R/WDUPLEX4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

Enable CRC Generation

When set this bit enables the automatic generation of the CRC and its
placement at the end of the packet. If this bit is clear, the frames placed
in the TX FIFO are sent exactly as they are written into the FIFO.

Note that this bit should generally be set.

0R/WCRC2

Enable Packet Padding

When set, this bit enables the automatic padding of packets that do not
meet the minimum frame size.

Note that this bit should generally be set.

0R/WPADEN1

Enable Transmitter

When set, this bit enables the transmitter. When this bit is clear, the
transmitter is disabled.

0R/WTXEN0

739February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: Ethernet MAC Data (MACDATA), offset 0x010
This register enables software to access the TX and RX FIFOs.

Reads from this register return the data stored in the RX FIFO from the location indicated by the
read pointer. The read pointer is then auto incremented to the next RX FIFO location. Reading from
the RX FIFO when a frame has not been received or is in the process of being received will return
indeterminate data and not increment the read pointer.

Writes to this register store the data in the TX FIFO at the location indicated by the write pointer.
The write pointer is the auto incremented to the next TX FIFO location. Writing more data into the
TX FIFO than indicated in the length field will result in the data being lost. Writing less data into the
TX FIFO than indicated in the length field will result in indeterminate data being appended to the
end of the frame to achieve the indicated length. Attempting to write the next frame into the TX FIFO
before transmission of the first has completed will result in the data being lost.

There is no mechanism for randomly accessing bytes in either the RX or TX FIFOs. Data must be
read from the RX FIFO sequentially and stored in a buffer for further processing. Once a read has
been performed, the data in the FIFO cannot be re-read. Data must be written to the TX FIFO
sequentially. If an error is made in placing the frame into the TX FIFO, the write pointer can be reset
to the start of the TX FIFO by writing the TXER bit of the MACIACK register and then the data
re-written.

Reads

Ethernet MAC Data (MACDATA)
Base 0x4004.8000
Offset 0x010
Type RO, reset 0x0000.0000

16171819202122232425262728293031

RXDATA

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RXDATA

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Receive FIFO Data

The RXDATA bits represent the next word of data stored in the RX FIFO.

0x0000.0000RORXDATA31:0

February 24, 2009740
Preliminary

Ethernet Controller

Writes

Ethernet MAC Data (MACDATA)
Base 0x4004.8000
Offset 0x010
Type WO, reset 0x0000.0000

16171819202122232425262728293031

TXDATA

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

0123456789101112131415

TXDATA

WOWOWOWOWOWOWOWOWOWOWOWOWOWOWOWOType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Transmit FIFO Data

The TXDATA bits represent the next word of data to place in the TX
FIFO for transmission.

0x0000.0000WOTXDATA31:0

741February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 6: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014
This register enables software to program the first four bytes of the hardware MAC address of the
Network Interface Card (NIC). (The last two bytes are in MACIA1). The 6-byte Individual Address
is compared against the incoming Destination Address fields to determine whether the frame should
be received.

Ethernet MAC Individual Address 0 (MACIA0)
Base 0x4004.8000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

MACOCT3MACOCT4

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

MACOCT1MACOCT2

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

MAC Address Octet 4

The MACOCT4 bits represent the fourth octet of the MAC address used
to uniquely identify the Ethernet Controller.

0x00R/WMACOCT431:24

MAC Address Octet 3

The MACOCT3 bits represent the third octet of the MAC address used
to uniquely identify the Ethernet Controller.

0x00R/WMACOCT323:16

MAC Address Octet 2

The MACOCT2 bits represent the second octet of the MAC address used
to uniquely identify the Ethernet Controller.

0x00R/WMACOCT215:8

MAC Address Octet 1

The MACOCT1 bits represent the first octet of the MAC address used to
uniquely identify the Ethernet Controller.

0x00R/WMACOCT17:0

February 24, 2009742
Preliminary

Ethernet Controller

Register 7: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018
This register enables software to program the last two bytes of the hardware MAC address of the
Network Interface Card (NIC). (The first four bytes are in MACIA0). The 6-byte IAR is compared
against the incoming Destination Address fields to determine whether the frame should be received.

Ethernet MAC Individual Address 1 (MACIA1)
Base 0x4004.8000
Offset 0x018
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MACOCT5MACOCT6

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

MAC Address Octet 6

The MACOCT6 bits represent the sixth octet of the MAC address used
to uniquely identify each Ethernet Controller.

0x00R/WMACOCT615:8

MAC Address Octet 5

The MACOCT5 bits represent the fifth octet of the MAC address used to
uniquely identify the Ethernet Controller.

0x00R/WMACOCT57:0

743February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 8: Ethernet MAC Threshold (MACTHR), offset 0x01C
In order to increase the transmission rate, it is possible to program the Ethernet Controller to begin
transmission of the next frame prior to the completion of the transmission of the current frame. Note:
Extreme care must be used when implementing this function. Software must be able to guarantee
that the complete frame is able to be stored in the transmission FIFO prior to the completion of the
transmission frame.

This register enables software to set the threshold level at which the transmission of the frame
begins. If the THRESH bits are set to 0x3F, which is the reset value, the early transmission feature
is disabled, and transmission does not start until the NEWTX bit is set in the MACTR register.

Writing the THRESH bits to any value besides 0x3F enables the early transmission feature. Once
the byte count of data in the TX FIFO reaches the value derived from the THRESH bits as shown
below, transmission of the frame begins. When THRESH is set to all 0s, transmission of the frame
begins after 4 bytes (a single write) are stored in the TX FIFO. Each increment of the THRESH bit
field waits for an additional 32 bytes of data (eight writes) to be stored in the TX FIFO. Therefore,
a value of 0x01 causes the transmitter to wait for 36 bytes of data to be written while a value of 0x02
makes the wait equal to 68 bytes of written data. In general, early transmission starts when:

Number of Bytes >= 4 (THRESH x 8 + 1)

Reaching the threshold level has the same effect as setting the NEWTX bit in the MACTR register.
Transmission of the frame begins and then the number of bytes indicated by the Data Length field
is transmitted. Because under-run checking is not performed, if any event, such as an interrupt,
delays the filling of the FIFO, the tail pointer may reach and pass the write pointer in the TX FIFO.
In this event, indeterminate values are transmitted rather than the end of the frame. Therefore,
sufficient bus bandwidth for writing to the TX FIFO must be guaranteed by the software.

If a frame smaller than the threshold level must be sent, the NEWTX bit in the MACTR register must
be set with an explicit write. This initiates the transmission of the frame even though the threshold
limit has not been reached.

If the threshold level is set too small, it is possible for the transmitter to underrun. If this occurs, the
transmit frame is aborted, and a transmit error occurs. Note that in this case, the TXER bit in the
MACRIS is not set meaning that the CPU receives no indication that a transmit error happened.

Ethernet MAC Threshold (MACTHR)
Base 0x4004.8000
Offset 0x01C
Type R/W, reset 0x0000.003F

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

THRESHreserved

R/WR/WR/WR/WR/WR/WROROROROROROROROROROType
1111110000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:6

February 24, 2009744
Preliminary

Ethernet Controller

DescriptionResetTypeNameBit/Field

Threshold Value

The THRESH bits represent the early transmit threshold. Once the amount
of data in the TX FIFO exceeds the value represented by the above
equation, transmission of the packet begins.

0x3FR/WTHRESH5:0

745February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: Ethernet MAC Management Control (MACMCTL), offset 0x020
This register enables software to control the transfer of data to and from the MII Management
registers in the Ethernet PHY layer. The address, name, type, reset configuration, and functional
description of each of these registers can be found in Table 19-2 on page 732 and in “MII Management
Register Descriptions” on page 753.

In order to initiate a read transaction from the MII Management registers, the WRITE bit must be
cleared during the same cycle that the START bit is set.

In order to initiate a write transaction to the MII Management registers, the WRITE bit must be set
during the same cycle that the START bit is set.

Ethernet MAC Management Control (MACMCTL)
Base 0x4004.8000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

STARTWRITEreservedREGADRreserved

R/WR/WROR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

MII Register Address

The REGADR bit field represents the MII Management register address
for the next MII management interface transaction. Refer to
Table 19-2 on page 732 for the PHY register offsets.

Note that any address that is not valid in the register map should not be
written to and any data read should be ignored.

0x0R/WREGADR7:3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2

MII Register Transaction Type

The WRITE bit represents the operation of the next MII management
interface transaction. If WRITE is set, the next operation is a write; if
WRITE is clear, the next transaction is a read.

0R/WWRITE1

MII Register Transaction Enable

The START bit represents the initiation of the next MII management
interface transaction. When this bit is set, the MII register located at
REGADR is read (WRITE=0) or written (WRITE=1).

0R/WSTART0

February 24, 2009746
Preliminary

Ethernet Controller

Register 10: Ethernet MAC Management Divider (MACMDV), offset 0x024
This register enables software to set the clock divider for the Management Data Clock (MDC). This
clock is used to synchronize read and write transactions between the system and theMII Management
registers. The frequency of the MDC clock can be calculated from the following formula:

The clock divider must be written with a value that ensures that the MDC clock does not exceed a
frequency of 2.5 MHz.

Ethernet MAC Management Divider (MACMDV)
Base 0x4004.8000
Offset 0x024
Type R/W, reset 0x0000.0080

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DIVreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000100000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:8

Clock Divider

The DIV bits are used to set the clock divider for the MDC clock used
to transmit data between the MAC and PHY layers over the serial MII
interface.

0x80R/WDIV7:0

747February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: Ethernet MAC Management Transmit Data (MACMTXD), offset
0x02C
This register holds the next value to be written to the MII Management registers.

Ethernet MAC Management Transmit Data (MACMTXD)
Base 0x4004.8000
Offset 0x02C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MDTX

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

MII Register Transmit Data

The MDTX bits represent the data that will be written in the next MII
management transaction.

0x0000R/WMDTX15:0

February 24, 2009748
Preliminary

Ethernet Controller

Register 12: Ethernet MAC Management Receive Data (MACMRXD), offset
0x030
This register holds the last value read from the MII Management registers.

Ethernet MAC Management Receive Data (MACMRXD)
Base 0x4004.8000
Offset 0x030
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

MDRX

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000ROreserved31:16

MII Register Receive Data

The MDRX bits represent the data that was read in the previous MII
management transaction.

0x0000R/WMDRX15:0

749February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 13: Ethernet MAC Number of Packets (MACNP), offset 0x034
This register holds the number of frames that are currently in the RX FIFO. When NPR is 0, there
are no frames in the RX FIFO and the RXINT bit is clear. When NPR is any other value, there is at
least one frame in the RX FIFO and the RXINT bit in the MACRIS register is set.

Ethernet MAC Number of Packets (MACNP)
Base 0x4004.8000
Offset 0x034
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

NPRreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.00ROreserved31:6

Number of Packets in Receive FIFO

The NPR bits represent the number of packets stored in the RX FIFO.
While the NPR field is greater than 0, the RXINT interrupt in theMACRIS
register is set.

0x00RONPR5:0

February 24, 2009750
Preliminary

Ethernet Controller

Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x038
This register enables software to initiate the transmission of the frame currently located in the TX
FIFO. Once the frame has been transmitted from the TX FIFO or a transmission error has been
encountered, the NEWTX bit is automatically cleared.

Ethernet MAC Transmission Request (MACTR)
Base 0x4004.8000
Offset 0x038
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

NEWTXreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:1

New Transmission

When set, the NEWTX bit initiates an Ethernet transmission once the
packet has been placed in the TX FIFO. This bit is cleared once the
transmission has been completed. If early transmission is being used
(see the MACTHR register), this bit does not need to be set.

0R/WNEWTX0

751February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 15: Ethernet MAC LED Encoding (MACLED), offset 0x040
This register enables software to select the source that causes the LED1 and LED0 signal to toggle.

Ethernet MAC LED Encoding (MACLED)
Base 0x4004.8000
Offset 0x040
Type R/W, reset 0x0000.0010

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

LED0[3:0]LED1[3:0]reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000100000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

LED1 Source

The LED1 field selects the source that toggles the LED1 signal.

DescriptionValue

Link OK0x0

RX or TX Activity (Default LED1)0x1

Reserved0x2

Reserved0x3

Reserved0x4

100BASE-TX mode0x5

10BASE-T mode0x6

Full-Duplex0x7

Link OK & Blink=RX or TX Activity0x8

0x1R/WLED1[3:0]7:4

LED0 Source

The LED0 field selects the source that toggles the LED0 signal.

DescriptionValue

Link OK (Default LED0)0x0

RX or TX Activity0x1

Reserved0x2

Reserved0x3

Reserved0x4

100BASE-TX mode0x5

10BASE-T mode0x6

Full-Duplex0x7

Link OK & Blink=RX or TX Activity0x8

0x0R/WLED0[3:0]3:0

February 24, 2009752
Preliminary

Ethernet Controller

Register 16: Ethernet PHY MDIX (MDIX), offset 0x044
This register enables the transmit and receive lines to be reversed in order to implement the
MDI/MDI-X functionality. Software can implement the MDI/MDI-X configuration by using any available
timer resource such as Systick (see “System Timer (SysTick)” on page 69 for more information) to
implement this functionality. Once the Ethernet Controller has been configured and enabled, software
should check to see if the LINK bit in the MR1 register has been set within approximately 60 ms; if
not, set the EN bit of the MDIX register to switch the reverse the transmit and receive lines to the
PHY layer. Software should check the LINK bit again after approximately another 60 ms and if no
link has been established, the EN bit should be cleared. Software must continue to change the
termination back and forth by setting and clearing the EN bit every 60 msec until a link is established.

Ethernet PHY MDIX (MDIX)
Base 0x4004.8000
Offset 0x044
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ENreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.000ROreserved31:1

MDI/MDI-X Enable

When set, the transmit and receive signals are switched such that data
is received on the transmit signals TXOP and TXON; data is transmitted
on the receive signals RXIP and RXIN.

0R/WEN0

19.6 MII Management Register Descriptions
The IEEE 802.3 standard specifies a register set for controlling and gathering status from the PHY
layer. The registers are collectively known as the MII Management registers. All addresses given
are absolute. Addresses not listed are reserved; these addresses should not be written to and any
data read should be ignored. Also see “Ethernet MAC Register Descriptions” on page 733.

753February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 17: Ethernet PHY Management Register 0 – Control (MR0), address
0x00
This register enables software to configure the operation of the PHY layer. The default settings of
these registers are designed to initialize the Ethernet Controller to a normal operational mode without
configuration.

Ethernet PHY Management Register 0 – Control (MR0)
Base 0x4004.8000
Address 0x00
Type R/W, reset 0x3100

0123456789101112131415

reservedCOLTDUPLEXRANEGISOPWRDNANEGENSPEEDSLLOOPBKRESET

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000010001100Reset

DescriptionResetTypeNameBit/Field

Reset Registers

When set, this bit resets the PHY layer registers to their default state
and reinitializes internal state machines. Once the reset operation has
completed, this bit is cleared by hardware.

0R/WRESET15

Loopback Mode

When set, this bit enables the Loopback mode of operation. The receiver
ignores external inputs and receives the data that is transmitted by the
transmitter.

0R/WLOOPBK14

Speed Select

DescriptionValue

Enables the 100 Mb/s mode of operation (100BASE-TX).1

Enables the 10 Mb/s mode of operation (10BASE-T).0

1R/WSPEEDSL13

Auto-Negotiation Enable

When set, this bit enables the auto-negotiation process.

1R/WANEGEN12

Power Down

When set, this bit places the PHY layer into a low-power consuming
state. All data on the data inputs is ignored.

0R/WPWRDN11

Isolate

When set, this bit isolates the transmit and receive data paths and
ignores all data being transmitted and received.

0R/WISO10

Restart Auto-Negotiation

When set, this bit restarts the auto-negotiation process. Once the restart
has initiated, this bit is cleared by hardware.

0R/WRANEG9

February 24, 2009754
Preliminary

Ethernet Controller

DescriptionResetTypeNameBit/Field

Set Duplex Mode

DescriptionValue

Enables the Full-Duplex mode of operation. This bit can be
set by software in a manual configuration process or by the
auto-negotiation process.

1

Enables the Half-Duplex mode of operation.0

1R/WDUPLEX8

Collision Test

When set, this bit enables the Collision Test mode of operation. The
COLT bit is set after the initiation of a transmission and is cleared once
the transmission is halted.

0R/WCOLT7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

These bits should always be written as zero.

0x00R/Wreserved6:0

755February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 18: Ethernet PHY Management Register 1 – Status (MR1), address
0x01
This register enables software to determine the capabilities of the PHY layer and perform its
initialization and operation appropriately.

Ethernet PHY Management Register 1 – Status (MR1)
Base 0x4004.8000
Address 0x01
Type RO, reset 0x7849

0123456789101112131415

EXTDJABLINKANEGARFAULTANEGCreserved10T_H10T_F100X_H100X_Freserved

RORCRORORCROROROROROROROROROROROType
1001000000011110Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15

100BASE-TX Full-Duplex Mode

When set, this bit indicates that the Ethernet Controller is capable of
supporting 100BASE-TX Full-Duplex mode.

1RO100X_F14

100BASE-TX Half-Duplex Mode

When set, this bit indicates that the Ethernet Controller is capable of
supporting 100BASE-TX Half-Duplex mode.

1RO100X_H13

10BASE-T Full-Duplex Mode

When set, this bit indicates that the Ethernet Controller is capable of
10BASE-T Full-Duplex mode.

1RO10T_F12

10BASE-T Half-Duplex Mode

When set, this bit indicates that the Ethernet Controller is capable of
supporting 10BASE-T Half-Duplex mode.

1RO10T_H11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved10:6

Auto-Negotiation Complete

When set, this bit indicates that the auto-negotiation process has been
completed and that the extended registers defined by the
auto-negotiation protocol are valid.

0ROANEGC5

Remote Fault

When set, this bit indicates that a remote fault condition has been
detected. This bit remains set until it is read, even if the condition no
longer exists.

0RCRFAULT4

Auto-Negotiation

When set, this bit indicates that the Ethernet Controller has the ability
to perform auto-negotiation.

1ROANEGA3

February 24, 2009756
Preliminary

Ethernet Controller

DescriptionResetTypeNameBit/Field

Link Made

When set, this bit indicates that a valid link has been established by the
Ethernet Controller.

0ROLINK2

Jabber Condition

When set, this bit indicates that a jabber condition has been detected
by the Ethernet Controller. This bit remains set until it is read, even if
the jabber condition no longer exists.

0RCJAB1

Extended Capabilities

When set, this bit indicates that the Ethernet Controller provides an
extended set of capabilities that can be accessed through the extended
register set.

1ROEXTD0

757February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 19: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2),
address 0x02
This register, along with MR3, provides a 32-bit value indicating the manufacturer, model, and
revision information.

Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2)
Base 0x4004.8000
Address 0x02
Type RO, reset 0x0161

0123456789101112131415

OUI[21:6]

ROROROROROROROROROROROROROROROROType
1000011010000000Reset

DescriptionResetTypeNameBit/Field

Organizationally Unique Identifier[21:6]

This field, along with the OUI[5:0] field in MR3, makes up the
Organizationally Unique Identifier indicating the PHY manufacturer.

0x0161ROOUI[21:6]15:0

February 24, 2009758
Preliminary

Ethernet Controller

Register 20: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3),
address 0x03
This register, along with MR2, provides a 32-bit value indicating the manufacturer, model, and
revision information.

Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3)
Base 0x4004.8000
Address 0x03
Type RO, reset 0xB410

0123456789101112131415

RNMNOUI[5:0]

ROROROROROROROROROROROROROROROROType
0000100000101101Reset

DescriptionResetTypeNameBit/Field

Organizationally Unique Identifier[5:0]

This field, along with the OUI[21:6] field in MR2, makes up the
Organizationally Unique Identifier indicating the PHY manufacturer.

0x2DROOUI[5:0]15:10

Model Number

The MN field represents the Model Number of the PHY.

0x01ROMN9:4

Revision Number

The RN field represents the Revision Number of the PHY implementation.

0x0RORN3:0

759February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 21: Ethernet PHY Management Register 4 – Auto-Negotiation
Advertisement (MR4), address 0x04
This register provides the advertised abilities of the Ethernet Controller used during auto-negotiation.
Bits 8:5 represent the Technology Ability Field bits. This field can be overwritten by software to
auto-negotiate to an alternate common technology. Writing to this register has no effect until
auto-negotiation is re-initiated by setting the RANEG bit in the MR0 register.

Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4)
Base 0x4004.8000
Address 0x04
Type R/W, reset 0x01E1

0123456789101112131415

SA0A1A2A3reservedRFreservedNP

ROROROROROR/WR/WR/WR/WROROROROR/WROROType
1000011110000000Reset

DescriptionResetTypeNameBit/Field

Next Page

When set, this bit indicates the Ethernet Controller is capable of Next
Page exchanges to providemore detailed information on the PHY layer’s
capabilities.

0RONP15

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved14

Remote Fault

When set, this bit indicates to the link partner that a Remote Fault
condition has been encountered.

0R/WRF13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved12:9

Technology Ability Field[3]

When set, this bit indicates that the Ethernet Controller supports the
100Base-TX full-duplex signaling protocol. If software wants to ensure
that this mode is not used, this bit can be cleared and auto-negotiation
re-initiated with the RANEG bit in the MR0 register.

1R/WA38

Technology Ability Field[2]

When set, this bit indicates that the Ethernet Controller supports the
100Base-TX half-duplex signaling protocol. If software wants to ensure
that this mode is not used, this bit can be cleared and auto-negotiation
re-initiated with the RANEG bit in the MR0 register.

1R/WA27

Technology Ability Field[1]

When set, this bit indicates that the Ethernet Controller supports the
10BASE-T full-duplex signaling protocol. If software wants to ensure
that this mode is not used, this bit can be cleared and auto-negotiation
re-initiated with the RANEG bit in the MR0 register..

1R/WA16

February 24, 2009760
Preliminary

Ethernet Controller

DescriptionResetTypeNameBit/Field

Technology Ability Field[0]

When set, this bit indicates that the Ethernet Controller supports the
10BASE-T half-duplex signaling protocol. If software wants to ensure
that this mode is not used, this bit can be cleared and auto-negotiation
re-initiated with the RANEG bit in the MR0 register..

1R/WA05

Selector Field

The S field encodes 32 possible messages for communicating between
Ethernet Controllers. This field is hard-coded to 0x01, indicating that
the Stellaris® Ethernet Controller is IEEE 802.3 compliant.

0x1ROS4:0

761February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 22: Ethernet PHY Management Register 5 – Auto-Negotiation Link
Partner Base Page Ability (MR5), address 0x05
This register provides the advertised abilities of the link partner’s Ethernet Controller that are received
and stored during auto-negotiation.

Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5)
Base 0x4004.8000
Address 0x05
Type RO, reset 0x0000

0123456789101112131415

SA[7:0]RFACKNP

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Next Page

When set, this bit indicates that the link partner’s Ethernet Controller is
capable of Next page exchanges to provide more detailed information
on the Ethernet Controller’s capabilities.

0RONP15

Acknowledge

When set, this bit indicates that the Ethernet Controller has successfully
received the link partner’s advertised abilities during auto-negotiation.

0ROACK14

Remote Fault

Used as a standard transport mechanism for transmitting simple fault
information from the link partner.

0RORF13

Technology Ability Field

The A[7:0] field encodes individual technologies that are supported
by the Ethernet Controller. See the MR4 register for definitions. Note
that bits 12:9 describe functions that are not implemented on the
Stellaris® Ethernet Controller. Refer to the IEEE 802.3 standard for
definitions.

0x00ROA[7:0]12:5

Selector Field

The S field encodes possible messages for communicating between
Ethernet Controllers.

DescriptionValue

Reserved0x00

IEEE Std 802.30x01

IEEE Std 802.9 ISLAN-16T0x02

IEEE Std 802.50x03

IEEE Std 13940x04

Reserved0x05–0x1F

0x00ROS4:0

February 24, 2009762
Preliminary

Ethernet Controller

Register 23: Ethernet PHY Management Register 6 – Auto-Negotiation
Expansion (MR6), address 0x06
This register enables software to determine the auto-negotiation and next page capabilities of the
Ethernet Controller and the link partner after auto-negotiation.

Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6)
Base 0x4004.8000
Address 0x06
Type RO, reset 0x0000

0123456789101112131415

LPANEGAPRXreservedLPNPAPDFreserved

RORCRORORCROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved15:5

Parallel Detection Fault

When set, this bit indicates that more than one technology has been
detected at link up. This bit is cleared when read.

0RCPDF4

Link Partner is Next Page Able

When set, this bit indicates that the link partner is enabled to support
next page.

0ROLPNPA3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2

New Page Received

When set, this bit indicates that a new page has been received from the
link partner and stored. This bit remains set until the register is read.

0RCPRX1

Link Partner is Auto-Negotiation Able

When set, this bit indicates that the link partner is enabled to support
auto-negotiation.

0ROLPANEGA0

763February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 24: Ethernet PHYManagement Register 16 – Vendor-Specific (MR16),
address 0x10
This register contains a silicon revision identifier.

Ethernet PHY Management Register 16 – Vendor-Specific (MR16)
Base 0x4004.8000
Address 0x10
Type R0, reset 0x0040

0123456789101112131415

reservedSRreserved

ROROROROROROROROROROROROROROROROType
0000001000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0000.0ROreserved15:10

Silicon Revision Identifier

This field contains four-bit identifier for the silicon revision.

0x1ROSR9:6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved5:0

February 24, 2009764
Preliminary

Ethernet Controller

Register 25: Ethernet PHY Management Register 17 – Mode Control/Status
(MR17), address 0x11
This register provides the means for controlling and observing various PHY layer modes.

Ethernet PHY Management Register 17 – Mode Control/Status (MR17)
Base 0x4004.8000
Address 0x11
Type R/W, reset 0x0002

0123456789101112131415

reservedENONFGLSPADBPREFCEreservedFASTESTFLPBKMDPBLSQEreservedEDPDFASTRIPreserved

R/WROR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0100000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

Important: This bit must always be written with a 0 to ensure proper
operation.

0R/Wreserved15

10-BASE-T Fast Mode Enable

When set, this bit enables PHYT_10 test mode.

0R/WFASTRIP14

Enable Energy Detect Power Down

When set, this bit enables the Energy Detect Power Down mode.

0R/WEDPD13

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

Important: This bit must always be written with a 0 to ensure proper
operation.

0R/Wreserved12

Low Squelch Enable

When set, this bit enables a lower threshold meaning more sensitivity
to the signal levels.

0R/WLSQE11

Management Data Preamble Bypass

When set, this bit enables SMI packets to be detected without preamble.

0R/WMDPB10

Far Loopback Mode

When set, this bit puts the PHY layer into Far Loopback Mode meaning
that all the received packets are sent back simultaneously. This bit is
only valid in 100BASE-TX operation when the PHY is in the RMII mode.
When this bit is set, the system must supply a 50 MHz clock to the PHY
layer. This mode works even when the ISO bit in the MR0 register is
set.

0R/WFLPBK9

Auto-Negotiation Test Mode

When set, this bit activates the Auto-Negotiation Test mode.

0R/WFASTEST8

765February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

Important: This bit must always be written with a 0 to ensure proper
operation.

0R/Wreserved7:5

Reference Clock Enable

When set, this bit enables special filtering using a 50 MHz clock in
10BASE-T mode.

0R/WREFCE4

PHY Address Bypass

When set, this bit causes the PHY layer to disregard the PHY address
in an SMI access write.

0R/WPADBP3

Force Good Link Status

When set, this bit forces the 100BASE-T link to be active.

Note: This bit should only be set when testing.

0R/WFGLS2

Energy On

This bit indicates whether energy is detected on the line. When clear,
this bit indicates that valid energy has not been detected on the line
within 256 ms. This bit is set by a hardware reset, but is unaffected by
a software reset.

1ROENON1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

Important: This bit must always be written with a 0 to ensure proper
operation.

0R/Wreserved0

February 24, 2009766
Preliminary

Ethernet Controller

Register 26: Ethernet PHY Management Register 27 –Special Control/Status
(MR27), address 0x1B
This register shows the status of the 10BASE-T polarity.

Ethernet PHY Management Register 27 –Special Control/Status (MR27)
Base 0x4004.8000
Address 0x1B
Type RO, reset -

0123456789101112131415

reservedXPOLreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved15:5

Polarity State of 10 BASE-T

When set, this bit indicates that the 10BASE-T is reversed polarity.

0ROXPOL4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved3:0

767February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 27: Ethernet PHYManagement Register 29 – Interrupt Status (MR29),
address 0x1D
This register contains information about the source of PHY layer interrupts.

Ethernet PHY Management Register 29 – Interrupt Status (MR29)
Base 0x4004.8000
Address 0x1D
Type RO, reset 0x0000

0123456789101112131415

reservedPRXISPDFISLPACKISLDISRFLTISANCOMPISEONISreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:8

ENERGYON Interrupt

This bit is set when ENERGYON is the source of the interrupt.

0ROEONIS7

Auto-Negotiation Complete Interrupt

This bit is set when auto negotiation is complete.

0ROANCOMPIS6

Remote Fault Interrupt

This bit is set when a remote fault has been detected.

0RORFLTIS5

Link Down Interrupt

This bit is set when the Link Status has been negated.

0ROLDIS4

Auto-Negotiation LP Acknowledge

This bit is set when the PHY layer has received an acknowledge
message from the link partner during auto-negotiation.

0ROLPACKIS3

Parallel Detection Fault

This bit is set to indicate that a parallel detection fault has been detected
by the PHY layer during auto negotiation.

0ROPDFIS2

Auto Negotiation Page Received

This bit is set to indicate that an auto negotiation page has been received
from the link partner.

0ROPRXIS1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009768
Preliminary

Ethernet Controller

Register 28: Ethernet PHY Management Register 30 – Interrupt Mask (MR30),
address 0x1E
This register enables interrupts to be generated by the various sources of PHY layer interrupts.

Ethernet PHY Management Register 30 – Interrupt Mask (MR30)
Base 0x4004.8000
Address 0x1E
Type R/W, reset 0x0000

0123456789101112131415

reservedPRXIMPDFIMLPACKIMLDIMRFLTIMANCOMPIMEONIMreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:8

ENERGYON Interrupt Enabled

When set, this bit enables ENERGYON to generate a PHY layer
interrupt.

0R/WEONIM7

Auto-Negotiation Complete Interrupt Enabled

When set, this bit enables the completion of auto negotiation generate
a PHY layer interrupt.

0R/WANCOMPIM6

Remote Fault Interrupt Enabled

When set, this bit enables a remote fault to generate a PHY layer
interrupt.

0R/WRFLTIM5

Link Down Interrupt Enabled

When set, this bit enables a Link Status change to generate a PHY layer
interrupt.

0R/WLDIM4

Auto-Negotiation LP Acknowledge Enabled

When set, this bit enables an acknowledge message received from a
link partner during auto-negotiation to generate a PHY layer interrupt.

0R/WLPACKIM3

Parallel Detection Fault Enabled

When set, this bit enables a parallel detection fault detection by the PHY
layer during auto negotiation to generate a PHY layer interrupt.

0R/WPDFIM2

Auto Negotiation Page Received Enabled

When set, this bit enables a PHY layer interrupt when an auto negotiation
page has been received from the link partner.

0R/WPRXIM1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0R/Wreserved0

769February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 29: Ethernet PHY Management Register 31 – PHY Special
Control/Status (MR31), address 0x1F
This register provides special control and status for the PHY layer.

Ethernet PHY Management Register 31 – PHY Special Control/Status (MR31)
Base 0x4004.8000
Address 0x1F
Type R/W, reset 0x00040

0123456789101112131415

SCRDISreservedSPEEDreservedAUTODONEreserved

R/WR/WROROROROROROROROROROROR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

Important: This bit field must always be written with a 0 to ensure
proper operation.

0x0R/Wreserved15:13

Auto Negotiation Done

When set, this bit indicates that auto negotiation is complete.

0ROAUTODONE12

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved11:5

HCD Speed Value

[001] = 10BASE-T half duplex

[010] = 100 BASE-T half duplex

[101] = 10BASE-T full duplex

[110] = 100BASE-T full duplex

0x0ROSPEED4:2

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0R/Wreserved1

Scramble Disable

When set, this bit disables data scrambling.

0R/WSCRDIS0

February 24, 2009770
Preliminary

Ethernet Controller

20 Universal Serial Bus (USB) Controller
The Stellaris® USB controller operates as a full-speed or low-speed function controller during
point-to-point communications with USB host, device, or OTG functions. The controller complies
with the USB 2.0 standard, which includes suspend and resume signaling. Eight endpoints including
two hard-wired for control transfers (one endpoint for IN and one endpoint for OUT) plus six endpoints
defined by firmware along with a dynamic sizable FIFO support multiple packet queueing. µDMA
access to the FIFO allows minimal interference from system software. Software-controlled connect
and disconnect allows flexibility during USB device start-up. The controller complies with OTG
standard's session request protocol (SRP) and host negotiation protocol (HNP).

The Stellaris® USB module has the following features:

■ Complies with USB-IF certification standards

■ USB 2.0 full-speed (12 Mbps) and low-speed (1.5 Mbps) operation

■ Integrated PHY

■ 4 transfer types: Control, Interrupt, Bulk, and Isochronous

■ 16 endpoints

– 1 dedicated control IN endpoint and 1 dedicated control OUT endpoint

– 7 configurable IN endpoints and 7 configurable OUT endpoints

■ 4 KB dedicated endpoint memory - one endpoint may be defined for double-buffered 1023-byte
isochronous packet size

■ Efficient transfers using Micro Direct Memory Access Controller (µDMA)

– Separate channels for transmit and receive for up to 3 IN endpoints and 3 OUT endpoints

– Burst requests

– Channel requests asserted when FIFO contains required amount of data

771February 24, 2009
Preliminary

LM3S9B92 Microcontroller

20.1 Block Diagram

Figure 20-1. USB Module Block Diagram

Packet
Encode/Decode

Endpoint Control

EP0 – 3
Control

Transmit

Receive

Combine
Endpoints

Host
Transaction
Scheduler

Packet Encode

Packet Decode

CRC Gen/Check

FIFO RAM
Controller

Cycle Control

Rx
Buff

Rx
Buff

Tx
Buff

Tx
Buff

DMA
Requests

CPU Interface

Interrupt
Control

EP Reg.
Decoder

Common
Regs

Cycle
Control

FIFO
Decoder

Interrupts

AHB bus –
Slave modeUTM

Synchronization

Data Sync

HNP/SRP

Timers
USB FS/LS

PHY

USB PHY

USB Data Lines
D+ and D-

20.2 Functional Description
Note: A 9.1-kΩ resistor should be connected between the USB0RBIAS and ground. The 9.1-kΩ

resistor should have a 1% tolerance and should be located in close proximity to the
USB0RBIAS pin. Power dissipation in the resistor is low, so a chip resistor of any geometry
may be used.

The Stellaris® USB controller provides full OTG negotiation and support for connection to non-OTG
peripherals or host controllers. It supports both the session request protocol (SRP) and the host
negotiation protocol (HNP) to provide full OTG support. The session request protocol allows devices
on the B side of a cable to request that the A side device turn on VBUS. The host negotiation protocol
is used after the initial session request protocol has powered the bus and provides a method to
determine which end of the cable will act as the host controller. When the device is connected to
non-OTG peripherals or devices, the controller can detect which cable end was used and provides
a register to indicate if the controller should act as the host or the device controller. This indication
and the mode of operation are handled automatically by the USB controller. This auto-detection
allows the system to use a single A/B connector instead of having both A and B connectors in the
system. It also allows for full OTG negotiations with other OTG devices.

Note: When USB is used in the system, the minimum system frequency is 20 MHz.

20.2.1 Operation as a Device
This section describes the Stellaris® USB controller's actions when it is being used as a USB device.
IN endpoints, OUT endpoints, entry into and exit from Suspend mode, and recognition of Start of
Frame (SOF) are all described.

When in device mode, IN transactions are controlled by an endpoint’s transmit interface and use
the transmit endpoint registers for the given endpoint. OUT transactions are handled with an
endpoint's receive interface and use the receive endpoint registers for the given endpoint.

February 24, 2009772
Preliminary

Universal Serial Bus (USB) Controller

When configuring the size of the FIFOs for endpoints, take into account the maximum packet size
for an endpoint.

■ Bulk. Bulk endpoints should be sized to be multiples of the maximum packet size (up to 64
bytes). For instance, if maximum packet size is 64 bytes, the FIFO should be configured to a
multiple of 64-byte packets (64, 128, 192, or 256 bytes). This allows for efficient use of double
buffering or packet splitting (described further in the following sections).

■ Interrupt. Interrupt endpoints should be the size of the maximum packet (up to 64 bytes) or twice
the maximum packet size if double buffering is used.

■ Isochronous. Isochronous endpoints are more flexible and can be up to 1023 bytes.

■ Control. It is also possible to specify a separate control endpoint for a USB device. However,
in most cases the USB device should use the dedicated control endpoint on the USB controller’s
endpoint 0.

20.2.1.1 Endpoints
When operating as a device, there are two dedicated control endpoints (IN and OUT) and six
configurable endpoints (3 IN and 3 OUT) that can be used for communications with a host controller.
The endpoint number associated with an endpoint is directly related to its register designation. For
example, when the host is communicating with endpoint 1, all events will occur in the endpoint 1
register interface.

Endpoint 0 is a dedicated control endpoint used for all control transactions to endpoint 0 during
enumeration or when any other control requests are made to endpoint 0. Endpoint 0 uses the first
64 bytes of the USB controller's FIFO RAM as a shared memory for both IN and OUT transactions.

The remaining six endpoints can be configured as control, bulk, interrupt, or isochronous endpoints.
They should be treated as three configurable IN and three configurable OUT endpoints. The three
endpoint pairs (endpoint 1, 2, and 3) are not required to have the same type for their IN and OUT
endpoint configuration. For example, the OUT portion of an endpoint pair could be a bulk endpoint,
while the IN portion of that endpoint pair could be an interrupt endpoint. The address and size of
the FIFOs attached to each endpoint can be modified to fit the application's needs.

20.2.1.2 IN Transactions as a Device
When operating as a USB device, data for IN transactions is handled through the FIFOs attached
to the transmit endpoints. The sizes of the FIFOs for the three configurable IN endpoints are
determined by the USBTXFIFOADD register. The maximum size of a data packet that may be
placed in a transmit endpoint’s FIFO for transmission is programmable and is determined by the
value written to the USBTXMAXPn register for that endpoint. The endpoint’s FIFO can also be
configured to use double-packet or single-packet buffering. When double-packet buffering is enabled,
two data packets can be buffered in the FIFO, which also requires that the FIFO is at least two
packets in size. When double-packet buffering is disabled, only one packet can be buffered, even
if the packet size is less than half the FIFO size. The USB controller also supports a special mode
for bulk endpoints that allows automatic splitting of a larger FIFO into multiple packets that are
maximum packet size transfers.

Note: The maximum packet size set for any endpoint must not exceed the FIFO size. The
USBTXMAXPn register should not be written to while there is data in the FIFO as unexpected
results may occur.

773February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Single-Packet Buffering

If the size of the transmit endpoint's FIFO is less than twice the maximum packet size for this endpoint
(as set in theUSBTXFIFOSZ register), only one packet can be buffered in the FIFO and single-packet
buffering is required. When each packet is completely loaded into the transmit FIFO, the TXRDY bit
in the USBTXCSRLn register needs to be set. If the AUTOSET bit in the USBTXCSRHn register is
set, the TXRDY bit is automatically set when a maximum sized packet is loaded into the FIFO. For
packet sizes less than the maximum, the TXRDY bit must be set manually. When the TXRDY bit is
set, either manually or automatically, the packet is ready to be sent. When the packet has been
successfully sent, both TXRDY and FIFONE are cleared and the appropriate transmit endpoint
interrupt signaled. At this point, the next packet can be loaded into the FIFO.

Double-Packet Buffering

If the size of the transmit endpoint's FIFO is at least twice the maximum packet size for this endpoint,
two packets can be buffered in the FIFO and double-packet buffering is allowed. As each packet is
loaded into the transmit FIFO, the TXRDY bit in the USBTXCSRLn register needs to be set. If the
AUTOSET bit in theUSBTXCSRHn register is set, the TXRDY bit is automatically set when amaximum
sized packet is loaded into the FIFO. For packet sizes less than the maximum, TXRDY must be set
manually. When the TXRDY bit is set, either manually or automatically, the packet is ready to be
sent. After the first packet is loaded, TXRDY is immediately cleared and an interrupt is generated.
A second packet can now be loaded into the transmit FIFO and TXRDY set again (either manually
or automatically if the packet is the maximum size). At this point, both packets are ready to be sent.
After each packet has been successfully sent, TXRDY is cleared and the appropriate transmit endpoint
interrupt signaled to indicate that another packet can now be loaded into the transmit FIFO. The
state of the FIFONE bit at this point indicates how many packets may be loaded. If the FIFONE bit
is set, then there is another packet in the FIFO and only one more packet can be loaded. If the
FIFONE bit is clear, then there are no packets in the FIFO and two more packets can be loaded.

Note: Double-packet buffering is disabled if an endpoint’s corresponding EPn bit is set in the
USBTXDPKTBUFDIS register. This bit is set by default, so it must be cleared to enable
double-packet buffering.

Special Bulk Handling

The packets transferred in bulk operations are defined by the USB specification to be 8, 16, 32 or
64 bytes in size. For some system designs, however, it may be more convenient for the application
software to write larger amounts of data to an endpoint in a single operation than can be transferred
in a single USB operation.

To simplify this case, the Stellaris® USB controller includes a packet-splitting feature that allows
larger data packets to be written to bulk transmit endpoints, which are then split into packets of an
appropriate size for transfer across the USB bus. With this option, the USBTXMAXPn register uses
the bottom 11 bits to define the payload for each individual transfer, while the top 5 bits define a
multiplier. The application software can then write data packets of size multiplier × payload to the
FIFO, which the USB controller then splits into individual packets of the stated payload for
transmission over the USB bus. From the application software’s point-of-view, the resulting operation
does not differ from the transmission of a single USB packet except in the size of the packet written.

Note: Packet-splitting can only be used with bulk endpoints and, in accordance with the USB
specification, the payload must be 8, 16, 32, or 64. The payload recorded in the
USBTXMAXPn register must also match the wMaxPacketSize field of the Standard
Endpoint Descriptor for the endpoint (see chapter 9 of the USB specification). The associated
FIFO must also be large enough to accommodate the data packet prior to being split.

February 24, 2009774
Preliminary

Universal Serial Bus (USB) Controller

20.2.1.3 OUT Transactions as a Device
When in device mode, OUT transactions are handled through the USB controller receive FIFOs.
The sizes of the receive FIFOs for the three configurable OUT endpoints are determined by the
USBRXFIFOADD register. The maximum amount of data received by an endpoint in any packet is
determined by the value written to theUSBRXMAXPn register for that endpoint. When double-packet
buffering is enabled, two data packets can be buffered in the FIFO. When double-packet buffering
is disabled, only one packet can be buffered even if the packet is less than half the FIFO size. The
Stellaris® USB controller also supports a special mode for bulk endpoints that allows automatic
splitting of a larger FIFO into multiple maximum packet size transfers.

Note: In all cases, the maximum packet size must not exceed the FIFO size.

Single-Packet Buffering

If the size of the receive endpoint FIFO is less than twice the maximum packet size for an endpoint,
only one data packet can be buffered in the FIFO and single-packet buffering is required. When a
packet is received and placed in the receive FIFO, the RXRDY and FULL bits in the USBRXCSRLn
register are set and the appropriate receive endpoint is signaled, indicating that a packet can now
be unloaded from the FIFO. After the packet has been unloaded, the RXRDY bit needs to be cleared
in order to allow further packets to be received. This action also generates the acknowledge signaling
to the host controller. If the AUTOCL bit in the USBRXCSRHn register is set and a maximum-sized
packet is unloaded from the FIFO, the RXRDY and FULL bits are cleared automatically. For packet
sizes less than the maximum, RXRDY must be cleared manually.

Double-Packet Buffering

If the size of the receive endpoint FIFO is at least twice the maximum packet size for the endpoint,
two data packets can be buffered and double-packet buffering can be used. When the first packet
is received and loaded into the receive FIFO, the RXRDY bit in the USBRXCSRLn register is set
and the appropriate receive endpoint interrupt is signaled to indicate that a packet can now be
unloaded from the FIFO.

Note: The FULL bit in USBRXCSRLn is not set when the first packet is received. It is only set if
a second packet is received and loaded into the receive FIFO.

After each packet has been unloaded, the RXRDY bit needs to be cleared in order to allow further
packets to be received. If the AUTOCL bit in theUSBRXCSRHn register is set and a maximum-sized
packet is unloaded from the FIFO, the RXRDY bit is cleared automatically. For packet sizes less than
the maximum, RXRDY must be cleared manually. If the FULL bit was set when RXRDY is cleared,
the USB controller first clears the FULL bit. It then sets RXRDY again to indicate that there is another
packet waiting in the FIFO to be unloaded.

Note: Double-packet buffering is disabled if an endpoint’s corresponding EPn bit is set in the
USBRXDPKTBUFDIS register. This bit is set by default, so it must be cleared to enable
double-packet buffering.

Special Bulk Handling

The packets transferred in bulk operations are defined by the USB specification to be 8, 16, 32, or
64 bytes in size. For some system designs, however, it may be more convenient for the application
software to read larger amounts of data from an endpoint in a single operation than can be transferred
in a single USB operation.

To simplify this case, the Stellaris® USB controller includes a packet-combining feature that combines
the packets received across the USB bus into larger data packets prior to being read by the
application software. With this option, the USBRXMAXPn register uses the bottom 11 bits to define

775February 24, 2009
Preliminary

LM3S9B92 Microcontroller

the payload for each individual transfer, while the top 5 bits define a multiplier. The USB controller
then combines the appropriate number of USB packets it receives into a single data packet of size
multiplier × payload within the FIFO before asserting RXRDY to alert the application software that a
packet in the FIFO is ready to be read. The size of the resulting packet is reported in the
USBRXCOUNTn register. From the application software’s point-of-view, the resulting operation
does not differ from the receipt of a single USB packet except in the size of the packet read.

Note: Packet-combining can only be used with bulk endpoints. The payload recorded in the
USBRXMAXPn register must also match the wMaxPacketSize field of the Standard
Endpoint Descriptor for the endpoint (see chapter 9 of the USB specification). The associated
FIFO must also be large enough to accommodate the combined data packet.

The RXRDY bit is only set when either the specified number of packets have been received or a
“short” USB packet is received (that is, a packet of less than the specified payload for the endpoint).
If a protocol is being used in which the endpoint receives bulk transfers that are a multiple of the
recorded payload size with no short packet to terminate it, the USBRXMAXPn register should not
be programmed to expect more packets than there are in the transfer (otherwise, the software will
not be interrupted at the end of the transfer).

20.2.1.4 Scheduling
The device has no control over the scheduling of transactions as this is determined by the host
controller. The Stellaris® USB controller can set up a transaction at any time. The USB controller
will wait for the request from the host controller and generate an interrupt when the transaction is
complete or if it was terminated due to some error. If the host controller makes a request and the
device controller is not ready, the USB controller sends a busy response (NAK) to all requests until
it is ready.

20.2.1.5 Additional Actions
The USB controller responds automatically to certain conditions on the USB bus or actions by the
host controller: when the USB controller automatically stalls a control transfer and unexpected zero
length OUT data packets.

Stalled Control Transfer

The USB controller automatically issues a STALL handshake to a control transfer under the following
conditions:

1. The host sends more data during an OUT data phase of a control transfer than was specified
in the device request during the SETUP phase. This condition is detected by the USB controller
when the host sends an OUT token (instead of an IN token) after the last OUT packet has been
unloaded and the DATAEND bit in the USBCSRL0 register has been set.

2. The host requests more data during an IN data phase of a control transfer than was specified
in the device request during the SETUP phase. This condition is detected by the USB controller
when the host sends an IN token (instead of an OUT token) after the CPU has cleared TXRDY
and set DATAEND in response to the ACK issued by the host to what should have been the last
packet.

3. The host sends more than USBRXMAXPn bytes of data with an OUT data token.

4. The host sends more than a zero length data packet for the OUT status phase.

February 24, 2009776
Preliminary

Universal Serial Bus (USB) Controller

Zero Length OUT Data Packets

A zero-length OUT data packet is used to indicate the end of a control transfer. In normal operation,
such packets should only be received after the entire length of the device request has been
transferred.

However, if the host sends a zero-length OUT data packet before the entire length of device request
has been transferred, it is signaling the premature end of the transfer. In this case, the USB controller
automatically flushes any IN token ready for the data phase from the FIFO and sets the SETUP bit
in the USBCSRL0 register.

Setting the Device Address

When a host device is attempting to enumerate the USB device, it requests that the device change
its address from zero to some other value. The address is changed by writing the value that the
host requested to the USBFADDR register. However, care should be taken when writing to
USBFADDR to avoid changing the address before the transaction is complete. This register should
only be set after the SET_ADDRESS command is complete. Like all control transactions, the
transaction is only complete after the device has left the STATUS phase. In the case of a
SET_ADDRESS command, the transaction is completed by responding to the IN request from the
host with a zero-byte packet. Once the device has responded to the IN request, the USBFADDR
register should be programmed to the new value as soon as possible to avoid missing any new
commands sent to the new address.

Note: If the USBFADDR register is set to the new value as soon as the device receives the OUT
transaction with the SET_ADDRESS command in the packet, it changes the address during
the control transfer. In this case, the device does not receive the IN request that allows the
USB transaction to exit the STATUS phase of the control transfer because it is sent to the
old address. As a result, the host does not get a response to the IN request, and the host
fails to enumerate the device.

20.2.1.6 Device Mode Suspend
When no activity has occurred on the USB bus for 3 ms, the USB controller automatically enters
Suspend mode. If the Suspend interrupt has been enabled, an interrupt is generated at this time.
When in Suspendmode, the PHY also goes into Suspendmode.WhenResume signaling is detected,
the USB controller exits Suspend mode and takes the PHY out of Suspend. If the Resume interrupt
is enabled, an interrupt is generated. The USB controller can also be forced to exit Suspend mode
by setting the RESUME bit in the USBPOWER register. When this bit is set, the USB controller exits
Suspend mode and drives Resume signaling onto the bus. The RESUME bit is cleared after 10 ms
(a maximum of 15 ms) to end Resume signaling.

Tomeet USB power requirements, the controller can be put into Deep Sleep. This keeps the controller
in a static state.

20.2.1.7 Start-of-Frame
When the USB controller is operating in device mode, it receives a Start-Of-Frame packet from the
host once every millisecond. When the SOF packet is received, the 11-bit frame number contained
in the packet is written into the USBFRAME register and an SOF interrupt is also signaled and can
be handled by the application. Once the USB controller has started to receive SOF packets, it
expects one every millisecond. If no SOF packet is received after 1.00358 ms, it is assumed that
the packet has been lost and theUSBFRAME register is not updated. The USB controller continues
and resynchronizes these pulses to the received SOF packets when these packets are successfully
received again.

777February 24, 2009
Preliminary

LM3S9B92 Microcontroller

20.2.1.8 USB Reset
When the USB controller is in device mode and a reset condition is detected on the USB bus, the
USB controller automatically performs the following actions:

■ Clears the USBFADDR register.

■ Clears the USBEPIDX register.

■ Flushes all endpoint FIFOs.

■ Clears all control/status registers.

■ Enables all endpoint interrupts.

■ Generates a reset interrupt.

When the application software driving the USB controller receives a reset interrupt, it closes any
open pipes and waits for bus enumeration to begin.

20.2.1.9 Connect/Disconnect
The USB controller connection to the USB bus is controlled by software. The USB PHY can be
switched between normal mode and non-driving mode by setting or clearing the SOFTCONN bit of
the USBPOWER register. When this SOFTCONN bit is set, the PHY is placed in its normal mode
and the USB0DP/USB0DM lines of the USB bus are enabled. At the same time, the USB controller
is placed into a state, in which it will not respond to any USB signaling except a USB reset.

When the SOFTCONN bit is cleared, the PHY is put into non-driving mode, USB0DP and USB0DM are
tristated, and the USB controller appears to other devices on the USB bus as if it has been
disconnected. This is the default so the USB controller appears disconnected until the SOFTCONN
bit has been set. The application software can then choose when to set the PHY into its normal
mode. Systems with a lengthy initialization procedure may use this to ensure that initialization is
complete and the system is ready to perform enumeration before connecting to the USB. Once the
SOFTCONN bit has been set, the USB controller can be disconnected by clearing this bit.

Note: The USB controller does not generate an interrupt when the device is connected to the
host. However, an interrupt is generated when the host terminates a session.

20.2.2 Operation as a Host
When the Stellaris® USB controller is operating in host mode, it can either be used for point-to-point
communications with another USB device or, when attached to a hub, for communication with
multiple devices. Full-speed and low-speed USB devices are supported, both for point-to-point
communication and for operation through a hub. The USB controller automatically carries out the
necessary transaction translation needed to allow a low-speed or full-speed device to be used with
a USB 2.0 hub. Control, bulk, isochronous, and interrupt transactions are supported. This section
describes the USB controller's actions when it is being used as a USB host. Configuration of IN
endpoints, OUT endpoints, entry into and exit from Suspend mode, and reset are all described.

When in host mode, IN transactions are controlled by an endpoint’s receive interface. All IN
transactions use the receive endpoint registers and all OUT endpoints use the transmit endpoint
registers for a given endpoint. As in device mode, the FIFOs for endpoints should take into account
the maximum packet size for an endpoint.

February 24, 2009778
Preliminary

Universal Serial Bus (USB) Controller

■ Bulk. Bulk endpoints should be sized to be multiples of the maximum packet size (up to 64
bytes). For instance, if maximum packet size is 64 bytes, the FIFO should be configured to a
multiple of 64-byte packets (64, 128, 192, or 256 bytes). This allows for efficient use of double
buffering or packet splitting (described further in the following sections).

■ Interrupt. Interrupt endpoints should be the size of the maximum packet (up to 64 bytes) or twice
the maximum packet size if double buffering is used.

■ Isochronous. Isochronous endpoints are more flexible and can be up to 1023 bytes.

■ Control. It is also possible to specify a separate control endpoint to communicate with a device.
However, in most cases the USB controller should use the dedicated control endpoint to
communicate with a device’s endpoint 0.

20.2.2.1 Endpoints
The endpoint registers are used to control the USB endpoint interfaces used to communicate with
device(s) that are connected. There is a dedicated control IN endpoint, a dedicated control OUT
endpoint, three configurable OUT endpoints, and three configurable IN endpoints.

The dedicated control interface can only be used for control transactions to endpoint 0 of devices.
These control transactions are used during enumeration or other control functions that communicate
using endpoint 0 of devices. This control endpoint shares the first 64 bytes of the USB controller’s
FIFO RAM for IN and OUT transactions. The remaining IN and OUT interfaces can be configured
to communicate with control, bulk, interrupt, or isochronous device endpoints.

These USB interfaces can be used to simultaneously schedule as many as three independent OUT
and three independent IN transactions to any endpoints on any device. The IN and OUT controls
are paired in three sets of registers. However, they can be configured to communicate with different
types of endpoints and different endpoints on devices. For example, the first pair of endpoint controls
can be split so that the OUT portion is communicating with a device’s bulk OUT endpoint 1, while
the IN portion is communicating with a device’s interrupt IN endpoint 2.

Before accessing any device, whether for point-to-point communications or for communications via
a hub, the relevantUSBRXFUNCADDRn orUSBTXFUNCADDRn registers need to be set for each
receive or transmit endpoint to record the address of the device being accessed.

The USB controller also supports connections to devices through a USB hub by providing a register
that specifies the hub address and port of each USB transfer. The FIFO address and size are
customizable and can be specified for each USB IN and OUT transfer. This includes allowing one
FIFO per transaction, sharing a FIFO across transactions, and allowing for double-buffered FIFOs.

20.2.2.2 IN Transactions as a Host
IN transactions are handled in a similar manner to the way in which OUT transactions are handled
when the USB controller is in Device mode except that the transaction first needs to be initiated by
setting the REQPKT bit in USBCSRL0. This indicates to the transaction scheduler that there is an
active transaction on this endpoint. The transaction scheduler then sends an IN token to the target
device. When the packet is received and placed in the receive FIFO, the RXRDY bit in USBCSRL0
is set and the appropriate receive endpoint interrupt is signaled to indicate that a packet can now
be unloaded from the FIFO.

When the packet has been unloaded, RXRDY should be cleared. The AUTOCL bit in the
USBRXCSRHn register can be used to have RXRDY automatically cleared when a maximum-sized
packet has been unloaded from the FIFO. There is also an AUTORQ bit in USBRXCSRHn which
causes the REQPKT bit to be automatically set when the RXRDY bit is cleared. The AUTOCL and

779February 24, 2009
Preliminary

LM3S9B92 Microcontroller

AUTORQ bits can be used with µDMA accesses to perform complete bulk transfers without main
processor intervention. When the RXRDY bit is cleared, the controller will send an acknowledge to
the device. When there is a known number of packets to be transferred, the USBRQPKTCOUNTn
register associated with the endpoint should be set to the number of packets to be transferred. The
USB controller decrements the value in the USBRQPKTCOUNTn register following each request.
When the USBRQPKTCOUNTn value decrements to 0, the AUTORQ bit is cleared to prevent any
further transactions being attempted. For cases where the size of the transfer is unknown,
USBRQPKTCOUNTn should be left set to zero. AUTORQ then remains set until cleared by the
reception of a short packet (that is, less than MaxP) such as may occur at the end of a bulk transfer.

If the device responds to a bulk or interrupt IN token with a NAK, the USB host controller keeps
retrying the transaction until any NAK Limit that has been set has been reached. If the target device
responds with a STALL, however, the USB host controller does not retry the transaction but interrupts
the CPU with the STALLED bit in the USBCSRL0 register set. If the target device does not respond
to the IN token within the required time, or there was a CRC or bit-stuff error in the packet, the USB
host controller retries the transaction. If after three attempts the target device has still not responded,
the USB host controller clears the REQPKT bit and interrupts the CPU by setting the ERROR bit in
the USBCSRL0 register.

20.2.2.3 Out Transactions as a Host
OUT transactions are handled in a similar manner to the way in which IN transactions are handled
when the USB controller is in Device mode. The TXRDY bit in the USBTXCSRLn register needs to
be set as each packet is loaded into the transmit FIFO. Again, setting the AUTOSET bit in the
USBTXCSRHn register automatically sets TXRDY when a maximum-sized packet has been loaded
into the FIFO. Furthermore, AUTOSET can be used with a µDMA controller to perform complete bulk
transfers without software intervention.

If the target device responds to the OUT token with a NAK, the USB host controller keeps retrying
the transaction until the NAK Limit that has been set has been reached. However, if the target device
responds with a STALL, the USB controller does not retry the transaction but interrupts the main
processor by setting the STALLED bit in the USBTXCSRLn register. If the target device does not
respond to the OUT token within the required time, or there was a CRC or bit-stuff error in the packet,
the USB host controller retries the transaction. If after three attempts the target device has still not
responded, the USB controller flushes the FIFO and interrupts the main processor by setting the
ERROR bit in the USBTXCSRLn register.

20.2.2.4 Transaction Scheduling
Scheduling of transactions is handled automatically by the USB host controller. The host controller
allows configuration of the endpoint communication scheduling based on the type of endpoint
transaction. Interrupt transactions can be scheduled to occur in the range of every frame to every
255 frames in 1 frame increments. Bulk endpoints do not allow scheduling parameters, but do allow
for a NAK timeout in the event an endpoint on a device is not responding. Isochronous endpoints
can be scheduled from every frame to every 216 frames, in powers of 2.

The USB controller maintains a frame counter. If the target device is a full-speed device, the USB
controller automatically sends an SOF packet at the start of each frame and increments the frame
counter. If the target device is a low-speed device, a ‘K’ state is transmitted on the bus to act as a
“keep-alive” to stop the low-speed device from going into Suspend mode.

After the SOF packet has been transmitted, the USB host controller cycles through all the configured
endpoints looking for active transactions. An active transaction is defined as a receive endpoint for
which the REQPKT bit is set or a transmit endpoint for which the TXRDY bit and/or the FIFONE bit is
set.

February 24, 2009780
Preliminary

Universal Serial Bus (USB) Controller

An active isochronous or interrupt transaction starts only if it is found on the first transaction scheduler
cycle of a frame and if the interval counter for that endpoint has counted down to zero. This ensures
that only one interrupt or isochronous transaction occurs per endpoint every n frames, where n is
the interval set via the USBTXINTERVALn or USBRXINTERVALn register for that endpoint.

An active bulk transaction starts immediately, provided there is sufficient time left in the frame to
complete the transaction before the next SOF packet is due. If the transaction needs to be retried
(for example, because a NAKwas received or the target device did not respond), then the transaction
is not retried until the transaction scheduler has first checked all the other endpoints for active
transactions. This ensures that an endpoint that is sending a lot of NAKs does not block other
transactions on the bus. The core also allows the user to specify a limit to the length of time for
NAKs to be received from a target device before the endpoint times out.

20.2.2.5 USB Hubs
The following setup requirements apply to the USB host controller only if it is used with a USB hub.
When a full- or low-speed device is connected to the USB controller via a USB 2.0 hub, details of
the hub address and the hub port also need to be recorded in the correspondingUSBRXHUBADDRn
andUSBRXHUBPORTn or theUSBTXHUBADDRn andUSBTXHUBPORTn registers. In addition,
the speed at which the device operates (full or low) needs to be recorded in theUSBTYPE0 (endpoint
0), USBTXTYPEn, or USBRXTYPEn registers for each endpoint that is accessed by the device.

For hub communications, the settings in these registers record the current allocation of the endpoints
to the attached USB devices. To maximize the number of devices supported, the USB host controller
allows this allocation to be changed dynamically by simply updating the address and speed
information recorded in these registers. Any changes in the allocation of endpoints to device functions
need to be made following the completion of any on-going transactions on the endpoints affected.

20.2.2.6 Babble
The USB host controller does not start a transaction until the bus has been inactive for at least the
minimum inter-packet delay. It also does not start a transaction unless it can be finished before the
end of the frame. If the bus is still active at the end of a frame, then the USB host controller assumes
that the target device to which it is connected has malfunctioned and the USB controller suspends
all transactions and generates a babble interrupt.

20.2.2.7 Host Suspend
If the SUSPEND bit in the USBPOWER register is set, the USB host controller completes the current
transaction then stops the transaction scheduler and frame counter. No further transactions are
started and no SOF packets are generated.

To exit Suspend mode, the RESUME bit is set and the SUSPEND bit is cleared. While the RESUME bit
is High, the USB host controller generates Resume signaling on the bus. After 20 ms, the RESUME
bit should be cleared, at which point the frame counter and transaction scheduler start. The host
supports the detection of a remote wake-up.

20.2.2.8 USB Reset
If the RESET bit in the USBPOWER register is set, the USB host controller generates USB Reset
signaling on the bus. The RESET bit should be set for at least 20 ms to ensure correct resetting of
the target device. After the CPU has cleared the bit, the USB host controller starts its frame counter
and transaction scheduler.

781February 24, 2009
Preliminary

LM3S9B92 Microcontroller

20.2.2.9 Connect/Disconnect
A session is started by setting the SESSION bit in the USBDEVCTL register. This enables the USB
controller to wait for a device to be connected. When a device is detected, a connect interrupt is
generated. The speed of the device that has been connected can be determined by reading the
USBDEVCTL register where the FSDEV bit is High for a full-speed device and the LSDEV bit is High
for a low-speed device. The USB controller should generate a reset to the device and then the USB
host controller can begin device enumeration. If the device is disconnected while a session is in
progress, a disconnect interrupt is generated.

20.2.3 OTG Mode
In order to conserve power, the USBOn-The-Go (OTG) supplement allows VBus to only be powered
up when required and to be turned off when the bus is not in use. VBus is always supplied by the
A device on the bus. The USB OTG controller determines whether it is the A device or the B device
by sampling the ID input from the PHY. This signal is pulled Low when an A-type plug is sensed
(signifying that the USB OTG controller should act as the A device) but taken High when a B-type
plug is sensed (signifying that the USB controller is a B device).

20.2.3.1 Starting a Session
When the USB OTG controller needs to start a session, the SESSION bit should be set in the
USBDEVCTL register. The USB OTG controller then enables ID pin sensing. The ID input is either
taken Low if an A-type connection is detected or High if a B-type connection is detected. The DEV
bit in the USBDEVCTL register is also set to indicate whether the USB OTG controller has adopted
the role of the A device or the B device.

If the USB OTG controller is the A device, then the USB OTG controller enters Host mode (the A
device is always the default host), turns on VBus, and waits for VBus to go above the VBus Valid
threshold, as indicated by the VBUS bit in the USBDEVCTL register going to 0x3. The USB OTG
controller then waits for a peripheral to be connected. When a peripheral is detected, a Connect
interrupt is signaled and either the FSDEV or LSDEV bit in theUSBDEVCTL register is set, depending
whether a full-speed or a low-speed peripheral is detected. The USB controller then issues a reset
to the connected device. The SESSION bit in the USBDEVCTL register is cleared to end a session.
The USB OTG controller will also automatically end the session if babble is detected.

If the USB OTG controller is the B device, then the USB OTG controller requests a session using
the Session Request Protocol defined in the USBOn-The-Go supplement, that is, it will first discharge
VBus. Then when VBus has gone below the Session End threshold (VBUS bit in the USBDEVCTL
register goes to 0x0) and the line state has been a single-ended zero for > 2 ms, the USB OTG
controller pulses the data line, then pulses VBus. At the end of the session, the SESSION bit is
cleared either by the USB OTG controller or by the application software. The USB OTG controller
then causes the PHY to switch out the pull-up resistor on D+. This signals the A device to end the
session.

20.2.3.2 Detecting Activity
When the other device of the OTG set-up wishes to start a session, it either raises VBus above the
Session Valid threshold if it is the A device, or if it is the B device, it pulses the data line then pulses
VBus. Depending on which of these actions happens, the USB controller can determine whether it
is the A device or the B device in the current set-up and act accordingly. If VBus is raised above
the Session Valid threshold, then the USB controller is the B device. The USB controller sets the
SESSION bit in the USBDEVCTL register. When Reset signaling is detected on the bus, a Reset
interrupt is signaled, which is interpreted as the start of a session.

February 24, 2009782
Preliminary

Universal Serial Bus (USB) Controller

The USB controller is in device mode at this point as the B device is the default mode. At the end
of the session, the A device turns off the power to VBus. When VBus drops below the Session Valid
threshold, the USB controller detects this and clears the SESSION bit to indicate that the session
has ended. This causes a disconnect interrupt to be signaled. If data line and VBus pulsing is
detected, then the USB controller is the A device. It generates a Session Request interrupt to indicate
that the B device is requesting a session. The SESSION bit in the USBDEVCTL register should then
be set to start a session.

20.2.3.3 Host Negotiation
When the USB controller is the A device, ID is Low, and it automatically enters Host mode when a
session starts. When the USB controller is the B device, ID is High, and it automatically enters
Device mode when a session starts. However, the CPU can request that the USB controller become
the host by setting the HOSTREQ bit in the USBDEVCTL register. This bit can be set either at the
same time as requesting a Session Start by setting the SESSION bit in the USBDEVCTL register,
or at any time after a session has started. When the USB controller next enters Suspend mode,
assuming the HOSTREQ bit remains set, it enters Host mode and begins host negotiation (as specified
in the USB On-The-Go supplement) by causing the PHY to disconnect the pull-up resistor on the
D+ line. This causes the A device to switch to Device mode and connect its own pull-up resistor.
When the USB controller detects this, it generates a Connect interrupt. It also sets the RESET bit in
the USBPOWER register to begin resetting the A device. The USB controller begins this reset
sequence automatically to ensure that reset is started as required within 1 ms of the A device
connecting its pull-up resistor. The main processor should wait at least 20 ms, then clear the RESET
bit and enumerate the A device.

When the USB OTG controller B device has finished using the bus, it goes into Suspend mode by
setting the SUSPEND bit in theUSBPOWER register. The A device detects this and either terminates
the session or reverts to Host mode. If the A device is USBOTG controller, it generates a Disconnect
interrupt.

20.2.4 DMA Operation
The USB peripheral provides an interface connected to the μDMA controller. The DMA operation
of the USB is enabled through the USBTXCSRHn and USBRXCSRHn registers, for the TX and
RX channels respectively. When DMA operation is enabled, the USB asserts a DMA request on
the enabled receive or transmit channel when the associated FIFO can transfer data. When either
FIFO can transfer data, the burst request for that channel is asserted. The μDMA channel must be
configured with an arbitration size that matches the size of the USB FIFO, and the size of the μDMA
transfer must be restricted to whole multiples of the size of the USB FIFO. Both read and write
transfers of the USB FIFOs using μDMA should be configured in this manner. For example, if the
USB endpoint is configured with a FIFO size of 64 bytes, the μDMA channel must be configured
with an arbitration size of 64. The μDMA channel can be used to transfer 64 bytes to or from the
endpoint FIFO. If the number of bytes to transfer is less than 64, then a programmed I/O method
must be used to copy the data to or from the FIFO.

If DMA is enabled, then the μDMA controller triggers an interrupt when a transfer is complete. The
interrupt occurs on the USB interrupt vector. Therefore, if interrupts are used for USB operation and
DMA is enabled, the USB interrupt handler must be designed to handle the μDMA completion
interrupt.

Care must be taken when using a DMA to unload the receive FIFO as data is read from the receive
FIFO in 4 byte chunks regardless of the RxMaxP bit in the USBRXCSRHn register. The RXRDY bit
is cleared as follows.

783February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Table 20-1. Remainder (RxMaxP/4)

DescriptionValue

RxMaxP = 64 bytes0

RxMaxP = 61 bytes1

RxMaxP = 62 bytes2

RxMaxP = 63 bytes3

Table 20-2. Actual Bytes Read

DescriptionValue

RxMaxP0

RxMaxP+31

RxMaxP+22

RxMaxP+13

Table 20-3. Packet Sizes That Will Clear RXRDY

DescriptionValue

RxMaxP, RxMaxP-1, RxMaxP-2, RxMaxP-30

RxMaxP1

RxMaxP, RxMaxP-12

RxMaxP, RxMaxP-1, RxMaxP-23

To enable DMA operation for the endpoint receive channel, the DMAEN bit of the USBRXCSRHn
register should be set. To enable DMA operation for the endpoint transmit channel, the DMAEN bit
of the USBTXCSRHn register should be set.

See “Micro Direct Memory Access (μDMA)” on page 226 for more details about programming the
μDMA controller.

20.3 Initialization and Configuration
To use the USB Controller, the peripheral clock must be enabled by via the RCGC2 register. See
page 179. In addition, the clock to the appropriate GPIO module must be enabled via the RCGC2
register in the System Control module. See page 179. To find out which GPIO port to enable, refer
to Table 25-5 on page 990.

The initial configuration in all cases requires that the processor enable the USB controller and USB
controller’s physical layer interface (PHY) before setting any registers. The next step is to enable
the USB PLL so that the correct clocking is provided to the PHY. To ensure that voltage is not
supplied to the bus incorrectly, the external power control signal, USB0EPEN, should be de-asserted
on start up. This requires setting the USB0EPEN and USB0PFLT pins to be controlled by the USB
controller and not have their default GPIO behavior.

The VBUS sense and ID pins (USB0VBUS and USB0ID) do not require any configuration as they
are dedicated pins for the USB controller. In OTG mode, these pins directly connect to the USB
connector's VBUS and ID signals. In Host and Device modes, these pins must be tied to appropriate
voltage levels. USB0VBUS must be tied to 5 V (4.75-5.25V). USB0ID must be tied Low for USB Host
operation or tied High for USB Device Operation. These pins should not be used as GPIOs while
using the USB controller as it may cause unexpected behavior in the controller.

February 24, 2009784
Preliminary

Universal Serial Bus (USB) Controller

20.3.1 Pin Configuration
When using the device controller portion of the USB controller in a system that also provides host
functionality, the power to VBUS must be disabled to allow the external host controller to supply
power. Usually, the USB0EPEN signal is used to control the external regulator and should be
de-asserted to avoid having two devices driving the USB0VBUS power pin on the USB connector.

When the USB controller is acting as a host, it is in control of two signals that are attached to an
external voltage supply that provides power to VBUS. The host controller uses the USB0EPEN signal
to enable or disable power to the USB0VBUS pin on the USB connector. There is also an input pin,
USB0PFLT, which provides feedback when there has been a power fault on VBUS. The USB0PFLT
signal can be configured to either automatically de-assert the USB0EPEN signal to disable power,
and/or it can generate an interrupt to the main processor to allow it to handle the power fault condition.
The polarity and actions related to both USB0EPEN and USB0PFLT are fully configurable in the USB
controller. The controller also provides interrupts on device insertion and removal to allow the host
controller code to respond to these external events.

20.3.2 Endpoint Configuration
In order to start communication on host or device mode, the endpoint registers must first be
configured. In Host mode, this provides a connection between an endpoint register and an endpoint
on a device. In Device mode, this provides the setup for a given endpoint before enumerating to
the host controller.

In both cases, the endpoint 0 configuration is limited as this is a fixed function, fixed FIFO size
endpoint. In Device and Host modes, the endpoint requires little setup but does require a
software-based state machine to progress through the setup, data, and status phases of a standard
control transaction. In Device mode, the configuration of the remaining endpoints is done once
before enumerating and then only changed if an alternate configuration is selected by the host
controller. In Host mode, the endpoints must be configured to operate as control, bulk, interrupt or
isochronous mode. Once the type of endpoint is configured, a FIFO area must be assigned to each
endpoint. In the case of bulk, control and interrupt endpoints, each has a maximum of 64 bytes per
transaction. Isochronous endpoints can have packets with up to 1023 bytes per packet. In either
mode, the maximum packet size for the given endpoint must be set prior to sending or receiving
data.

Configuring each endpoint’s FIFO involves reserving a portion of the overall USB FIFO RAM to
each endpoint. The total FIFO RAM available is 4 Kbytes with the first 64 bytes in use by endpoint
0. The endpoint’s FIFO does not have to be the same size as the maximum packet size in all cases
as the controller can automatically split for bulk transactions if the FIFO is larger than the maximum
packet size. The FIFO can also be configured as a double-buffered FIFO so that interrupts occur
at the end of each packet and allow filling the other half of the FIFO.

If operating as a device, the USB device controllers' soft connect should be enabled when the device
is ready to start communications. This indicates to the host controller that the device is ready to
start the enumeration process. If operating as a host controller, the device soft connect should be
disabled and power should be provided to VBUS via the USB0EPEN signal.

20.4 Register Map
Table 20-4 on page 786 lists the registers. All addresses given are relative to the USB base address
of 0x4005.0000. Note that the USB controller clock must be enabled before the registers can be
programmed (see page 179).

785February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Table 20-4. Universal Serial Bus (USB) Controller Register Map

See
pageDescriptionResetTypeNameOffset

790USB Device Functional Address0x00R/WUSBFADDR0x000

791USB Power0x20R/WUSBPOWER0x001

793USB Transmit Interrupt Status0x0000ROUSBTXIS0x002

794USB Receive Interrupt Status0x0000ROUSBRXIS0x004

795USB Transmit Interrupt Enable0x000FR/WUSBTXIE0x006

796USB Receive Interrupt Enable0x000ER/WUSBRXIE0x008

797USB General Interrupt Status0x00ROUSBIS0x00A

799USB Interrupt Enable0x06R/WUSBIE0x00B

801USB Frame Value0x0000ROUSBFRAME0x00C

802USB Endpoint Index0x00R/WUSBEPIDX0x00E

803USB Test Mode0x00R/WUSBTEST0x00F

805USB FIFO Endpoint 00x0000.0000R/WUSBFIFO00x020

805USB FIFO Endpoint 10x0000.0000R/WUSBFIFO10x024

805USB FIFO Endpoint 20x0000.0000R/WUSBFIFO20x028

805USB FIFO Endpoint 30x0000.0000R/WUSBFIFO30x02C

806USB Device Control0x80R/WUSBDEVCTL0x060

809USB Transmit Dynamic FIFO Sizing0x00R/WUSBTXFIFOSZ0x062

809USB Receive Dynamic FIFO Sizing0x00R/WUSBRXFIFOSZ0x063

810USB Transmit FIFO Start Address0x0000R/WUSBTXFIFOADD0x064

810USB Receive FIFO Start Address0x0000R/WUSBRXFIFOADD0x066

811USB Connect Timing0x5CR/WUSBCONTIM0x07A

812USB OTG VBus Pulse Timing0x3CR/WUSBVPLEN0x07B

813USB Full-Speed Last Transaction to End of Frame Timing0x77R/WUSBFSEOF0x07D

814USB Low-Speed Last Transaction to End of Frame
Timing0x72R/WUSBLSEOF0x07E

815USB Transmit Functional Address Endpoint 00x00R/WUSBTXFUNCADDR00x080

816USB Transmit Hub Address Endpoint 00x00R/WUSBTXHUBADDR00x082

817USB Transmit Hub Port Endpoint 00x00R/WUSBTXHUBPORT00x083

815USB Transmit Functional Address Endpoint 10x00R/WUSBTXFUNCADDR10x088

816USB Transmit Hub Address Endpoint 10x00R/WUSBTXHUBADDR10x08A

817USB Transmit Hub Port Endpoint 10x00R/WUSBTXHUBPORT10x08B

818USB Receive Functional Address Endpoint 10x00R/WUSBRXFUNCADDR10x08C

February 24, 2009786
Preliminary

Universal Serial Bus (USB) Controller

See
pageDescriptionResetTypeNameOffset

819USB Receive Hub Address Endpoint 10x00R/WUSBRXHUBADDR10x08E

820USB Receive Hub Port Endpoint 10x00R/WUSBRXHUBPORT10x08F

815USB Transmit Functional Address Endpoint 20x00R/WUSBTXFUNCADDR20x090

816USB Transmit Hub Address Endpoint 20x00R/WUSBTXHUBADDR20x092

817USB Transmit Hub Port Endpoint 20x00R/WUSBTXHUBPORT20x093

818USB Receive Functional Address Endpoint 20x00R/WUSBRXFUNCADDR20x094

819USB Receive Hub Address Endpoint 20x00R/WUSBRXHUBADDR20x096

820USB Receive Hub Port Endpoint 20x00R/WUSBRXHUBPORT20x097

815USB Transmit Functional Address Endpoint 30x00R/WUSBTXFUNCADDR30x098

816USB Transmit Hub Address Endpoint 30x00R/WUSBTXHUBADDR30x09A

817USB Transmit Hub Port Endpoint 30x00R/WUSBTXHUBPORT30x09B

818USB Receive Functional Address Endpoint 30x00R/WUSBRXFUNCADDR30x09C

819USB Receive Hub Address Endpoint 30x00R/WUSBRXHUBADDR30x09E

820USB Receive Hub Port Endpoint 30x00R/WUSBRXHUBPORT30x09F

822USB Control and Status Endpoint 0 Low0x00W1CUSBCSRL00x102

825USB Control and Status Endpoint 0 High0x00W1CUSBCSRH00x103

827USB Receive Byte Count Endpoint 00x00ROUSBCOUNT00x108

828USB Type Endpoint 00x00R/WUSBTYPE00x10A

829USB NAK Limit0x00R/WUSBNAKLMT0x10B

821USB Maximum Transmit Data Endpoint 10x0000R/WUSBTXMAXP10x110

830USB Transmit Control and Status Endpoint 1 Low0x00R/WUSBTXCSRL10x112

833USB Transmit Control and Status Endpoint 1 High0x00R/WUSBTXCSRH10x113

836USB Maximum Receive Data Endpoint 10x0000R/WUSBRXMAXP10x114

837USB Receive Control and Status Endpoint 1 Low0x00R/WUSBRXCSRL10x116

840USB Receive Control and Status Endpoint 1 High0x00R/WUSBRXCSRH10x117

843USB Receive Byte Count Endpoint 10x0000ROUSBRXCOUNT10x118

844USB Host Transmit Configure Type Endpoint 10x00R/WUSBTXTYPE10x11A

846USB Host Transmit Interval Endpoint 10x00R/WUSBTXINTERVAL10x11B

847USB Host Configure Receive Type Endpoint 10x00R/WUSBRXTYPE10x11C

849USB Host Receive Polling Interval Endpoint 10x00R/WUSBRXINTERVAL10x11D

821USB Maximum Transmit Data Endpoint 20x0000R/WUSBTXMAXP20x120

830USB Transmit Control and Status Endpoint 2 Low0x00R/WUSBTXCSRL20x122

833USB Transmit Control and Status Endpoint 2 High0x00R/WUSBTXCSRH20x123

787February 24, 2009
Preliminary

LM3S9B92 Microcontroller

See
pageDescriptionResetTypeNameOffset

836USB Maximum Receive Data Endpoint 20x0000R/WUSBRXMAXP20x124

837USB Receive Control and Status Endpoint 2 Low0x00R/WUSBRXCSRL20x126

840USB Receive Control and Status Endpoint 2 High0x00R/WUSBRXCSRH20x127

843USB Receive Byte Count Endpoint 20x0000ROUSBRXCOUNT20x128

844USB Host Transmit Configure Type Endpoint 20x00R/WUSBTXTYPE20x12A

846USB Host Transmit Interval Endpoint 20x00R/WUSBTXINTERVAL20x12B

847USB Host Configure Receive Type Endpoint 20x00R/WUSBRXTYPE20x12C

849USB Host Receive Polling Interval Endpoint 20x00R/WUSBRXINTERVAL20x12D

821USB Maximum Transmit Data Endpoint 30x0000R/WUSBTXMAXP30x130

830USB Transmit Control and Status Endpoint 3 Low0x00R/WUSBTXCSRL30x132

833USB Transmit Control and Status Endpoint 3 High0x00R/WUSBTXCSRH30x133

836USB Maximum Receive Data Endpoint 30x0000R/WUSBRXMAXP30x134

837USB Receive Control and Status Endpoint 3 Low0x00R/WUSBRXCSRL30x136

840USB Receive Control and Status Endpoint 3 High0x00R/WUSBRXCSRH30x137

843USB Receive Byte Count Endpoint 30x0000ROUSBRXCOUNT30x138

844USB Host Transmit Configure Type Endpoint 30x00R/WUSBTXTYPE30x13A

846USB Host Transmit Interval Endpoint 30x00R/WUSBTXINTERVAL30x13B

847USB Host Configure Receive Type Endpoint 30x00R/WUSBRXTYPE30x13C

849USB Host Receive Polling Interval Endpoint 30x00R/WUSBRXINTERVAL30x13D

850USB Request Packet Count in Block Transfer Endpoint
10x0000R/WUSBRQPKTCOUNT10x304

850USB Request Packet Count in Block Transfer Endpoint
20x0000R/WUSBRQPKTCOUNT20x308

850USB Request Packet Count in Block Transfer Endpoint
30x0000R/WUSBRQPKTCOUNT30x30C

851USB Receive Double Packet Buffer Disable0x0000R/WUSBRXDPKTBUFDIS0x340

852USB Transmit Double Packet Buffer Disable0x0000R/WUSBTXDPKTBUFDIS0x342

853USB External Power Control0x0000.0000R/WUSBEPC0x400

856USB External Power Control Raw Interrupt Status0x0000.0000ROUSBEPCRIS0x404

857USB External Power Control Interrupt Mask0x0000.0000R/WUSBEPCIM0x408

858USB External Power Control Interrupt Status and Clear0x0000.0000R/WUSBEPCISC0x40C

859USB Device Resume Raw Interrupt Status0x0000.0000ROUSBDRRIS0x410

860USB Device Resume Interrupt Mask0x0000.0000R/WUSBDRIM0x414

861USB Device Resume Interrupt Status and Clear0x0000.0000W1CUSBDRISC0x418

February 24, 2009788
Preliminary

Universal Serial Bus (USB) Controller

See
pageDescriptionResetTypeNameOffset

862USB VBUS Droop Control0x0000.0000R/WUSBVDC0x430

863USB VBUS Droop Control Raw Interrupt Status0x0000.0000ROUSBVDCRIS0x434

864USB VBUS Droop Control Interrupt Mask0x0000.0000R/WUSBVDCIM0x438

865USB VBUS Droop Control Interrupt Status and Clear0x0000.0000R/WUSBVDCISC0x43C

866USB ID Valid Detect Raw Interrupt Status0x0000.0000ROUSBIDVRIS0x444

867USB ID Valid Detect Interrupt Mask0x0000.0000R/WUSBIDVIM0x448

868USB ID Valid Detect Interrupt Status and Clear0x0000.0000R/W1CUSBIDVISC0x44C

869USB End-Point Select0x0000.0321R/WUSBEPS0x450

20.5 Register Descriptions
The LM3S9B92 USB controller is configured to the communication mode specified in the USB0 bit
field in the DC6 register (page 147):

■ On-The-Go (OTG) (USB0 set to 0x3)

789February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: USB Device Functional Address (USBFADDR), offset 0x000

Device
USBFADDR is an 8-bit register that should be written with the 7-bit address of the device part of
the transaction.

When the USB controller is being used in Device mode (HOST bit in USBDEVCTL register is 0),
this register should be written with the address received through a SET_ADDRESS command,
which is then used for decoding the function address in subsequent token packets.

Important: See the section called “Setting the Device Address” on page 777 for special
considerations when writing this register.

USB Device Functional Address (USBFADDR)
Base 0x4005.0000
Offset 0x000
Type R/W, reset 0x00

01234567

FUNCADDRreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Function Address

Function Address of Device as received through SET_ADDRESS.

0x00R/WFUNCADDR6:0

February 24, 2009790
Preliminary

Universal Serial Bus (USB) Controller

Register 2: USB Power (USBPOWER), offset 0x001

Host

Device

USBPOWER is an 8-bit register that is used for controlling Suspend and Resume signaling, and
some basic operational aspects of the USB controller.

Host Mode

USB Power (USBPOWER)
Base 0x4005.0000
Offset 0x001
Type R/W, reset 0x20

01234567

PWRDNPHYSUSPENDRESUMERESETreserved

R/WR/W1SR/WR/WROROROROType
00000100Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x02ROreserved7:4

Reset

This bit is set to enable Reset signaling on the bus and cleared to end
Reset signaling on the bus.

0R/WRESET3

Resume Signaling

Set by the CPU to generate Resume signaling when the device is in
Suspend mode. The CPU should clear this bit after 20 ms.

0R/WRESUME2

Suspend Mode

This bit is written to 1 by the CPU to enter Suspend mode. Writing a 0
does nothing.

0R/W1SSUSPEND1

Power Down PHY

Set by the CPU to power down the internal USB PHY.

0R/WPWRDNPHY0

Device Mode

USB Power (USBPOWER)
Base 0x4005.0000
Offset 0x001
Type R/W, reset 0x20

01234567

PWRDNPHYSUSPENDRESUMERESETreservedSOFTCONNISOUP

R/WROR/WROROROR/WR/WType
00000100Reset

791February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

ISO Update

When set by the CPU, the USB controller waits for an SOF token from
the time TXRDY is set before sending the packet. If an IN token is
received before an SOF token, then a zero-length data packet is sent.

Note: Only valid for isochronous transfers.

0R/WISOUP7

Soft Connect/Disconnect

The USB D+/D- lines are enabled when this bit is set by the CPU, and
tri-stated when this bit is cleared by the CPU.

0R/WSOFTCONN6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x2ROreserved5:4

Reset

This bit is set when Reset signaling is present on the bus.

0RORESET3

Resume Signaling

Set by the CPU to generate Resume signaling when the device is in
Suspend mode. The CPU should clear this bit after 10 ms (a maximum
of 15 ms) to end Resume signaling.

0R/WRESUME2

Suspend Mode

This bit is set on entry into Suspend mode. It is cleared when the CPU
reads the interrupt register or sets the RESUME bit above.

0ROSUSPEND1

Power Down PHY

Set by the CPU to power down the internal USB PHY.

0R/WPWRDNPHY0

February 24, 2009792
Preliminary

Universal Serial Bus (USB) Controller

Register 3: USB Transmit Interrupt Status (USBTXIS), offset 0x002

Host

Device

USBTXIS is a 16-bit read-only register that indicates which interrupts are currently active for endpoint
0 and the transmit endpoints 1–3. The meaning of the EPn bits in this register are based on the
mode of the device. For the EP1, EP2 and EP3 bits, these bits always indicate that the USB controller
is sending data; however, in Host mode, these are the three configurable OUT endpoints; while in
device mode, these are the three configurable IN endpoints. The EP0 bit is special in Host and
Device modes and indicates that either a control IN or control OUT endpoint has generated an
interrupt.

Note: Bits relating to endpoints that have not been configured always return 0. Note also that all
active interrupts are cleared when this register is read.

USB Transmit Interrupt Status (USBTXIS)
Base 0x4005.0000
Offset 0x002
Type RO, reset 0x0000

0123456789101112131415

EP0EP1EP2EP3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

TX Endpoint 3 Interrupt0ROEP33

TX Endpoint 2 Interrupt0ROEP22

TX Endpoint 1 Interrupt0ROEP11

TX and RX Endpoint 0 Interrupt0ROEP00

793February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: USB Receive Interrupt Status (USBRXIS), offset 0x004

Host

Device

USBRXIS is a 16-bit read-only register that indicates which of the interrupts for receive endpoints
1–3 are currently active.

Note: Bits relating to endpoints that have not been configured always return 0. Note also that all
active interrupts are cleared when this register is read.

USB Receive Interrupt Status (USBRXIS)
Base 0x4005.0000
Offset 0x004
Type RO, reset 0x0000

0123456789101112131415

reservedEP1EP2EP3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

RX Endpoint 3 Interrupt0ROEP33

RX Endpoint 2 Interrupt0ROEP22

RX Endpoint 1 Interrupt0ROEP11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009794
Preliminary

Universal Serial Bus (USB) Controller

Register 5: USB Transmit Interrupt Enable (USBTXIE), offset 0x006

Host

Device

USBTXIE is a 16-bit register that provides interrupt enable bits for the interrupts in USBTXIS. When
a bit in USBTXIE is set to 1, the USB interrupt to the processor is asserted when the corresponding
interrupt bit in the USBTXIS register is set. When a bit is cleared to 0, the interrupt in USBTXIS is
still set but the USB interrupt to the processor is not asserted. On reset, the bits corresponding to
endpoint 0 and transmit endpoints 1-3 are set to 1, while the remaining bits are set to 0.

USB Transmit Interrupt Enable (USBTXIE)
Base 0x4005.0000
Offset 0x006
Type R/W, reset 0x000F

0123456789101112131415

EP0EP1EP2EP3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
1111000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

TX Endpoint 3 Interrupt Enable1R/WEP33

TX Endpoint 2 Interrupt Enable1R/WEP22

TX Endpoint 1 Interrupt Enable1R/WEP11

TX and RX Endpoint 0 Interrupt Enable1R/WEP00

795February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 6: USB Receive Interrupt Enable (USBRXIE), offset 0x008

Host

Device

USBRXIE is a 16-bit register that provides interrupt enable bits for the interrupts inUSBRXIS. When
a bit in USBRXIE is set to 1, the USB interrupt to the processor is asserted when the corresponding
interrupt bit in the USBRXIS register is set. When a bit is cleared to 0, the interrupt in USBRXIS is
still set but the USB interrupt to the processor is not asserted. On reset, the bits corresponding to
receive endpoints 1-3 are set to 1, while the remaining bits are set to 0.

USB Receive Interrupt Enable (USBRXIE)
Base 0x4005.0000
Offset 0x008
Type R/W, reset 0x000E

0123456789101112131415

reservedEP1EP2EP3reserved

ROR/WR/WR/WROROROROROROROROROROROROType
0111000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

RX Endpoint 3 Interrupt Enable1R/WEP33

RX Endpoint 2 Interrupt Enable1R/WEP22

RX Endpoint 1 Interrupt Enable1R/WEP11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009796
Preliminary

Universal Serial Bus (USB) Controller

Register 7: USB General Interrupt Status (USBIS), offset 0x00A

OTG

Host

Device

USBIS is an 8-bit read-only register that indicates which USB interrupts are currently active. All
active interrupts are cleared when this register is read.

Host Mode

USB General Interrupt Status (USBIS)
Base 0x4005.0000
Offset 0x00A
Type RO, reset 0x00

01234567

reservedRESUMEBABBLESOFCONNDISCONSESREQVBUSERR

ROROROROROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

VBus Error

Set when VBus drops below the VBus Valid threshold during a session.

Note: Only valid when the USB controller is an OTG A device.

0ROVBUSERR7

Session Request

Set when Session Request signaling has been detected.

Note: Only valid when the USB controller is an OTG A device.

0ROSESREQ6

Session Disconnect

Set when a device disconnect is detected.

0RODISCON5

Session Connect

Set when a device connection is detected.

0ROCONN4

Start of Frame

Set when a new frame starts.

0ROSOF3

Babble Detected

Set when babble is detected. Only active after first SOF has been sent.

0ROBABBLE2

Resume Signal Detected

Set when Resume signaling is detected on the bus while the USB
controller is in Suspend mode.

This can only be used if the USB's system clock is enabled. If the user
disables the clock programming, the USBDRCRIS, USBDRCIM, and
USBISC registers should be used.

0RORESUME1

797February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

Device Mode

USB General Interrupt Status (USBIS)
Base 0x4005.0000
Offset 0x00A
Type RO, reset 0x00

01234567

SUSPENDRESUMERESETSOFreservedDISCONSESREQVBUSERR

ROROROROROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

VBus Error

Set when VBus drops below the VBus Valid threshold during a session.

Note: Only valid when the USB controller is an OTG A device.

0ROVBUSERR7

Session Request

Set when Session Request signaling has been detected.

Note: Only valid when the USB controller is an OTG A device.

0ROSESREQ6

Session Disconnect

Set when a session ends. Valid at all transaction speeds.

0RODISCON5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved4

Start of Frame

Set when a new frame starts.

0ROSOF3

Reset Signal Detected

Set when Reset signaling is detected on the bus.

0RORESET2

Resume Signal Detected

Set when Resume signaling is detected on the bus while the USB
controller is in Suspend mode.

This can only be used if the USB's system clock is enabled. If the user
disables the clock programming, the USBDRCRIS, USBDRCIM, and
USBISC registers should be used.

0RORESUME1

Suspend Signal Detected

Set when Suspend signaling is detected on the bus.

0ROSUSPEND0

February 24, 2009798
Preliminary

Universal Serial Bus (USB) Controller

Register 8: USB Interrupt Enable (USBIE), offset 0x00B

Host

Device

USBIE is an 8-bit register that provides interrupt enable bits for each of the interrupts in USBIS. By
default, interrupt 1 and 2 are enabled.

Host Mode

USB Interrupt Enable (USBIE)
Base 0x4005.0000
Offset 0x00B
Type R/W, reset 0x06

01234567

SUSPNDRESUMERESETSOFCONNDISCONSESREQVBUSERR

R/WR/WR/WR/WR/WR/WR/WR/WType
01100000Reset

DescriptionResetTypeNameBit/Field

Enable VBUS Error Interrupt

Set by CPU to enable VBUSERR in USBIS.

0R/WVBUSERR7

Enable Session Request

Set by CPU to enable SESREQ in USBIS.

0R/WSESREQ6

Enable Disconnect Interrupt

Set by CPU to enable DISCON in USBIS.

0R/WDISCON5

Enable Connect Interrupt

Set by CPU to enable CONN in USBIS.

0R/WCONN4

Enable Start-of-Frame Interrupt

Set by CPU to enable SOF in USBIS.

0R/WSOF3

Enable Reset Interrupt

Set by CPU to enable RESET in USBIS.

1R/WRESET2

Enable Resume Interrupt

Set by CPU to enable RESUME in USBIS.

1R/WRESUME1

Enable Suspend Interrupt

Set by CPU to enable SUSPEND in USBIS.

0R/WSUSPND0

799February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Device Mode

USB Interrupt Enable (USBIE)
Base 0x4005.0000
Offset 0x00B
Type R/W, reset 0x06

01234567

SUSPNDRESUMEBABBLESOFCONNDISCONSESREQVBUSERR

R/WR/WR/WR/WR/WR/WR/WR/WType
01100000Reset

DescriptionResetTypeNameBit/Field

Enable VBUS Error Interrupt

Set by CPU to enable VBUSERR in USBIS.

0R/WVBUSERR7

Enable Session Request Interrupt

Set by CPU to enable SESREQ in USBIS.

0R/WSESREQ6

Enable Disconnect Interrupt

Set by CPU to enable DISCON in USBIS.

0R/WDISCON5

Enable Connect Interrupt

Set by CPU to enable CONN in USBIS.

0R/WCONN4

Enable Start-of-Frame Interrupt

Set by CPU to enable SOF in USBIS.

0R/WSOF3

Enable Babble Interrupt

Set by CPU to enable BABBLE in USBIS.

1R/WBABBLE2

Enable Resume Interrupt

Set by CPU to enable RESUME in USBIS.

1R/WRESUME1

Enable Suspend Interrupt

Set by CPU to enable SUSPEND in USBIS.

0R/WSUSPND0

February 24, 2009800
Preliminary

Universal Serial Bus (USB) Controller

Register 9: USB Frame Value (USBFRAME), offset 0x00C

Host

Device

USBFRAME is a 16-bit read-only register that holds the last received frame number.

USB Frame Value (USBFRAME)
Base 0x4005.0000
Offset 0x00C
Type RO, reset 0x0000

0123456789101112131415

Framereserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:11

Frame Number0x00ROFrame10:0

801February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 10: USB Endpoint Index (USBEPIDX), offset 0x00E

Host

Device

Each endpoint's buffer can be accessed by configuring a FIFO size and starting address. The
USBEPIDX 16-bit register is used with the USBTXFIFOSZ, USBRXFIFOSZ, USBTXFIFOADD,
and USBRXFIFOADD registers.

USB Endpoint Index (USBEPIDX)
Base 0x4005.0000

Offset 0x00E
Type R/W, reset 0x00

01234567

EPIDXreserved

R/WR/WR/WR/WROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:4

Endpoint Index

This sets which endpoint is accessed when reading or writing to one of
the USB controller's indexed registers.

0x00R/WEPIDX3:0

February 24, 2009802
Preliminary

Universal Serial Bus (USB) Controller

Register 11: USB Test Mode (USBTEST), offset 0x00F

Host

Device

USBTESTMODE is an 8-bit register that is primarily used to put the USB controller into one of the
four test modes for operation described in theUSB 2.0 specification, in response to a SET FEATURE:
USBTESTMODE command. It is not used in normal operation.

Note: Only one of these bits should be set at any time.

Host Mode

USB Test Mode (USBTEST)
Base 0x4005.0000
Offset 0x00F
Type R/W, reset 0x00

01234567

reservedFORCEFSFIFOACCFORCEH

ROROROROROR/WR/W1SR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Force Host Mode

The CPU sets this bit to instruct the core to enter Host mode when the
Session bit is set, regardless of whether it is connected to any peripheral.
The state of the USBD+ and USBD- are ignored. The core then remains
in Host mode until the SESSION bit is cleared, even if a device is
disconnected, and if the FORCEH bit remains set, re-enters Host mode
the next time the SESSION bit is set.

While in this mode, status of the bus connection may be read from the
DEV bit of theUSBDEVCTL register. The operating speed is determined
from the FORCEFS bit.

0R/WFORCEH7

FIFO Access

The CPU sets this bit to transfer the packet in the endpoint 0 transmit
FIFO to the endpoint 0 receive FIFO. It is cleared automatically.

0R/W1SFIFOACC6

Force Full-Speed Mode

The CPU sets this bit to force the USB controller into Full-Speed mode
when it receives a USB reset. When 0, the USB controller operates at
Low Speed.

0R/WFORCEFS5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved4:0

Device Mode

USB Test Mode (USBTEST)
Base 0x4005.0000
Offset 0x00F
Type R/W, reset 0x00

01234567

reservedFORCEFSFIFOACCreserved

ROROROROROR/WR/W1SROType
00000000Reset

803February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

FIFO Access

The CPU sets this bit to transfer the packet in the endpoint 0 transmit
FIFO to the endpoint 0 receive FIFO. It is cleared automatically.

0R/W1SFIFOACC6

Force Full Speed

The CPU sets this bit to force the USB controller into Full-Speed mode
when it receives a USB reset. When 0, the USB controller operates at
Low Speed.

0R/WFORCEFS5

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved4:0

February 24, 2009804
Preliminary

Universal Serial Bus (USB) Controller

Register 12: USB FIFO Endpoint 0 (USBFIFO0), offset 0x020
Register 13: USB FIFO Endpoint 1 (USBFIFO1), offset 0x024
Register 14: USB FIFO Endpoint 2 (USBFIFO2), offset 0x028
Register 15: USB FIFO Endpoint 3 (USBFIFO3), offset 0x02C

Host

Device

These 32-bit registers provide an address for CPU access to the FIFOs for each endpoint. Writing
to these addresses loads data into the Transmit FIFO for the corresponding endpoint. Reading from
these addresses unloads data from the Receive FIFO for the corresponding endpoint.

Transfers to and from FIFOs may be 8-bit, 16-bit or 32-bit as required, and any combination of
access is allowed provided the data accessed is contiguous. All transfers associated with one packet
must be of the same width so that the data is consistently byte-, word- or double-word-aligned.
However, the last transfer may contain fewer bytes than the previous transfers in order to complete
an odd-byte or odd-word transfer.

Depending on the size of the FIFO and the expected maximum packet size, the FIFOs support
either single-packet or double-packet buffering. Burst writing of multiple packets is not supported
as flags need to be set after each packet is written.

Following a STALL response or a transmit error on endpoint 1–3, the associated FIFO is completely
flushed.

USB FIFO Endpoint 0 (USBFIFO0)
Base 0x4005.0000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

EPDATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

EPDATA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Endpoint Data

Writing to this register loads the data into the Transmit FIFO and reading
unloads data from the Receive FIFO.

0x00R/WEPDATA31:0

805February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 16: USB Device Control (USBDEVCTL), offset 0x060

OTG

Host

Device

USBDEVCTL is an 8-bit register used for controlling and monitoring the USB VBus line. If the PHY
is suspended, no PHY clock is received and the VBus is not sampled.

USBDEVCTL provides the status information for the current operating mode (host or device) of the
USB controller. If the USB controller is in host mode, this register also indicates if a full- or low-speed
device has been connected.

Host Mode

USB Device Control (USBDEVCTL)
Base 0x4005.0000
Offset 0x060
Type R/W, reset 0x80

01234567

SESSIONHOSTREQHOSTVBUSLSDEVFSDEVDEV

R/WR/WROROROROROROType
00000001Reset

DescriptionResetTypeNameBit/Field

Device Mode

This read-only bit indicates whether the USB controller is operating as
the OTG A device or the OTG B device.

DescriptionValue

A device0

B device1

Note: This value is only valid while a session is in progress.

1RODEV7

Full-Speed Device Detected

This read-only bit is set when a full-speed device has been detected on
the port.

0ROFSDEV6

Low-Speed Device Detected

This read-only bit is set when a low-speed device has been detected
on the port.

0ROLSDEV5

February 24, 2009806
Preliminary

Universal Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

VBus Level

These read-only bits encode the current VBus level as follows:

DescriptionValue

Below SessionEnd

VBUS is detected as under 0.5 V.

0x0

Above SessionEnd, below AValid

VBUS is detected as above 0.5 V and under 1.5 V.

0x1

Above AValid, below VBusValid

VBUS is detected as above 1.5 V and below 4.5 V.

0x2

Above VBusValid

VBUS is detected as above 4.5 V.

0x3

0x00ROVBUS4:3

Host Mode

This read-only bit is set when the USB controller is acting as a Host.

0ROHOST2

Host Request

When set, the USB controller initiates the Host Negotiation when
Suspend mode is entered. It is cleared when Host Negotiation is
completed.

0R/WHOSTREQ1

Session Start/End

When operating as an OTG A device, this bit is set or cleared by the
CPU to start or end a session.

When operating as an OTG B device, this bit is set or cleared by the
USB controller when a session starts or ends. It is also set by the CPU
to initiate the Session Request Protocol. When the USB controller is in
Suspendmode, the bit may be cleared by the CPU to perform a software
disconnect.

Note: Clearing this bit when the core is not suspended will result in
undefined behavior.

0R/WSESSION0

Device Mode

USB Device Control (USBDEVCTL)
Base 0x4005.0000
Offset 0x060
Type R/W, reset 0x80

01234567

SESSIONHOSTREQreservedVBUSreservedDEV

R/WR/WROROROROROROType
00000001Reset

807February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Device Mode

This read-only bit indicates whether the USB controller is operating as
the OTG A device or the OTG B device.

DescriptionValue

A device0

B device1

Note: This value is only valid while a session is in progress.

1RODEV7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved6:5

VBus Level

These read-only bits encode the current VBus level as follows.

DescriptionValue

Below SessionEnd

VBUS is detected as under 0.5 V.

0x0

Above SessionEnd, below AValid

VBUS is detected as above 0.5 V and under 1.5 V.

0x1

Above AValid, below VBusValid

VBUS is detected as above 1.5 V and below 4.5 V.

0x2

Above VBusValid

VBUS is detected as above 4.5 V.

0x3

0x00ROVBUS4:3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved2

Host Request

When set, the USB controller initiates the Host Negotiation when
Suspend mode is entered. It is cleared when Host Negotiation is
completed.

0R/WHOSTREQ1

Session Start/End

When operating as an OTG A device, this bit is set or cleared by the
CPU to start or end a session.

When operating as an OTG B device, this bit is set or cleared by the
USB controller when a session starts or ends. It is also set by the CPU
to initiate the Session Request Protocol. When the USB controller is in
Suspendmode, the bit may be cleared by the CPU to perform a software
disconnect.

Note: Clearing this bit when the core is not suspended will result in
undefined behavior.

0R/WSESSION0

February 24, 2009808
Preliminary

Universal Serial Bus (USB) Controller

Register 17: USB Transmit Dynamic FIFO Sizing (USBTXFIFOSZ), offset 0x062
Register 18: USBReceive Dynamic FIFOSizing (USBRXFIFOSZ), offset 0x063

Host

Device

These 8-bit registers allow the selected TX/RX endpoint FIFOs to be dynamically sized.USBEPIDX
is used to configure each transmit endpoint's FIFO size.

USB Transmit Dynamic FIFO Sizing (USBTXFIFOSZ)
Base 0x4005.0000
Offset 0x062

Type R/W, reset 0x00

01234567

SIZEDPBreserved

R/WR/WR/WR/WR/WROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:5

Double Packet Buffer Support

Defines whether double-packet buffering is supported. When 1,
double-packet buffering is supported. When 0, only single-packet
buffering is supported.

0R/WDPB4

Max Packet Size

Maximum packet size to be allowed for (before any splitting within the
FIFO of bulk/high-bandwidth packets prior to transmission.

If DPB = 0, the FIFO also is this size; if DPB = 1, the FIFO is twice this
size.

Packet Size (Bytes)Value

80x0

160x1

320x2

640x3

1280x4

2560x5

5120x6

10240x7

20480x8

Reserved0x9-0xF

0x0R/WSIZE3:0

809February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 19: USB Transmit FIFO Start Address (USBTXFIFOADD), offset 0x064
Register 20: USBReceive FIFOStart Address (USBRXFIFOADD), offset 0x066

Host

Device

USBTXFIFOADD is a 16-bit register that controls the start address of the selected transmit endpoint
FIFO. USBRXFIFOADD is a 14-bit register that controls the start address of the selected receive
endpoint FIFO.

USB Transmit FIFO Start Address (USBTXFIFOADD)
Base 0x4005.0000

Offset 0x064
Type R/W, reset 0x0000

0123456789101112131415

ADDRreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:13

Transmit/Receive Start Address

Start address of the endpoint FIFO in units of 8 bytes.

Start AddressValue

00x0

80x1

160x2

320x3

640x4

1280x5

2560x6

5120x7

10240x8

20480x9

Reserved0xA-0x1FFF

0x00R/WADDR12:0

February 24, 2009810
Preliminary

Universal Serial Bus (USB) Controller

Register 21: USB Connect Timing (USBCONTIM), offset 0x07A

OTG

Host

Device

This 8-bit configuration register allows some delays to be specified.

USB Connect Timing (USBCONTIM)
Base 0x4005.0000
Offset 0x07A
Type R/W, reset 0x5C

01234567

WTIDWTCON

R/WR/WR/WR/WR/WR/WR/WR/WType
00111010Reset

DescriptionResetTypeNameBit/Field

Connect Wait

Sets the wait to be applied to allow for the user’s connect/disconnect
filter, in units of 533.3 ns. (The default setting corresponds to 2.667µs.)

0x5R/WWTCON7:4

Wait ID

Set the delay to be applied from the enable of the ID detection to when
the ID value is valid, in units of 4.369 ms. (The default setting
corresponds to 52.43 ms.)

0xCR/WWTID3:0

811February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 22: USB OTG VBus Pulse Timing (USBVPLEN), offset 0x07B

OTG
This 8-bit configuration register sets the duration of the VBus pulsing charge.

USB OTG VBus Pulse Timing (USBVPLEN)
Base 0x4005.0000
Offset 0x07B
Type R/W, reset 0x3C

01234567

VPLEN

R/WR/WR/WR/WR/WR/WR/WR/WType
00111100Reset

DescriptionResetTypeNameBit/Field

VBus Pulse Length

Sets the duration of the VBus pulsing charge in units of 546.1 µs. (The
default setting corresponds to 32.77 ms.)

0x3CR/WVPLEN7:0

February 24, 2009812
Preliminary

Universal Serial Bus (USB) Controller

Register 23: USB Full-Speed Last Transaction to End of Frame Timing
(USBFSEOF), offset 0x07D

Host

Device

This 8-bit configuration register sets the minimum time gap that is to be allowed between the start
of the last transaction and the EOF for full-speed transactions.

USB Full-Speed Last Transaction to End of Frame Timing (USBFSEOF)
Base 0x4005.0000
Offset 0x07D

Type R/W, reset 0x77

01234567

FSEOFG

R/WR/WR/WR/WR/WR/WR/WR/WType
11101110Reset

DescriptionResetTypeNameBit/Field

Full-Speed End-of-Frame Gap

Used during full-speed transactions, to set the gap between the last
transaction and the End-of-Frame (EOF), in units of 533.3 ns. The default
corresponds to 63.46 µs.

0x77R/WFSEOFG7:0

813February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 24: USB Low-Speed Last Transaction to End of Frame Timing
(USBLSEOF), offset 0x07E

Host

Device

This 8-bit configuration register sets the minimum time gap that is to be allowed between the start
of the last transaction and the EOF for low-speed transactions.

USB Low-Speed Last Transaction to End of Frame Timing (USBLSEOF)
Base 0x4005.0000
Offset 0x07E

Type R/W, reset 0x72

01234567

LSEOFG

R/WR/WR/WR/WR/WR/WR/WR/WType
01001110Reset

DescriptionResetTypeNameBit/Field

Low-Speed End-of-Frame Gap

Used during low-speed transactions, to set the gap between the last
transaction and the End-of-Frame (EOF), in units of 1.067 µs. The default
corresponds to 121.6 µs.

0x72R/WLSEOFG7:0

February 24, 2009814
Preliminary

Universal Serial Bus (USB) Controller

Register 25: USB Transmit Functional Address Endpoint 0
(USBTXFUNCADDR0), offset 0x080
Register 26: USB Transmit Functional Address Endpoint 1
(USBTXFUNCADDR1), offset 0x088
Register 27: USB Transmit Functional Address Endpoint 2
(USBTXFUNCADDR2), offset 0x090
Register 28: USB Transmit Functional Address Endpoint 3
(USBTXFUNCADDR3), offset 0x098

Host
USBTXFUNCADDRn is an 8-bit read/write register that records the address of the target function
that is to be accessed through the associated endpoint (EPn). USBTXFUNCADDRn needs to be
defined for each transmit endpoint that is used.

Note: USBTXFUNCADDR0 is used for both receive and transmit for endpoint 0.

USB Transmit Functional Address Endpoint 0 (USBTXFUNCADDR0)
Base 0x4005.0000
Offset 0x080
Type R/W, reset 0x00

01234567

ADDRreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Device Address

USB bus address for the target device.

0x00R/WADDR6:0

815February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 29: USB Transmit Hub Address Endpoint 0 (USBTXHUBADDR0),
offset 0x082
Register 30: USB Transmit Hub Address Endpoint 1 (USBTXHUBADDR1),
offset 0x08A
Register 31: USB Transmit Hub Address Endpoint 2 (USBTXHUBADDR2),
offset 0x092
Register 32: USB Transmit Hub Address Endpoint 3 (USBTXHUBADDR3),
offset 0x09A

Host
USBTXHUBADDRn is an 8-bit read/write register that, like USBTXHUBPORTn, only needs to be
written when a USB device is connected to transmit endpoint EPn via a USB 2.0 hub. This register
records the address of that USB 2.0 hub through which the target associated with the endpoint is
accessed. This information, together with the hub port in USBTXHUBPORTn, allows the USB
controller to support split transactions.

Note: USBTXHUBADDR0 is used for both receive and transmit for endpoint 0.

USB Transmit Hub Address Endpoint 0 (USBTXHUBADDR0)
Base 0x4005.0000
Offset 0x082
Type R/W, reset 0x00

01234567

ADDRMULTTRAN

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Multiple Translators

Indicates whether the hub has multiple transaction translators. Clear to
0 if single transaction translator; set to 1 if multiple transaction translators.

0R/WMULTTRAN7

Hub Address

USB bus address for the USB 2.0 hub.

0x00R/WADDR6:0

February 24, 2009816
Preliminary

Universal Serial Bus (USB) Controller

Register 33: USB Transmit Hub Port Endpoint 0 (USBTXHUBPORT0), offset
0x083
Register 34: USB Transmit Hub Port Endpoint 1 (USBTXHUBPORT1), offset
0x08B
Register 35: USB Transmit Hub Port Endpoint 2 (USBTXHUBPORT2), offset
0x093
Register 36: USB Transmit Hub Port Endpoint 3 (USBTXHUBPORT3), offset
0x09B

Host
USBTXHUBPORTn is an 8-bit read/write register that, like USBTXHUBADDRn, only needs to be
written when a full- or low-speed device is connected to transmit endpoint EPn via a USB 2.0 hub.
This register records the port of that USB 2.0 hub through which the target associated with the
endpoint is accessed. This information, together with the hub address inUSBTXHUBADDRn, allows
the USB controller to support split transactions.

Note: USBTXHUBPORT0 is used for both receive and transmit for endpoint 0.

USB Transmit Hub Port Endpoint 0 (USBTXHUBPORT0)
Base 0x4005.0000
Offset 0x083
Type R/W, reset 0x00

01234567

PORTreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Hub Port

USB hub port number.

0x00R/WPORT6:0

817February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 37: USB Receive Functional Address Endpoint 1
(USBRXFUNCADDR1), offset 0x08C
Register 38: USB Receive Functional Address Endpoint 2
(USBRXFUNCADDR2), offset 0x094
Register 39: USB Receive Functional Address Endpoint 3
(USBRXFUNCADDR3), offset 0x09C

Host
USBRXFUNCADDRn is an 8-bit read/write register that records the address of the target function
that is to be accessed through the associated endpoint (EPn). USBRXFUNCADDRn needs to be
defined for each receive endpoint that is used.

Note: USBTXFUNCADDR0 is used for both receive and transmit for endpoint 0.

USB Receive Functional Address Endpoint 1 (USBRXFUNCADDR1)
Base 0x4005.0000
Offset 0x08C
Type R/W, reset 0x00

01234567

ADDRreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Device Address

USB bus address for the target device.

0x00R/WADDR6:0

February 24, 2009818
Preliminary

Universal Serial Bus (USB) Controller

Register 40: USB Receive Hub Address Endpoint 1 (USBRXHUBADDR1),
offset 0x08E
Register 41: USB Receive Hub Address Endpoint 2 (USBRXHUBADDR2),
offset 0x096
Register 42: USB Receive Hub Address Endpoint 3 (USBRXHUBADDR3),
offset 0x09E

Host
USBRXHUBADDRn is an 8-bit read/write register that, like USBRXHUBPORTn, only needs to be
written when a full- or low-speed device is connected to receive endpoint EPn via a USB 2.0 hub.
This register records the address of that USB 2.0 hub through which the target associated with the
endpoint is accessed. This information, together with the hub port in USBRXHUBPORTn, allows
the USB controller to support split transactions.

Note: USBTXHUBADDR0 is used for both receive and transmit for endpoint 0.

USB Receive Hub Address Endpoint 1 (USBRXHUBADDR1)
Base 0x4005.0000
Offset 0x08E
Type R/W, reset 0x00

01234567

ADDRMULTTRAN

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Multiple Translators

Indicates whether the hub has multiple transaction translators. Clear to
0 if single transaction translator; set to 1 if multiple transaction translators.

0R/WMULTTRAN7

Hub Address

USB bus address for the USB 2.0 hub.

0x00R/WADDR6:0

819February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 43: USB Receive Hub Port Endpoint 1 (USBRXHUBPORT1), offset
0x08F
Register 44: USB Receive Hub Port Endpoint 2 (USBRXHUBPORT2), offset
0x097
Register 45: USB Receive Hub Port Endpoint 3 (USBRXHUBPORT3), offset
0x09F

Host
USBRXHUBPORTn is an 8-bit read/write register that, like USBRXHUBADDRn, only needs to be
written when a full- or low-speed device is connected to receive endpoint EPn via a USB 2.0 hub.
This register records the port of that USB 2.0 hub through which the target associated with the
endpoint is accessed. This information, together with the hub address inUSBTXHUBADDRn, allows
the USB controller to support split transactions.

Note: USBTXHUBPORT0 is used for both receive and transmit for endpoint 0.

USB Receive Hub Port Endpoint 1 (USBRXHUBPORT1)
Base 0x4005.0000
Offset 0x08F
Type R/W, reset 0x00

01234567

PORTreserved

R/WR/WR/WR/WR/WR/WR/WROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Hub Port

USB hub port number.

0x00R/WPORT6:0

February 24, 2009820
Preliminary

Universal Serial Bus (USB) Controller

Register 46: USB Maximum Transmit Data Endpoint 1 (USBTXMAXP1), offset
0x110
Register 47: USB Maximum Transmit Data Endpoint 2 (USBTXMAXP2), offset
0x120
Register 48: USB Maximum Transmit Data Endpoint 3 (USBTXMAXP3), offset
0x130

Host

Device

The USBTXMAXPn 16-bit register defines the maximum amount of data that can be transferred
through the transmit endpoint in a single operation.

Bits 10:0 define (in bytes) the maximum payload transmitted in a single transaction. The value set
can be up to 1024 bytes but is subject to the constraints placed by the USB Specification on packet
sizes for bulk, interrupt and isochronous transfers in full-speed operation.

The total amount of data represented by the value written to this register (specified payload × m)
must not exceed the FIFO size for the transmit endpoint, and should not exceed half the FIFO size
if double-buffering is required.

If this register is changed after packets have been sent from the endpoint, the transmit endpoint
FIFO should be completely flushed (using the FLUSH bit in USBTXCSRL1n) after writing the new
value to this register.

Note: USBTXMAXPn must be set to an even number of bytes for proper interrupt generation in
µDMA Mode 1.

USB Maximum Transmit Data Endpoint 1 (USBTXMAXP1)
Base 0x4005.0000
Offset 0x110
Type R/W, reset 0x0000

0123456789101112131415

MAXLOADreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:11

Maximum Payload

The maximum payload in bytes per transaction.

0x00R/WMAXLOAD10:0

821February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 49: USB Control and Status Endpoint 0 Low (USBCSRL0), offset
0x102

Host

Device

USBCSRL0 is an 8-bit register that provides control and status bits for endpoint 0.

Host Mode

USB Control and Status Endpoint 0 Low (USBCSRL0)
Base 0x4005.0000
Offset 0x102
Type W1C, reset 0x00

01234567

RXRDYTXRDYSTALLEDSETUPERRORREQPKTSTATUSNAKTO

R/W0CR/W1SR/W0CR/W1SR/W0CR/WR/WR/W0CType
00000000Reset

DescriptionResetTypeNameBit/Field

NAK Timeout

This bit is set by the USB controller when endpoint 0 is halted following
the receipt of NAK responses for longer than the time set by the
USBNAKLMT register. The CPU should clear this bit by writing a 0 to
it to allow the endpoint to continue.

0R/W0CNAKTO7

Status Packet

The CPU sets this bit at the same time as the TXRDY or REQPKT bit is
set, to perform a status stage transaction. Setting this bit ensures DT is
set to 1 so that a DATA1 packet is used for the Status Stage transaction.

0R/WSTATUS6

Request Packet

The CPU sets this bit to request an IN transaction. It is cleared when
RXRDY is set.

0R/WREQPKT5

Error

This bit is set by the USB controller when three attempts have been
made to perform a transaction with no response from the peripheral.
The CPU should clear this bit. An interrupt is generated when this bit is
set.

0R/W0CERROR4

Setup Packet

The CPU sets this bit, at the same time as the TXRDY bit is set, to send
a SETUP token instead of an OUT token for the transaction. This always
resets the data toggle and sends a DATA0 packet.

0R/W1SSETUP3

Endpoint Stalled

This bit is set when a STALL handshake is received. The CPU should
clear this bit.

0R/W0CSTALLED2

February 24, 2009822
Preliminary

Universal Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Transmit Packet Ready

The CPU sets this bit after loading a data packet into the FIFO. It is
cleared automatically when a data packet has been transmitted. An
interrupt is also generated at this point.

0R/W1STXRDY1

Receive Packet Ready

This bit is set when a data packet has been received. An interrupt is
generated when this bit is set. The CPU should clear this bit, by writing
a 0 when the packet has been read from the FIFO. This acknowledges
that data has been read from the FIFO.

0R/W0CRXRDY0

Device Mode

USB Control and Status Endpoint 0 Low (USBCSRL0)
Base 0x4005.0000
Offset 0x102
Type W1C, reset 0x00

01234567

RXRDYTXRDYSTALLEDDATAENDSETENDSTALLRXRDYCSETENDC

ROR/W1SR/W0CW1CROW1CW1CW1CType
00000000Reset

DescriptionResetTypeNameBit/Field

Setup End Clear

The CPU writes a 1 to this bit to clear the SETEND bit.

0W1CSETENDC7

RXRDY Clear

The CPU writes a 1 to this bit to clear the RXRDY bit.

0W1CRXRDYC6

Send Stall

The CPU writes a 1 to this bit to terminate the current transaction. The
STALL handshake is transmitted, and then this bit is cleared
automatically.

0W1CSTALL5

Setup End

This bit is set when a control transaction ends before the DataEnd bit
has been set. An interrupt is generated and the FIFO flushed at this
time. The bit is cleared by the CPU writing a 1 to the SETENDC bit.

0ROSETEND4

Data End

The CPU sets this bit:

■ When setting TXRDY for the last data packet

■ When clearing RXRDY after unloading the last data packet

■ When setting TXRDY for a zero-length data packet

It is cleared automatically.

0W1CDATAEND3

823February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Endpoint Stalled

This bit is set when a STALL handshake is transmitted. The CPU should
clear this bit by writing a 0. This bit can only be cleared. Setting this bit
does nothing.

0R/W0CSTALLED2

Transmit Packet Ready

The CPU writes a 1 to this bit after loading a data packet into the FIFO.
It is cleared automatically when the data packet has been transmitted.
An interrupt is also generated at this point.

0R/W1STXRDY1

Receive Packet Ready

This bit is set when a data packet has been received. An interrupt is
generated when this bit is set. The CPU clears this bit by setting the
RXRDYC bit.

0RORXRDY0

February 24, 2009824
Preliminary

Universal Serial Bus (USB) Controller

Register 50: USB Control and Status Endpoint 0 High (USBCSRH0), offset
0x103

Host

Device

USBSR0H is an 8-bit register that provides control and status bits for endpoint 0.

Host Mode

USB Control and Status Endpoint 0 High (USBCSRH0)
Base 0x4005.0000
Offset 0x103
Type W1C, reset 0x00

01234567

FLUSHDTDTWEreserved

W1CR/WW1SROROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:3

Data Toggle Write Enable

The CPU writes a 1 to this bit to enable the current state of the endpoint
0 data toggle to be written (see DT bit). This bit is automatically cleared
once the new value is written.

0W1SDTWE2

Data Toggle

When read, this bit indicates the current state of the endpoint 0 data
toggle. If DTWE is High, this bit may be written with the required setting
of the data toggle. If DTWE is Low, this cannot be written.

0R/WDT1

Flush FIFO

The CPU writes a 1 to this bit to flush the next packet to be
transmitted/read from the endpoint 0 FIFO. The FIFO pointer is reset
and the TXRDY/RXRDY bit is cleared.

Important: FLUSH should only be used when TXRDY/RXRDY is set.
At other times, it may cause data to be corrupted.

0W1CFLUSH0

Device Mode

USB Control and Status Endpoint 0 High (USBCSRH0)
Base 0x4005.0000
Offset 0x103
Type W1C, reset 0x00

01234567

FLUSHreserved

W1SROROROROROROROType
00000000Reset

825February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:1

Flush FIFO

The CPU writes a 1 to this bit to flush the next packet to be
transmitted/read from the endpoint 0 FIFO. The FIFO pointer is reset
and the TXRDY/RXRDY bit is cleared.

Important: FLUSH should only be used when TXRDY/RXRDY is set.
At other times, it may cause data to be corrupted.

0W1SFLUSH0

February 24, 2009826
Preliminary

Universal Serial Bus (USB) Controller

Register 51: USBReceive Byte Count Endpoint 0 (USBCOUNT0), offset 0x108

Host

Device

USBCOUNT0 is an 8-bit read-only register that indicates the number of received data bytes in the
endpoint 0 FIFO. The value returned changes as the contents of the FIFO change and is only valid
while RXRDY is set.

USB Receive Byte Count Endpoint 0 (USBCOUNT0)
Base 0x4005.0000

Offset 0x108
Type RO, reset 0x00

01234567

COUNTreserved

ROROROROROROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

Count

Count is a read-only value that indicates the number of received data
bytes in the endpoint 0 FIFO.

0x00ROCOUNT6:0

827February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 52: USB Type Endpoint 0 (USBTYPE0), offset 0x10A

Host
This is an 8-bit register that should be written with the operating speed of the targeted device being
communicated with using endpoint 0.

USB Type Endpoint 0 (USBTYPE0)
Base 0x4005.0000
Offset 0x10A
Type R/W, reset 0x00

01234567

reservedSPEED

ROROROROROROR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Operating Speed

Operating speed of the target device. If selected, the target is assumed
to have the same connection speed as the core.

DescriptionValue

Reserved00

Reserved01

Full10

Low11

0x00R/WSPEED7:6

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved5:0

February 24, 2009828
Preliminary

Universal Serial Bus (USB) Controller

Register 53: USB NAK Limit (USBNAKLMT), offset 0x10B

Host
USBNAKLMT is an 8-bit register that sets the number of frames after which endpoint 0 should time
out on receiving a stream of NAK responses. (Equivalent settings for other endpoints can be made
through their USBTXINTERVALn and USBRXINTERVALn registers.)

The number of frames selected is 2(m-1) (where m is the value set in the register, with valid values
of 2–16). If the host receives NAK responses from the target for more frames than the number
represented by the limit set in this register, the endpoint is halted.

Note: A value of 0 or 1 disables the NAK timeout function.

USB NAK Limit (USBNAKLMT)
Base 0x4005.0000
Offset 0x10B
Type R/W, reset 0x00

01234567

NAKLMTreserved

R/WR/WR/WR/WR/WROROROType
00000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:5

EP0 NAK Limit

Number of frames after receiving a stream of NAK responses.

0x00R/WNAKLMT4:0

829February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 54: USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1),
offset 0x112
Register 55: USB Transmit Control and Status Endpoint 2 Low (USBTXCSRL2),
offset 0x122
Register 56: USB Transmit Control and Status Endpoint 3 Low (USBTXCSRL3),
offset 0x132

Host

Device

USBTXCSRLn is an 8-bit register that provides control and status bits for transfers through the
currently selected transmit endpoint.

Host Mode

USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1)
Base 0x4005.0000
Offset 0x112
Type R/W, reset 0x00

01234567

TXRDYFIFONEERRORFLUSHSETUPSTALLEDCLRDTNAKTO /
INCTX

R/W0CR/W0CR/W0CW1CR/WR/W0CW1SR/W0CType
00000000Reset

DescriptionResetTypeNameBit/Field

NAK Timeout / Incomplete TX

Bulk endpoints only: This bit is set when the transmit endpoint is halted
following the receipt of NAK responses for longer than the time set as
the NAK Limit by the USBTXINTERVALn register. The CPU should
clear this bit to allow the endpoint to continue.

High-bandwidth interrupt endpoints only: This bit is set if no response
is received from the device to which the packet is being sent.

0R/W0CNAKTO / INCTX7

Clear Data Toggle

The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.

0W1SCLRDT6

Endpoint Stalled

This bit is set when a STALL handshake is received. When this bit is
set, any µDMA request that is in progress is stopped, the FIFO is
completely flushed, and the TXRDY bit is cleared. The CPU should clear
this bit.

0R/W0CSTALLED5

Setup Packet

The CPU sets this bit, at the same time as the TXRDY bit is set, to send
a SETUP token instead of an OUT token for the transaction.

Note: Setting this bit also clears DT.

0R/WSETUP4

February 24, 2009830
Preliminary

Universal Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Flush FIFO

The CPUwrites a 1 to this bit to flush the latest packet from the endpoint
transmit FIFO. The FIFO pointer is reset, the TXRDY bit is cleared, and
an interrupt is generated. FLUSHmay be set simultaneously with TXRDY
to abort the packet that is currently being loaded into the FIFO.

Note: FLUSH should only be used when TXRDY is set. At other times,
it may cause data to be corrupted. Also note that, if the FIFO
is double-buffered, FLUSH may need to be set twice to
completely clear the FIFO.

0W1CFLUSH3

Error

The USB sets this bit when three attempts have been made to send a
packet and no handshake packet has been received. When the bit is
set, an interrupt is generated, TXRDY is cleared, and the FIFO is
completely flushed. The CPU should clear this bit.

Note: This is valid only when the endpoint is operating in Bulk or
Interrupt mode.

0R/W0CERROR2

FIFO Not Empty

The USB controller sets this bit when there is at least one packet in the
transmit FIFO.

0R/W0CFIFONE1

Transmit Packet Ready

The CPU sets this bit after loading a data packet into the FIFO. It is
cleared automatically when a data packet has been transmitted. An
interrupt is generated at this point. TXRDY is also automatically cleared
prior to loading a second packet into a double-buffered FIFO.

0R/W0CTXRDY0

Device Mode

USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1)
Base 0x4005.0000
Offset 0x112
Type R/W, reset 0x00

01234567

TXRDYFIFONEUNDRNFLUSHSTALLSTALLEDCLRDTINCTX

R/W1SR/W0CR/W0CW1CR/WR/W0CW1SR/W0CType
00000000Reset

DescriptionResetTypeNameBit/Field

Incomplete Transmit

When the endpoint is being used for high-bandwidth isochronous
transfers, this bit is set to indicate where a large packet has been split
into 2 or 3 packets for transmission but insufficient IN tokens have been
received to send all the parts.

Note: Only valid for isochronous transfers.

0R/W0CINCTX7

Clear Data Toggle

The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.

0W1SCLRDT6

831February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Endpoint Stalled

This bit is set when a STALL handshake is transmitted. The FIFO is
flushed and the TXRDY bit is cleared. The CPU should clear this bit.

0R/W0CSTALLED5

Send Stall

The CPU writes a 1 to this bit to issue a STALL handshake to an IN
token. The CPU clears this bit to terminate the stall condition.

Note: This bit has no effect in isochronous transfers.

0R/WSTALL4

Flush FIFO

The CPUwrites a 1 to this bit to flush the latest packet from the endpoint
transmit FIFO. The FIFO pointer is reset, the TXRDY bit is cleared, and
an interrupt is generated. This bit may be set simultaneously with TXRDY
to abort the packet that is currently being loaded into the FIFO.

Note: FLUSH should only be used when TXRDY is set. At other times,
it may cause data to be corrupted. Also note that, if the FIFO
is double-buffered, FLUSH may need to be set twice to
completely clear the FIFO.

0W1CFLUSH3

Underrun

The USB controller sets this bit if an IN token is received when TXRDY
is not set. The CPU should clear this bit.

0R/W0CUNDRN2

FIFO Not Empty

The USB controller sets this bit when there is at least 1 packet in the
transmit FIFO.

0R/W0CFIFONE1

Transmit Packet Ready

The CPU sets this bit after loading a data packet into the FIFO. It is
cleared automatically when a data packet has been transmitted. An
interrupt is generated at this point. TXRDY is also automatically cleared
prior to loading a second packet into a double-buffered FIFO.

0R/W1STXRDY0

February 24, 2009832
Preliminary

Universal Serial Bus (USB) Controller

Register 57: USBTransmit Control andStatus Endpoint 1 High (USBTXCSRH1),
offset 0x113
Register 58: USBTransmit Control andStatus Endpoint 2 High (USBTXCSRH2),
offset 0x123
Register 59: USBTransmit Control andStatus Endpoint 3 High (USBTXCSRH3),
offset 0x133

Host

Device

USBTXCSRHn is an 8-bit register that provides additional control for transfers through the currently
selected transmit endpoint.

Host Mode

USB Transmit Control and Status Endpoint 1 High (USBTXCSRH1)
Base 0x4005.0000
Offset 0x113
Type R/W, reset 0x00

01234567

DTDTWEDMAMODFDTDMAENMODEreservedAUTOSET

R/WW1SR/WR/WR/WR/WROR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Auto Set

If the CPU sets this bit, TXRDY is automatically set when data of the
maximum packet size (value in USBTXMAXPn) is loaded into the
transmit FIFO. If a packet of less than the maximum packet size is
loaded, then TXRDY must be set manually.

Note: This bit should not be set for either high-bandwidth
isochronous or high-bandwidth interrupt endpoints.

0R/WAUTOSET7

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved6

Mode

The CPU sets this bit to enable the endpoint direction as TX, and clears
it to enable the endpoint direction as RX.

Note: This bit only has an effect when the same endpoint FIFO is
used for both transmit and receive transactions.

0R/WMODE5

DMA Request Enable

The CPU sets this bit to enable the µDMA request for the transmit
endpoint.

0R/WDMAEN4

833February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Force Data Toggle

The CPU sets this bit to force the endpoint data toggle to switch and
the data packet to be cleared from the FIFO, regardless of whether an
ACK was received. This can be used by interrupt transmit endpoints
that are used to communicate rate feedback for isochronous endpoints.

0R/WFDT3

DMA Request Mode

The CPU sets this bit to select µDMA Request Mode 1 and clears it to
select µDMA Request Mode 0.

Note: This bit must not be cleared either before or in the same cycle
as the above DMAEN bit is cleared.

0R/WDMAMOD2

Data Toggle Write Enable

The CPU writes a 1 to this bit to enable the current state of the transmit
endpoint data toggle to be written (see DT). This bit is automatically
cleared once the new value is written.

0W1SDTWE1

Data Toggle

When read, this bit indicates the current state of the transmit endpoint
data toggle. If DTWE is High, this bit may be written with the required
setting of the data toggle. If DTWE is Low, any value written to this bit is
ignored.

0R/WDT0

Device Mode

USB Transmit Control and Status Endpoint 1 High (USBTXCSRH1)
Base 0x4005.0000
Offset 0x113
Type R/W, reset 0x00

01234567

reservedDMAMODFDTDMAENMODEISOAUTOSET

ROROR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Auto Set

If the CPU sets this bit, TXRDY is automatically set when data of the
maximum packet size (value in USBTXMAXPn) is loaded into the
transmit FIFO. If a packet of less than the maximum packet size is
loaded, then TXRDY must be set manually.

Note: This bit should not be set for either high-bandwidth
isochronous or high-bandwidth interrupt endpoints.

0R/WAUTOSET7

ISO

The CPU sets this bit to enable the transmit endpoint for isochronous
transfers, and clears it to enable the transmit endpoint for bulk or interrupt
transfers.

0R/WISO6

February 24, 2009834
Preliminary

Universal Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Mode

The CPU sets this bit to enable the endpoint direction as TX, and clears
the bit to enable it as RX.

Note: This bit only has an effect where the same endpoint FIFO is
used for both transmit and receive transactions.

0R/WMODE5

DMA Request Enable

The CPU sets this bit to enable the µDMA request for the transmit
endpoint.

0R/WDMAEN4

Force Data Toggle

The CPU sets this bit to force the endpoint data toggle to switch and
the data packet to be cleared from the FIFO, regardless of whether an
ACK was received. This can be used by interrupt transmit endpoints
that are used to communicate rate feedback for isochronous endpoints.

0R/WFDT3

DMA Request Mode

The CPU sets this bit to select µDMA Request Mode 1 and clears it to
select µDMA Request Mode 0.

Note: This bit must not be cleared either before or in the same cycle
as the above DMAEN bit is cleared.2

0R/WDMAMOD2

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved1:0

835February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 60: USB Maximum Receive Data Endpoint 1 (USBRXMAXP1), offset
0x114
Register 61: USB Maximum Receive Data Endpoint 2 (USBRXMAXP2), offset
0x124
Register 62: USB Maximum Receive Data Endpoint 3 (USBRXMAXP3), offset
0x134

Host

Device

The USBRXMAXPn 16-bit register defines the maximum amount of data that can be transferred
through the selected receive endpoint in a single operation.

Bits 10:0 define (in bytes) the maximum payload transmitted in a single transaction. The value set
can be up to 1024 bytes but is subject to the constraints placed by the USB Specification on packet
sizes for bulk, interrupt and isochronous transfers in full-speed operations.

The total amount of data represented by the value written to this register (specified payload × m)
must not exceed the FIFO size for the receive endpoint, and should not exceed half the FIFO size
if double-buffering is required.

Note: USBRXMAXPn must be set to an even number of bytes for proper interrupt generation in
µDMA Mode 1.

USB Maximum Receive Data Endpoint 1 (USBRXMAXP1)
Base 0x4005.0000
Offset 0x114
Type R/W, reset 0x0000

0123456789101112131415

MAXLOADreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved15:11

Maximum Payload

The maximum payload in bytes per transaction.

0x00R/WMAXLOAD10:0

February 24, 2009836
Preliminary

Universal Serial Bus (USB) Controller

Register 63: USBReceive Control and Status Endpoint 1 Low (USBRXCSRL1),
offset 0x116
Register 64: USBReceive Control and Status Endpoint 2 Low (USBRXCSRL2),
offset 0x126
Register 65: USBReceive Control and Status Endpoint 3 Low (USBRXCSRL3),
offset 0x136

Host

Device

USBRXCSRLn is an 8-bit register that provides control and status bits for transfers through the
currently selected receive endpoint.

Host Mode

USB Receive Control and Status Endpoint 1 Low (USBRXCSRL1)
Base 0x4005.0000
Offset 0x116
Type R/W, reset 0x00

01234567

RXRDYFULLERRORDATAERR /
NAKTOFLUSHREQPKTSTALLEDCLRDT

R/W0CROR/W0CR/W0CW1SR/WR/W0CW1SType
00000000Reset

DescriptionResetTypeNameBit/Field

Clear Data Toggle

The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.

0W1SCLRDT7

Endpoint Stalled

When a STALL handshake is received, this bit is set and an interrupt is
generated. The CPU should clear this bit.

0R/W0CSTALLED6

Request Packet

The CPU writes a 1 to this bit to request an IN transaction. It is cleared
when RXRDY is set.

0R/WREQPKT5

Flush FIFO

The CPU writes a 1 to this bit to flush the next packet to be read from
the endpoint receive FIFO. The FIFO pointer is reset and the RXRDY bit
is cleared.

Note: FLUSH should only be used when RXRDY is set. At other times,
it may cause data to be corrupted. Also note that, if the FIFO
is double-buffered, FLUSH may need to be set twice to
completely clear the FIFO.

0W1SFLUSH4

837February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Data Error / NAK Timeout

When operating in ISO mode, this bit is set when RXRDY is set if the
data packet has a CRC or bit-stuff error and cleared when RXRDY is
cleared. In Bulk mode, this bit is set when the receive endpoint is halted
following the receipt of NAK responses for longer than the time set as
the NAK Limit by the USBRXINTERVALn register. The CPU should
clear this bit to allow the endpoint to continue.

0R/W0CDATAERR / NAKTO3

Error

The USB sets this bit when three attempts have been made to receive
a packet and no data packet has been received. The CPU should clear
this bit. An interrupt is generated when the bit is set.

Note: This bit is only valid when the receive endpoint is operating
in Bulk or Interrupt mode. In ISOmode, it always returns zero.

0R/W0CERROR2

FIFO Full

This bit is set when no more packets can be loaded into the receive
FIFO.

0ROFULL1

Receive Packet Ready

This bit is set when a data packet has been received. The CPU should
clear this bit when the packet has been unloaded from the receive FIFO.
An interrupt is generated when the bit is set.

0R/W0CRXRDY0

Device Mode

USB Receive Control and Status Endpoint 1 Low (USBRXCSRL1)
Base 0x4005.0000
Offset 0x116
Type R/W, reset 0x00

01234567

RXRDYFULLOVERDATAERRFLUSHSTALLSTALLEDCLRDT

R/W0CROR/W0CROW1SR/WR/W0CW1SType
00000000Reset

DescriptionResetTypeNameBit/Field

Clear Data Toggle

The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.

0W1SCLRDT7

Endpoint Stalled

This bit is set when a STALL handshake is transmitted. The CPU should
clear this bit.

0R/W0CSTALLED6

Send Stall

The CPU writes a 1 to this bit to issue a STALL handshake. The CPU
clears this bit to terminate the stall condition.

Note: This bit has no effect where the endpoint is being used for
isochronous transfers.

0R/WSTALL5

February 24, 2009838
Preliminary

Universal Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Flush FIFO

The CPU writes a 1 to this bit to flush the next packet to be read from
the endpoint receive FIFO. The FIFO pointer is reset and the RXRDY bit
is cleared.

Note: The FLUSH bit should only be used when RXRDY is set. At
other times, it may cause data to be corrupted. Also note that,
if the FIFO is double-buffered, FLUSH may need to be set
twice to completely clear the FIFO.

0W1SFLUSH4

Data Error

This bit is set when RXRDY is set if the data packet has a CRC or bit-stuff
error. It is cleared when RXRDY is cleared.

Note: This bit is only valid when the endpoint is operating in ISO
mode. In Bulk mode, it always returns zero.

0RODATAERR3

Overrun

This bit is set if an OUT packet cannot be loaded into the receive FIFO.
The CPU should clear this bit.

Note: This bit is only valid when the endpoint is operating in ISO
mode. In Bulk mode, it always returns zero.

0R/W0COVER2

FIFO Full

This bit is set when no more packets can be loaded into the receive
FIFO.

0ROFULL1

Receive Packet Ready

This bit is set when a data packet has been received. The CPU should
clear this bit when the packet has been unloaded from the receive FIFO.
An interrupt is generated when the bit is set.

0R/W0CRXRDY0

839February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 66: USBReceive Control and Status Endpoint 1 High (USBRXCSRH1),
offset 0x117
Register 67: USBReceive Control and Status Endpoint 2 High (USBRXCSRH2),
offset 0x127
Register 68: USBReceive Control and Status Endpoint 3 High (USBRXCSRH3),
offset 0x137

Host

Device

USBRXCSRHn is an 8-bit register that provides additional control and status bits for transfers
through the currently selected receive endpoint.

Host Mode

USB Receive Control and Status Endpoint 1 High (USBRXCSRH1)
Base 0x4005.0000
Offset 0x117
Type R/W, reset 0x00

01234567

INCRXDTDTWEDMAMODPIDERRDMAENAUTORQAUTOCL

R/W0CROROR/WROR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Auto Clear

If the CPU sets this bit, then the RXRDY bit is automatically cleared when
a packet of USBRXMAXPn bytes has been unloaded from the receive
FIFO.When packets of less than themaximum packet size are unloaded,
RXRDYmust be clearedmanually. Caremust be taken when using µDMA
to unload the receive FIFO as data is read from the receive FIFO in 4
byte chunks regardless of the RxMaxP bit.

Note: This bit should not be set for high-bandwidth isochronous
endpoints.

0R/WAUTOCL7

Auto Request

If the CPU sets this bit, the ReqPkt bit is automatically set when the
RXRDY bit is cleared.

Note: This bit is automatically cleared when a short packet is
received.

0R/WAUTORQ6

DMA Request Enable

The CPU sets this bit to enable the µDMA request for the receive
endpoint.

0R/WDMAEN5

PID Error

For ISO transactions, the core sets this bit to indicate a PID error in the
received packet. This bit is ignored in bulk or interrupt transactions.

0ROPIDERR4

February 24, 2009840
Preliminary

Universal Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

DMA Request Mode

The CPU sets this bit to select µDMA Request Mode 1 and clears it to
select µDMA Request Mode 0.

0R/WDMAMOD3

Data Toggle Write Enable

The CPU writes a 1 to this bit to enable the current state of the endpoint
0 data toggle to be written (see DT). This bit is automatically cleared
once the new value is written.

0RODTWE2

Data Toggle

When read, this bit indicates the current state of the endpoint 0 data
toggle. If DTWE is High, this bit may be written with the required setting
of the data toggle. If DTWE is Low, any value written to this bit is ignored.

0RODT1

Incomplete Receive

This bit is set in a high-bandwidth isochronous or interrupt transfer if the
packet received is incomplete. It is cleared when RXRDY is cleared.

Note: If USB protocols are followed correctly, this bit should never
be set. The bit becoming set indicates a failure of the
associated peripheral device to behave correctly. (In anything
other than isochronous transfer, this bit always returns 0.)

0R/W0CINCRX0

Device Mode

USB Receive Control and Status Endpoint 1 High (USBRXCSRH1)
Base 0x4005.0000
Offset 0x117
Type R/W, reset 0x00

01234567

INCRXreservedDMAMODDISNYET /
PIDERRDMAENISOAUTOCL

R/W0CROROR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Auto Clear

If the CPU sets this bit, then the RXRDY bit is automatically cleared when
a packet of RXMaxP bytes has been unloaded from the receive FIFO.
When packets of less than the maximum packet size are unloaded,
RXRDY must be cleared manually.

Care must be taken when using µDMA to unload the receive FIFO as
data is read from the receive FIFO in 4 byte chunks regardless of the
RxMaxP bit.

Note: This bit should not be set for high-bandwidth isochronous
endpoints.

0R/WAUTOCL7

ISO

The CPU sets this bit to enable the receive endpoint for isochronous
transfers, and clears it to enable the receive endpoint for bulk/interrupt
transfers.

0R/WISO6

841February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

DMA Request Enable

The CPU sets this bit to enable the µDMA request for the receive
endpoint.

0R/WDMAEN5

Disable NYET / PID Error

For bulk or interrupt transactions, the CPU sets this bit to disable the
sending of NYET handshakes. When set, all successfully received
packets are acknowledged, including at the point at which the FIFO
becomes full.

For ISO transactions, the core sets this bit to indicate a PID error in the
received packet.

0R/WDISNYET / PIDERR4

DMA Request Mode

The CPU sets this bit to select µDMA Request Mode 1 and clears it to
select µDMA Request Mode 0.

0R/WDMAMOD3

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved2:1

Incomplete Receive

This bit is set in a high-bandwidth isochronous/interrupt transfer if the
packet in the receive FIFO is incomplete because parts of the data were
not received. It is cleared when RXRDY is cleared.

Note: Only valid for isochronous transfers.

0R/W0CINCRX0

February 24, 2009842
Preliminary

Universal Serial Bus (USB) Controller

Register 69: USB Receive Byte Count Endpoint 1 (USBRXCOUNT1), offset
0x118
Register 70: USB Receive Byte Count Endpoint 2 (USBRXCOUNT2), offset
0x128
Register 71: USB Receive Byte Count Endpoint 3 (USBRXCOUNT3), offset
0x138

Host

Device

Note: The value returned changes as the FIFO is unloaded and is only valid while the RXRDY bit
in the USBRXCSRLn register is set.

USBRXCount1 is a 16-bit read-only register that holds the number of data bytes in the packet
currently in line to be read from the receive FIFO. If the packet is transmitted as multiple bulk packets,
the number given is for the combined packet.

USB Receive Byte Count Endpoint 1 (USBRXCOUNT1)
Base 0x4005.0000
Offset 0x118
Type RO, reset 0x0000

0123456789101112131415

COUNTreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:13

Receive Packet Count

Number of bytes in the receive packet.

0x00ROCOUNT12:0

843February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 72: USB Host Transmit Configure Type Endpoint 1 (USBTXTYPE1),
offset 0x11A
Register 73: USB Host Transmit Configure Type Endpoint 2 (USBTXTYPE2),
offset 0x12A
Register 74: USB Host Transmit Configure Type Endpoint 3 (USBTXTYPE3),
offset 0x13A

Host
USBTXTYPE1 is an 8-bit register that should be written with the endpoint number to be targeted
by the endpoint, the transaction protocol to use for the currently selected transmit endpoint, and its
operating speed.

USB Host Transmit Configure Type Endpoint 1 (USBTXTYPE1)
Base 0x4005.0000
Offset 0x11A
Type R/W, reset 0x00

01234567

TEPPROTOSPEED

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Operating Speed

Operating speed of the target device when the core is configured with
the hub option:

DescriptionValue

Default

The target is assumed to be using the same connection speed
as the core.

00

Reserved01

Full10

Low

When the core is not configured with the hub option, these bits
should not be accessed

11

0x00R/WSPEED7:6

Protocol

The CPU should set this to select the required protocol for the transmit
endpoint:

DescriptionValue

Control00

Isochronous01

Bulk10

Interrupt11

0x00R/WPROTO5:4

February 24, 2009844
Preliminary

Universal Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

Target Endpoint Number

The CPU should set this value to the endpoint number contained in the
transmit endpoint descriptor returned to the USB controller during device
enumeration.

0x00R/WTEP3:0

845February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 75: USB Host Transmit Interval Endpoint 1 (USBTXINTERVAL1),
offset 0x11B
Register 76: USB Host Transmit Interval Endpoint 2 (USBTXINTERVAL2),
offset 0x12B
Register 77: USB Host Transmit Interval Endpoint 3 (USBTXINTERVAL3),
offset 0x13B

Host
USBTXINTERVALn is an 8-bit register that, for interrupt and isochronous transfers, defines the
polling interval for the currently selected transmit endpoint. For bulk endpoints, this register sets the
number of frames after which the endpoint should time out on receiving a stream of NAK responses.

The USBTXINTERVALn register value defines a number of frames, as follows:

InterpretationValid values (m)SpeedTransfer Type

Polling interval is m frames.1 – 255Low-Speed or Full-SpeedInterrupt

Polling interval is 2(m-1) frames.1 – 16Full-SpeedIsochronous

NAK Limit is 2(m-1) frames. A value of 0 or 1 disables the NAK
timeout function.

2 – 16Full-SpeedBulk

USB Host Transmit Interval Endpoint 1 (USBTXINTERVAL1)
Base 0x4005.0000
Offset 0x11B
Type R/W, reset 0x00

01234567

TXPOLL / NAKLMT

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

TX Polling / NAK Limit

Polling interval for interrupt/isochronous transfers; NAK limit for bulk
transfers.

0x00R/WTXPOLL / NAKLMT7:0

February 24, 2009846
Preliminary

Universal Serial Bus (USB) Controller

Register 78: USB Host Configure Receive Type Endpoint 1 (USBRXTYPE1),
offset 0x11C
Register 79: USB Host Configure Receive Type Endpoint 2 (USBRXTYPE2),
offset 0x12C
Register 80: USB Host Configure Receive Type Endpoint 3 (USBRXTYPE3),
offset 0x13C

Host
USBRXTYPE1 is an 8-bit register that should be written with the endpoint number to be targeted
by the endpoint, the transaction protocol to use for the currently selected receive endpoint, and its
operating speed.

USB Host Configure Receive Type Endpoint 1 (USBRXTYPE1)
Base 0x4005.0000
Offset 0x11C
Type R/W, reset 0x00

01234567

TEPPROTOSPEED

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

Operating Speed

Operating speed of the target device when the core is configured with
the hub option.

DescriptionValue

Default

The target is assumed to be using the same connection speed
as the core.

00

Reserved01

Full10

Low

When the core is not configured with the hub option, these bits
should not be accessed.

11

0x00R/WSPEED7:6

Protocol

The CPU should set this to select the required protocol for the receive
endpoint:

DescriptionValue

Control00

Isochronous01

Bulk10

Interrupt11

0x00R/WPROTO5:4

847February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Target Endpoint Number

The CPU should set this value to the endpoint number contained in the
receive endpoint descriptor returned to the USB controller during device
enumeration.

0x00R/WTEP3:0

February 24, 2009848
Preliminary

Universal Serial Bus (USB) Controller

Register 81: USB Host Receive Polling Interval Endpoint 1
(USBRXINTERVAL1), offset 0x11D
Register 82: USB Host Receive Polling Interval Endpoint 2
(USBRXINTERVAL2), offset 0x12D
Register 83: USB Host Receive Polling Interval Endpoint 3
(USBRXINTERVAL3), offset 0x13D

Host
USBRXINTERVAL1 is an 8-bit register that, for interrupt and isochronous transfers, defines the
polling interval for the currently selected receive endpoint. For bulk endpoints, this register sets the
number of frames after which the endpoint should time out on receiving a stream of NAK responses.
The value that is set defines the number of frames, as follows:

InterpretationValid Values (m)SpeedTransfer Type

Polling interval is m frames.1 – 255Low-Speed or Full-SpeedInterrupt

Polling interval is 2(m-1) frames.1 – 16Full-SpeedIsochronous

NAK Limit is 2(m-1) frames.

Note: A value of 0 or 1 disables the NAK timeout
function.

2 – 16Full-SpeedBulk

USB Host Receive Polling Interval Endpoint 1 (USBRXINTERVAL1)
Base 0x4005.0000
Offset 0x11D
Type R/W, reset 0x00

01234567

TXPOLL / NAKLMT

R/WR/WR/WR/WR/WR/WR/WR/WType
00000000Reset

DescriptionResetTypeNameBit/Field

RX Polling / NAK Limit

Polling interval for interrupt/isochronous transfers; NAK limit for bulk
transfers.

0x00R/WTXPOLL / NAKLMT7:0

849February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 84: USB Request Packet Count in Block Transfer Endpoint 1
(USBRQPKTCOUNT1), offset 0x304
Register 85: USB Request Packet Count in Block Transfer Endpoint 2
(USBRQPKTCOUNT2), offset 0x308
Register 86: USB Request Packet Count in Block Transfer Endpoint 3
(USBRQPKTCOUNT3), offset 0x30C

Host
This 16-bit read/write register is used in Host mode to specify the number of packets that are to be
transferred in a block transfer of one or more bulk packets to receive endpoint n. The core uses the
value recorded in this register to determine the number of requests to issue where the AUTORQ bit
in the USBRXCSRHn register has been set. See “IN Transactions as a Host” on page 779.

Note: Multiple packets combined into a single bulk packet within the FIFO count as one packet.

USB Request Packet Count in Block Transfer Endpoint 1 (USBRQPKTCOUNT1)
Base 0x4005.0000
Offset 0x304
Type R/W, reset 0x0000

0123456789101112131415

COUNT

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Block Transfer Packet Count

Sets the number of packets of size MaxP that are to be transferred in
a block transfer.

Note: This is only used in Host mode when AUTORQ is set. The bit
has no effect in Device mode or when AUTORQ is not set.

0x00R/WCOUNT15:0

February 24, 2009850
Preliminary

Universal Serial Bus (USB) Controller

Register 87: USBReceiveDouble Packet Buffer Disable (USBRXDPKTBUFDIS),
offset 0x340

Host

Device

USBRXDPKTBUFDIS is a 16-bit register that indicates which of the receive endpoints have disabled
the double-packet buffer functionality (see the section called “Double-Packet Buffering” on page 775).

Note: Bits relating to endpoints that have not been configured may be asserted by writing a 1 to
their respective register; however the disable bit will have no observable effect.

USB Receive Double Packet Buffer Disable (USBRXDPKTBUFDIS)
Base 0x4005.0000
Offset 0x340
Type R/W, reset 0x0000

0123456789101112131415

reservedEP1EP2EP3reserved

ROR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

EP3 RX Double-Packet Buffer Disable0R/WEP33

EP2 RX Double-Packet Buffer Disable0R/WEP22

EP1 RX Double-Packet Buffer Disable0R/WEP11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

851February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 88: USB Transmit Double Packet Buffer Disable
(USBTXDPKTBUFDIS), offset 0x342

Host

Device

USBTXDPKTBUFDIS is a 16-bit register that indicates which of the transmit endpoints have disabled
the double-packet buffer functionality (see the section called “Double-Packet Buffering” on page 774).

Note: Bits relating to endpoints that have not been configured may be asserted by writing a 1 their
respective register; however, the disable bit will have no observable effect.

USB Transmit Double Packet Buffer Disable (USBTXDPKTBUFDIS)
Base 0x4005.0000
Offset 0x342
Type R/W, reset 0x0000

0123456789101112131415

reservedEP1EP2EP3reserved

ROR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

EP3 TX Double-Packet Buffer Disable0R/WEP33

EP2 TX Double-Packet Buffer Disable0R/WEP22

EP1 TX Double-Packet Buffer Disable0R/WEP11

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009852
Preliminary

Universal Serial Bus (USB) Controller

Register 89: USB External Power Control (USBEPC), offset 0x400

Host

Device

OTG

USBEPC is instantiated in a USB unit in a wrapper around the USB controller/PHY IP. This 32-bit
register specifies the function of the two-pin external power interface (USB0EPEN and USB0PFLT).
The assertion of the power fault input may generate an automatic action, as controlled by the
hardware configuration registers. The automatic action is necessary since the fault condition may
require a response faster than one provided by firmware.

USB External Power Control (USBEPC)
Base 0x4005.0000
Offset 0x400

Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

EPENEPENDEreservedPFLTENPFLTSENPFLTAENreservedPFLTACTreserved

R/WR/WR/WROR/WR/WR/WROR/WR/WROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:10

Power Fault Action

Specifies how the USB0EPEN signal is changed when detecting a USB
power fault.

DescriptionValue

Unchanged

USB0EPEN is controlled by the combination of the EPEN and
EPENDE bits.

0x0

Tristate

USB0EPEN is undriven (tristate).

0x1

Low

USB0EPEN driven Low.

0x2

High

USB0EPEN driven High.

0x3

0x00R/WPFLTACT9:8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved7

853February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Power Fault Action Enable

Specifies whether a USB power fault triggers any automatic corrective
action regarding the driven state of the USB0EPEN signal.

DescriptionValue

Disabled

USB0EPEN is controlled by the combination of the EPEN and
EPENDE bits.

0

Enabled

The USB0EPEN output is automatically changed to the state as
specified in the PFLTACT field.

1

0R/WPFLTAEN6

Power Fault Sense

Specifies the logical sense of the USB0PFLT input signal that indicates
an error condition.

The complementary state is the inactive state.

DescriptionValue

Low Fault

If USB0PFLT is driven Low, the power fault is signaled internally
(if enabled).

0

High Fault

If USB0PFLT is driven High, the power fault is signaled internally
(if enabled).

1

0R/WPFLTSEN5

Power Fault Input Enable

Specifies whether the USB0PFLT input signal is used in internal logic.

DescriptionValue

Not Used

The USB0PFLT signal is ignored.

0

Used

The USB0PFLT signal is used internally.

1

0R/WPFLTEN4

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved3

February 24, 2009854
Preliminary

Universal Serial Bus (USB) Controller

DescriptionResetTypeNameBit/Field

EPEN Drive Enable

Specifies whether the USB0EPEN signal is driven or undriven (tristate).
When driven, the signal value is specified by the EPEN bit. When not
driven, the EPEN bit is ignored and the USB0EPEN signal is placed in a
high-impedance state.

DescriptionValue

Not Driven

The USB0EPEN signal is high impedance.

0

Driven

The USB0EPEN signal is driven to the logical value specified by
the EPEN bit value.

1

The USB0EPEN is undriven at reset since the sense of the external power
supply enable is unknown. By adding high-impedance state, system
designers may bias the power supply enable to the disabled state using
a large resistor (100 kΩ) and later configure and drive the output signal
to enable the power supply.

0R/WEPENDE2

External Power Supply Enable Configuration

Specifies and controls the logical value driven on the USB0EPEN signal.

DescriptionValue

Power Enable Active Low

The USB0EPEN signal is driven Low if EPENDE is 1.

0x0

Power Enable Active High

The USB0EPEN signal is driven High if EPENDE is 1.

0x1

Power Enable High if VBUS Low

The USB0EPEN signal is driven High when the A device is not
recognized.

0x2

Power Enable High if VBUS High

The USB0EPEN signal is driven High when the A device is
recognized.

0x3

0x00R/WEPEN1:0

855February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 90: USB External Power Control Raw Interrupt Status (USBEPCRIS),
offset 0x404

Host

Device

USBEPCRIS is instantiated in a USB unit in a wrapper around the USB controller/PHY IP. This
32-bit register specifies the unmasked interrupt status of the two-pin external power interface.

USB External Power Control Raw Interrupt Status (USBEPCRIS)
Base 0x4005.0000
Offset 0x404

Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PFreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

USB Power Fault Interrupt Status

Specifies the unmasked state of the power fault status. This bit is cleared
by writing a 1 to the PF bit in the USBEPCISC register.

DescriptionValue

The hardware has not detected a power fault.0

The hardware has detected a power fault.1

0ROPF0

February 24, 2009856
Preliminary

Universal Serial Bus (USB) Controller

Register 91: USB External Power Control Interrupt Mask (USBEPCIM), offset
0x408

Host

Device

USBEPCIM is instantiated in a USB unit in a wrapper around the USB controller/PHY IP. This 32-bit
register specifies the interrupt mask of the two-pin external power interface.

USB External Power Control Interrupt Mask (USBEPCIM)
Base 0x4005.0000
Offset 0x408

Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PFreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

USB Power Fault Interrupt Mask

Specifies whether a detected power fault generates an interrupt.

DescriptionValue

No Interrupt

The hardware does not generate an interrupt on detected power
fault.

0

Interrupt

The hardware generates an interrupt on detected power fault.

1

0R/WPF0

857February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 92: USB External Power Control Interrupt Status and Clear
(USBEPCISC), offset 0x40C

Host

Device

USBEPCISC is instantiated in a USB unit in a wrapper around the USB controller/PHY IP. This
32-bit register specifies the masked interrupt status of the two-pin external power interface. It also
provides a method to clear the interrupt state.

USB External Power Control Interrupt Status and Clear (USBEPCISC)
Base 0x4005.0000

Offset 0x40C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PFreserved

R/W1CROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

USB Power Fault Interrupt Status and Clear

Specifies whether a detected power fault has generated an interrupt.

DescriptionValue

No Interrupt

The hardware has not generated an interrupt for a detected
power fault condition.

0

Interrupt

The hardware has generated an interrupt for a detected power
fault condition.

1

Writing a 1 to this bit clears it and the USBEPCRIS PF bit. This bit is
set if the USBEPCRIS PF bit is set (by hardware) and the USBEPCIM
PF bit is set.

0R/W1CPF0

February 24, 2009858
Preliminary

Universal Serial Bus (USB) Controller

Register 93: USB Device Resume Raw Interrupt Status (USBDRRIS), offset
0x410

Host

Device

OTG

The USBDRRIS 32-bit register is the raw interrupt status register. On a read, this register gives the
current raw status value of the corresponding interrupt prior to masking. A write has no effect.

USB Device Resume Raw Interrupt Status (USBDRRIS)
Base 0x4005.0000
Offset 0x410
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RESUMEreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Resume Interrupt Status

Specifies the unmasked state of the resume status. This bit is cleared
by writing a 1 to the RESUME bit in the USBDRISC register.

DescriptionValue

The hardware has not detected a Resume.0

The hardware has detected a Resume.1

0RORESUME0

859February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 94: USB Device Resume Interrupt Mask (USBDRIM), offset 0x414

Host

Device

OTG

The USBDRIM 32-bit register is the masked interrupt status register. On a read, this register gives
the current masked status value of the corresponding interrupt. A write has no effect.

USB Device Resume Interrupt Mask (USBDRIM)
Base 0x4005.0000
Offset 0x414
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RESUMEreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Resume Interrupt Mask

Specifies whether a detected Resume generates an interrupt.

DescriptionValue

No Interrupt

The hardware does not generate an interrupt on detected
Resume.

0

Interrupt

The hardware generates an interrupt on detected Resume. This
should only be enabled when a suspend has been detected
(Suspend bit in USBIS register).

1

0R/WRESUME0

February 24, 2009860
Preliminary

Universal Serial Bus (USB) Controller

Register 95: USB Device Resume Interrupt Status and Clear (USBDRISC),
offset 0x418

Host

Device

OTG

The USBDRISC 32-bit register is the interrupt clear register. On a write of 1, the corresponding
interrupt is cleared. A write of 0 has no effect.

USB Device Resume Interrupt Status and Clear (USBDRISC)
Base 0x4005.0000
Offset 0x418
Type W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RESUMEreserved

R/W1CROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Resume Interrupt Status and Clear

Specifies whether a detected Resume has generated an interrupt.

DescriptionValue

No Interrupt

The hardware has not generated an interrupt for a detected
Resume.

0

Interrupt

The hardware has generated an interrupt for a detected
Resume.

1

Writing a 1 to this bit clears it and the USBDRRIS RESUME bit. This bit
is set if the USBDRRIS RESUME bit is set (by hardware) and the
USBEDRIM RESUME bit is set.

0R/W1CRESUME0

861February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 96: USB VBUS Droop Control (USBVDC), offset 0x430

OTG

Host

This 32-bit register enables a controlled masking of VBUS to compensate for any in-rush current
by a device that is connected to the host controller. The in-rush current can cause VBUS to droop,
causing the USB controller's behavior to be unexpected. The USB host controller allows VBUS to
fall lower than the VBusValid level (4.5 V) but not below AValid (2.0 V) for 65 microseconds without
signaling a VBUSERR interrupt in the controller. Without this, any glitch on VBUS would force the
USB host controller to remove power from VBUS and then re-enumerate the device.

USB VBUS Droop Control (USBVDC)
Base 0x4005.0000
Offset 0x430
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

VBDENreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

VBUS Droop Enable

When enabled, the VBUS indicator to the controller will mask any
changes from VBUSVALID when VBUS goes below 4.5 V but not lower
than 2.0 V for 65 microseconds. During this time, the VBUS state will
indicate VBUSVALID.

0x0R/WVBDEN0

February 24, 2009862
Preliminary

Universal Serial Bus (USB) Controller

Register 97: USB VBUS Droop Control Raw Interrupt Status (USBVDCRIS),
offset 0x434

OTG

Host

This 32-bit register specifies the unmasked interrupt status of the VBUS droop limit of 65
microseconds.

USB VBUS Droop Control Raw Interrupt Status (USBVDCRIS)
Base 0x4005.0000
Offset 0x434

Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

VDreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

VBUS Droop Raw Interrupt Status

Specifies the unmasked state of the VBUS droop status. This bit is
cleared by writing a 1 to the VD bit in the USBVDCISC register.

DescriptionValue

The hardware has not detected a VBUS droop for 65
microseconds.

0

The hardware has detected a VBUS droop for 65 microseconds.1

0ROVD0

863February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 98: USB VBUS Droop Control Interrupt Mask (USBVDCIM), offset
0x438

OTG

Host

This 32-bit register specifies the interrupt mask of the VBUS droop.

USB VBUS Droop Control Interrupt Mask (USBVDCIM)
Base 0x4005.0000
Offset 0x438
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

VDreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

VBUS Droop Interrupt Mask

Specifies whether a detected VBUS droop generates an interrupt.

DescriptionValue

No Interrupt

The hardware does not generate an interrupt on detected VBUS
droop.

0

Interrupt

The hardware generates an interrupt on detected VBUS droop.

1

0R/WVD0

February 24, 2009864
Preliminary

Universal Serial Bus (USB) Controller

Register 99: USB VBUS Droop Control Interrupt Status and Clear
(USBVDCISC), offset 0x43C

OTG

Host

This 32-bit register specifies the masked interrupt status of the VBUS droop. It also provides a
method to clear the interrupt state.

USB VBUS Droop Control Interrupt Status and Clear (USBVDCISC)
Base 0x4005.0000
Offset 0x43C

Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

VDreserved

R/W1CROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

VBUS Droop Interrupt Status and Clear

Specifies whether a detected VBUS droop has generated an interrupt.

DescriptionValue

No Interrupt

The hardware has not generated an interrupt for a detected
VBUS droop condition.

0

Interrupt

The hardware has generated an interrupt for a detected VBUS
droop condition.

1

Writing a 1 to this bit clears it and the USBVDCRIS VD bit. This bit is
set if the USBVDCRIS VD bit is set (by hardware) and the USBVDCIM
VD bit is set.

0R/W1CVD0

865February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 100: USB ID Valid Detect Raw Interrupt Status (USBIDVRIS), offset
0x444

OTG
This 32-bit register specifies whether the unmasked interrupt status of the ID value is valid.

USB ID Valid Detect Raw Interrupt Status (USBIDVRIS)
Base 0x4005.0000
Offset 0x444
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IDreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

ID Valid Detect Raw Interrupt Status

Specifies the unmasked state of the ID valid detect. This bit is cleared
by writing a 1 to the ID bit in the USBIDVISC register.

DescriptionValue

The hardware has not detected an ID value .0

The hardware has detected an ID value.1

0ROID0

February 24, 2009866
Preliminary

Universal Serial Bus (USB) Controller

Register 101: USB ID Valid Detect Interrupt Mask (USBIDVIM), offset 0x448

OTG
This 32-bit register specifies the interrupt mask of the ID valid detection.

USB ID Valid Detect Interrupt Mask (USBIDVIM)
Base 0x4005.0000
Offset 0x448
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IDreserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

ID Valid Detect Interrupt Mask

Specifies whether a detected ID valid detect generates an interrupt.

DescriptionValue

No Interrupt

The hardware does not generate an interrupt on detected ID
valid.

0

Interrupt

The hardware generates an interrupt on detected ID valid.

1

0R/WID0

867February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 102: USB ID Valid Detect Interrupt Status and Clear (USBIDVISC),
offset 0x44C

OTG
This 32-bit register specifies the masked interrupt status of the ID valid detect. It also provides a
method to clear the interrupt state.

USB ID Valid Detect Interrupt Status and Clear (USBIDVISC)
Base 0x4005.0000
Offset 0x44C
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IDreserved

R/W1CROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

ID Valid Detect Interrupt Status and Clear

Specifies whether a detected ID Valid has generated an interrupt.

DescriptionValue

No Interrupt

The hardware has not generated an interrupt for a detected ID
Valid condition.

0

Interrupt

The hardware has generated an interrupt for a detected ID Valid
condition.

1

Writing a 1 to this bit clears it and the USBIDVRIS ID bit. This bit is set
if the USBIDVRIS ID bit is set (by hardware) and the USBIDVIM ID bit
is set.

0R/W1CID0

February 24, 2009868
Preliminary

Universal Serial Bus (USB) Controller

Register 103: USB End-Point Select (USBEPS), offset 0x450

Host

Device

OTG

This 32-bit register specifies which endpoints are mapped to the 6 allocated µDMA channels, see
Table 8-1 on page 228 for more information on channel assignments.

USB End-Point Select (USBEPS)
Base 0x4005.0000
Offset 0x450
Type R/W, reset 0x0000.0321

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DMAADMABDMACreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
1000010011000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

DMA C Select

Specifies the RX and TX mapping of the third USB endpoint on µDMA
channels 4 and 5 (primary assignment).

DescriptionValue

Endpoint 0 RX/TX0x0

Endpoint 1 RX/TX0x1

Endpoint 2 RX/TX0x2

Endpoint 3 RX/TX0x3

Endpoint 4 RX/TX0x4

Endpoint 5 RX/TX0x5

Endpoint 6 RX/TX0x6

Endpoint 7 RX/TX0x7

Endpoint 8 RX/TX0x8

Endpoint 9 RX/TX0x9

Endpoint 10 RX/TX0x10

Endpoint 11 RX/TX0x11

Endpoint 12 RX/TX0x12

Endpoint 13 RX/TX0x13

Endpoint 14 RX/TX0x14

Endpoint 15 RX/TX0x15

0x3R/WDMAC11:8

DMA B Select

Specifies the RX and TXmapping of the second USB endpoint on µDMA
channels 2 and 3 (primary assignment).

Same bit definitions as the DMAC field.

0x2R/WDMAB7:4

869February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

DMA A Select

Specifies the RX and TX mapping of the first USB endpoint on µDMA
channels 0 and 1 (primary assignment).

Same bit definitions as the DMAC field.

0x1R/WDMAA3:0

February 24, 2009870
Preliminary

Universal Serial Bus (USB) Controller

21 Analog Comparators
An analog comparator is a peripheral that compares two analog voltages, and provides a logical
output that signals the comparison result.

Note: Not all comparators have the option to drive an output pin.

The comparator can provide its output to a device pin, acting as a replacement for an analog
comparator on the board, or it can be used to signal the application via interrupts or triggers to the
ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering
logic is separate. This means, for example, that an interrupt can be generated on a rising edge and
the ADC triggered on a falling edge.

The Stellaris® Analog Comparators module has the following features:

■ Compare external pin input to external pin input or to internal programmable voltage reference

■ Compare a test voltage against any one of these voltages

– An individual external reference voltage

– A shared single external reference voltage

– A shared internal reference voltage

871February 24, 2009
Preliminary

LM3S9B92 Microcontroller

21.1 Block Diagram

Figure 21-1. Analog Comparator Module Block Diagram

C2+

C2-

output

+ve input (alternate)

+ve input

interrupt

-ve input

reference input

Comparator 2

ACSTAT2

ACCTL2

C1-

C1+ output

+ve input (alternate)

+ve input

interrupt

-ve input

reference input

Comparator 1

ACSTAT1

ACCTL1

<none>

Voltage
Ref

ACREFCTL

output

+ve input (alternate)

+ve input

interrupt

-ve input

reference input

Comparator 0

ACSTAT0

ACCTL0

C0+

internal
bus

C0-

C0o

<none>

triggertrigger

trigger trigger

trigger trigger

Interrupt Control

ACRIS

ACMIS

ACINTEN

interrupt

21.2 Functional Description
Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module)

for the analog input pin be disabled to prevent excessive current draw from the I/O
pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1
VIN- > VIN+, VOUT = 0

As shown in Figure 21-2 on page 873, the input source for VIN- is an external input. In addition to
an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.

February 24, 2009872
Preliminary

Analog Comparators

Figure 21-2. Structure of Comparator Unit

ACCTL

CINV

in
te
rn
al

bu
s

in
te
rr
up
t

tri
gg
er

TrigGen

output

ACSTAT

IntGen

- ve input

1
alternate+ ve input ()

0
+ ve input

2
reference input

A comparator is configured through two status/control registers (ACCTL andACSTAT). The internal
reference is configured through one control register (ACREFCTL). Interrupt status and control is
configured through three registers (ACMIS, ACRIS, and ACINTEN).

Typically, the comparator output is used internally to generate controller interrupts. It may also be
used to drive an external pin or generate an analog-to-digital converter (ADC) trigger.

Important: The ASRCP bits in the ACCTLn register must be set before using the analog
comparators.

21.2.1 Internal Reference Programming
The structure of the internal reference is shown in Figure 21-3 on page 873. This is controlled by a
single configuration register (ACREFCTL). Table 21-1 on page 873 shows the programming options
to develop specific internal reference values, to compare an external voltage against a particular
voltage generated internally (VIREF).

Figure 21-3. Comparator Internal Reference Structure

8R R R

8R

R
•••

•••
0

Decoder

115 14

VDDA

EN

internal
reference
VIREFVREF

RNG

Table 21-1. Internal Reference Voltage and ACREFCTL Field Values

Output Reference Voltage Based on VREF Field ValueACREFCTL Register

RNG Bit ValueEN Bit Value

0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0
for the least noisy ground reference.

RNG=XEN=0

873February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Output Reference Voltage Based on VREF Field ValueACREFCTL Register

RNG Bit ValueEN Bit Value

Total resistance in ladder is 31 R.

The range of internal reference in this mode is 0.85-2.448 V.

RNG=0EN=1

Total resistance in ladder is 23 R.

The range of internal reference for this mode is 0-2.152 V.

RNG=1

21.3 Initialization and Configuration
The following example shows how to configure an analog comparator to read back its output value
from an internal register.

1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the RCGC1 register
in the System Control module. See page 167.

2. In the GPIO module, enable the GPIO port/pin associated with C0- as a GPIO input.

3. Configure the internal voltage reference to 1.65 V by writing the ACREFCTL register with the
value 0x0000.030C.

4. Configure comparator 0 to use the internal voltage reference and to not invert the output by
writing the ACCTL0 register with the value of 0x0000.040C.

5. Delay for some time.

6. Read the comparator output value by reading the ACSTAT0 register’s OVAL value.

Change the level of the signal input on C0- to see the OVAL value change.

21.4 Register Map
Table 21-2 on page 875 lists the comparator registers. The offset listed is a hexadecimal increment
to the register’s address, relative to the Analog Comparator base address of 0x4003.C000. Note
that the analog comparator clock must be enabled before the registers can be programmed (see
page 167).

February 24, 2009874
Preliminary

Analog Comparators

Table 21-2. Analog Comparators Register Map

See
pageDescriptionResetTypeNameOffset

876Analog Comparator Masked Interrupt Status0x0000.0000R/W1CACMIS0x000

877Analog Comparator Raw Interrupt Status0x0000.0000ROACRIS0x004

878Analog Comparator Interrupt Enable0x0000.0000R/WACINTEN0x008

879Analog Comparator Reference Voltage Control0x0000.0000R/WACREFCTL0x010

880Analog Comparator Status 00x0000.0000ROACSTAT00x020

881Analog Comparator Control 00x0000.0000R/WACCTL00x024

880Analog Comparator Status 10x0000.0000ROACSTAT10x040

881Analog Comparator Control 10x0000.0000R/WACCTL10x044

880Analog Comparator Status 20x0000.0000ROACSTAT20x060

881Analog Comparator Control 20x0000.0000R/WACCTL20x064

21.5 Register Descriptions
The remainder of this section lists and describes the Analog Comparator registers, in numerical
order by address offset.

875February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000
This register provides a summary of the interrupt status (masked) of the comparator.

Analog Comparator Masked Interrupt Status (ACMIS)
Base 0x4003.C000
Offset 0x000
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IN0IN1IN2reserved

R/W1CR/W1CR/W1CROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Comparator 2 Masked Interrupt Status

Gives the masked interrupt state of this interrupt. Write 1 to this bit to
clear the pending interrupt.

0R/W1CIN22

Comparator 1 Masked Interrupt Status

Gives the masked interrupt state of this interrupt. Write 1 to this bit to
clear the pending interrupt.

0R/W1CIN11

Comparator 0 Masked Interrupt Status

Gives the masked interrupt state of this interrupt. Write 1 to this bit to
clear the pending interrupt.

0R/W1CIN00

February 24, 2009876
Preliminary

Analog Comparators

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004
This register provides a summary of the interrupt status (raw) of the comparator.

Analog Comparator Raw Interrupt Status (ACRIS)
Base 0x4003.C000
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IN0IN1IN2reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Comparator 2 Interrupt Status

When set, indicates that an interrupt has been generated by comparator
2.

0ROIN22

Comparator 1 Interrupt Status

When set, indicates that an interrupt has been generated by comparator
1.

0ROIN11

Comparator 0 Interrupt Status

When set, indicates that an interrupt has been generated by comparator
0.

0ROIN00

877February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008
This register provides the interrupt enable for the comparator.

Analog Comparator Interrupt Enable (ACINTEN)
Base 0x4003.C000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IN0IN1IN2reserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:3

Comparator 2 Interrupt Enable

When set, enables the controller interrupt from the comparator 2 output

0R/WIN22

Comparator 1 Interrupt Enable

When set, enables the controller interrupt from the comparator 1 output.

0R/WIN11

Comparator 0 Interrupt Enable

When set, enables the controller interrupt from the comparator 0 output.

0R/WIN00

February 24, 2009878
Preliminary

Analog Comparators

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset
0x010
This register specifies whether the resistor ladder is powered on as well as the range and tap.

Analog Comparator Reference Voltage Control (ACREFCTL)
Base 0x4003.C000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

VREFreservedRNGENreserved

R/WR/WR/WR/WROROROROR/WR/WROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:10

Resistor Ladder Enable

The EN bit specifies whether the resistor ladder is powered on. If 0, the
resistor ladder is unpowered. If 1, the resistor ladder is connected to
the analog VDD.

This bit is reset to 0 so that the internal reference consumes the least
amount of power if not used and programmed.

0R/WEN9

Resistor Ladder Range

The RNG bit specifies the range of the resistor ladder. If 0, the resistor
ladder has a total resistance of 31 R. If 1, the resistor ladder has a total
resistance of 23 R.

0R/WRNG8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved7:4

Resistor Ladder Voltage Ref

The VREF bit field specifies the resistor ladder tap that is passed through
an analog multiplexer. The voltage corresponding to the tap position is
the internal reference voltage available for comparison. See Table
21-1 on page 873 for some output reference voltage examples.

0x00R/WVREF3:0

879February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020
Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x040
Register 7: Analog Comparator Status 2 (ACSTAT2), offset 0x060
These registers specify the current output value of the comparator.

Analog Comparator Status 0 (ACSTAT0)
Base 0x4003.C000
Offset 0x020
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedOVALreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:2

Comparator Output Value

The OVAL bit specifies the current output value of the comparator.

0ROOVAL1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009880
Preliminary

Analog Comparators

Register 8: Analog Comparator Control 0 (ACCTL0), offset 0x024
Register 9: Analog Comparator Control 1 (ACCTL1), offset 0x044
Register 10: Analog Comparator Control 2 (ACCTL2), offset 0x064
These registers configure the comparator’s input and output.

Analog Comparator Control 0 (ACCTL0)
Base 0x4003.C000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

reservedCINVISENISLVALTSENTSLVALreservedASRCPTOENreserved

ROR/WR/WR/WR/WR/WR/WR/WROR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

Trigger Output Enable

The TOEN bit enables the ADC event transmission to the ADC. If 0, the
event is suppressed and not sent to the ADC. If 1, the event is
transmitted to the ADC.

0R/WTOEN11

Analog Source Positive

The ASRCP field specifies the source of input voltage to the VIN+ terminal
of the comparator. The encodings for this field are as follows:

FunctionValue

Pin value0x0

Pin value of C0+0x1

Internal voltage reference0x2

Reserved0x3

0x00R/WASRCP10:9

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved8

Trigger Sense Level Value

The TSLVAL bit specifies the sense value of the input that generates
an ADC event if in Level Sense mode. If 0, an ADC event is generated
if the comparator output is Low. Otherwise, an ADC event is generated
if the comparator output is High.

0R/WTSLVAL7

881February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Trigger Sense

The TSEN field specifies the sense of the comparator output that
generates an ADC event. The sense conditioning is as follows:

FunctionValue

Level sense, see TSLVAL0x0

Falling edge0x1

Rising edge0x2

Either edge0x3

0x0R/WTSEN6:5

Interrupt Sense Level Value

The ISLVAL bit specifies the sense value of the input that generates
an interrupt if in Level Sense mode. If 0, an interrupt is generated if the
comparator output is Low. Otherwise, an interrupt is generated if the
comparator output is High.

0R/WISLVAL4

Interrupt Sense

The ISEN field specifies the sense of the comparator output that
generates an interrupt. The sense conditioning is as follows:

FunctionValue

Level sense, see ISLVAL0x0

Falling edge0x1

Rising edge0x2

Either edge0x3

0x0R/WISEN3:2

Comparator Output Invert

The CINV bit conditionally inverts the output of the comparator. If 0, the
output of the comparator is unchanged. If 1, the output of the comparator
is inverted prior to being processed by hardware.

0R/WCINV1

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved0

February 24, 2009882
Preliminary

Analog Comparators

22 Pulse Width Modulator (PWM)
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.
High-resolution counters are used to generate a square wave, and the duty cycle of the square
wave is modulated to encode an analog signal. Typical applications include switching power supplies
and motor control.

The Stellaris® PWMmodule consists of four PWM generator blocks and a control block. The control
block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals
(other than being based on the same timer and therefore having the same frequency) or a single
pair of complementary signals with dead-band delays inserted. The output of the PWM generation
blocks are managed by the output control block before being passed to the device pins.

The Stellaris® PWMmodule provides a great deal of flexibility. It can generate simple PWM signals,
such as those required by a simple charge pump. It can also generate paired PWM signals with
dead-band delays, such as those required by a half-H bridge driver. Three generator blocks can
also generate the full six channels of gate controls required by a 3-phase inverter bridge.

Each Stellaris® PWM module has the following features:

■ One 16-bit counter

– Runs in Down or Up/Down mode

– Output frequency controlled by a 16-bit load value

– Load value updates can be synchronized

– Produces output signals at zero and load value

■ Two PWM comparators

– Comparator value updates can be synchronized

– Produces output signals on match

■ PWM signal generator

– Output PWM signal is constructed based on actions taken as a result of the counter and
PWM comparator output signals

– Produces two independent PWM signals

■ Dead-band generator

– Produces two PWM signals with programmable dead-band delays suitable for driving a half-H
bridge

– Can be bypassed, leaving input PWM signals unmodified

■ Can initiate an ADC sample sequence

883February 24, 2009
Preliminary

LM3S9B92 Microcontroller

The control block determines the polarity of the PWM signals and which signals are passed through
to the pins. The output of the PWM generation blocks are managed by the output control block
before being passed to the device pins. The PWM control block has the following options:

■ PWM output enable of each PWM signal

■ Optional output inversion of each PWM signal (polarity control)

■ Optional fault handling for each PWM signal

■ Synchronization of timers in the PWM generator blocks

■ Synchronization of timer/comparator updates across the PWM generator blocks

■ Interrupt status summary of the PWM generator blocks

■ Extended fault capabilities with multiple fault signals, programmable polarities, and filtering

■ PWM generators can be operated independently or synchronized with other generators

22.1 Block Diagram
Figure 22-1 on page 884 provides the Stellaris® PWMmodule unit diagram and Figure 22-2 on page
885 provides a more detailed diagram of a Stellaris® PWM generator. The LM3S9B92 controller
contains four generator blocks (PWM0, PWM1, PWM2, and PWM3) and generates eight independent
PWM signals or four paired PWM signals with dead-band delays inserted.

Figure 22-1. PWM Unit Diagram

PWMINTEN

Interrupt

PWMRIS
PWMISC

PWMCTL

Control and
Status

PWMSYNC
PWMSTATUS

PWM
Generator 0

PWM
Generator 1

PWM
Generator 2

PWM
Generator 3

PWM 0

PWM 1

PWM 2

PWM 3

PWM 4

PWM 5

PWM 6

PWM 7

PWM

Output

Control

Logic

PWM Clock

System Clock

Interrupts

Triggers

PWM0_A

PWM0_B

PWM1_A

PWM1_B

PWM2_A

PWM2_B

PWM3_A

PWM3_B

PWM0_Fault

PWM1_Fault

PWM2_Fault

PWM3_Fault

Triggers / Faults

PWMENABLE

Output

PWMINVERT
PWMFAULT

PWMFAULTVAL

February 24, 2009884
Preliminary

Pulse Width Modulator (PWM)

Figure 22-2. PWM Module Block Diagram

PWMnCMPA
PWMnCMPB

PWMnLOAD
PWMnCOUNT

PWMnDBCTL
PWMnDBRISE
PWMnDBFALL

PWMnCTL

PWMnFLTSRC0
PWMnFLTSRC1

PWMnMINFLTPER
PWMnFLTSEN
PWMnFLTSTAT0
PWMnFLTSTAT1

PWM Clock

PWM Generator Block

PWMnGENA
PWMnGENB

PWMnINTEN

Interrupt and
Trigger

Generator

PWMnRIS
PWMnISC

Digital Trigger(s)

Fault(s)

PWMn_A

PWMn_B

Interrupts /
Triggers

PWMn_Fault

cmp A
cmp B

zero
load
dir

22.2 Functional Description

22.2.1 PWM Timer
The timer in each PWM generator runs in one of two modes: Count-Down mode or Count-Up/Down
mode. In Count-Down mode, the timer counts from the load value to zero, goes back to the load
value, and continues counting down. In Count-Up/Down mode, the timer counts from zero up to the
load value, back down to zero, back up to the load value, and so on. Generally, Count-Down mode
is used for generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used
for generating center-aligned PWM signals.

The timers output three signals that are used in the PWM generation process: the direction signal
(this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down
mode), a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width
High pulse when the counter is equal to the load value. Note that in Count-Down mode, the zero
pulse is immediately followed by the load pulse.

22.2.2 PWM Comparators
There are two comparators in each PWM generator that monitor the value of the counter; when
either match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/Down
mode, these comparators match both when counting up and when counting down; they are therefore
qualified by the counter direction signal. These qualified pulses are used in the PWM generation
process. If either comparator match value is greater than the counter load value, then that comparator
never outputs a High pulse.

Figure 22-3 on page 886 shows the behavior of the counter and the relationship of these pulses
when the counter is in Count-Downmode. Figure 22-4 on page 886 shows the behavior of the counter
and the relationship of these pulses when the counter is in Count-Up/Down mode.

885February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 22-3. PWM Count-Down Mode

Load

Zero

CompB

CompA

Load

Zero

B

A

Dir

ADown
BDown

Figure 22-4. PWM Count-Up/Down Mode
Load

Zero

CompB

CompA

Load

Zero

B

A

Dir

BUp
AUp ADown

BDown

22.2.3 PWM Signal Generator
The PWM generator takes these pulses (qualified by the direction signal), and generates two PWM
signals. In Count-Down mode, there are four events that can affect the PWM signal: zero, load,
match A down, and match B down. In Count-Up/Down mode, there are six events that can affect
the PWM signal: zero, load, match A down, match A up, match B down, and match B up. The match
A or match B events are ignored when they coincide with the zero or load events. If the match A
and match B events coincide, the first signal, PWMA, is generated based only on the match A event,
and the second signal, PWMB, is generated based only on the match B event.

For each event, the effect on each output PWM signal is programmable: it can be left alone (ignoring
the event), it can be toggled, it can be driven Low, or it can be driven High. These actions can be
used to generate a pair of PWM signals of various positions and duty cycles, which do or do not
overlap. Figure 22-5 on page 887 shows the use of Count-Up/Down mode to generate a pair of
center-aligned, overlapped PWM signals that have different duty cycles.

February 24, 2009886
Preliminary

Pulse Width Modulator (PWM)

Figure 22-5. PWM Generation Example In Count-Up/Down Mode
Load

Zero

CompB

CompA

PWMB

PWMA

In this example, the first generator is set to drive High on match A up, drive Low on match A down,
and ignore the other four events. The second generator is set to drive High on match B up, drive
Low on match B down, and ignore the other four events. Changing the value of comparator A
changes the duty cycle of the PWMA signal, and changing the value of comparator B changes the
duty cycle of the PWMB signal.

22.2.4 Dead-Band Generator
The two PWM signals produced by the PWM generator are passed to the dead-band generator. If
disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is
lost and two PWM signals are generated based on the first PWM signal. The first output PWM signal
is the input signal with the rising edge delayed by a programmable amount. The second output
PWM signal is the inversion of the input signal with a programmable delay added between the falling
edge of the input signal and the rising edge of this new signal.

This is therefore a pair of active High signals where one is always High, except for a programmable
amount of time at transitions where both are Low. These signals are therefore suitable for driving
a half-H bridge, with the dead-band delays preventing shoot-through current from damaging the
power electronics. Figure 22-6 on page 887 shows the effect of the dead-band generator on an input
PWM signal.

Figure 22-6. PWM Dead-Band Generator

Input

PWMA

PWMB

Rising Edge
Delay

Falling Edge
Delay

22.2.5 Interrupt/ADC-Trigger Selector
The PWM generator also takes the same four (or six) counter events and uses them to generate
an interrupt or an ADC trigger. Any of these events or a set of these events can be selected as a
source for an interrupt; when any of the selected events occur, an interrupt is generated. Additionally,
the same event, a different event, the same set of events, or a different set of events can be selected
as a source for an ADC trigger; when any of these selected events occur, an ADC trigger pulse is
generated. The selection of events allows the interrupt or ADC trigger to occur at a specific position
within the PWM signal. Note that interrupts and ADC triggers are based on the raw events; delays
in the PWM signal edges caused by the dead-band generator are not taken into account.

887February 24, 2009
Preliminary

LM3S9B92 Microcontroller

22.2.6 Synchronization Methods
The PWM unit provides four PWM generators providing eight PWM outputs that may be used in a
wide variety of applications. Generally speaking, this falls into combinations of two categories of
operation:

■ Unsynchronized. The PWMgenerator and its two output signals are used by itself, independent
of other PWM generators.

■ Synchronized. The PWM generator and its two outputs signals are used in conjunction with
other PWM generators using a common, unified time base.

If multiple PWM generators are configured with the same counter load value, this can be used to
guarantee that they also have the same count value (this does imply that the PWM generators must
be configured before they are synchronized). With this, more than two PWM signals can be produced
with a known relationship between the edges of those signals since the counters always have the
same values. Other states in the unit provide mechanisms to maintain the common time base and
mutual synchronization.

The counter in a PWM unit generator can be reset to zero by writing the PWM Time Base Sync
(PWMSYNC) register and setting the Sync bit associated with the generator. Multiple PWM
generators can be synchronized together by setting all necessary Sync bits in one access. For
example, setting the Sync0 and Sync1 bits in the PWMSYNC register causes the counters in PWM
generators 0 and 1 to reset together.

Additionally, the state of a PWM unit is affected by writing to the registers of the PWM unit and the
PWMunits' generators, which has an effect on the synchronization betweenmultiple PWMgenerators.
Depending on the register accessed, the register state is updated in one of the following three ways:

■ Immediately. The write value has immediate effect, and the hardware reacts immediately.

■ Locally Synchronized. The write value does not affect the logic until the counter reaches the
value zero. In this case, the effect of the write is deferred until the end of the PWM cycle (when
the counter reaches zero). By waiting for the counter to reach zero, a guaranteed behavior is
defined, and overly short or overly long output PWM pulses are prevented.

■ Globally Synchronized. The write value does not affect the logic until two sequential events
have occurred: (1) the global synchronization bit applicable to the generator is set, and (2) the
counter reaches zero. In this case, the effect of the write is deferred until the end of the PWM
cycle (when the counter reaches zero) following the end of all updates. This mode allows multiple
items in multiple PWM generators to be updated simultaneously without odd effects during the
update; everything runs from the old values until a point at which they all run from the new values.
The Update mode of the load and comparator match values can be individually configured in
each PWM generator block. It typically makes sense to use the synchronous update mechanism
across PWM generator blocks when the timers in those blocks are synchronized, although this
is not required in order for this mechanism to function properly.

The following registers provide either local or global synchronization based on the state of the
PWMnCTL register Update bit value:

■ Generator Registers: PWMnLOAD, PWMnCMPA, and PWMnCMPB

The following registers are provided with the optional functionality of synchronously updating rather
than having all updates take immediate effect. The default update mode is immediate.

February 24, 2009888
Preliminary

Pulse Width Modulator (PWM)

■ Module-Level Register: PWMENABLE

■ Generator Register: PWMnGENA, PWMnGENB, PWMnDBCTL, PWMnDBRISE, and
PWMnDBFALL.

All other registers are considered statically provisioned for the execution of an application or are
used dynamically for purposes unrelated to maintaining synchronization, and therefore, do not need
synchronous update functionality.

22.2.7 Fault Conditions
A fault condition is one in which the controller must be signaled to stop normal PWM function and
then sets the outputs to a safe state. There are two basic situations where this becomes necessary:

■ The controller is stalled and cannot perform the necessary computation in the time required for
motion control

■ An external error or event is detected, such as an error

The PWM unit can use the following inputs to generate a fault condition, including:

■ FAULTn pin assertion

■ A stall of the controller generated by the debugger

■ The trigger of an ADC digital comparator

Fault conditions are calculated on a per-PWM generator basis. Each PWM generator configures
the necessary conditions to indicate a fault condition exists. This method allows the development
of applications with dependent and independent control.

Each PWM generator's mode control, including fault condition handling, is provided in the PWMnCTL
register. This register determines whether a single FAULT0 input is used (as previous Stellaris®

products support) or whether all FAULTn input signals may be used to generate a fault condition.
This register allows the fault condition duration to last as long as the external condition lasts, or it
may specify that the external condition be latched and the fault condition (and its effects) last until
cleared by software. Finally, this register also enables a counter that may be used to extend the
period of a fault condition for external events to assure that the duration is a minimum length. The
minimum fault period count is specified in the PWMnMINFLTPER register.

These PWM generator registers provide status, control, and configure the fault condition in each
PWM generator: PWMnFLTSRC0, PWMnFLTSRC1, PWMnFLTSTAT0, PWMnFLTSTAT1, and
PWMnFLTSEN.

There are up to four FAULT input pins (FAULT0-FAULT3). These pins may be used with circuits that
generate an active High or active Low signal to indicate an error condition. Each of the FAULTn pins
may be individually programmed for this logic sense using the PWMnFLTSEN register.

The PWMnFLTSRC0 and PWMnFLTSRC1 registers define the contribution of the external fault
sources. Using these registers, individual or groups of FAULTn signals are ORed together to specify
the external fault generating conditions.

Status regarding the specific fault cause is provided in PWMnFLTSTAT0 and PWMnFLTSTAT1.

PWM generator fault conditions may be promoted to a controller interrupt using the PWMINTEN
register.

889February 24, 2009
Preliminary

LM3S9B92 Microcontroller

During fault conditions, the PWM output signals usually require being driven to safe values so that
external equipment may be safely controlled. To facilitate this, the PWMFAULT register is used to
determine if the generated signal continues to be passed driven, or a specific fault condition encoding
is driven on the PWM output, as specified in the PWMFAULTVAL register.

22.2.8 Output Control Block
With each PWM generator block producing two raw PWM signals, the output control block takes
care of the final conditioning of the PWM signals before they go to the pins. Via a single register,
the set of PWM signals that are actually enabled to the pins can be modified; this can be used, for
example, to perform commutation of a brushless DC motor with a single register write (and without
modifying the individual PWM generators, which are modified by the feedback control loop). Similarly,
fault control can disable any of the PWM signals as well. A final inversion can be applied to any of
the PWM signals, making them active Low instead of the default active High.

22.3 Initialization and Configuration
The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and
with a 25% duty cycle on the PWM0 pin and a 75% duty cycle on the PWM1 pin. This example assumes
the system clock is 20 MHz.

1. Enable the PWM clock by writing a value of 0x0010.0000 to the RCGC0 register in the System
Control module. See page 158.

2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control
module. See page 179.

3. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register.

4. Configure the Run-Mode Clock Configuration (RCC) register in the System Control module
to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).

5. Configure the PWM generator for countdown mode with immediate updates to the parameters.

■ Write the PWM0CTL register with a value of 0x0000.0000.

■ Write the PWM0GENA register with a value of 0x0000.008C.

■ Write the PWM0GENB register with a value of 0x0000.080C.

6. Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM
clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per
period. Use this value to set the PWM0LOAD register. In Count-Down mode, set the Load field
in the PWM0LOAD register to the requested period minus one.

■ Write the PWM0LOAD register with a value of 0x0000.018F.

7. Set the pulse width of the PWM0 pin for a 25% duty cycle.

■ Write the PWM0CMPA register with a value of 0x0000.012B.

8. Set the pulse width of the PWM1 pin for a 75% duty cycle.

■ Write the PWM0CMPB register with a value of 0x0000.0063.

February 24, 2009890
Preliminary

Pulse Width Modulator (PWM)

9. Start the timers in PWM generator 0.

■ Write the PWM0CTL register with a value of 0x0000.0001.

10. Enable PWM outputs.

■ Write the PWMENABLE register with a value of 0x0000.0003.

22.4 Register Map
Table 22-1 on page 891 lists the PWM registers. The offset listed is a hexadecimal increment to the
register’s address, relative to the PWM base address of 0x4002.8000. Note that the PWM module
clock must be enabled before the registers can be programmed (see page 158).

Table 22-1. PWM Register Map

See
pageDescriptionResetTypeNameOffset

894PWM Master Control0x0000.0000R/WPWMCTL0x000

895PWM Time Base Sync0x0000.0000R/WPWMSYNC0x004

896PWM Output Enable0x0000.0000R/WPWMENABLE0x008

898PWM Output Inversion0x0000.0000R/WPWMINVERT0x00C

899PWM Output Fault0x0000.0000R/WPWMFAULT0x010

901PWM Interrupt Enable0x0000.0000R/WPWMINTEN0x014

903PWM Raw Interrupt Status0x0000.0000ROPWMRIS0x018

905PWM Interrupt Status and Clear0x0000.0000R/W1CPWMISC0x01C

907PWM Status0x0000.0000ROPWMSTATUS0x020

908PWM Fault Condition Value0x0000.0000R/WPWMFAULTVAL0x024

910PWM0 Control0x0000.0000R/WPWM0CTL0x040

915PWM0 Interrupt and Trigger Enable0x0000.0000R/WPWM0INTEN0x044

917PWM0 Raw Interrupt Status0x0000.0000ROPWM0RIS0x048

918PWM0 Interrupt Status and Clear0x0000.0000R/W1CPWM0ISC0x04C

919PWM0 Load0x0000.0000R/WPWM0LOAD0x050

920PWM0 Counter0x0000.0000ROPWM0COUNT0x054

921PWM0 Compare A0x0000.0000R/WPWM0CMPA0x058

922PWM0 Compare B0x0000.0000R/WPWM0CMPB0x05C

923PWM0 Generator A Control0x0000.0000R/WPWM0GENA0x060

926PWM0 Generator B Control0x0000.0000R/WPWM0GENB0x064

929PWM0 Dead-Band Control0x0000.0000R/WPWM0DBCTL0x068

930PWM0 Dead-Band Rising-Edge Delay0x0000.0000R/WPWM0DBRISE0x06C

931PWM0 Dead-Band Falling-Edge-Delay0x0000.0000R/WPWM0DBFALL0x070

891February 24, 2009
Preliminary

LM3S9B92 Microcontroller

See
pageDescriptionResetTypeNameOffset

932PWM0 Fault Source 00x0000.0000R/WPWM0FLTSRC00x074

934PWM0 Fault Source 10x0000.0000R/WPWM0FLTSRC10x078

936PWM0 Minimum Fault Period0x0000.0000R/WPWM0MINFLTPER0x07C

910PWM1 Control0x0000.0000R/WPWM1CTL0x080

915PWM1 Interrupt and Trigger Enable0x0000.0000R/WPWM1INTEN0x084

917PWM1 Raw Interrupt Status0x0000.0000ROPWM1RIS0x088

918PWM1 Interrupt Status and Clear0x0000.0000R/W1CPWM1ISC0x08C

919PWM1 Load0x0000.0000R/WPWM1LOAD0x090

920PWM1 Counter0x0000.0000ROPWM1COUNT0x094

921PWM1 Compare A0x0000.0000R/WPWM1CMPA0x098

922PWM1 Compare B0x0000.0000R/WPWM1CMPB0x09C

923PWM1 Generator A Control0x0000.0000R/WPWM1GENA0x0A0

926PWM1 Generator B Control0x0000.0000R/WPWM1GENB0x0A4

929PWM1 Dead-Band Control0x0000.0000R/WPWM1DBCTL0x0A8

930PWM1 Dead-Band Rising-Edge Delay0x0000.0000R/WPWM1DBRISE0x0AC

931PWM1 Dead-Band Falling-Edge-Delay0x0000.0000R/WPWM1DBFALL0x0B0

932PWM1 Fault Source 00x0000.0000R/WPWM1FLTSRC00x0B4

934PWM1 Fault Source 10x0000.0000R/WPWM1FLTSRC10x0B8

936PWM1 Minimum Fault Period0x0000.0000R/WPWM1MINFLTPER0x0BC

910PWM2 Control0x0000.0000R/WPWM2CTL0x0C0

915PWM2 Interrupt and Trigger Enable0x0000.0000R/WPWM2INTEN0x0C4

917PWM2 Raw Interrupt Status0x0000.0000ROPWM2RIS0x0C8

918PWM2 Interrupt Status and Clear0x0000.0000R/W1CPWM2ISC0x0CC

919PWM2 Load0x0000.0000R/WPWM2LOAD0x0D0

920PWM2 Counter0x0000.0000ROPWM2COUNT0x0D4

921PWM2 Compare A0x0000.0000R/WPWM2CMPA0x0D8

922PWM2 Compare B0x0000.0000R/WPWM2CMPB0x0DC

923PWM2 Generator A Control0x0000.0000R/WPWM2GENA0x0E0

926PWM2 Generator B Control0x0000.0000R/WPWM2GENB0x0E4

929PWM2 Dead-Band Control0x0000.0000R/WPWM2DBCTL0x0E8

930PWM2 Dead-Band Rising-Edge Delay0x0000.0000R/WPWM2DBRISE0x0EC

931PWM2 Dead-Band Falling-Edge-Delay0x0000.0000R/WPWM2DBFALL0x0F0

932PWM2 Fault Source 00x0000.0000R/WPWM2FLTSRC00x0F4

February 24, 2009892
Preliminary

Pulse Width Modulator (PWM)

See
pageDescriptionResetTypeNameOffset

934PWM2 Fault Source 10x0000.0000R/WPWM2FLTSRC10x0F8

936PWM2 Minimum Fault Period0x0000.0000R/WPWM2MINFLTPER0x0FC

910PWM3 Control0x0000.0000R/WPWM3CTL0x100

915PWM3 Interrupt and Trigger Enable0x0000.0000R/WPWM3INTEN0x104

917PWM3 Raw Interrupt Status0x0000.0000ROPWM3RIS0x108

918PWM3 Interrupt Status and Clear0x0000.0000R/W1CPWM3ISC0x10C

919PWM3 Load0x0000.0000R/WPWM3LOAD0x110

920PWM3 Counter0x0000.0000ROPWM3COUNT0x114

921PWM3 Compare A0x0000.0000R/WPWM3CMPA0x118

922PWM3 Compare B0x0000.0000R/WPWM3CMPB0x11C

923PWM3 Generator A Control0x0000.0000R/WPWM3GENA0x120

926PWM3 Generator B Control0x0000.0000R/WPWM3GENB0x124

929PWM3 Dead-Band Control0x0000.0000R/WPWM3DBCTL0x128

930PWM3 Dead-Band Rising-Edge Delay0x0000.0000R/WPWM3DBRISE0x12C

931PWM3 Dead-Band Falling-Edge-Delay0x0000.0000R/WPWM3DBFALL0x130

932PWM3 Fault Source 00x0000.0000R/WPWM3FLTSRC00x134

934PWM3 Fault Source 10x0000.0000R/WPWM3FLTSRC10x138

936PWM3 Minimum Fault Period0x0000.0000R/WPWM3MINFLTPER0x13C

937PWM0 Fault Pin Logic Sense0x0000.0000R/WPWM0FLTSEN0x800

938PWM0 Fault Status 00x0000.0000-PWM0FLTSTAT00x804

940PWM0 Fault Status 10x0000.0000-PWM0FLTSTAT10x808

937PWM1 Fault Pin Logic Sense0x0000.0000R/WPWM1FLTSEN0x880

938PWM1 Fault Status 00x0000.0000-PWM1FLTSTAT00x884

940PWM1 Fault Status 10x0000.0000-PWM1FLTSTAT10x888

937PWM2 Fault Pin Logic Sense0x0000.0000R/WPWM2FLTSEN0x900

938PWM2 Fault Status 00x0000.0000-PWM2FLTSTAT00x904

940PWM2 Fault Status 10x0000.0000-PWM2FLTSTAT10x908

937PWM3 Fault Pin Logic Sense0x0000.0000R/WPWM3FLTSEN0x980

938PWM3 Fault Status 00x0000.0000-PWM3FLTSTAT00x984

940PWM3 Fault Status 10x0000.0000-PWM3FLTSTAT10x988

22.5 Register Descriptions
The remainder of this section lists and describes the PWM registers, in numerical order by address
offset.

893February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 1: PWM Master Control (PWMCTL), offset 0x000
This register provides master control over the PWM generation blocks.

PWM Master Control (PWMCTL)
Base 0x4002.8000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

GlobalSync0GlobalSync1GlobalSync2GlobalSync3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

Update PWM Generator 3

Same as GlobalSync0 but for PWM generator 3.

0R/WGlobalSync33

Update PWM Generator 2

Same as GlobalSync0 but for PWM generator 2.

0R/WGlobalSync22

Update PWM Generator 1

Same as GlobalSync0 but for PWM generator 1.

0R/WGlobalSync11

Update PWM Generator 0

Setting this bit causes any queued update to a load or comparator
register in PWM generator 0 to be applied the next time the
corresponding counter becomes zero. This bit automatically clears when
the updates have completed; it cannot be cleared by software.

0R/WGlobalSync00

February 24, 2009894
Preliminary

Pulse Width Modulator (PWM)

Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004
This register provides a method to perform synchronization of the counters in the PWM generation
blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing
multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has occurred;
reading them back as zero indicates that the synchronization has completed.

PWM Time Base Sync (PWMSYNC)
Base 0x4002.8000
Offset 0x004
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Sync0Sync1Sync2Sync3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

Reset Generator 3 Counter

Performs a reset of the PWM generator 3 counter.

0R/WSync33

Reset Generator 2 Counter

Performs a reset of the PWM generator 2 counter.

0R/WSync22

Reset Generator 1 Counter

Performs a reset of the PWM generator 1 counter.

0R/WSync11

Reset Generator 0 Counter

Performs a reset of the PWM generator 0 counter.

0R/WSync00

895February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: PWM Output Enable (PWMENABLE), offset 0x008
This register provides a master control of which generated PWM signals are output to device pins.
By disabling a PWM output, the generation process can continue (for example, when the time bases
are synchronized) without driving PWM signals to the pins. When bits in this register are set, the
corresponding PWM signal is passed through to the output stage, which is controlled by the
PWMINVERT register. When bits are not set, the PWM signal is replaced by a zero value which is
also passed to the output stage.

PWM Output Enable (PWMENABLE)
Base 0x4002.8000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PWM0EnPWM1EnPWM2EnPWM3EnPWM4EnPWM5EnPWM6EnPWM7Enreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

PWM7 Output Enable

When set, allows the generated PWM7 signal to be passed to the device
pin.

0R/WPWM7En7

PWM6 Output Enable

When set, allows the generated PWM6 signal to be passed to the device
pin.

0R/WPWM6En6

PWM5 Output Enable

When set, allows the generated PWM5 signal to be passed to the device
pin.

0R/WPWM5En5

PWM4 Output Enable

When set, allows the generated PWM4 signal to be passed to the device
pin.

0R/WPWM4En4

PWM3 Output Enable

When set, allows the generated PWM3 signal to be passed to the device
pin.

0R/WPWM3En3

PWM2 Output Enable

When set, allows the generated PWM2 signal to be passed to the device
pin.

0R/WPWM2En2

February 24, 2009896
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

PWM1 Output Enable

When set, allows the generated PWM1 signal to be passed to the device
pin.

0R/WPWM1En1

PWM0 Output Enable

When set, allows the generated PWM0 signal to be passed to the device
pin.

0R/WPWM0En0

897February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C
This register provides a master control of the polarity of the PWM signals on the device pins. The
PWM signals generated by the PWM generator are active High; they can optionally be made active
Low via this register. Disabled PWM channels are also passed through the output inverter (if so
configured) so that inactive channels maintain the correct polarity.

PWM Output Inversion (PWMINVERT)
Base 0x4002.8000
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PWM0InvPWM1InvPWM2InvPWM3InvPWM4InvPWM5InvPWM6InvPWM7Invreserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

Invert PWM7 Signal

When set, the generated PWM7 signal is inverted.

0R/WPWM7Inv7

Invert PWM6 Signal

When set, the generated PWM6 signal is inverted.

0R/WPWM6Inv6

Invert PWM5 Signal

When set, the generated PWM5 signal is inverted.

0R/WPWM5Inv5

Invert PWM4 Signal

When set, the generated PWM4 signal is inverted.

0R/WPWM4Inv4

Invert PWM3 Signal

When set, the generated PWM3 signal is inverted.

0R/WPWM3Inv3

Invert PWM2 Signal

When set, the generated PWM2 signal is inverted.

0R/WPWM2Inv2

Invert PWM1 Signal

When set, the generated PWM1 signal is inverted.

0R/WPWM1Inv1

Invert PWM0 Signal

When set, the generated PWM0 signal is inverted.

0R/WPWM0Inv0

February 24, 2009898
Preliminary

Pulse Width Modulator (PWM)

Register 5: PWM Output Fault (PWMFAULT), offset 0x010
This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the
fault inputs and debug events are considered fault conditions. On a fault condition, each PWM signal
can be passed through unmodified or driven to a specified value. For outputs that are configured
for pass-through, the debug event handling on the corresponding PWM generator also determines
if the PWM signal continues to be generated.

Fault condition control occurs before the output inverter, so PWM signals driven to a specified value
on fault are inverted if the channel is configured for inversion (therefore, the pin is driven to the
logical complement of the specified value on a fault condition).

PWM Output Fault (PWMFAULT)
Base 0x4002.8000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Fault0Fault1Fault2Fault3Fault4Fault5Fault6Fault7reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

PWM7 Fault

When set, the PWM7 output signal is driven to a specified value on a
fault condition.

0R/WFault77

PWM6 Fault

When set, the PWM6 output signal is driven to a specified value on a
fault condition.

0R/WFault66

PWM5 Fault

When set, the PWM5 output signal is driven to a specified value on a
fault condition.

0R/WFault55

PWM4 Fault

When set, the PWM4 output signal is driven to a specified value on a
fault condition.

0R/WFault44

PWM3 Fault

When set, the PWM3 output signal is driven to a specified value on a
fault condition.

0R/WFault33

PWM2 Fault

When set, the PWM2 output signal is driven to a specified value on a
fault condition.

0R/WFault22

899February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PWM1 Fault

When set, the PWM1 output signal is driven to a specified value on a
fault condition.

0R/WFault11

PWM0 Fault

When set, the PWM0 output signal is driven to a specified value on a
fault condition.

0R/WFault00

February 24, 2009900
Preliminary

Pulse Width Modulator (PWM)

Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014
This register controls the global interrupt generation capabilities of the PWM module. The events
that can cause an interrupt are the fault input and the individual interrupts from the PWM generators.

PWM Interrupt Enable (PWMINTEN)
Base 0x4002.8000
Offset 0x014
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

IntFault0IntFault1IntFault2IntFault3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntPWM0IntPWM1IntPWM2IntPWM3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:20

Interrupt Fault 3

When set, an interrupt occurs when the fault condition for PWMgenerator
3 is asserted.

0R/WIntFault319

Interrupt Fault 2

When set, an interrupt occurs when the fault condition for PWMgenerator
2 is asserted.

0R/WIntFault218

Interrupt Fault 1

When set, an interrupt occurs when the fault condition for PWMgenerator
1 is asserted.

0R/WIntFault117

Interrupt Fault 0

When set, an interrupt occurs when the FAULT0 input is asserted or the
fault condition for PWM generator 0 is asserted.

0R/WIntFault016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

PWM3 Interrupt Enable

When set, an interrupt occurs when the PWM generator 3 block asserts
an interrupt.

0R/WIntPWM33

PWM2 Interrupt Enable

When set, an interrupt occurs when the PWM generator 2 block asserts
an interrupt.

0R/WIntPWM22

PWM1 Interrupt Enable

When set, an interrupt occurs when the PWM generator 1 block asserts
an interrupt.

0R/WIntPWM11

901February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PWM0 Interrupt Enable

When set, an interrupt occurs when the PWM generator 0 block asserts
an interrupt.

0R/WIntPWM00

February 24, 2009902
Preliminary

Pulse Width Modulator (PWM)

Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018
This register provides the current set of interrupt sources that are asserted, regardless of whether
they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection;
it must be cleared through the PWM Interrupt Status and Clear (PWMISC) register (see page 905).
The PWM generator interrupts simply reflect the status of the PWM generators; they are cleared
via the interrupt status register in the PWM generator blocks. Bits set to 1 indicate the events that
are active; zero bits indicate that the event in question is not active.

PWM Raw Interrupt Status (PWMRIS)
Base 0x4002.8000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

IntFault0IntFault1IntFault2IntFault3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntPWM0IntPWM1IntPWM2IntPWM3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:20

Interrupt Fault PWM 3

Indicates that the fault condition for PWM generator 3 is asserting.

0ROIntFault319

Interrupt Fault PWM 2

Indicates that the fault condition for PWM generator 2 is asserting.

0ROIntFault218

Interrupt Fault PWM 1

Indicates that the fault condition for PWM generator 1 is asserting.

0ROIntFault117

Interrupt Fault PWM 0

Indicates that the FAULT0 input is asserting or the fault condition for
PWM generator 0 is asserting.

0ROIntFault016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

PWM3 Interrupt Asserted

Indicates that the PWM generator 3 block is asserting its interrupt.

0ROIntPWM33

PWM2 Interrupt Asserted

Indicates that the PWM generator 2 block is asserting its interrupt.

0ROIntPWM22

PWM1 Interrupt Asserted

Indicates that the PWM generator 1 block is asserting its interrupt.

0ROIntPWM11

903February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PWM0 Interrupt Asserted

Indicates that the PWM generator 0 block is asserting its interrupt.

0ROIntPWM00

February 24, 2009904
Preliminary

Pulse Width Modulator (PWM)

Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C
This register provides a summary of the interrupt status of the individual PWM generator blocks. A
bit set to 1 indicates that the corresponding generator block is asserting an interrupt. The individual
interrupt status registers in each block must be consulted to determine the reason for the interrupt,
and used to clear the interrupt. For the fault interrupt, a write of 1 to that bit position clears the latched
interrupt status.

PWM Interrupt Status and Clear (PWMISC)
Base 0x4002.8000
Offset 0x01C
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

IntFault0IntFault1IntFault2IntFault3reserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntPWM0IntPWM1IntPWM2IntPWM3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:20

FAULT3 Interrupt Asserted

Indicates that the FAULT3 input is asserting or the FAULT3 latch has
captured an assertion.

0R/W1CIntFault319

FAULT2 Interrupt Asserted

Indicates that the FAULT2 input is asserting or the FAULT2 latch has
captured an assertion.

0R/W1CIntFault218

FAULT1 Interrupt Asserted

Indicates that the FAULT1 input is asserting or the FAULT1 latch has
captured an assertion.

0R/W1CIntFault117

FAULT0 Interrupt Asserted

Indicates that the FAULT0 input is asserting or the fault condition for
generator 0 is asserting a fault.

0R/W1CIntFault016

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved15:4

PWM3 Interrupt Status

Indicates if the PWM generator 3 block is asserting an interrupt.

0ROIntPWM33

PWM2 Interrupt Status

Indicates if the PWM generator 2 block is asserting an interrupt.

0ROIntPWM22

PWM1 Interrupt Status

Indicates if the PWM generator 1 block is asserting an interrupt.

0ROIntPWM11

905February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PWM0 Interrupt Status

Indicates if the PWM generator 0 block is asserting an interrupt.

0ROIntPWM00

February 24, 2009906
Preliminary

Pulse Width Modulator (PWM)

Register 9: PWM Status (PWMSTATUS), offset 0x020
This register provides the status of the FAULT input signals.

PWM Status (PWMSTATUS)
Base 0x4002.8000
Offset 0x020
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Fault0Fault1Fault2Fault3reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

Fault3 Interrupt Status

When set, indicates the fault condition for PWM generator 3 is asserted.

0ROFault33

Fault2 Interrupt Status

When set, indicates the fault condition for PWM generator 2 is asserted.

0ROFault22

Fault1 Interrupt Status

When set, indicates the fault condition for PWM generator 1 is asserted.

0ROFault11

Fault0 Interrupt Status

When set, indicates the FAULT0 input is asserted, or that the fault
condition for PWM generator 0 is asserted.

0ROFault00

907February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 10: PWM Fault Condition Value (PWMFAULTVAL), offset 0x024
This register specifies the output value driven on the PWM signals during a fault condition if the
corresponding bit in the PWMFAULT register is indicating that the PWM signal drives a value.

PWM Fault Condition Value (PWMFAULTVAL)
Base 0x4002.8000
Offset 0x024
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

PWM0PWM1PWM2PWM3PWM4PWM5PWM6PWM7reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:8

PWM7 Fault Value

The PWM7 output signal is driven to the value specified in this bit during
fault conditions if the Fault7 bit in the PWMFAULT register is set.

0R/WPWM77

PWM6 Fault Value

The PWM6 output signal is driven to the value specified in this bit during
fault conditions if the Fault6 bit in the PWMFAULT register is set.

0R/WPWM66

PWM5 Fault Value

The PWM5 output signal is driven to the value specified in this bit during
fault conditions if the Fault5 bit in the PWMFAULT register is set.

0R/WPWM55

PWM4 Fault Value

The PWM4 output signal is driven to the value specified in this bit during
fault conditions if the Fault4 bit in the PWMFAULT register is set.

0R/WPWM44

PWM3 Fault Value

The PWM3 output signal is driven to the value specified in this bit during
fault conditions if the Fault3 bit in the PWMFAULT register is set.

0R/WPWM33

PWM2 Fault Value

The PWM2 output signal is driven to the value specified in this bit during
fault conditions if the Fault2 bit in the PWMFAULT register is set.

0R/WPWM22

PWM1 Fault Value

The PWM1 output signal is driven to the value specified in this bit during
fault conditions if the Fault1 bit in the PWMFAULT register is set.

0R/WPWM11

February 24, 2009908
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

PWM0 Fault Value

The PWM0 output signal is driven to the value specified in this bit during
fault conditions if the Fault0 bit in the PWMFAULT register is set.

0R/WPWM00

909February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: PWM0 Control (PWM0CTL), offset 0x040
Register 12: PWM1 Control (PWM1CTL), offset 0x080
Register 13: PWM2 Control (PWM2CTL), offset 0x0C0
Register 14: PWM3 Control (PWM3CTL), offset 0x100
These registers configure the PWM signal generation blocks (PWM0CTL controls the PWMgenerator
0 block, and so on). The Register Update mode, Debug mode, Counting mode, and Block Enable
mode are all controlled via these registers. The blocks produce the PWM signals, which can be
either two independent PWM signals (from the same counter), or a paired set of PWM signals with
dead-band delays added.

The PWM0 block produces the PWM0 and PWM1 outputs, the PWM1 block produces the PWM2 and
PWM3 outputs, the PWM2 block produces the PWM4 and PWM5 outputs, and the PWM3 block produces
the PWM6 and PWM7 outputs.

PWM0 Control (PWM0CTL)
Base 0x4002.8000
Offset 0x040
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

FLTSRCMINFLTPERLATCHreserved

R/WR/WR/WROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:19

February 24, 2009910
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Latch Fault Input

This bit controls the behavior of the fault condition in a PWM generator.

The fault condition may be latched and internally asserted because the
fault condition logic includes the generator’s IntFaultn bit (of the
PWMISC register) enabled by the LATCH bit.

Therefore, if the PWMINTEN IntFaultn bit is set, a fault condition
sets the PWMISC IntFaultn bit (generating an interrupt) and the fault
condition is extended in the generator logic until software clears the
PWMISC IntFaultn bit.

DescriptionValue

Fault Condition Not Latched

A fault condition is in effect for as long as the generating source
is asserting.

0

Fault Condition Latched

A fault condition is set as the result of the assertion of the
faulting source and is held (latched) while the PWMISC
IntFaultn bit is set. Clearing the IntFaultn bit clears the
fault condition.

1

0R/WLATCH18

Minimum Fault Period

This bit specifies that the PWM generator enables a one-shot counter
to provide a minimum fault condition period.

The timer begins counting on the rising edge of the fault condition to
extend the condition for a minimum duration of the count value. The
timer ignores the state of the fault condition while counting.

The minimum fault delay is in effect only when the MINFLTPER bit is
set. If a detected fault is in the process of being extended when the
MINFLTPER bit is cleared, the fault condition extension is aborted.

The delay time is specified by the PWMnMINFLTPER register MFP field
value. The effect of this is to pulse stretch the fault condition input.

The delay value is defined by the PWM clock period. Because the fault
input is not synchronized to the PWM clock, the period of the time is
PWMClock * (MFP value + 1) or PWMClock * (MFP value + 2).

The delay function makes sense only if the fault source is unlatched. A
latched fault source makes the fault condition appear asserted until
cleared by software and negates the utility of the extend feature. It
applies to all fault condition sources as specified in the FLTSRC field.

DescriptionValue

Fault Condition Period Not Extended

The FAULT input deassertion is unaffected.

0

Fault Condition Period Extended

The PWMnMINFLTPER one-shot counter is active and extends
the period of the fault condition to a minimum period.

1

0R/WMINFLTPER17

911February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Fault Condition Source

This bit specifies the fault condition source.

DescriptionValue

Fault0

The Fault condition is determined by the Fault0 input.

0

Register-Defined

The Fault condition is determined by the configuration of the
PWMnFLTSRC0 and PWMnFLTSRC1 registers.

1

0R/WFLTSRC16

PWMnDBFALL Update Mode

Specifies the update mode for the PWMnDBFALL register.

DescriptionValue

Immediate

The PWMnDBFALL register value is immediately updated on
a write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WDBFallUpd15:14

PWMnDBRISE Update Mode

Specifies the update mode for the PWMnDBRISE register.

DescriptionValue

Immediate

The PWMnDBRISE register value is immediately updated on
a write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WDBRiseUpd13:12

February 24, 2009912
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

PWMnDBCTL Update Mode

Specifies the update mode for the PWMnDBCTL register.

DescriptionValue

Immediate

The PWMnDBCTL register value is immediately updated on a
write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WDBCtlUpd11:10

PWMnGENB Update Mode

Specifies the update mode for the PWMnGENB register.

DescriptionValue

Immediate

The PWMnGENB register value is immediately updated on a
write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WGenBUpd9:8

913February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

PWMnGENA Update Mode

Specifies the update mode for the PWMnGENA register.

DescriptionValue

Immediate

The PWMnGENA register value is immediately updated on a
write.

0

Reserved1

Locally Synchronized

Updates to the register are reflected to the generator the next
time the counter is 0.

2

Globally Synchronized

Updates to the register are delayed until the next time the
counter is 0 after a synchronous update has been requested
through the PWM Master Control (PWMCTL) register.

3

0R/WGenAUpd7:6

Comparator B Update Mode

Same as CmpAUpd but for the comparator B register.

0R/WCmpBUpd5

Comparator A Update Mode

The Update mode for the comparator A register. When not set, updates
to the register are reflected to the comparator the next time the counter
is 0. When set, updates to the register are delayed until the next time
the counter is 0 after a synchronous update has been requested through
the PWM Master Control (PWMCTL) register (see page 894).

0R/WCmpAUpd4

Load Register Update Mode

The Update mode for the load register. When not set, updates to the
register are reflected to the counter the next time the counter is 0. When
set, updates to the register are delayed until the next time the counter
is 0 after a synchronous update has been requested through the PWM
Master Control (PWMCTL) register.

0R/WLoadUpd3

Debug Mode

The behavior of the counter in Debug mode. When not set, the counter
stops running when it next reaches 0, and continues running again when
no longer in Debug mode. When set, the counter always runs.

0R/WDebug2

Counter Mode

The mode for the counter. When not set, the counter counts down from
the load value to 0 and then wraps back to the load value (Count-Down
mode). When set, the counter counts up from 0 to the load value, back
down to 0, and then repeats (Count-Up/Down mode).

0R/WMode1

PWM Block Enable

Master enable for the PWM generation block. When not set, the entire
block is disabled and not clocked. When set, the block is enabled and
produces PWM signals.

0R/WEnable0

February 24, 2009914
Preliminary

Pulse Width Modulator (PWM)

Register 15: PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044
Register 16: PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084
Register 17: PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4
Register 18: PWM3 Interrupt and Trigger Enable (PWM3INTEN), offset 0x104
These registers control the interrupt and ADC trigger generation capabilities of the PWM generators
(PWM0INTEN controls the PWM generator 0 block, and so on). The events that can cause an
interrupt or an ADC trigger are:

■ The counter being equal to the load register

■ The counter being equal to zero

■ The counter being equal to the comparator A register while counting up

■ The counter being equal to the comparator A register while counting down

■ The counter being equal to the comparator B register while counting up

■ The counter being equal to the comparator B register while counting down

Any combination of these events can generate either an interrupt, or an ADC trigger; though no
determination can be made as to the actual event that caused an ADC trigger if more than one is
specified.

PWM0 Interrupt and Trigger Enable (PWM0INTEN)
Base 0x4002.8000
Offset 0x044
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDreservedTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBDreserved

R/WR/WR/WR/WR/WR/WROROR/WR/WR/WR/WR/WR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:14

Trigger for Counter=Comparator B Down

When 1, a trigger pulse is output when the counter matches the
comparator B value and the counter is counting down.

0R/WTrCmpBD13

Trigger for Counter=Comparator B Up

When 1, a trigger pulse is output when the counter matches the
comparator B value and the counter is counting up.

0R/WTrCmpBU12

915February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Trigger for Counter=Comparator A Down

When 1, a trigger pulse is output when the counter matches the
comparator A value and the counter is counting down.

0R/WTrCmpAD11

Trigger for Counter=Comparator A Up

When 1, a trigger pulse is output when the counter matches the
comparator A value and the counter is counting up.

0R/WTrCmpAU10

Trigger for Counter=Load

When 1, a trigger pulse is output when the counter matches the
PWMnLOAD register.

0R/WTrCntLoad9

Trigger for Counter=0

When 1, a trigger pulse is output when the counter is 0.

0R/WTrCntZero8

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved7:6

Interrupt for Counter=Comparator B Down

When 1, an interrupt occurs when the counter matches the comparator B
value and the counter is counting down.

0R/WIntCmpBD5

Interrupt for Counter=Comparator B Up

When 1, an interrupt occurs when the counter matches the comparator B
value and the counter is counting up.

0R/WIntCmpBU4

Interrupt for Counter=Comparator A Down

When 1, an interrupt occurs when the counter matches the comparator A
value and the counter is counting down.

0R/WIntCmpAD3

Interrupt for Counter=Comparator A Up

When 1, an interrupt occurs when the counter matches the comparator A
value and the counter is counting up.

0R/WIntCmpAU2

Interrupt for Counter=Load

When 1, an interrupt occurs when the counter matches the PWMnLOAD
register.

0R/WIntCntLoad1

Interrupt for Counter=0

When 1, an interrupt occurs when the counter is 0.

0R/WIntCntZero0

February 24, 2009916
Preliminary

Pulse Width Modulator (PWM)

Register 19: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048
Register 20: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088
Register 21: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8
Register 22: PWM3 Raw Interrupt Status (PWM3RIS), offset 0x108
These registers provide the current set of interrupt sources that are asserted, regardless of whether
they cause an interrupt to be asserted to the controller (PWM0RIS controls the PWM generator 0
block, and so on). Bits set to 1 indicate the latched events that have occurred; bits set to 0 indicate
that the event in question has not occurred.

PWM0 Raw Interrupt Status (PWM0RIS)
Base 0x4002.8000
Offset 0x048
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

Comparator B Down Interrupt Status

Indicates that the counter has matched the comparator B value while
counting down.

0ROIntCmpBD5

Comparator B Up Interrupt Status

Indicates that the counter has matched the comparator B value while
counting up.

0ROIntCmpBU4

Comparator A Down Interrupt Status

Indicates that the counter has matched the comparator A value while
counting down.

0ROIntCmpAD3

Comparator A Up Interrupt Status

Indicates that the counter has matched the comparator A value while
counting up.

0ROIntCmpAU2

Counter=Load Interrupt Status

Indicates that the counter has matched the PWMnLOAD register.

0ROIntCntLoad1

Counter=0 Interrupt Status

Indicates that the counter has matched 0.

0ROIntCntZero0

917February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 23: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C
Register 24: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C
Register 25: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC
Register 26: PWM3 Interrupt Status and Clear (PWM3ISC), offset 0x10C
These registers provide the current set of interrupt sources that are asserted to the controller
(PWM0ISC controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events
that have occurred; bits set to 0 indicate that the event in question has not occurred. These are
R/W1C registers; writing a 1 to a bit position clears the corresponding interrupt reason.

PWM0 Interrupt Status and Clear (PWM0ISC)
Base 0x4002.8000
Offset 0x04C
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDreserved

R/W1CR/W1CR/W1CR/W1CR/W1CR/W1CROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:6

Comparator B Down Interrupt

Indicates that the counter has matched the comparator B value while
counting down.

0R/W1CIntCmpBD5

Comparator B Up Interrupt

Indicates that the counter has matched the comparator B value while
counting up.

0R/W1CIntCmpBU4

Comparator A Down Interrupt

Indicates that the counter has matched the comparator A value while
counting down.

0R/W1CIntCmpAD3

Comparator A Up Interrupt

Indicates that the counter has matched the comparator A value while
counting up.

0R/W1CIntCmpAU2

Counter=Load Interrupt

Indicates that the counter has matched the PWMnLOAD register.

0R/W1CIntCntLoad1

Counter=0 Interrupt

Indicates that the counter has matched 0.

0R/W1CIntCntZero0

February 24, 2009918
Preliminary

Pulse Width Modulator (PWM)

Register 27: PWM0 Load (PWM0LOAD), offset 0x050
Register 28: PWM1 Load (PWM1LOAD), offset 0x090
Register 29: PWM2 Load (PWM2LOAD), offset 0x0D0
Register 30: PWM3 Load (PWM3LOAD), offset 0x110
These registers contain the load value for the PWM counter (PWM0LOAD controls the PWM
generator 0 block, and so on). Based on the counter mode, either this value is loaded into the counter
after it reaches zero, or it is the limit of up-counting after which the counter decrements back to zero.

If the Load Value Update mode is immediate, this value is used the next time the counter reaches
zero; if the mode is synchronous, it is used the next time the counter reaches zero after a synchronous
update has been requested through the PWMMaster Control (PWMCTL) register (see page 894).
If this register is re-written before the actual update occurs, the previous value is never used and is
lost.

PWM0 Load (PWM0LOAD)
Base 0x4002.8000
Offset 0x050
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Load

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

Counter Load Value

The counter load value.

0R/WLoad15:0

919February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 31: PWM0 Counter (PWM0COUNT), offset 0x054
Register 32: PWM1 Counter (PWM1COUNT), offset 0x094
Register 33: PWM2 Counter (PWM2COUNT), offset 0x0D4
Register 34: PWM3 Counter (PWM3COUNT), offset 0x114
These registers contain the current value of the PWM counter. When this value matches the load
register, a pulse is output; this can drive the generation of a PWM signal (via the
PWMnGENA/PWMnGENB registers, see page 923 and page 926) or drive an interrupt or ADC trigger
(via the PWMnINTEN register, see page 915). A pulse with the same capabilities is generated when
this value is zero.

PWM0 Counter (PWM0COUNT)
Base 0x4002.8000
Offset 0x054
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Count

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

Counter Value

The current value of the counter.

0x00ROCount15:0

February 24, 2009920
Preliminary

Pulse Width Modulator (PWM)

Register 35: PWM0 Compare A (PWM0CMPA), offset 0x058
Register 36: PWM1 Compare A (PWM1CMPA), offset 0x098
Register 37: PWM2 Compare A (PWM2CMPA), offset 0x0D8
Register 38: PWM3 Compare A (PWM3CMPA), offset 0x118
These registers contain a value to be compared against the counter (PWM0CMPA controls the
PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this
can drive the generation of a PWM signal (via the PWMnGENA/PWMnGENB registers) or drive an
interrupt or ADC trigger (via the PWMnINTEN register). If the value of this register is greater than
the PWMnLOAD register (see page 919), then no pulse is ever output.

If the comparator A update mode is immediate (based on the CmpAUpd bit in the PWMnCTL register),
this 16-bit CompA value is used the next time the counter reaches zero. If the update mode is
synchronous, it is used the next time the counter reaches zero after a synchronous update has been
requested through the PWM Master Control (PWMCTL) register (see page 894). If this register is
rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Compare A (PWM0CMPA)
Base 0x4002.8000
Offset 0x058
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CompA

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

Comparator A Value

The value to be compared against the counter.

0x00R/WCompA15:0

921February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 39: PWM0 Compare B (PWM0CMPB), offset 0x05C
Register 40: PWM1 Compare B (PWM1CMPB), offset 0x09C
Register 41: PWM2 Compare B (PWM2CMPB), offset 0x0DC
Register 42: PWM3 Compare B (PWM3CMPB), offset 0x11C
These registers contain a value to be compared against the counter (PWM0CMPB controls the
PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this
can drive the generation of a PWM signal (via the PWMnGENA/PWMnGENB registers) or drive an
interrupt or ADC trigger (via the PWMnINTEN register). If the value of this register is greater than
the PWMnLOAD register, no pulse is ever output.

If the comparator B update mode is immediate (based on the CmpBUpd bit in the PWMnCTL register),
this 16-bit CompB value is used the next time the counter reaches zero. If the update mode is
synchronous, it is used the next time the counter reaches zero after a synchronous update has been
requested through the PWM Master Control (PWMCTL) register (see page 894). If this register is
rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Compare B (PWM0CMPB)
Base 0x4002.8000
Offset 0x05C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

CompB

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:16

Comparator B Value

The value to be compared against the counter.

0x00R/WCompB15:0

February 24, 2009922
Preliminary

Pulse Width Modulator (PWM)

Register 43: PWM0 Generator A Control (PWM0GENA), offset 0x060
Register 44: PWM1 Generator A Control (PWM1GENA), offset 0x0A0
Register 45: PWM2 Generator A Control (PWM2GENA), offset 0x0E0
Register 46: PWM3 Generator A Control (PWM3GENA), offset 0x120
These registers control the generation of the PWMnA signal based on the load and zero output pulses
from the counter, as well as the compare A and compare B pulses from the comparators
(PWM0GENA controls the PWM generator 0 block, and so on). When the counter is running in
Count-Down mode, only four of these events occur; when running in Count-Up/Down mode, all six
occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that
is produced.

The PWM0GENA register controls generation of the PWM0A signal; PWM1GENA, the PWM1A signal;
PWM2GENA, the PWM2A signal; and PWM3GENA, the PWM3A signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is
taken and the compare A or compare B action is ignored. If a compare A event coincides with a
compare B event, the compare A action is taken and the compare B action is ignored.

If the Generator A updatemode is immediate (based on the GenAUpd field encoding in thePWMnCTL
register), this 16-bit GenAUpd value is used the next time the counter reaches zero. If the update
mode is synchronous, it is used the next time the counter reaches zero after a synchronous update
has been requested through the PWM Master Control (PWMCTL) register (see page 894). If this
register is rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Generator A Control (PWM0GENA)
Base 0x4002.8000
Offset 0x060
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBDreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

923February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Action for Comparator B Down

The action to be taken when the counter matches comparator B while
counting down.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpBD11:10

Action for Comparator B Up

The action to be taken when the counter matches comparator B while
counting up. Occurs only when the Mode bit in the PWMnCTL register
(see page 910) is set to 1.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpBU9:8

Action for Comparator A Down

The action to be taken when the counter matches comparator A while
counting down.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpAD7:6

Action for Comparator A Up

The action to be taken when the counter matches comparator A while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpAU5:4

February 24, 2009924
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Action for Counter=Load

The action to be taken when the counter matches the load value.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActLoad3:2

Action for Counter=0

The action to be taken when the counter is zero.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActZero1:0

925February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 47: PWM0 Generator B Control (PWM0GENB), offset 0x064
Register 48: PWM1 Generator B Control (PWM1GENB), offset 0x0A4
Register 49: PWM2 Generator B Control (PWM2GENB), offset 0x0E4
Register 50: PWM3 Generator B Control (PWM3GENB), offset 0x124
These registers control the generation of the PWMnB signal based on the load and zero output pulses
from the counter, as well as the compare A and compare B pulses from the comparators
(PWM0GENB controls the PWM generator 0 block, and so on). When the counter is running in
Down mode, only four of these events occur; when running in Up/Down mode, all six occur. These
events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The PWM0GENB register controls generation of the PWM0B signal; PWM1GENB, the PWM1B signal;
PWM2GENB, the PWM2B signal; and PWM3GENB, the PWM3B signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is
taken and the compare A or compare B action is ignored. If a compare A event coincides with a
compare B event, the compare B action is taken and the compare A action is ignored.

If the Generator B updatemode is immediate (based on the GenBUpd field encoding in thePWMnCTL
register), this 16-bit GenBUpd value is used the next time the counter reaches zero. If the update
mode is synchronous, it is used the next time the counter reaches zero after a synchronous update
has been requested through the PWM Master Control (PWMCTL) register (see page 894). If this
register is rewritten before the actual update occurs, the previous value is never used and is lost.

PWM0 Generator B Control (PWM0GENB)
Base 0x4002.8000
Offset 0x064
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBDreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

February 24, 2009926
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Action for Comparator B Down

The action to be taken when the counter matches comparator B while
counting down.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpBD11:10

Action for Comparator B Up

The action to be taken when the counter matches comparator B while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpBU9:8

Action for Comparator A Down

The action to be taken when the counter matches comparator A while
counting down.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpAD7:6

Action for Comparator A Up

The action to be taken when the counter matches comparator A while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActCmpAU5:4

927February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Action for Counter=Load

The action to be taken when the counter matches the load value.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActLoad3:2

Action for Counter=0

The action to be taken when the counter is 0.

The table below defines the effect of the event on the output signal.

DescriptionValue

Do nothing.0x0

Invert the output signal.0x1

Set the output signal to 0.0x2

Set the output signal to 1.0x3

0x0R/WActZero1:0

February 24, 2009928
Preliminary

Pulse Width Modulator (PWM)

Register 51: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068
Register 52: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8
Register 53: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8
Register 54: PWM3 Dead-Band Control (PWM3DBCTL), offset 0x128
The PWM0DBCTL register controls the dead-band generator, which produces the PWM0 and PWM1
signals based on the PWM0A and PWM0B signals. When disabled, the PWM0A signal passes through
to the PWM0 signal and the PWM0B signal passes through to the PWM1 signal. When enabled and
inverting the resulting waveform, the PWM0B signal is ignored; the PWM0 signal is generated by
delaying the rising edge(s) of the PWM0A signal by the value in the PWM0DBRISE register (see
page 930), and the PWM1 signal is generated by delaying the falling edge(s) of the PWM0A signal by
the value in the PWM0DBFALL register (see page 931). In a similar manner, PWM2 and PWM3 are
produced from the PWM1A and PWM1B signals, PWM4 and PWM5 are produced from the PWM2A and
PWM2B signals, and PWM6 and PWM7 are produced from the PWM3A and PWM3B signals.

If the Dead-Band Control mode is immediate (based on the DBCtlUpd field encoding in the
PWMnCTL register), this 16-bit DBCtlUpd value is used the next time the counter reaches zero. If
the updatemode is synchronous, it is used the next time the counter reaches zero after a synchronous
update has been requested through the PWMMaster Control (PWMCTL) register (see page 894).
If this register is rewritten before the actual update occurs, the previous value is never used and is
lost.

PWM0 Dead-Band Control (PWM0DBCTL)
Base 0x4002.8000
Offset 0x068
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Enablereserved

R/WROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:1

Dead-Band Generator Enable

When set, the dead-band generator inserts dead bands into the output
signals; when clear, it simply passes the PWM signals through.

0R/WEnable0

929February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 55: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset
0x06C
Register 56: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset
0x0AC
Register 57: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset
0x0EC
Register 58: PWM3 Dead-Band Rising-Edge Delay (PWM3DBRISE), offset
0x12C
The PWM0DBRISE register contains the number of clock ticks to delay the rising edge of the PWM0A
signal when generating the PWM0 signal. If the dead-band generator is disabled through the
PWMnDBCTL register, the PWM0DBRISE register is ignored. If the value of this register is larger
than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire
High time of the signal, resulting in no High time on the output. Care must be taken to ensure that
the input High time always exceeds the rising-edge delay. In a similar manner, PWM2 is generated
from PWM1A with its rising edge delayed; PWM4 is produced from PWM2A with its rising edge delayed;
and PWM6 is produced from PWM3A with its rising edge delayed.

If the Dead-Band Rising-Edge Delay mode is immediate (based on the DBRiseUpd field encoding
in the PWMnCTL register), this 16-bit DBRiseUpd value is used the next time the counter reaches
zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a
synchronous update has been requested through the PWM Master Control (PWMCTL) register
(see page 894). If this register is rewritten before the actual update occurs, the previous value is
never used and is lost.

PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE)
Base 0x4002.8000
Offset 0x06C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

RiseDelayreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

Dead-Band Rise Delay

The number of clock ticks to delay the rising edge.

0R/WRiseDelay11:0

February 24, 2009930
Preliminary

Pulse Width Modulator (PWM)

Register 59: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset
0x070
Register 60: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset
0x0B0
Register 61: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset
0x0F0
Register 62: PWM3 Dead-Band Falling-Edge-Delay (PWM3DBFALL), offset
0x130
The PWM0DBFALL register contains the number of clock ticks to delay the falling edge of the
PWM0A signal when generating the PWM1 signal. If the dead-band generator is disabled, this register
is ignored. If the value of this register is larger than the width of a Low pulse on the input PWM
signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low time
on the output. Care must be taken to ensure that the input Low time always exceeds the falling-edge
delay. In a similar manner, PWM3 is generated from PWM1A with its falling edge delayed, PWM5 is
produced from PWM2Awith its falling edge delayed, and PWM7 is produced from PWM3Awith its falling
edge delayed.

If the Dead-Band Falling-Edge-Delay mode is immediate (based on the DBFallUp field encoding
in the PWMnCTL register), this 16-bit DBFallUp value is used the next time the counter reaches
zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a
synchronous update has been requested through the PWM Master Control (PWMCTL) register
(see page 894). If this register is rewritten before the actual update occurs, the previous value is
never used and is lost.

PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL)
Base 0x4002.8000
Offset 0x070
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FallDelayreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:12

Dead-Band Fall Delay

The number of clock ticks to delay the falling edge.

0x00R/WFallDelay11:0

931February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 63: PWM0 Fault Source 0 (PWM0FLTSRC0), offset 0x074
Register 64: PWM1 Fault Source 0 (PWM1FLTSRC0), offset 0x0B4
Register 65: PWM2 Fault Source 0 (PWM2FLTSRC0), offset 0x0F4
Register 66: PWM3 Fault Source 0 (PWM3FLTSRC0), offset 0x134
This register specifies which fault pin inputs are used to indicate a fault condition. Each bit in the
following register indicates whether the corresponding fault pin is included in the fault condition. All
enabled fault pins are ORed together to form the PWMnFLTSRC0 portion of the fault condition.
The PWMnFLTSRC0 fault condition is then ORed with the PWMnFLTSRC1 fault condition to
generate the final fault condition for the PWM generator.

If the FLTSRC bit in the PWMnCTL register (see page 910) is clear, only the PWM Fault0 pin affects
the fault condition generated. Otherwise, sources defined in PWMnFLTSRC0 and PWMnFLTSRC1
affect the fault condition generated.

PWM0 Fault Source 0 (PWM0FLTSRC0)
Base 0x4002.8000
Offset 0x074
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FAULT0FAULT1FAULT2FAULT3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:4

Fault3

The same function as Fault0, except applied for the FAULT3 input.

Note: The FLTSRC bit in the PWMnCTL register must be set for this
bit to affect fault condition generation.

0R/WFAULT33

Fault2

The same function as Fault0, except applied for the FAULT2 input.

Note: The FLTSRC bit in the PWMnCTL register must be set for this
bit to affect fault condition generation.

0R/WFAULT22

Fault1

The same function as Fault0, except applied for the FAULT1 input.

Note: The FLTSRC bit in the PWMnCTL register must be set for this
bit to affect fault condition generation.

0R/WFAULT11

February 24, 2009932
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Fault0

Specifies the contribution of the FAULT0 input to the generation of a
fault condition.

DescriptionValue

Suppressed

The FAULT0 signal is suppressed and cannot generate a fault
condition.

0

Generated

The FAULT0 signal value is ORed with all other fault condition
generation inputs (Fault signals).

1

0R/WFAULT00

933February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 67: PWM0 Fault Source 1 (PWM0FLTSRC1), offset 0x078
Register 68: PWM1 Fault Source 1 (PWM1FLTSRC1), offset 0x0B8
Register 69: PWM2 Fault Source 1 (PWM2FLTSRC1), offset 0x0F8
Register 70: PWM3 Fault Source 1 (PWM3FLTSRC1), offset 0x138
This register specifies which digital comparator triggers from the ADC are used to indicate a fault
condition. Each bit in the following register indicates whether the corresponding digital comparator
trigger is included in the fault condition. All enabled digital comparator triggers are ORed together
to form the PWMnFLTSRC1 portion of the fault condition. The PWMnFLTSRC1 fault condition is
then ORed with the PWMnFLTSRC0 fault condition to generate the final fault condition for the PWM
generator.

If the FLTSRC bit in the PWMnCTL register (see page 910) is clear, only the PWM Fault0 pin affects
the fault condition generated. Otherwise, sources defined in PWMnFLTSRC0 and PWMnFLTSRC1
affect the fault condition generated.

PWM0 Fault Source 1 (PWM0FLTSRC1)
Base 0x4002.8000
Offset 0x078
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7reserved

R/WR/WR/WR/WR/WR/WR/WR/WROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

Digital Comparator 7

The same function as Digital Comparator 0, except applied for
Comparator 7.

0R/WDCMP77

Digital Comparator 6

The same function as Digital Comparator 0, except applied for
Comparator 6.

0R/WDCMP66

Digital Comparator 5

The same function as Digital Comparator 0, except applied for
Comparator 5.

0R/WDCMP55

Digital Comparator 4

The same function as Digital Comparator 0, except applied for
Comparator 4.

0R/WDCMP44

February 24, 2009934
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Digital Comparator 3

The same function as Digital Comparator 0, except applied for
Comparator 3.

0R/WDCMP33

Digital Comparator 2

The same function as Digital Comparator 0, except applied for
Comparator 2.

0R/WDCMP22

Digital Comparator 1

The same function as Digital Comparator 0, except applied for
Comparator 1.

0R/WDCMP11

Digital Comparator 0

Specifies the contribution of Digital Comparator 0 to the generation of
a fault condition.

DescriptionValue

Suppressed

The comparator trigger output signal is suppressed and cannot
generate a fault condition.

0

Triggers Fault

The comparator trigger output signal value is ORed with all other
enabled trigger outputs.

1

0R/WDCMP00

935February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 71: PWM0 Minimum Fault Period (PWM0MINFLTPER), offset 0x07C
Register 72: PWM1 Minimum Fault Period (PWM1MINFLTPER), offset 0x0BC
Register 73: PWM2 Minimum Fault Period (PWM2MINFLTPER), offset 0x0FC
Register 74: PWM3 Minimum Fault Period (PWM3MINFLTPER), offset 0x13C
If the MINFLTPER bit in the PWMnCTL register is set, this register specifies the 16-bit time-extension
value to be used in extending the fault condition. The value is loaded into a 16-bit down counter,
and the counter value is used to extend the fault condition. The fault condition is released in the
clock immediately after the counter value reaches 0. The fault condition is asynchronous to the
PWM clock; and the delay value is the product of the PWM clock period and the (MFP field value
+ 1) or (MFP field value + 2) depending on when the fault condition asserts with respect to the PWM
clock. The counter decrements at the PWM clock rate, without pause or condition.

PWM0 Minimum Fault Period (PWM0MINFLTPER)
Base 0x4002.8000
Offset 0x07C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

MFP

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0R/Wreserved31:16

Minimum Fault Period

The number of PWM clocks by which a fault condition is extended when
the delay is enabled by PWMnCTL MINFLTPER.

0ROMFP15:0

February 24, 2009936
Preliminary

Pulse Width Modulator (PWM)

Register 75: PWM0 Fault Pin Logic Sense (PWM0FLTSEN), offset 0x800
Register 76: PWM1 Fault Pin Logic Sense (PWM1FLTSEN), offset 0x880
Register 77: PWM2 Fault Pin Logic Sense (PWM2FLTSEN), offset 0x900
Register 78: PWM3 Fault Pin Logic Sense (PWM3FLTSEN), offset 0x980
This register defines the PWM fault pin logic sense.

PWM0 Fault Pin Logic Sense (PWM0FLTSEN)
Base 0x4002.8000
Offset 0x800
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FAULT0FAULT1FAULT2FAULT3reserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:4

Fault3 Sense

The same function as FLT0SEN, except applied for the FAULT3 input.

0R/WFAULT33

Fault2 Sense

The same function as FLT0SEN, except applied for the FAULT2 input.

0R/WFAULT22

Fault1 Sense

The same function as FLT0SEN, except applied for the FAULT1 input.

0R/WFAULT11

Fault0 Sense

This bit specifies the sense of the FAULT0 input pin, and it determines
what sense is considered asserted, that is, the sense of the input (High
or Low) that indicates error.

DescriptionValue

High0

Low

The fault sense is used to translate the incoming FAULT0 pin
signal sense to an internal positive signal.

1

0R/WFAULT00

937February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 79: PWM0 Fault Status 0 (PWM0FLTSTAT0), offset 0x804
Register 80: PWM1 Fault Status 0 (PWM1FLTSTAT0), offset 0x884
Register 81: PWM2 Fault Status 0 (PWM2FLTSTAT0), offset 0x904
Register 82: PWM3 Fault Status 0 (PWM3FLTSTAT0), offset 0x984
Along with the PWMnFLTSTAT1 register, this register provides status regarding the fault condition
inputs.

If the LATCH bit in the PWMnCTL register is clear, the contents of the PWMnFLTSTAT0 register
are read-only (RO) and provide the current state of the FAULTn inputs.

If the LATCH bit in the PWMnCTL register is set, the contents of the PWMnFLTSTAT0 register are
read / write 1 to clear (R/W1C) and provide a latched version of the FAULTn inputs. In this mode,
the register bits are cleared by writing a 1 to a set bit. The FAULTn inputs are recorded after their
sense is adjusted in the generator.

The contents of this register can only be written if the fault source extensions are enabled (the
FLTSRC bit in the PWMnCTL register is set).

PWM0 Fault Status 0 (PWM0FLTSTAT0)
Base 0x4002.8000
Offset 0x804
Type -, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

FAULT0FAULT1FAULT2FAULT3reserved

----ROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:4

Fault Input 3

The same function as FAULT0, except applied for the FAULT3 input.

0-FAULT33

Fault Input 2

The same function as FAULT0, except applied for the FAULT2 input.

0-FAULT22

Fault Input 1

The same function as FAULT0, except applied for the FAULT1 input.

0-FAULT11

February 24, 2009938
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Fault Input 0

If the PWMnCTL register LATCH bit is clear, this bit is RO and represents
the current state of the FAULT0 input signal after the logic sense
adjustment.

If the PWMnCTL register LATCH bit is set, this bit is R/W1C and
represents a sticky version of the FAULT0 input signal after the logic
sense adjustment.

■ If FAULT0 is set, the input transitioned to the active state previously.

■ If FAULT0 is clear, the input has not transitioned to the active state
since the last time it was cleared.

■ The FAULT0 bit is cleared by writing it with the value 1.

0-FAULT00

939February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 83: PWM0 Fault Status 1 (PWM0FLTSTAT1), offset 0x808
Register 84: PWM1 Fault Status 1 (PWM1FLTSTAT1), offset 0x888
Register 85: PWM2 Fault Status 1 (PWM2FLTSTAT1), offset 0x908
Register 86: PWM3 Fault Status 1 (PWM3FLTSTAT1), offset 0x988
Along with the PWMnFLTSTAT0 register, this register provides status regarding the fault condition
inputs.

If the LATCH bit in the PWMnCTL register is clear, the contents of the PWMnFLTSTAT1 register
are read-only (RO) and provide the current state of the digital comparator triggers.

If the LATCH bit in the PWMnCTL register is set, the contents of the PWMnFLTSTAT1 register are
read / write 1 to clear (R/W1C) and provide a latched version of the digital comparator triggers. In
this mode, the register bits are cleared by writing a 1 to a set bit. The contents of this register can
only be written if the fault source extensions are enabled (the FLTSRC bit in the PWMnCTL register
is set).

PWM0 Fault Status 1 (PWM0FLTSTAT1)
Base 0x4002.8000
Offset 0x808
Type -, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7reserved

--------ROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0ROreserved31:8

Digital Comparator 7 Trigger

The same function as DCMP0, except applied for the Digital Comparator
7 trigger.

0-DCMP77

Digital Comparator 6 Trigger

The same function as DCMP0, except applied for the Digital Comparator
6 trigger.

0-DCMP66

Digital Comparator 5 Trigger

The same function as DCMP0, except applied for the Digital Comparator
5 trigger.

0-DCMP55

Digital Comparator 4 Trigger

The same function as DCMP0, except applied for the Digital Comparator
4 trigger.

0-DCMP44

February 24, 2009940
Preliminary

Pulse Width Modulator (PWM)

DescriptionResetTypeNameBit/Field

Digital Comparator 3 Trigger

The same function as DCMP0, except applied for the Digital Comparator
3 trigger.

0-DCMP33

Digital Comparator 2 Trigger

The same function as DCMP0, except applied for the Digital Comparator
2 trigger.

0-DCMP22

Digital Comparator 1 Trigger

The same function as DCMP0, except applied for the Digital Comparator
1 trigger.

0-DCMP11

Digital Comparator 0 Trigger

If the PWMnCTL register LATCH bit is clear, this bit represents the
current state of the Digital Comparator 0 trigger input.

If the PWMnCTL register LATCH bit is set, this bit represents a sticky
version of the trigger.

If the bit is set, the trigger transitioned to the active state previously.

If clear, the trigger has not transitioned to the active state since the last
time it was cleared.

This bit is cleared by writing it with the value 1 (R/W1C).

0-DCMP00

941February 24, 2009
Preliminary

LM3S9B92 Microcontroller

23 Quadrature Encoder Interface (QEI)
A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement
into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals,
you can track the position, direction of rotation, and speed. In addition, a third channel, or index
signal, can be used to reset the position counter.

The LM3S9B92 microcontroller includes two quadrature encoder interface (QEI) modules. Each
QEI module interprets the code produced by a quadrature encoder wheel to integrate position over
time and determine direction of rotation. In addition, it can capture a running estimate of the velocity
of the encoder wheel.

Each Stellaris® quadrature encoder has the following features:

■ Position integrator that tracks the encoder position

■ Programmable noise filter on the inputs

■ Velocity capture using built-in timer

■ Interrupt generation on:

– Index pulse

– Velocity-timer expiration

– Direction change

– Quadrature error detection

23.1 Block Diagram
Figure 23-1 on page 943 provides a block diagram of a Stellaris® QEI module.

February 24, 2009942
Preliminary

Quadrature Encoder Interface (QEI)

Figure 23-1. QEI Block Diagram

Quadrature
Encoder

Velocity
Predivider

Interrupt Control

QEIINTEN

QEIRIS
QEIISC

Position Integrator

QEIMAXPOS

QEIPOS

Velocity Accumulator

QEICOUNT
QEISPEED

Velocity Timer

QEILOAD

QEITIME

PhA

PhB

IDX

clk

dir

Interrupt

Control & Status

QEICTL
QEISTAT

23.2 Functional Description
TheQEI module interprets the two-bit gray code produced by a quadrature encoder wheel to integrate
position over time and determine direction of rotation. In addition, it can capture a running estimate
of the velocity of the encoder wheel.

The position integrator and velocity capture can be independently enabled, though the position
integrator must be enabled before the velocity capture can be enabled. The two phase signals, PhA
and PhB, can be swapped before being interpreted by the QEI module to change the meaning of
forward and backward, and to correct for miswiring of the system. Alternatively, the phase signals
can be interpreted as a clock and direction signal as output by some encoders.

The QEI module input signals have a digital noise filter on them that can be enabled to prevent
spurious operation. The noise filter requires that the inputs be stable for 3 consecutive clock cycles
before updating the edge detector. The filter is enabled by the FILTEN bit in the QEI Control
(QEICTL) register. The frequency of the input update is programmable using the FILTCNT bit field
in the QEICTL register.

The QEI module supports twomodes of signal operation: quadrature phasemode and clock/direction
mode. In quadrature phase mode, the encoder produces two clocks that are 90 degrees out of
phase; the edge relationship is used to determine the direction of rotation. In clock/direction mode,
the encoder produces a clock signal to indicate steps and a direction signal to indicate the direction
of rotation. This mode is determined by the SigMode bit of the QEI Control (QEICTL) register (see
page 947).

When the QEI module is set to use the quadrature phase mode (SigMode bit equals zero), the
capture mode for the position integrator can be set to update the position counter on every edge of
the PhA signal or to update on every edge of both PhA and PhB. Updating the position counter on
every PhA and PhB provides more positional resolution at the cost of less range in the positional
counter.

943February 24, 2009
Preliminary

LM3S9B92 Microcontroller

When edges on PhA lead edges on PhB , the position counter is incremented. When edges on PhB
lead edges on PhA , the position counter is decremented. When a rising and falling edge pair is
seen on one of the phases without any edges on the other, the direction of rotation has changed.

The positional counter is automatically reset on one of two conditions: sensing the index pulse or
reaching the maximum position value. Which mode is determined by the ResMode bit of the QEI
Control (QEICTL) register.

When ResMode is 0, the positional counter is reset when the index pulse is sensed. This limits the
positional counter to the values [0:N-1], where N is the number of phase edges in a full revolution
of the encoder wheel. The QEIMAXPOS register must be programmed with N-1 so that the reverse
direction from position 0 can move the position counter to N-1. In this mode, the position register
contains the absolute position of the encoder relative to the index (or home) position once an index
pulse has been seen.

When ResMode is 1, the positional counter is constrained to the range [0:M], where M is the
programmable maximum value. The index pulse is ignored by the positional counter in this mode.

The velocity capture has a configurable timer and a count register. It counts the number of phase
edges (using the same configuration as for the position integrator) in a given time period. The edge
count from the previous time period is available to the controller via the QEISPEED register, while
the edge count for the current time period is being accumulated in theQEICOUNT register. As soon
as the current time period is complete, the total number of edges counted in that time period is made
available in the QEISPEED register (losing the previous value), the QEICOUNT is reset to 0, and
counting commences on a new time period. The number of edges counted in a given time period
is directly proportional to the velocity of the encoder.

Figure 23-2 on page 944 shows how the Stellaris® quadrature encoder converts the phase input
signals into clock pulses, the direction signal, and how the velocity predivider operates (in Divide
by 4 mode).

Figure 23-2. Quadrature Encoder and Velocity Predivider Operation

-1 -1 -1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
+1 +1 +1 +1 +1 +1 +1 +1

PhA

PhB

clk

clkdiv

dir
pos
rel

The period of the timer is configurable by specifying the load value for the timer in the QEILOAD
register. When the timer reaches zero, an interrupt can be triggered, and the hardware reloads the
timer with the QEILOAD value and continues to count down. At lower encoder speeds, a longer
timer period is needed to be able to capture enough edges to have a meaningful result. At higher
encoder speeds, both a shorter timer period and/or the velocity predivider can be used.

The following equation converts the velocity counter value into an rpm value:

rpm = (clock * (2 ^ VelDiv) * Speed * 60) ÷ (Load * ppr * edges)

where:

clock is the controller clock rate

ppr is the number of pulses per revolution of the physical encoder

February 24, 2009944
Preliminary

Quadrature Encoder Interface (QEI)

edges is 2 or 4, based on the capture mode set in the QEICTL register (2 for CapMode set to 0 and
4 for CapMode set to 1)

For example, consider a motor running at 600 rpm. A 2048 pulse per revolution quadrature encoder
is attached to the motor, producing 8192 phase edges per revolution. With a velocity predivider of
÷1 (VelDiv set to 0) and clocking on both PhA and PhB edges, this results in 81,920 pulses per
second (the motor turns 10 times per second). If the timer were clocked at 10,000 Hz, and the load
value was 2,500 (¼ of a second), it would count 20,480 pulses per update. Using the above equation:

rpm = (10000 * 1 * 20480 * 60) ÷ (2500 * 2048 * 4) = 600 rpm

Now, consider that the motor is sped up to 3000 rpm. This results in 409,600 pulses per second,
or 102,400 every ¼ of a second. Again, the above equation gives:

rpm = (10000 * 1 * 102400 * 60) ÷ (2500 * 2048 * 4) = 3000 rpm

Caremust be taken when evaluating this equation since intermediate valuesmay exceed the capacity
of a 32-bit integer. In the above examples, the clock is 10,000 and the divider is 2,500; both could
be predivided by 100 (at compile time if they are constants) and therefore be 100 and 25. In fact, if
they were compile-time constants, they could also be reduced to a simple multiply by 4, cancelled
by the ÷4 for the edge-count factor.

Important: Reducing constant factors at compile time is the best way to control the intermediate
values of this equation, as well as reducing the processing requirement of computing
this equation.

The division can be avoided by selecting a timer load value such that the divisor is a power of 2; a
simple shift can therefore be done in place of the division. For encoders with a power of 2 pulses
per revolution, this is a simple matter of selecting a power of 2 load value. For other encoders, a
load value must be selected such that the product is very close to a power of two. For example, a
100 pulse per revolution encoder could use a load value of 82, resulting in 32,800 as the divisor,
which is 0.09% above 214; in this case a shift by 15 would be an adequate approximation of the
divide in most cases. If absolute accuracy were required, the controller’s divide instruction could be
used.

The QEI module can produce a controller interrupt on several events: phase error, direction change,
reception of the index pulse, and expiration of the velocity timer. Standard masking, raw interrupt
status, interrupt status, and interrupt clear capabilities are provided.

23.3 Initialization and Configuration
The following example shows how to configure the Quadrature Encoder module to read back an
absolute position:

1. Enable the QEI clock by writing a value of 0x0000.0100 to the RCGC1 register in the System
Control module. See page 167.

2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control
module. See page 179.

3. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register.

4. Configure the quadrature encoder to capture edges on both signals and maintain an absolute
position by resetting on index pulses. Using a 1000-line encoder at four edges per line, there

945February 24, 2009
Preliminary

LM3S9B92 Microcontroller

are 4000 pulses per revolution; therefore, set the maximum position to 3999 (0xF9F) since the
count is zero-based.

■ Write the QEICTL register with the value of 0x0000.0018.

■ Write the QEIMAXPOS register with the value of 0x0000.0F9F.

5. Enable the quadrature encoder by setting bit 0 of the QEICTL register.

6. Delay for some time.

7. Read the encoder position by reading the QEIPOS register value.

23.4 Register Map
Table 23-1 on page 946 lists the QEI registers. The offset listed is a hexadecimal increment to the
register’s address, relative to the module’s base address:

■ QEI0: 0x4002.C000
■ QEI1: 0x4002.D000

Note that the QEI module clock must be enabled before the registers can be programmed (see
page 167).

Table 23-1. QEI Register Map

See
pageDescriptionResetTypeNameOffset

947QEI Control0x0000.0000R/WQEICTL0x000

949QEI Status0x0000.0000ROQEISTAT0x004

950QEI Position0x0000.0000R/WQEIPOS0x008

951QEI Maximum Position0x0000.0000R/WQEIMAXPOS0x00C

952QEI Timer Load0x0000.0000R/WQEILOAD0x010

953QEI Timer0x0000.0000ROQEITIME0x014

954QEI Velocity Counter0x0000.0000ROQEICOUNT0x018

955QEI Velocity0x0000.0000ROQEISPEED0x01C

956QEI Interrupt Enable0x0000.0000R/WQEIINTEN0x020

957QEI Raw Interrupt Status0x0000.0000ROQEIRIS0x024

958QEI Interrupt Status and Clear0x0000.0000R/W1CQEIISC0x028

23.5 Register Descriptions
The remainder of this section lists and describes the QEI registers, in numerical order by address
offset.

February 24, 2009946
Preliminary

Quadrature Encoder Interface (QEI)

Register 1: QEI Control (QEICTL), offset 0x000
This register contains the configuration of the QEI module. Separate enables are provided for the
quadrature encoder and the velocity capture blocks; the quadrature encoder must be enabled in
order to capture the velocity, but the velocity does not need to be captured in applications that do
not need it. The phase signal interpretation, phase swap, Position Update mode, Position Reset
mode, and velocity predivider are all set via this register.

QEI Control (QEICTL)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x000
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

FILTCNTreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

EnableSwapSigModeCapModeResModeVelEnVelDivINVAINVBINVISTALLENFILTENreserved

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x000ROreserved31:20

Input Filter Pre-Scale Count

This field controls the frequency of the input update.

0x0R/WFILTCNT19:16

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x0ROreserved15:14

Enable Input Filter

When set, a digital noise filter is enabled on the input QEI signals. Inputs
must be stable for 3 consecutive clock edges before the edge detector
is updated.

0R/WFILTEN13

Stall QEI

When set, the QEI stalls when the microcontroller asserts Halt.

0R/WSTALLEN12

Invert Index Pulse

When set , the input Index Pulse is inverted.

0R/WINVI11

Invert PhB

When set, the PhB input is inverted.

0R/WINVB10

Invert PhA

When set, the PhA input is inverted.

0R/WINVA9

947February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionResetTypeNameBit/Field

Predivide Velocity

A predivider of the input quadrature pulses before being applied to the
QEICOUNT accumulator. This field can be set to the following values:

PredividerValue

÷10x0

÷20x1

÷40x2

÷80x3

÷160x4

÷320x5

÷640x6

÷1280x7

0x0R/WVelDiv8:6

Capture Velocity

When set, enables capture of the velocity of the quadrature encoder.

0R/WVelEn5

Reset Mode

The Reset mode for the position counter. When 0, the position counter
is reset when it reaches the maximum; when 1, the position counter is
reset when the index pulse is captured.

0R/WResMode4

Capture Mode

The Capture mode defines the phase edges that are counted in the
position. When 0, only the PhA edges are counted; when 1, the PhA
and PhB edges are counted, providing twice the positional resolution
but half the range.

0R/WCapMode3

Signal Mode

When 1, the PhA and PhB signals are clock and direction; when 0, they
are quadrature phase signals.

0R/WSigMode2

Swap Signals

Swaps the PhA and PhB signals.

0R/WSwap1

Enable QEI

Enables the quadrature encoder module.

0R/WEnable0

February 24, 2009948
Preliminary

Quadrature Encoder Interface (QEI)

Register 2: QEI Status (QEISTAT), offset 0x004
This register provides status about the operation of the QEI module.

QEI Status (QEISTAT)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x004
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

ErrorDirectionreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:2

Direction of Rotation

Indicates the direction the encoder is rotating.

The Direction values are defined as follows:

DescriptionValue

Forward rotation0

Reverse rotation1

0RODirection1

Error Detected

Indicates that an error was detected in the gray code sequence (that is,
both signals changing at the same time).

0ROError0

949February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 3: QEI Position (QEIPOS), offset 0x008
This register contains the current value of the position integrator. Its value is updated by inputs on
the QEI phase inputs, and can be set to a specific value by writing to it.

QEI Position (QEIPOS)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x008
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Position

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

Position

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Current Position Integrator Value

The current value of the position integrator.

0x00R/WPosition31:0

February 24, 2009950
Preliminary

Quadrature Encoder Interface (QEI)

Register 4: QEI Maximum Position (QEIMAXPOS), offset 0x00C
This register contains the maximum value of the position integrator. When moving forward, the
position register resets to zero when it increments past this value. When moving backward, the
position register resets to this value when it decrements from zero.

QEI Maximum Position (QEIMAXPOS)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x00C
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

MaxPos

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

MaxPos

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Maximum Position Integrator Value

The maximum value of the position integrator.

0x00R/WMaxPos31:0

951February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 5: QEI Timer Load (QEILOAD), offset 0x010
This register contains the load value for the velocity timer. Since this value is loaded into the timer
the clock cycle after the timer is zero, this value should be one less than the number of clocks in
the desired period. So, for example, to have 2000 clocks per timer period, this register should contain
1999.

QEI Timer Load (QEILOAD)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x010
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

Load

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

0123456789101112131415

Load

R/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WR/WType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Velocity Timer Load Value

The load value for the velocity timer.

0x00R/WLoad31:0

February 24, 2009952
Preliminary

Quadrature Encoder Interface (QEI)

Register 6: QEI Timer (QEITIME), offset 0x014
This register contains the current value of the velocity timer. This counter does not increment when
VelEn in QEICTL is 0.

QEI Timer (QEITIME)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x014
Type RO, reset 0x0000.0000

16171819202122232425262728293031

Time

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Time

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Velocity Timer Current Value

The current value of the velocity timer.

0x00ROTime31:0

953February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 7: QEI Velocity Counter (QEICOUNT), offset 0x018
This register contains the running count of velocity pulses for the current time period. Since this is
a running total, the time period to which it applies cannot be known with precision (that is, a read of
this register does not necessarily correspond to the time returned by the QEITIME register since
there is a small window of time between the two reads, during which time either value may have
changed). The QEISPEED register should be used to determine the actual encoder velocity; this
register is provided for information purposes only. This counter does not increment when VelEn in
QEICTL is 0.

QEI Velocity Counter (QEICOUNT)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x018
Type RO, reset 0x0000.0000

16171819202122232425262728293031

Count

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Count

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Velocity Pulse Count

The running total of encoder pulses during this velocity timer period.

0x00ROCount31:0

February 24, 2009954
Preliminary

Quadrature Encoder Interface (QEI)

Register 8: QEI Velocity (QEISPEED), offset 0x01C
This register contains the most recently measured velocity of the quadrature encoder. This
corresponds to the number of velocity pulses counted in the previous velocity timer period. This
register does not update when VelEn in QEICTL is 0.

QEI Velocity (QEISPEED)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x01C
Type RO, reset 0x0000.0000

16171819202122232425262728293031

Speed

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

Speed

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Velocity

The measured speed of the quadrature encoder in pulses per period.

0x00ROSpeed31:0

955February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 9: QEI Interrupt Enable (QEIINTEN), offset 0x020
This register contains enables for each of the QEI module’s interrupts. An interrupt is asserted to
the controller if its corresponding bit in this register is set to 1.

QEI Interrupt Enable (QEIINTEN)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x020
Type R/W, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntIndexIntTimerIntDirIntErrorreserved

R/WR/WR/WR/WROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

Phase Error Interrupt Enable

When 1, an interrupt occurs when a phase error is detected.

0R/WIntError3

Direction Change Interrupt Enable

When 1, an interrupt occurs when the direction changes.

0R/WIntDir2

Timer Expires Interrupt Enable

When 1, an interrupt occurs when the velocity timer expires.

0R/WIntTimer1

Index Pulse Detected Interrupt Enable

When 1, an interrupt occurs when the index pulse is detected.

0R/WIntIndex0

February 24, 2009956
Preliminary

Quadrature Encoder Interface (QEI)

Register 10: QEI Raw Interrupt Status (QEIRIS), offset 0x024
This register provides the current set of interrupt sources that are asserted, regardless of whether
they cause an interrupt to be asserted to the controller (this is set through the QEIINTEN register).
Bits set to 1 indicate the latched events that have occurred; a zero bit indicates that the event in
question has not occurred.

QEI Raw Interrupt Status (QEIRIS)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x024
Type RO, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntIndexIntTimerIntDirIntErrorreserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

Phase Error Detected

Indicates that a phase error was detected.

0ROIntError3

Direction Change Detected

Indicates that the direction has changed.

0ROIntDir2

Velocity Timer Expired

Indicates that the velocity timer has expired.

0ROIntTimer1

Index Pulse Asserted

Indicates that the index pulse has occurred.

0ROIntIndex0

957February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Register 11: QEI Interrupt Status and Clear (QEIISC), offset 0x028
This register provides the current set of interrupt sources that are asserted to the controller. Bits set
to 1 indicate the latched events that have occurred; a zero bit indicates that the event in question
has not occurred. This is a R/W1C register; writing a 1 to a bit position clears the corresponding
interrupt reason.

QEI Interrupt Status and Clear (QEIISC)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000
Offset 0x028
Type R/W1C, reset 0x0000.0000

16171819202122232425262728293031

reserved

ROROROROROROROROROROROROROROROROType
0000000000000000Reset

0123456789101112131415

IntIndexIntTimerIntDirIntErrorreserved

R/W1CR/W1CR/W1CR/W1CROROROROROROROROROROROROType
0000000000000000Reset

DescriptionResetTypeNameBit/Field

Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0x00ROreserved31:4

Phase Error Interrupt

Indicates that a phase error was detected.

0R/W1CIntError3

Direction Change Interrupt

Indicates that the direction has changed.

0R/W1CIntDir2

Velocity Timer Expired Interrupt

Indicates that the velocity timer has expired.

0R/W1CIntTimer1

Index Pulse Interrupt

Indicates that the index pulse has occurred.

0R/W1CIntIndex0

February 24, 2009958
Preliminary

Quadrature Encoder Interface (QEI)

24 Pin Diagram
The LM3S9B92 microcontroller pin diagram is shown below.

Each GPIO signal is identified by its GPIO port unless it defaults to an alternate function on reset.
In this case, the GPIO port name is followed by the default alternate function. To see a complete
list of possible functions for each pin, see Table 25-5 on page 990.

Figure 24-1. 100-Pin LQFP Package Pin Diagram

959February 24, 2009
Preliminary

LM3S9B92 Microcontroller

25 Signal Tables
The following tables list the signals available for each pin. Signals are configured as GPIOs on reset,
except for those noted below. For a GPIO pin to be used for an alternate function, the corresponding
bit in theGPIOAFSEL register (see page 311) must be set. Further pin muxing options are provided
through the PMCx field in the GPIOPCTL register (see page 328), which selects one of several
available peripheral functions for that GPIO.

Important: All GPIO pins are configured as GPIOs by default with the exception of the pins shown
in Table 9-1. A Power-On-Reset (POR) or asserting RST puts the pins back to their
default state.

Table 25-1. GPIO Pins With Default Alternate Functions

GPIOPCTL PMCx Bit FieldGPIOAFSEL BitDefault StateGPIO Pin

0x11UART0PA[1:0]

0x11SSI0PA[5:2]

0x11I2C0PB[3:2]

0x31JTAG/SWDPC[3:0]

Table 25-2 on page 960 shows the pin-to-signal-name mapping, including functional characteristics
of the signals. Each possible alternate function is listed for each pin.

Table 25-3 on page 971 lists the signals in alphabetical order by signal name. If it is possible for a
signal to be on multiple pins, each possible pin assignment is listed. The "Pin Mux" column indicates
the GPIO and the encoding needed in the PMCx bit field in the GPIOPCTL register.

Table 25-4 on page 981 groups the signals by functionality, except for GPIOs. If it is possible for a
signal to be on multiple pins, each possible pin assignment is listed.

Table 25-5 on page 990 lists the GPIO pins and their alternate functions. The table heading "enc="
shows what the appropriate encoding for PMCx should be to select the function in that column (see
page 328). Table entries that are shaded gray are the default values for the corresponding GPIO
pin.

Table 25-2. Signals by Pin Number

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port E bit 7.TTLI/OPE71

ADC 0 input.AnalogIAIN0

PWM 5.TTLOPWM5

Analog comparator 2 output.TTLOC2o

UART module 1 Data Carrier Detect modem status input signal.TTLIU1DCD

GPIO port E bit 6.TTLI/OPE62

ADC 1 input.AnalogIAIN1

PWM 4.TTLOPWM4

Analog comparator 1 output.TTLOC1o

UART module 1 Clear To Send modem status input signal.TTLIU1CTS

February 24, 2009960
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NamePin Number

The positive supply (3.3 V) for the analog circuits (ADC, Analog
Comparators, etc.). These are separated from VDD to minimize
the electrical noise contained on VDD from affecting the analog
functions.

Power-VDDA3

The ground reference for the analog circuits (ADC, Analog
Comparators, etc.). These are separated from GND to minimize
the electrical noise contained on VDD from affecting the analog
functions.

Power-GNDA4

GPIO port E bit 5.TTLI/OPE55

ADC 2 input.AnalogIAIN2

Capture/Compare/PWM 5.TTLI/OCCP5

I2S module 0 transmit data.TTLI/OI2S0TXSD

GPIO port E bit 4.TTLI/OPE46

ADC 3 input.AnalogIAIN3

Capture/Compare/PWM 3.TTLI/OCCP3

PWM Fault 0.TTLIFault0

UART module 2 transmit.TTLOU2Tx

Capture/Compare/PWM 2.TTLI/OCCP2

I2S module 0 transmit word select.TTLI/OI2S0TXWS

Low drop-out regulator output voltage. This pin requires an external
capacitor between the pin and GND of 1 µF or greater. When the
on-chip LDO is used to provide power to the logic, the LDO pin
must also be connected to the VDDC pins at the board level in
addition to the decoupling capacitor(s).

Power-LDO7

Positive supply for I/O and some logic.Power-VDD8

Ground reference for logic and I/O pins.Power-GND9

GPIO port D bit 0.TTLI/OPD010

ADC 15 input.AnalogIAIN15

PWM 0.TTLOPWM0

CAN module 0 receive.TTLICAN0Rx

QEI module 0 index.TTLIIDX0

UART module 2 receive.TTLIU2Rx

UART module 1 receive.TTLIU1Rx

Capture/Compare/PWM 6.TTLI/OCCP6

I2S module 0 receive clock.TTLI/OI2S0RXSCK

UART module 1 Clear To Send modem status input signal.TTLIU1CTS

961February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port D bit 1.TTLI/OPD111

ADC 14 input.AnalogIAIN14

PWM 1.TTLOPWM1

CAN module 0 transmit.TTLOCAN0Tx

QEI module 0 phase A.TTLIPhA0

UART module 2 transmit.TTLOU2Tx

UART module 1 transmit.TTLOU1Tx

Capture/Compare/PWM 7.TTLI/OCCP7

I2S module 0 receive word select.TTLI/OI2S0RXWS

UART module 1 Data Carrier Detect modem status input signal.TTLIU1DCD

Capture/Compare/PWM 2.TTLI/OCCP2

QEI module 1 phase B.TTLIPhB1

GPIO port D bit 2.TTLI/OPD212

ADC 13 input.AnalogIAIN13

UART module 1 receive.TTLIU1Rx

Capture/Compare/PWM 6.TTLI/OCCP6

PWM 2.TTLOPWM2

Capture/Compare/PWM 5.TTLI/OCCP5

EPI module 0 signal 20.TTLI/OEPI0S20

GPIO port D bit 3.TTLI/OPD313

ADC 12 input.AnalogIAIN12

UART module 1 transmit.TTLOU1Tx

Capture/Compare/PWM 7.TTLI/OCCP7

PWM 3.TTLOPWM3

Capture/Compare/PWM 0.TTLI/OCCP0

EPI module 0 signal 21.TTLI/OEPI0S21

GPIO port J bit 0.TTLI/OPJ014

EPI module 0 signal 16.TTLI/OEPI0S16

PWM 0.TTLOPWM0

I2C module 1 clock.ODI/OI2C1SCL

GPIO port H bit 7.TTLI/OPH715

EPI module 0 signal 27.TTLI/OEPI0S27

PWM 5.TTLOPWM5

SSI module 1 transmit.TTLOSSI1Tx

XTALP of the Ethernet PHY.AnalogOXTALPPHY16

XTALN of the Ethernet PHY.AnalogIXTALNPHY17

GPIO port G bit 1.TTLI/OPG118

UART module 2 transmit.TTLOU2Tx

PWM 1.TTLOPWM1

I2C module 1 data.ODI/OI2C1SDA

PWM 5.TTLOPWM5

EPI module 0 signal 14.TTLI/OEPI0S14

February 24, 2009962
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port G bit 0.TTLI/OPG019

UART module 2 receive.TTLIU2Rx

PWM 0.TTLOPWM0

I2C module 1 clock.ODI/OI2C1SCL

PWM 4.TTLOPWM4

Used in Host mode to control an external power source to supply
power to the USB bus.

TTLOUSB0EPEN

EPI module 0 signal 13.TTLI/OEPI0S13

Positive supply for I/O and some logic.Power-VDD20

Ground reference for logic and I/O pins.Power-GND21

GPIO port C bit 7.TTLI/OPC722

Analog comparator 2 negative input.AnalogIC2-

Capture/Compare/PWM 4.TTLI/OCCP4

QEI module 0 phase B.TTLIPhB0

Capture/Compare/PWM 0.TTLI/OCCP0

UART module 1 transmit.TTLOU1Tx

Used in Host mode by an external power source to indicate an
error state by that power source.

TTLIUSB0PFLT

Analog comparator 1 output.TTLOC1o

EPI module 0 signal 5.TTLI/OEPI0S5

GPIO port C bit 6.TTLI/OPC623

Analog comparator 2 positive input.AnalogIC2+

Capture/Compare/PWM 3.TTLI/OCCP3

QEI module 0 phase B.TTLIPhB0

Analog comparator 2 output.TTLOC2o

PWM 7.TTLOPWM7

UART module 1 receive.TTLIU1Rx

Capture/Compare/PWM 0.TTLI/OCCP0

Used in Host mode by an external power source to indicate an
error state by that power source.

TTLIUSB0PFLT

EPI module 0 signal 4.TTLI/OEPI0S4

GPIO port C bit 5.TTLI/OPC524

Analog comparator 1 positive input.AnalogIC1+

Capture/Compare/PWM 1.TTLI/OCCP1

Analog comparator 1 output.TTLOC1o

Analog comparator 0 output.TTLOC0o

PWM Fault 2.TTLIFault2

Capture/Compare/PWM 3.TTLI/OCCP3

Used in Host mode to control an external power source to supply
power to the USB bus.

TTLOUSB0EPEN

EPI module 0 signal 3.TTLI/OEPI0S3

963February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port C bit 4.TTLI/OPC425

Capture/Compare/PWM 5.TTLI/OCCP5

QEI module 0 phase A.TTLIPhA0

PWM 6.TTLOPWM6

Capture/Compare/PWM 2.TTLI/OCCP2

Capture/Compare/PWM 4.TTLI/OCCP4

EPI module 0 signal 2.TTLI/OEPI0S2

Capture/Compare/PWM 1.TTLI/OCCP1

GPIO port A bit 0.TTLI/OPA026

UART module 0 receive. When in IrDA mode, this signal has IrDA
modulation.

TTLIU0Rx

I2C module 1 clock.ODI/OI2C1SCL

UART module 1 receive.TTLIU1Rx

GPIO port A bit 1.TTLI/OPA127

UARTmodule 0 transmit. When in IrDA mode, this signal has IrDA
modulation.

TTLOU0Tx

I2C module 1 data.ODI/OI2C1SDA

UART module 1 transmit.TTLOU1Tx

GPIO port A bit 2.TTLI/OPA228

SSI module 0 clock.TTLI/OSSI0Clk

PWM 4.TTLOPWM4

I2S module 0 receive data.TTLI/OI2S0RXSD

GPIO port A bit 3.TTLI/OPA329

SSI module 0 frame.TTLI/OSSI0Fss

PWM 5.TTLOPWM5

I2S module 0 receive master clock.TTLI/OI2S0RXMCLK

GPIO port A bit 4.TTLI/OPA430

SSI module 0 receive.TTLISSI0Rx

PWM 6.TTLOPWM6

CAN module 0 receive.TTLICAN0Rx

I2S module 0 transmit clock.TTLI/OI2S0TXSCK

GPIO port A bit 5.TTLI/OPA531

SSI module 0 transmit.TTLOSSI0Tx

PWM 7.TTLOPWM7

CAN module 0 transmit.TTLOCAN0Tx

I2S module 0 transmit word select.TTLI/OI2S0TXWS

Positive supply for I/O and some logic.Power-VDD32

9.1-kΩ resistor (1% precision) used internally for Ethernet PHY.AnalogOERBIAS33

February 24, 2009964
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port A bit 6.TTLI/OPA634

I2C module 1 clock.ODI/OI2C1SCL

Capture/Compare/PWM 1.TTLI/OCCP1

PWM 0.TTLOPWM0

PWM 4.TTLOPWM4

CAN module 0 receive.TTLICAN0Rx

Used in Host mode to control an external power source to supply
power to the USB bus.

TTLOUSB0EPEN

UART module 1 Clear To Send modem status input signal.TTLIU1CTS

GPIO port A bit 7.TTLI/OPA735

I2C module 1 data.ODI/OI2C1SDA

Capture/Compare/PWM 4.TTLI/OCCP4

PWM 1.TTLOPWM1

PWM 5.TTLOPWM5

CAN module 0 transmit.TTLOCAN0Tx

Capture/Compare/PWM 3.TTLI/OCCP3

Used in Host mode by an external power source to indicate an
error state by that power source.

TTLIUSB0PFLT

UART module 1 Data Carrier Detect modem status input signal.TTLIU1DCD

GPIO port G bit 7.TTLI/OPG736

QEI module 1 phase B.TTLIPhB1

PWM 7.TTLOPWM7

Capture/Compare/PWM 5.TTLI/OCCP5

EPI module 0 signal 31.TTLI/OEPI0S31

RXIN of the Ethernet PHY.AnalogIRXIN37

Positive supply for most of the logic function, including the
processor core and most peripherals.

Power-VDDC38

GPIO port J bit 2.TTLI/OPJ239

EPI module 0 signal 18.TTLI/OEPI0S18

Capture/Compare/PWM 0.TTLI/OCCP0

PWM Fault 0.TTLIFault0

RXIP of the Ethernet PHY.AnalogIRXIP40

GPIO port F bit 5.TTLI/OPF541

Capture/Compare/PWM 2.TTLI/OCCP2

Analog comparator 1 output.TTLOC1o

EPI module 0 signal 15.TTLI/OEPI0S15

SSI module 1 transmit.TTLOSSI1Tx

GPIO port F bit 4.TTLI/OPF442

Capture/Compare/PWM 0.TTLI/OCCP0

Analog comparator 0 output.TTLOC0o

PWM Fault 0.TTLIFault0

EPI module 0 signal 12.TTLI/OEPI0S12

SSI module 1 receive.TTLISSI1Rx

965February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NamePin Number

TXOP of the Ethernet PHY.TTLOTXOP43

Positive supply for I/O and some logic.Power-VDD44

Ground reference for logic and I/O pins.Power-GND45

TXON of the Ethernet PHY.TTLOTXON46

GPIO port F bit 0.TTLI/OPF047

CAN module 1 receive.TTLICAN1Rx

QEI module 0 phase B.TTLIPhB0

PWM 0.TTLOPWM0

I2S module 0 transmit data.TTLI/OI2S0TXSD

UART module 1 Data Set Ready modem output control line.TTLIU1DSR

Main oscillator crystal input or an external clock reference input.AnalogIOSC048

Main oscillator crystal output.AnalogOOSC149

GPIO port J bit 3.TTLI/OPJ350

EPI module 0 signal 19.TTLI/OEPI0S19

UART module 1 Clear To Send modem status input signal.TTLIU1CTS

Capture/Compare/PWM 6.TTLI/OCCP6

No connect. Leave the pin electrically unconnected/isolated.--NC51

GPIO port J bit 4.TTLI/OPJ452

EPI module 0 signal 28.TTLI/OEPI0S28

UART module 1 Data Carrier Detect modem status input signal.TTLIU1DCD

Capture/Compare/PWM 4.TTLI/OCCP4

GPIO port J bit 5.TTLI/OPJ553

EPI module 0 signal 29.TTLI/OEPI0S29

UART module 1 Data Set Ready modem output control line.TTLIU1DSR

Capture/Compare/PWM 2.TTLI/OCCP2

GPIO port J bit 6.TTLI/OPJ654

EPI module 0 signal 30.TTLI/OEPI0S30

UART module 1 Request to Send modem output control line.TTLOU1RTS

Capture/Compare/PWM 1.TTLI/OCCP1

GPIO port J bit 7.TTLI/OPJ755

UART module 1 Data Terminal Ready modem status input signal.TTLOU1DTR

Capture/Compare/PWM 0.TTLI/OCCP0

Positive supply for I/O and some logic.Power-VDD56

Ground reference for logic and I/O pins.Power-GND57

MDIO of the Ethernet PHY.ODI/OMDIO58

GPIO port F bit 3.TTLI/OPF359

MII LED 0.TTLOLED0

PWM 5.TTLOPWM5

PWM 3.TTLOPWM3

SSI module 1 frame.TTLI/OSSI1Fss

February 24, 2009966
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port F bit 2.TTLI/OPF260

MII LED 1.TTLOLED1

PWM 4.TTLOPWM4

PWM 2.TTLOPWM2

SSI module 1 clock.TTLI/OSSI1Clk

GPIO port F bit 1.TTLI/OPF161

CAN module 1 transmit.TTLOCAN1Tx

QEI module 1 index.TTLIIDX1

PWM 1.TTLOPWM1

I2S module 0 transmit master clock.TTLI/OI2S0TXMCLK

UART module 1 Request to Send modem output control line.TTLOU1RTS

Capture/Compare/PWM 3.TTLI/OCCP3

GPIO port H bit 6.TTLI/OPH662

EPI module 0 signal 26.TTLI/OEPI0S26

PWM 4.TTLOPWM4

SSI module 1 receive.TTLISSI1Rx

GPIO port H bit 5.TTLI/OPH563

EPI module 0 signal 11.TTLI/OEPI0S11

PWM Fault 2.TTLIFault2

SSI module 1 frame.TTLI/OSSI1Fss

System reset input.TTLIRST64

GPIO port B bit 3.TTLI/OPB365

I2C module 0 data.ODI/OI2C0SDA

PWM Fault 0.TTLIFault0

PWM Fault 3.TTLIFault3

Used in Host mode by an external power source to indicate an
error state by that power source.

TTLIUSB0PFLT

GPIO port B bit 0.TTLI/OPB066

Capture/Compare/PWM 0.TTLI/OCCP0

PWM 2.TTLOPWM2

UART module 1 receive.TTLIU1Rx

This signal senses the state of the USB ID signal. The USB PHY
enables an integrated pull-up, and an external element (USB
connector) indicates the initial state of the USB controller (pulled
down is an A device and not pulled down is a B device).

AnalogIUSB0ID

GPIO port B bit 1.TTLI/OPB167

Capture/Compare/PWM 2.TTLI/OCCP2

PWM 3.TTLOPWM3

Capture/Compare/PWM 1.TTLI/OCCP1

UART module 1 transmit.TTLOU1Tx

This signal is used during the session negotiation protocol. This
signal allows the USBPHY to both sense the voltage level of VBUS,
and pull up VBUS momentarily during VBUS pulsing.

AnalogI/OUSB0VBUS

Positive supply for I/O and some logic.Power-VDD68

967February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NamePin Number

Ground reference for logic and I/O pins.Power-GND69

Bidirectional differential data pin (D- per USB specification).AnalogI/OUSB0DM70

Bidirectional differential data pin (D+ per USB specification).AnalogI/OUSB0DP71

GPIO port B bit 2.TTLI/OPB272

I2C module 0 clock.ODI/OI2C0SCL

QEI module 0 index.TTLIIDX0

Capture/Compare/PWM 3.TTLI/OCCP3

Capture/Compare/PWM 0.TTLI/OCCP0

Used in Host mode to control an external power source to supply
power to the USB bus.

TTLOUSB0EPEN

9.1-kΩ resistor (1% precision) used internally for USB analog
circuitry.

AnalogOUSB0RBIAS73

GPIO port E bit 0.TTLI/OPE074

PWM 4.TTLOPWM4

SSI module 1 clock.TTLI/OSSI1Clk

Capture/Compare/PWM 3.TTLI/OCCP3

EPI module 0 signal 8.TTLI/OEPI0S8

Used in Host mode by an external power source to indicate an
error state by that power source.

TTLIUSB0PFLT

GPIO port E bit 1.TTLI/OPE175

PWM 5.TTLOPWM5

SSI module 1 frame.TTLI/OSSI1Fss

PWM Fault 0.TTLIFault0

Capture/Compare/PWM 2.TTLI/OCCP2

Capture/Compare/PWM 6.TTLI/OCCP6

EPI module 0 signal 9.TTLI/OEPI0S9

GPIO port H bit 4.TTLI/OPH476

Used in Host mode by an external power source to indicate an
error state by that power source.

TTLIUSB0PFLT

EPI module 0 signal 10.TTLI/OEPI0S10

SSI module 1 clock.TTLI/OSSI1Clk

GPIO port C bit 3.TTLI/OPC377

JTAG TDO and SWO.TTLOTDO

JTAG TDO and SWO.TTLOSWO

GPIO port C bit 2.TTLI/OPC278

JTAG TDI.TTLITDI

GPIO port C bit 1.TTLI/OPC179

JTAG TMS and SWDIO.TTLITMS

JTAG TMS and SWDIO.TTLI/OSWDIO

GPIO port C bit 0.TTLI/OPC080

JTAG/SWD CLK.TTLITCK

JTAG/SWD CLK.TTLISWCLK

Positive supply for I/O and some logic.Power-VDD81

Ground reference for logic and I/O pins.Power-GND82

February 24, 2009968
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port H bit 3.TTLI/OPH383

QEI module 0 phase B.TTLIPhB0

PWM Fault 0.TTLIFault0

Used in Host mode to control an external power source to supply
power to the USB bus.

TTLOUSB0EPEN

EPI module 0 signal 0.TTLI/OEPI0S0

GPIO port H bit 2.TTLI/OPH284

QEI module 1 index.TTLIIDX1

Analog comparator 1 output.TTLOC1o

PWM Fault 3.TTLIFault3

EPI module 0 signal 1.TTLI/OEPI0S1

GPIO port H bit 1.TTLI/OPH185

Capture/Compare/PWM 7.TTLI/OCCP7

PWM 3.TTLOPWM3

EPI module 0 signal 7.TTLI/OEPI0S7

PWM 5.TTLOPWM5

GPIO port H bit 0.TTLI/OPH086

Capture/Compare/PWM 6.TTLI/OCCP6

PWM 2.TTLOPWM2

EPI module 0 signal 6.TTLI/OEPI0S6

PWM 4.TTLOPWM4

GPIO port J bit 1.TTLI/OPJ187

EPI module 0 signal 17.TTLI/OEPI0S17

Used in Host mode by an external power source to indicate an
error state by that power source.

TTLIUSB0PFLT

PWM 1.TTLOPWM1

I2C module 1 data.ODI/OI2C1SDA

Positive supply for most of the logic function, including the
processor core and most peripherals.

Power-VDDC88

GPIO port B bit 7.TTLI/OPB789

Non-maskable interrupt.TTLINMI

969February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port B bit 6.TTLI/OPB690

This input provides a reference voltage used to specify the input
voltage at which the ADC converts to a maximum value. In other
words, the voltage that is applied to VREFA is the voltage with which
an AINn signal is converted to 1023. The VREFA input is limited
to the range specified in Table 27-2 on page 993.

AnalogIVREFA

Analog comparator 0 positive input.AnalogIC0+

Capture/Compare/PWM 1.TTLI/OCCP1

Capture/Compare/PWM 7.TTLI/OCCP7

Analog comparator 0 output.TTLOC0o

PWM Fault 1.TTLIFault1

QEI module 0 index.TTLIIDX0

Capture/Compare/PWM 5.TTLI/OCCP5

I2S module 0 transmit clock.TTLI/OI2S0TXSCK

GPIO port B bit 5.TTLI/OPB591

ADC 11 input.AnalogIAIN11

Analog comparator 1 negative input.AnalogIC1-

Analog comparator 0 output.TTLOC0o

Capture/Compare/PWM 5.TTLI/OCCP5

Capture/Compare/PWM 6.TTLI/OCCP6

Capture/Compare/PWM 0.TTLI/OCCP0

CAN module 0 transmit.TTLOCAN0Tx

Capture/Compare/PWM 2.TTLI/OCCP2

UART module 1 transmit.TTLOU1Tx

EPI module 0 signal 22.TTLI/OEPI0S22

GPIO port B bit 4.TTLI/OPB492

ADC 10 input.AnalogIAIN10

Analog comparator 0 negative input.AnalogIC0-

UART module 2 receive.TTLIU2Rx

CAN module 0 receive.TTLICAN0Rx

QEI module 0 index.TTLIIDX0

UART module 1 receive.TTLIU1Rx

EPI module 0 signal 23.TTLI/OEPI0S23

Positive supply for I/O and some logic.Power-VDD93

Ground reference for logic and I/O pins.Power-GND94

GPIO port E bit 2.TTLI/OPE295

ADC 9 input.AnalogIAIN9

Capture/Compare/PWM 4.TTLI/OCCP4

SSI module 1 receive.TTLISSI1Rx

QEI module 1 phase B.TTLIPhB1

QEI module 0 phase A.TTLIPhA0

Capture/Compare/PWM 2.TTLI/OCCP2

EPI module 0 signal 24.TTLI/OEPI0S24

February 24, 2009970
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NamePin Number

GPIO port E bit 3.TTLI/OPE396

ADC 8 input.AnalogIAIN8

Capture/Compare/PWM 1.TTLI/OCCP1

SSI module 1 transmit.TTLOSSI1Tx

QEI module 1 phase A.TTLIPhA1

QEI module 0 phase B.TTLIPhB0

Capture/Compare/PWM 7.TTLI/OCCP7

EPI module 0 signal 25.TTLI/OEPI0S25

GPIO port D bit 4.TTLI/OPD497

ADC 7 input.AnalogIAIN7

Capture/Compare/PWM 0.TTLI/OCCP0

Capture/Compare/PWM 3.TTLI/OCCP3

I2S module 0 receive data.TTLI/OI2S0RXSD

UART module 1 Ring Indicator modem status input signal.TTLIU1RI

EPI module 0 signal 19.TTLI/OEPI0S19

GPIO port D bit 5.TTLI/OPD598

ADC 6 input.AnalogIAIN6

Capture/Compare/PWM 2.TTLI/OCCP2

Capture/Compare/PWM 4.TTLI/OCCP4

I2S module 0 receive master clock.TTLI/OI2S0RXMCLK

UART module 2 receive.TTLIU2Rx

EPI module 0 signal 28.TTLI/OEPI0S28

GPIO port D bit 6.TTLI/OPD699

ADC 5 input.AnalogIAIN5

PWM Fault 0.TTLIFault0

I2S module 0 transmit clock.TTLI/OI2S0TXSCK

UART module 2 transmit.TTLOU2Tx

EPI module 0 signal 29.TTLI/OEPI0S29

GPIO port D bit 7.TTLI/OPD7100

ADC 4 input.AnalogIAIN4

QEI module 0 index.TTLIIDX0

Analog comparator 0 output.TTLOC0o

Capture/Compare/PWM 1.TTLI/OCCP1

I2S module 0 transmit word select.TTLI/OI2S0TXWS

UART module 1 Data Terminal Ready modem status input signal.TTLOU1DTR

EPI module 0 signal 30.TTLI/OEPI0S30

a. The TTL designation indicates the pin is TTL-compatible.

Table 25-3. Signals by Signal Name

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

ADC 0 input.AnalogI-1AIN0

ADC 1 input.AnalogI-2AIN1

971February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

ADC 2 input.AnalogI-5AIN2

ADC 3 input.AnalogI-6AIN3

ADC 4 input.AnalogI-100AIN4

ADC 5 input.AnalogI-99AIN5

ADC 6 input.AnalogI-98AIN6

ADC 7 input.AnalogI-97AIN7

ADC 8 input.AnalogI-96AIN8

ADC 9 input.AnalogI-95AIN9

ADC 10 input.AnalogI-92AIN10

ADC 11 input.AnalogI-91AIN11

ADC 12 input.AnalogI-13AIN12

ADC 13 input.AnalogI-12AIN13

ADC 14 input.AnalogI-11AIN14

ADC 15 input.AnalogI-10AIN15

Analog comparator 0 positive input.AnalogI-90C0+

Analog comparator 0 negative input.AnalogI-92C0-

Analog comparator 0 output.TTLOPC5 (3)
PF4 (2)
PB6 (3)
PB5 (1)
PD7 (2)

24
42
90
91
100

C0o

Analog comparator 1 positive input.AnalogI-24C1+

Analog comparator 1 negative input.AnalogI-91C1-

Analog comparator 1 output.TTLOPE6 (2)
PC7 (7)
PC5 (2)
PF5 (2)
PH2 (2)

2
22
24
41
84

C1o

Analog comparator 2 positive input.AnalogI-23C2+

Analog comparator 2 negative input.AnalogI-22C2-

Analog comparator 2 output.TTLOPE7 (2)
PC6 (3)

1
23

C2o

CAN module 0 receive.TTLIPD0 (2)
PA4 (5)
PA6 (6)
PB4 (5)

10
30
34
92

CAN0Rx

CAN module 0 transmit.TTLOPD1 (2)
PA5 (5)
PA7 (6)
PB5 (5)

11
31
35
91

CAN0Tx

CAN module 1 receive.TTLIPF0 (1)47CAN1Rx

CAN module 1 transmit.TTLOPF1 (1)61CAN1Tx

February 24, 2009972
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

Capture/Compare/PWM 0.TTLI/OPD3 (4)
PC7 (4)
PC6 (6)
PJ2 (9)
PF4 (1)
PJ7 (10)
PB0 (1)
PB2 (5)
PB5 (4)
PD4 (1)

13
22
23
39
42
55
66
72
91
97

CCP0

Capture/Compare/PWM 1.TTLI/OPC5 (1)
PC4 (9)
PA6 (2)
PJ6 (10)
PB1 (4)
PB6 (1)
PE3 (1)
PD7 (3)

24
25
34
54
67
90
96
100

CCP1

Capture/Compare/PWM 2.TTLI/OPE4 (6)
PD1 (10)
PC4 (5)
PF5 (1)
PJ5 (10)
PB1 (1)
PE1 (4)
PB5 (6)
PE2 (5)
PD5 (1)

6
11
25
41
53
67
75
91
95
98

CCP2

Capture/Compare/PWM 3.TTLI/OPE4 (1)
PC6 (1)
PC5 (5)
PA7 (7)
PF1 (10)
PB2 (4)
PE0 (3)
PD4 (2)

6
23
24
35
61
72
74
97

CCP3

Capture/Compare/PWM 4.TTLI/OPC7 (1)
PC4 (6)
PA7 (2)
PJ4 (10)
PE2 (1)
PD5 (2)

22
25
35
52
95
98

CCP4

Capture/Compare/PWM 5.TTLI/OPE5 (1)
PD2 (4)
PC4 (1)
PG7 (8)
PB6 (6)
PB5 (2)

5
12
25
36
90
91

CCP5

Capture/Compare/PWM 6.TTLI/OPD0 (6)
PD2 (2)
PJ3 (10)
PE1 (5)
PH0 (1)
PB5 (3)

10
12
50
75
86
91

CCP6

973February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

Capture/Compare/PWM 7.TTLI/OPD1 (6)
PD3 (2)
PH1 (1)
PB6 (2)
PE3 (5)

11
13
85
90
96

CCP7

EPI module 0 signal 0.TTLI/OPH3 (8)83EPI0S0

EPI module 0 signal 1.TTLI/OPH2 (8)84EPI0S1

EPI module 0 signal 2.TTLI/OPC4 (8)25EPI0S2

EPI module 0 signal 3.TTLI/OPC5 (8)24EPI0S3

EPI module 0 signal 4.TTLI/OPC6 (8)23EPI0S4

EPI module 0 signal 5.TTLI/OPC7 (8)22EPI0S5

EPI module 0 signal 6.TTLI/OPH0 (8)86EPI0S6

EPI module 0 signal 7.TTLI/OPH1 (8)85EPI0S7

EPI module 0 signal 8.TTLI/OPE0 (8)74EPI0S8

EPI module 0 signal 9.TTLI/OPE1 (8)75EPI0S9

EPI module 0 signal 10.TTLI/OPH4 (8)76EPI0S10

EPI module 0 signal 11.TTLI/OPH5 (8)63EPI0S11

EPI module 0 signal 12.TTLI/OPF4 (8)42EPI0S12

EPI module 0 signal 13.TTLI/OPG0 (8)19EPI0S13

EPI module 0 signal 14.TTLI/OPG1 (8)18EPI0S14

EPI module 0 signal 15.TTLI/OPF5 (8)41EPI0S15

EPI module 0 signal 16.TTLI/OPJ0 (8)14EPI0S16

EPI module 0 signal 17.TTLI/OPJ1 (8)87EPI0S17

EPI module 0 signal 18.TTLI/OPJ2 (8)39EPI0S18

EPI module 0 signal 19.TTLI/OPJ3 (8)
PD4 (10)

50
97

EPI0S19

EPI module 0 signal 20.TTLI/OPD2 (8)12EPI0S20

EPI module 0 signal 21.TTLI/OPD3 (8)13EPI0S21

EPI module 0 signal 22.TTLI/OPB5 (8)91EPI0S22

EPI module 0 signal 23.TTLI/OPB4 (8)92EPI0S23

EPI module 0 signal 24.TTLI/OPE2 (8)95EPI0S24

EPI module 0 signal 25.TTLI/OPE3 (8)96EPI0S25

EPI module 0 signal 26.TTLI/OPH6 (8)62EPI0S26

EPI module 0 signal 27.TTLI/OPH7 (8)15EPI0S27

EPI module 0 signal 28.TTLI/OPJ4 (8)
PD5 (10)

52
98

EPI0S28

EPI module 0 signal 29.TTLI/OPJ5 (8)
PD6 (10)

53
99

EPI0S29

EPI module 0 signal 30.TTLI/OPJ6 (8)
PD7 (10)

54
100

EPI0S30

EPI module 0 signal 31.TTLI/OPG7 (9)36EPI0S31

9.1-kΩ resistor (1% precision) used internally for
Ethernet PHY.

AnalogO-33ERBIAS

February 24, 2009974
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

PWM Fault 0.TTLIPE4 (4)
PJ2 (10)
PF4 (4)
PB3 (2)
PE1 (3)
PH3 (2)
PD6 (1)

6
39
42
65
75
83
99

Fault0

PWM Fault 1.TTLIPB6 (4)90Fault1

PWM Fault 2.TTLIPC5 (4)
PH5 (10)

24
63

Fault2

PWM Fault 3.TTLIPB3 (4)
PH2 (4)

65
84

Fault3

Ground reference for logic and I/O pins.Power--9
21
45
57
69
82
94

GND

The ground reference for the analog circuits (ADC,
Analog Comparators, etc.). These are separated
fromGND tominimize the electrical noise contained
on VDD from affecting the analog functions.

Power--4GNDA

I2C module 0 clock.ODI/OPB2 (1)72I2C0SCL

I2C module 0 data.ODI/OPB3 (1)65I2C0SDA

I2C module 1 clock.ODI/OPJ0 (11)
PG0 (3)
PA0 (8)
PA6 (1)

14
19
26
34

I2C1SCL

I2C module 1 data.ODI/OPG1 (3)
PA1 (8)
PA7 (1)
PJ1 (11)

18
27
35
87

I2C1SDA

I2S module 0 receive master clock.TTLI/OPA3 (9)
PD5 (8)

29
98

I2S0RXMCLK

I2S module 0 receive clock.TTLI/OPD0 (8)10I2S0RXSCK

I2S module 0 receive data.TTLI/OPA2 (9)
PD4 (8)

28
97

I2S0RXSD

I2S module 0 receive word select.TTLI/OPD1 (8)11I2S0RXWS

I2S module 0 transmit master clock.TTLI/OPF1 (8)61I2S0TXMCLK

I2S module 0 transmit clock.TTLI/OPA4 (9)
PB6 (9)
PD6 (8)

30
90
99

I2S0TXSCK

I2S module 0 transmit data.TTLI/OPE5 (9)
PF0 (8)

5
47

I2S0TXSD

I2S module 0 transmit word select.TTLI/OPE4 (9)
PA5 (9)
PD7 (8)

6
31
100

I2S0TXWS

QEI module 0 index.TTLIPD0 (3)
PB2 (2)
PB6 (5)
PB4 (6)
PD7 (1)

10
72
90
92
100

IDX0

975February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

QEI module 1 index.TTLIPF1 (2)
PH2 (1)

61
84

IDX1

Low drop-out regulator output voltage. This pin
requires an external capacitor between the pin and
GND of 1 µF or greater. When the on-chip LDO is
used to provide power to the logic, the LDO pin must
also be connected to the VDDC pins at the board
level in addition to the decoupling capacitor(s).

Power--7LDO

MII LED 0.TTLOPF3 (1)59LED0

MII LED 1.TTLOPF2 (1)60LED1

MDIO of the Ethernet PHY.ODI/O-58MDIO

No connect. Leave the pin electrically
unconnected/isolated.

---51NC

Non-maskable interrupt.TTLIPB7 (4)89NMI

Main oscillator crystal input or an external clock
reference input.

AnalogI-48OSC0

Main oscillator crystal output.AnalogO-49OSC1

GPIO port A bit 0.TTLI/O-26PA0

GPIO port A bit 1.TTLI/O-27PA1

GPIO port A bit 2.TTLI/O-28PA2

GPIO port A bit 3.TTLI/O-29PA3

GPIO port A bit 4.TTLI/O-30PA4

GPIO port A bit 5.TTLI/O-31PA5

GPIO port A bit 6.TTLI/O-34PA6

GPIO port A bit 7.TTLI/O-35PA7

GPIO port B bit 0.TTLI/O-66PB0

GPIO port B bit 1.TTLI/O-67PB1

GPIO port B bit 2.TTLI/O-72PB2

GPIO port B bit 3.TTLI/O-65PB3

GPIO port B bit 4.TTLI/O-92PB4

GPIO port B bit 5.TTLI/O-91PB5

GPIO port B bit 6.TTLI/O-90PB6

GPIO port B bit 7.TTLI/O-89PB7

GPIO port C bit 0.TTLI/O-80PC0

GPIO port C bit 1.TTLI/O-79PC1

GPIO port C bit 2.TTLI/O-78PC2

GPIO port C bit 3.TTLI/O-77PC3

GPIO port C bit 4.TTLI/O-25PC4

GPIO port C bit 5.TTLI/O-24PC5

GPIO port C bit 6.TTLI/O-23PC6

GPIO port C bit 7.TTLI/O-22PC7

GPIO port D bit 0.TTLI/O-10PD0

GPIO port D bit 1.TTLI/O-11PD1

GPIO port D bit 2.TTLI/O-12PD2

GPIO port D bit 3.TTLI/O-13PD3

February 24, 2009976
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

GPIO port D bit 4.TTLI/O-97PD4

GPIO port D bit 5.TTLI/O-98PD5

GPIO port D bit 6.TTLI/O-99PD6

GPIO port D bit 7.TTLI/O-100PD7

GPIO port E bit 0.TTLI/O-74PE0

GPIO port E bit 1.TTLI/O-75PE1

GPIO port E bit 2.TTLI/O-95PE2

GPIO port E bit 3.TTLI/O-96PE3

GPIO port E bit 4.TTLI/O-6PE4

GPIO port E bit 5.TTLI/O-5PE5

GPIO port E bit 6.TTLI/O-2PE6

GPIO port E bit 7.TTLI/O-1PE7

GPIO port F bit 0.TTLI/O-47PF0

GPIO port F bit 1.TTLI/O-61PF1

GPIO port F bit 2.TTLI/O-60PF2

GPIO port F bit 3.TTLI/O-59PF3

GPIO port F bit 4.TTLI/O-42PF4

GPIO port F bit 5.TTLI/O-41PF5

GPIO port G bit 0.TTLI/O-19PG0

GPIO port G bit 1.TTLI/O-18PG1

GPIO port G bit 7.TTLI/O-36PG7

GPIO port H bit 0.TTLI/O-86PH0

GPIO port H bit 1.TTLI/O-85PH1

GPIO port H bit 2.TTLI/O-84PH2

GPIO port H bit 3.TTLI/O-83PH3

GPIO port H bit 4.TTLI/O-76PH4

GPIO port H bit 5.TTLI/O-63PH5

GPIO port H bit 6.TTLI/O-62PH6

GPIO port H bit 7.TTLI/O-15PH7

GPIO port J bit 0.TTLI/O-14PJ0

GPIO port J bit 1.TTLI/O-87PJ1

GPIO port J bit 2.TTLI/O-39PJ2

GPIO port J bit 3.TTLI/O-50PJ3

GPIO port J bit 4.TTLI/O-52PJ4

GPIO port J bit 5.TTLI/O-53PJ5

GPIO port J bit 6.TTLI/O-54PJ6

GPIO port J bit 7.TTLI/O-55PJ7

PWM 0.TTLOPD0 (1)
PJ0 (10)
PG0 (2)
PA6 (4)
PF0 (3)

10
14
19
34
47

PWM0

977February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

PWM 1.TTLOPD1 (1)
PG1 (2)
PA7 (4)
PF1 (3)
PJ1 (10)

11
18
35
61
87

PWM1

PWM 2.TTLOPD2 (3)
PF2 (4)
PB0 (2)
PH0 (2)

12
60
66
86

PWM2

PWM 3.TTLOPD3 (3)
PF3 (4)
PB1 (2)
PH1 (2)

13
59
67
85

PWM3

PWM 4.TTLOPE6 (1)
PG0 (4)
PA2 (4)
PA6 (5)
PF2 (2)
PH6 (10)
PE0 (1)
PH0 (9)

2
19
28
34
60
62
74
86

PWM4

PWM 5.TTLOPE7 (1)
PH7 (10)
PG1 (4)
PA3 (4)
PA7 (5)
PF3 (2)
PE1 (1)
PH1 (9)

1
15
18
29
35
59
75
85

PWM5

PWM 6.TTLOPC4 (4)
PA4 (4)

25
30

PWM6

PWM 7.TTLOPC6 (4)
PA5 (4)
PG7 (4)

23
31
36

PWM7

QEI module 0 phase A.TTLIPD1 (3)
PC4 (2)
PE2 (4)

11
25
95

PhA0

QEI module 1 phase A.TTLIPE3 (3)96PhA1

QEI module 0 phase B.TTLIPC7 (2)
PC6 (2)
PF0 (2)
PH3 (1)
PE3 (4)

22
23
47
83
96

PhB0

QEI module 1 phase B.TTLIPD1 (11)
PG7 (1)
PE2 (3)

11
36
95

PhB1

System reset input.TTLI-64RST

RXIN of the Ethernet PHY.AnalogI-37RXIN

RXIP of the Ethernet PHY.AnalogI-40RXIP

SSI module 0 clock.TTLI/OPA2 (1)28SSI0Clk

SSI module 0 frame.TTLI/OPA3 (1)29SSI0Fss

SSI module 0 receive.TTLIPA4 (1)30SSI0Rx

SSI module 0 transmit.TTLOPA5 (1)31SSI0Tx

February 24, 2009978
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

SSI module 1 clock.TTLI/OPF2 (9)
PE0 (2)
PH4 (11)

60
74
76

SSI1Clk

SSI module 1 frame.TTLI/OPF3 (9)
PH5 (11)
PE1 (2)

59
63
75

SSI1Fss

SSI module 1 receive.TTLIPF4 (9)
PH6 (11)
PE2 (2)

42
62
95

SSI1Rx

SSI module 1 transmit.TTLOPH7 (11)
PF5 (9)
PE3 (2)

15
41
96

SSI1Tx

JTAG/SWD CLK.TTLIPC0 (3)80SWCLK

JTAG TMS and SWDIO.TTLI/OPC1 (3)79SWDIO

JTAG TDO and SWO.TTLOPC3 (3)77SWO

JTAG/SWD CLK.TTLIPC0 (3)80TCK

JTAG TDI.TTLIPC2 (3)78TDI

JTAG TDO and SWO.TTLOPC3 (3)77TDO

JTAG TMS and SWDIO.TTLIPC1 (3)79TMS

TXON of the Ethernet PHY.TTLO-46TXON

TXOP of the Ethernet PHY.TTLO-43TXOP

UART module 0 receive. When in IrDA mode, this
signal has IrDA modulation.

TTLIPA0 (1)26U0Rx

UART module 0 transmit. When in IrDA mode, this
signal has IrDA modulation.

TTLOPA1 (1)27U0Tx

UARTmodule 1 Clear To Sendmodem status input
signal.

TTLIPE6 (9)
PD0 (9)
PA6 (9)
PJ3 (9)

2
10
34
50

U1CTS

UARTmodule 1 Data Carrier Detect modem status
input signal.

TTLIPE7 (9)
PD1 (9)
PA7 (9)
PJ4 (9)

1
11
35
52

U1DCD

UART module 1 Data Set Ready modem output
control line.

TTLIPF0 (9)
PJ5 (9)

47
53

U1DSR

UART module 1 Data Terminal Ready modem
status input signal.

TTLOPJ7 (9)
PD7 (9)

55
100

U1DTR

UARTmodule 1 Ring Indicator modem status input
signal.

TTLIPD4 (9)97U1RI

UART module 1 Request to Send modem output
control line.

TTLOPJ6 (9)
PF1 (9)

54
61

U1RTS

UART module 1 receive.TTLIPD0 (5)
PD2 (1)
PC6 (5)
PA0 (9)
PB0 (5)
PB4 (7)

10
12
23
26
66
92

U1Rx

979February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

UART module 1 transmit.TTLOPD1 (5)
PD3 (1)
PC7 (5)
PA1 (9)
PB1 (5)
PB5 (7)

11
13
22
27
67
91

U1Tx

UART module 2 receive.TTLIPD0 (4)
PG0 (1)
PB4 (4)
PD5 (9)

10
19
92
98

U2Rx

UART module 2 transmit.TTLOPE4 (5)
PD1 (4)
PG1 (1)
PD6 (9)

6
11
18
99

U2Tx

Bidirectional differential data pin (D- per USB
specification).

AnalogI/O-70USB0DM

Bidirectional differential data pin (D+ per USB
specification).

AnalogI/O-71USB0DP

Used in Host mode to control an external power
source to supply power to the USB bus.

TTLOPG0 (7)
PC5 (6)
PA6 (8)
PB2 (8)
PH3 (4)

19
24
34
72
83

USB0EPEN

This signal senses the state of the USB ID signal.
The USB PHY enables an integrated pull-up, and
an external element (USB connector) indicates the
initial state of the USB controller (pulled down is an
A device and not pulled down is a B device).

AnalogI-66USB0ID

Used in Host mode by an external power source
to indicate an error state by that power source.

TTLIPC7 (6)
PC6 (7)
PA7 (8)
PB3 (8)
PE0 (9)
PH4 (4)
PJ1 (9)

22
23
35
65
74
76
87

USB0PFLT

9.1-kΩ resistor (1% precision) used internally for
USB analog circuitry.

AnalogO-73USB0RBIAS

This signal is used during the session negotiation
protocol. This signal allows the USB PHY to both
sense the voltage level of VBUS, and pull up VBUS
momentarily during VBUS pulsing.

AnalogI/O-67USB0VBUS

Positive supply for I/O and some logic.Power--8
20
32
44
56
68
81
93

VDD

The positive supply (3.3 V) for the analog circuits
(ADC, Analog Comparators, etc.). These are
separated fromVDD tominimize the electrical noise
contained on VDD from affecting the analog
functions.

Power--3VDDA

Positive supply for most of the logic function,
including the processor core and most peripherals.

Power--38
88

VDDC

February 24, 2009980
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin MuxPin NumberPin Name

This input provides a reference voltage used to
specify the input voltage at which the ADC converts
to a maximum value. In other words, the voltage
that is applied to VREFA is the voltage with which
an AINn signal is converted to 1023. The VREFA
input is limited to the range specified in Table
27-2 on page 993.

AnalogI-90VREFA

XTALN of the Ethernet PHY.AnalogI-17XTALNPHY

XTALP of the Ethernet PHY.AnalogO-16XTALPPHY

a. The TTL designation indicates the pin is TTL-compatible.

Table 25-4. Signals by Function, Except for GPIO

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

ADC 0 input.AnalogI1AIN0ADC

ADC 1 input.AnalogI2AIN1

ADC 2 input.AnalogI5AIN2

ADC 3 input.AnalogI6AIN3

ADC 4 input.AnalogI100AIN4

ADC 5 input.AnalogI99AIN5

ADC 6 input.AnalogI98AIN6

ADC 7 input.AnalogI97AIN7

ADC 8 input.AnalogI96AIN8

ADC 9 input.AnalogI95AIN9

ADC 10 input.AnalogI92AIN10

ADC 11 input.AnalogI91AIN11

ADC 12 input.AnalogI13AIN12

ADC 13 input.AnalogI12AIN13

ADC 14 input.AnalogI11AIN14

ADC 15 input.AnalogI10AIN15

This input provides a reference voltage used to
specify the input voltage at which the ADC converts
to a maximum value. In other words, the voltage
that is applied to VREFA is the voltage with which
an AINn signal is converted to 1023. The VREFA
input is limited to the range specified in Table
27-2 on page 993.

AnalogI90VREFA

981February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

Analog comparator 0 positive input.AnalogI90C0+Analog Comparators

Analog comparator 0 negative input.AnalogI92C0-

Analog comparator 0 output.TTLO24
42
90
91
100

C0o

Analog comparator 1 positive input.AnalogI24C1+

Analog comparator 1 negative input.AnalogI91C1-

Analog comparator 1 output.TTLO2
22
24
41
84

C1o

Analog comparator 2 positive input.AnalogI23C2+

Analog comparator 2 negative input.AnalogI22C2-

Analog comparator 2 output.TTLO1
23

C2o

CAN module 0 receive.TTLI10
30
34
92

CAN0RxController Area
Network

CAN module 0 transmit.TTLO11
31
35
91

CAN0Tx

CAN module 1 receive.TTLI47CAN1Rx

CAN module 1 transmit.TTLO61CAN1Tx

9.1-kΩ resistor (1% precision) used internally for
Ethernet PHY.

AnalogO33ERBIASEthernet PHY

MII LED 0.TTLO59LED0

MII LED 1.TTLO60LED1

MDIO of the Ethernet PHY.ODI/O58MDIO

RXIN of the Ethernet PHY.AnalogI37RXIN

RXIP of the Ethernet PHY.AnalogI40RXIP

TXON of the Ethernet PHY.TTLO46TXON

TXOP of the Ethernet PHY.TTLO43TXOP

XTALN of the Ethernet PHY.AnalogI17XTALNPHY

XTALP of the Ethernet PHY.AnalogO16XTALPPHY

February 24, 2009982
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

EPI module 0 signal 0.TTLI/O83EPI0S0External Peripheral
Interface EPI module 0 signal 1.TTLI/O84EPI0S1

EPI module 0 signal 2.TTLI/O25EPI0S2

EPI module 0 signal 3.TTLI/O24EPI0S3

EPI module 0 signal 4.TTLI/O23EPI0S4

EPI module 0 signal 5.TTLI/O22EPI0S5

EPI module 0 signal 6.TTLI/O86EPI0S6

EPI module 0 signal 7.TTLI/O85EPI0S7

EPI module 0 signal 8.TTLI/O74EPI0S8

EPI module 0 signal 9.TTLI/O75EPI0S9

EPI module 0 signal 10.TTLI/O76EPI0S10

EPI module 0 signal 11.TTLI/O63EPI0S11

EPI module 0 signal 12.TTLI/O42EPI0S12

EPI module 0 signal 13.TTLI/O19EPI0S13

EPI module 0 signal 14.TTLI/O18EPI0S14

EPI module 0 signal 15.TTLI/O41EPI0S15

EPI module 0 signal 16.TTLI/O14EPI0S16

EPI module 0 signal 17.TTLI/O87EPI0S17

EPI module 0 signal 18.TTLI/O39EPI0S18

EPI module 0 signal 19.TTLI/O50
97

EPI0S19

EPI module 0 signal 20.TTLI/O12EPI0S20

EPI module 0 signal 21.TTLI/O13EPI0S21

EPI module 0 signal 22.TTLI/O91EPI0S22

EPI module 0 signal 23.TTLI/O92EPI0S23

EPI module 0 signal 24.TTLI/O95EPI0S24

EPI module 0 signal 25.TTLI/O96EPI0S25

EPI module 0 signal 26.TTLI/O62EPI0S26

EPI module 0 signal 27.TTLI/O15EPI0S27

EPI module 0 signal 28.TTLI/O52
98

EPI0S28

EPI module 0 signal 29.TTLI/O53
99

EPI0S29

EPI module 0 signal 30.TTLI/O54
100

EPI0S30

EPI module 0 signal 31.TTLI/O36EPI0S31

983February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

Capture/Compare/PWM 0.TTLI/O13
22
23
39
42
55
66
72
91
97

CCP0General-Purpose
Timers

Capture/Compare/PWM 1.TTLI/O24
25
34
54
67
90
96
100

CCP1

Capture/Compare/PWM 2.TTLI/O6
11
25
41
53
67
75
91
95
98

CCP2

Capture/Compare/PWM 3.TTLI/O6
23
24
35
61
72
74
97

CCP3

Capture/Compare/PWM 4.TTLI/O22
25
35
52
95
98

CCP4

Capture/Compare/PWM 5.TTLI/O5
12
25
36
90
91

CCP5

Capture/Compare/PWM 6.TTLI/O10
12
50
75
86
91

CCP6

Capture/Compare/PWM 7.TTLI/OCCP7

February 24, 2009984
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

11
13
85
90
96

I2C module 0 clock.ODI/O72I2C0SCLI2C

I2C module 0 data.ODI/O65I2C0SDA

I2C module 1 clock.ODI/O14
19
26
34

I2C1SCL

I2C module 1 data.ODI/O18
27
35
87

I2C1SDA

I2S module 0 receive master clock.TTLI/O29
98

I2S0RXMCLKI2S

I2S module 0 receive clock.TTLI/O10I2S0RXSCK

I2S module 0 receive data.TTLI/O28
97

I2S0RXSD

I2S module 0 receive word select.TTLI/O11I2S0RXWS

I2S module 0 transmit master clock.TTLI/O61I2S0TXMCLK

I2S module 0 transmit clock.TTLI/O30
90
99

I2S0TXSCK

I2S module 0 transmit data.TTLI/O5
47

I2S0TXSD

I2S module 0 transmit word select.TTLI/O6
31
100

I2S0TXWS

JTAG/SWD CLK.TTLI80SWCLKJTAG/SWD/SWO

JTAG TMS and SWDIO.TTLI/O79SWDIO

JTAG TDO and SWO.TTLO77SWO

JTAG/SWD CLK.TTLI80TCK

JTAG TDI.TTLI78TDI

JTAG TDO and SWO.TTLO77TDO

JTAG TMS and SWDIO.TTLI79TMS

985February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

PWM Fault 0.TTLI6
39
42
65
75
83
99

Fault0PWM

PWM Fault 1.TTLI90Fault1

PWM Fault 2.TTLI24
63

Fault2

PWM Fault 3.TTLI65
84

Fault3

PWM 0.TTLO10
14
19
34
47

PWM0

PWM 1.TTLO11
18
35
61
87

PWM1

PWM 2.TTLO12
60
66
86

PWM2

PWM 3.TTLO13
59
67
85

PWM3

PWM 4.TTLO2
19
28
34
60
62
74
86

PWM4

PWM 5.TTLO1
15
18
29
35
59
75
85

PWM5

PWM 6.TTLO25
30

PWM6

PWM 7.TTLO23
31
36

PWM7

February 24, 2009986
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

Ground reference for logic and I/O pins.Power-9
21
45
57
69
82
94

GNDPower

The ground reference for the analog circuits (ADC,
Analog Comparators, etc.). These are separated
fromGND tominimize the electrical noise contained
on VDD from affecting the analog functions.

Power-4GNDA

Low drop-out regulator output voltage. This pin
requires an external capacitor between the pin and
GND of 1 µF or greater. When the on-chip LDO is
used to provide power to the logic, the LDO pin must
also be connected to the VDDC pins at the board
level in addition to the decoupling capacitor(s).

Power-7LDO

Positive supply for I/O and some logic.Power-8
20
32
44
56
68
81
93

VDD

The positive supply (3.3 V) for the analog circuits
(ADC, Analog Comparators, etc.). These are
separated fromVDD tominimize the electrical noise
contained on VDD from affecting the analog
functions.

Power-3VDDA

Positive supply for most of the logic function,
including the processor core and most peripherals.

Power-38
88

VDDC

QEI module 0 index.TTLI10
72
90
92
100

IDX0QEI

QEI module 1 index.TTLI61
84

IDX1

QEI module 0 phase A.TTLI11
25
95

PhA0

QEI module 1 phase A.TTLI96PhA1

QEI module 0 phase B.TTLI22
23
47
83
96

PhB0

QEI module 1 phase B.TTLI11
36
95

PhB1

987February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

SSI module 0 clock.TTLI/O28SSI0ClkSSI

SSI module 0 frame.TTLI/O29SSI0Fss

SSI module 0 receive.TTLI30SSI0Rx

SSI module 0 transmit.TTLO31SSI0Tx

SSI module 1 clock.TTLI/O60
74
76

SSI1Clk

SSI module 1 frame.TTLI/O59
63
75

SSI1Fss

SSI module 1 receive.TTLI42
62
95

SSI1Rx

SSI module 1 transmit.TTLO15
41
96

SSI1Tx

Non-maskable interrupt.TTLI89NMISystem Control &
Clocks Main oscillator crystal input or an external clock

reference input.
AnalogI48OSC0

Main oscillator crystal output.AnalogO49OSC1

System reset input.TTLI64RST

February 24, 2009988
Preliminary

Signal Tables

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

UART module 0 receive. When in IrDA mode, this
signal has IrDA modulation.

TTLI26U0RxUART

UART module 0 transmit. When in IrDA mode, this
signal has IrDA modulation.

TTLO27U0Tx

UARTmodule 1 Clear To Sendmodem status input
signal.

TTLI2
10
34
50

U1CTS

UARTmodule 1 Data Carrier Detect modem status
input signal.

TTLI1
11
35
52

U1DCD

UART module 1 Data Set Ready modem output
control line.

TTLI47
53

U1DSR

UART module 1 Data Terminal Ready modem
status input signal.

TTLO55
100

U1DTR

UARTmodule 1 Ring Indicator modem status input
signal.

TTLI97U1RI

UART module 1 Request to Send modem output
control line.

TTLO54
61

U1RTS

UART module 1 receive.TTLI10
12
23
26
66
92

U1Rx

UART module 1 transmit.TTLO11
13
22
27
67
91

U1Tx

UART module 2 receive.TTLI10
19
92
98

U2Rx

UART module 2 transmit.TTLO6
11
18
99

U2Tx

989February 24, 2009
Preliminary

LM3S9B92 Microcontroller

DescriptionBuffer TypeaPin TypePin NumberPin NameFunction

Bidirectional differential data pin (D- per USB
specification).

AnalogI/O70USB0DMUSB

Bidirectional differential data pin (D+ per USB
specification).

AnalogI/O71USB0DP

Used in Host mode to control an external power
source to supply power to the USB bus.

TTLO19
24
34
72
83

USB0EPEN

This signal senses the state of the USB ID signal.
The USB PHY enables an integrated pull-up, and
an external element (USB connector) indicates the
initial state of the USB controller (pulled down is an
A device and not pulled down is a B device).

AnalogI66USB0ID

Used in Host mode by an external power source
to indicate an error state by that power source.

TTLI22
23
35
65
74
76
87

USB0PFLT

9.1-kΩ resistor (1% precision) used internally for
USB analog circuitry.

AnalogO73USB0RBIAS

This signal is used during the session negotiation
protocol. This signal allows the USB PHY to both
sense the voltage level of VBUS, and pull up VBUS
momentarily during VBUS pulsing.

AnalogI/O67USB0VBUS

a. The TTL designation indicates the pin is TTL-compatible.

Table 25-5. GPIO Pins and Alternate Functions

enc=11enc=10enc=9enc=8enc=7enc=6enc=5enc=4enc=3enc=2enc=1PinGPIO

--U1RxI2C1SCL------U0Rx26PA0

--U1TxI2C1SDA------U0Tx27PA1

--I2S0RXSD----PWM4--SSI0Clk28PA2

--I2S0RXMCLK----PWM5--SSI0Fss29PA3

--I2S0TXSCK---CAN0RxPWM6--SSI0Rx30PA4

--I2S0TXWS---CAN0TxPWM7--SSI0Tx31PA5

--U1CTSUSB0EPEN-CAN0RxPWM4PWM0-CCP1I2C1SCL34PA6

--U1DCDUSB0PFLTCCP3CAN0TxPWM5PWM1-CCP4I2C1SDA35PA7

------U1Rx--PWM2CCP066PB0

------U1TxCCP1-PWM3CCP267PB1

---USB0EPEN--CCP0CCP3-IDX0I2C0SCL72PB2

---USB0PFLT---Fault3-Fault0I2C0SDA65PB3

---EPI0S23U1RxIDX0CAN0RxU2Rx---92PB4

---EPI0S22U1TxCCP2CAN0TxCCP0CCP6CCP5C0o91PB5

--I2S0TXSCK--CCP5IDX0Fault1C0oCCP7CCP190PB6

-------NMI---89PB7

--------TCK
SWCLK

--80PC0

February 24, 2009990
Preliminary

Signal Tables

enc=11enc=10enc=9enc=8enc=7enc=6enc=5enc=4enc=3enc=2enc=1PinGPIO

--------TMS
SWDIO

--79PC1

--------TDI--78PC2

--------TDO SWO--77PC3

--CCP1EPI0S2-CCP4CCP2PWM6-PhA0CCP525PC4

---EPI0S3-USB0EPENCCP3Fault2C0oC1oCCP124PC5

---EPI0S4USB0PFLTCCP0U1RxPWM7C2oPhB0CCP323PC6

---EPI0S5C1oUSB0PFLTU1TxCCP0-PhB0CCP422PC7

--U1CTSI2S0RXSCK-CCP6U1RxU2RxIDX0CAN0RxPWM010PD0

PhB1CCP2U1DCDI2S0RXWS-CCP7U1TxU2TxPhA0CAN0TxPWM111PD1

---EPI0S20---CCP5PWM2CCP6U1Rx12PD2

---EPI0S21---CCP0PWM3CCP7U1Tx13PD3

-EPI0S19U1RII2S0RXSD-----CCP3CCP097PD4

-EPI0S28U2RxI2S0RXMCLK-----CCP4CCP298PD5

-EPI0S29U2TxI2S0TXSCK------Fault099PD6

-EPI0S30U1DTRI2S0TXWS----CCP1C0oIDX0100PD7

--USB0PFLTEPI0S8----CCP3SSI1ClkPWM474PE0

---EPI0S9--CCP6CCP2Fault0SSI1FssPWM575PE1

---EPI0S24--CCP2PhA0PhB1SSI1RxCCP495PE2

---EPI0S25--CCP7PhB0PhA1SSI1TxCCP196PE3

--I2S0TXWS--CCP2U2TxFault0--CCP36PE4

--I2S0TXSD-------CCP55PE5

--U1CTS------C1oPWM42PE6

--U1DCD------C2oPWM51PE7

--U1DSRI2S0TXSD----PWM0PhB0CAN1Rx47PF0

-CCP3U1RTSI2S0TXMCLK----PWM1IDX1CAN1Tx61PF1

--SSI1Clk----PWM2-PWM4LED160PF2

--SSI1Fss----PWM3-PWM5LED059PF3

--SSI1RxEPI0S12---Fault0-C0oCCP042PF4

--SSI1TxEPI0S15-----C1oCCP241PF5

---EPI0S13USB0EPEN--PWM4I2C1SCLPWM0U2Rx19PG0

---EPI0S14---PWM5I2C1SDAPWM1U2Tx18PG1

--EPI0S31CCP5---PWM7--PhB136PG7

--PWM4EPI0S6-----PWM2CCP686PH0

--PWM5EPI0S7-----PWM3CCP785PH1

---EPI0S1---Fault3-C1oIDX184PH2

---EPI0S0---USB0EPEN-Fault0PhB083PH3

SSI1Clk--EPI0S10---USB0PFLT---76PH4

SSI1FssFault2-EPI0S11-------63PH5

SSI1RxPWM4-EPI0S26-------62PH6

SSI1TxPWM5-EPI0S27-------15PH7

991February 24, 2009
Preliminary

LM3S9B92 Microcontroller

26 Operating Characteristics
Table 26-1. Temperature Characteristics

UnitValueSymbolCharacteristica

°C-40 to +85TAIndustrial operating temperature range

a. Maximum storage temperature is 150°C.

Table 26-2. Thermal Characteristics

UnitValueSymbolCharacteristic

°C/W34ΘJAThermal resistance (junction to ambient)a

°CTA + (PAVG • ΘJA)TJAverage junction temperatureb

a. Junction to ambient thermal resistance θJA numbers are determined by a package simulator.
b. Power dissipation is a function of temperature.

Table 26-3. ESD Absolute Maximum Ratings

UnitMaxNomMinParameter Name

VVESDHBM
VVESDCDM

February 24, 2009992
Preliminary

Operating Characteristics

27 Electrical Characteristics
27.1 DC Characteristics

27.1.1 Maximum Ratings
The maximum ratings are the limits to which the device can be subjected without permanently
damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Table 27-1. Maximum Ratings

UnitValueParameter Name
a

Parameter

MaxMin

V40I/O supply voltage (VDD)VDD
V40Analog supply voltage (VDDA)VDDA
V5.5-0.3Input voltageVIN
mA25-Maximum current per output pinsI

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static
voltages or electric fields; however, it is advised that normal precautions be taken to
avoid application of any voltage higher than maximum-rated voltages to this
high-impedance circuit. Reliability of operation is enhanced if unused inputs are
connected to an appropriate logic voltage level (for example, either GND or VDD).

27.1.2 Recommended DC Operating Conditions
For special high-current applications, the GPIO output buffers may be used with the following
restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may
be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is
specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only
a maximum of two per side of the physical package with the total number of high-current GPIO
outputs not exceeding four for the entire package.

Table 27-2. Recommended DC Operating Conditions

UnitMaxNomMinParameter NameParameter

V3.63.33.0I/O supply voltageVDD
V3.63.33.0Analog supply voltageVDDA
V1.321.21.08Core supply voltageVDDC

a

Vpending
b

3.0cdpendingbExternal voltage reference for ADCVREFA

V5.0-2.0High-level input voltageVIH
V1.3--0.3Low-level input voltageVIL
VVDD-0.8 * VDDHigh-level input voltage for Schmitt trigger inputsVSIH
V0.2 * VDD-0Low-level input voltage for Schmitt trigger inputsVSIL
V--2.4High-level output voltageVOH

e

V0.4--Low-level output voltageVOLa

993February 24, 2009
Preliminary

LM3S9B92 Microcontroller

UnitMaxNomMinParameter NameParameter

High-level source current, VOH=2.4 VIOH
mA--2.02-mA Drive

mA--4.04-mA Drive

mA--8.08-mA Drive

Low-level sink current, VOL=0.4 VIOL
mA--2.02-mA Drive

mA--4.04-mA Drive

mA--8.08-mA Drive

a. VDDC is supplied from the output of the LDO.
b. Pending characterization completion.
c. Ground is always used as the reference level for the minimum conversion value.
d. Care must be taken to supply a reference voltage of acceptable quality.
e. VOL and VOH shift to 1.2 V when using high-current GPIOs.

27.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Table 27-3. LDO Regulator Characteristics

UnitMaxNomMinParameter NameParameter

µF3.0-1.0External filter capacitor size for internal power supplyCLDO

V1.321.21.08LDO output voltageVLDO

27.1.4 Flash Memory Characteristics

Table 27-4. Flash Memory Characteristics

UnitMaxNomMinParameter NameParameter

cycles-pendingc15,000Number of guaranteed mass program/erase cycles before failureabPECYC
years--20Data retention at average operating temperature of 125˚CTRET
ms1--Word program timeTPROG
ms1--Buffer program timeTBPROG
ms16--Page erase timeTERASE
ms16--Mass erase timeTME

a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.
b. Caution should be used when performing block erases, as repeated block erases can shorten the number of guaranteed

erase cycles.
c. Pending characterization completion.

27.1.5 GPIO Module Characteristics

Table 27-5. GPIO Module DC Characteristics

UnitMaxNomMinParameter NameParameter

kΩ110-50GPIO internal pull-up resistorRGPIOPU

kΩ180-55GPIO internal pull-down resistorRGPIOPD

February 24, 2009994
Preliminary

Electrical Characteristics

27.1.6 USB Module Characteristics
The Stellaris® USB controller DC electrical specifications are compliant with the “Universal Serial
Bus Specification Rev. 2.0” (full-speed and low-speed support) and the “On-The-Go Supplement
to the USB 2.0 Specification Rev. 1.0”. Some components of the USB system are integrated within
the LM3S9B92 microcontroller and specific to the Stellaris® microcontroller design. An external
component resistor is needed as specified in Table 27-6.

Table 27-6. USB Controller DC Characteristics

UnitValueParameter NameParameter

Ω9.1K ± 1 %Value of the pull-down resistor on the USB0RBIAS pinRUBIAS

27.1.7 Ethernet Controller Characteristics

Table 27-7. Ethernet Controller DC Characteristics

UnitValueParameter NameParameter

Ω12.4K ± 1 %Value of the pull-down resistor on the ERBIAS pinREBIAS

27.1.8 Current Specifications
This section provides information on typical and maximum power consumption under various
conditions.

27.1.8.1 Nominal and Maximum Current Specifications
The current measurements specified in the table that follows are run on the core processor using
SRAM with the following specifications (except as noted):

■ VDD = 3.3 V

■ VDDC = 1.2 V

■ VDDA = 3.3 V

■ Temperature = 25°C

■ Clock Source (MOSC) =3.579545 MHz Crystal Oscillator

■ Main oscillator (MOSC) = enabled

■ Precision Internal oscillator (PIOSC) = disabled

Important: The next 2 tables should be filled in for all of the following situations:

■ MOSC (from a crystal) 16 MHz, 12 MHz, 8 MHz, and 3.579545 MHz

■ PIOSC SYSDIV=1, 2, 4

■ MOSC (from a crystal) with PLL 100 MHz, 80 MHz, SYSDIV = 8, 64

■ PIOSC with PLL 100 MHz, 80 MHz, SYSDIV = 8, 64

■ 4.19 MHz HIB clock with PLL 100 MHz 80 MHz, SYSDIV = 8, 64

995February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Table 27-8. Detailed Current Specifications

Unit3.3 V VDD, VDDAConditionsParameter NameParameter

MaxNom

mApendingapending
a

VDD = 3.3 V

Code= while(1){} executed in Flash

Peripherals = All ON

System Clock = 50 MHz (with PLL)

Run mode 1 (Flash loop)IDD_RUN

mApendingapendingaVDD = 3.3 V

Code= while(1){} executed in Flash

Peripherals = All OFF

System Clock = 50 MHz (with PLL)

Run mode 2 (Flash loop)

mApendingapendingaVDD = 3.3 V

Code= while(1){} executed in SRAM

Peripherals = All ON

System Clock = 50 MHz (with PLL)

Run mode 1 (SRAM loop)

mApendingapendingaVDD = 3.3 V

Code= while(1){} executed in SRAM

Peripherals = All OFF

System Clock = 50 MHz (with PLL)

Run mode 2 (SRAM loop)

mApendingapendingaVDD = 3.3 V

Peripherals = All OFF

System Clock = 50 MHz (with PLL)

Sleep modeIDD_SLEEP

mApendingapendingaLDO = 2.25 V

Peripherals = All OFF

System Clock = IOSC30KHZ/64

Deep-Sleep modeIDD_DEEPSLEEP

a. Pending characterization completion.

27.1.8.2 Typical Current Consumption vs. Frequency
Figure 27-1 on page 997 shows how typical current when running out of Flash memory varies with
frequency. Data is provided across frequency for all peripherals on and all peripherals off. The
microcontroller is clocked by MOSC using the PLL.

February 24, 2009996
Preliminary

Electrical Characteristics

Figure 27-1. Typical Current Across Frequency

Pending

27.1.8.3 Typical Current Consumption vs. Temperature
Figure 27-2 on page 998 shows how typical current varies across temperature when running out of
Flash memory varies with frequency. Data is provided for all peripherals off. The microcontroller is
clocked by MOSC using the PLL.

997February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-2. Typical Current Across Temperature

Pending

27.1.8.4 Typical Peripheral Current Consumption
The current consumption of the on-chip peripherals is given in . Data is provided for the following
conditions:

■ I/O pins are in input mode with a static value at VDD or ground and no load.

■ All peripherals are not clocked except for the peripheral listed.

■ Specified temperature and voltage

Table 27-9. Typical Peripheral Current Consumption

UnitCurrentPeripheral

27.2 AC Characteristics

27.2.1 Load Conditions
Unless otherwise specified, the following conditions are true for all timing measurements.

February 24, 2009998
Preliminary

Electrical Characteristics

Figure 27-3. Load Conditions

CL =

GND

pin 50 pF, or
8 pF for EPI[31:0] signals

27.2.2 Clocks
The following sections provide specifications on the various clock sources and mode.

27.2.2.1 PLL Specifications
The following tables provide specifications for using the PLL.

Table 27-10. Phase Locked Loop (PLL) Characteristics

UnitMaxNomMinParameter NameParameter

MHz16.384-3.579545Crystal referenceafREF_XTAL
MHz16.384-3.579545External clock referenceafREF_EXT
MHz-400-PLL frequencybfPLL
ms1.38d-0.562cPLL lock timeTREADY

a. The exact value is determined by the crystal value programmed into the XTAL field of theRun-Mode Clock Configuration
(RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.
c. Using a 16.384-MHz crystal
d. Using 3.5795-MHz crystal

Table 27-11 on page 999 shows the actual frequency of the PLL based on the crystal frequency used
(defined by the XTAL field in the RCC register).

Table 27-11. Actual PLL Frequency

ErrorPLL Frequency (MHz)Crystal Frequency (MHz)XTAL

0.0023%400.9043.57950x04

0.0047%398.13123.68640x05

-4004.00x06

0.0035%401.4084.0960x07

0.0047%398.13124.91520x08

-4005.00x09

0.0016%399.365.120x0A

-4006.00x0B

0.0016%399.366.1440x0C

0.0047%398.13127.37280x0D

0.0047%4008.00x0E

0.0033%398.67733338.1920x0F

-40010.00x10

-40012.00x11

999February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ErrorPLL Frequency (MHz)Crystal Frequency (MHz)XTAL

0.0035%401.40812.2880x12

0.0056%397.7613.560x13

0.0023%400.9090414.3180x14

-40016.00x15

0.010%404.138666716.3840x16

27.2.2.2 PIOSC Specifications

Table 27-12. PIOSC Clock Characteristics

UnitMaxMinParameter NameParameter

-±1%-Internal 16-MHz precision oscillator frequency variance, factory calibrated at 25 °CafPIOSC
a. Variance is ±3% across temperature.

27.2.2.3 Internal 30-kHz Oscillator Specifications

Table 27-13. 30-kHz Clock Characteristics

UnitMaxNomMinParameter NameParameter

KHz453015Internal 30-KHz oscillator frequencyfIOSC30KHZ

27.2.2.4 Main Oscillator Specifications

Table 27-14. Main Oscillator Clock Characteristics

UnitMaxNomMinParameter NameParameter

MHz16.384-1Main oscillator frequencyfMOSC
ns1000-61Main oscillator periodtMOSC_PER
ms20-17.5Main oscillator settling timetMOSC_SETTLE
MHz16.384-1Crystal reference using the main oscillator (PLL in BYPASS mode)

a
fREF_XTAL_BYPASS

MHz80-0External clock reference (PLL in BYPASS mode)afREF_EXT_BYPASSS
a. The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly.

Table 27-15. MOSC Oscillator Input Characteristics

ConditionValueName

MHz3.54681216Frequency

PPM±100±100±100±100±100±100Frequency tolerance

-parallelparallelparallelparallelparallelparallelOscillation mode

Ω2202001601209070Equivalent series resistance (max)

pF161616161616Load capacitance

µw100100100100100100Drive level (typ)

February 24, 20091000
Preliminary

Electrical Characteristics

27.2.3 JTAG and Boundary Scan

Table 27-16. JTAG Characteristics

UnitMaxNomMinParameter NameParameterParameter No.

MHz10-0TCK operational clock frequencyfTCKJ1

ns--100TCK operational clock periodtTCKJ2

ns-tTCK-TCK clock Low timetTCK_LOWJ3

ns-tTCK-TCK clock High timetTCK_HIGHJ4

nspendinga-pendingaTCK rise timetTCK_RJ5

nspendinga-pendingaTCK fall timetTCK_FJ6

ns--20TMS setup time to TCK risetTMS_SUJ7

ns--20TMS hold time from TCK risetTMS_HLDJ8

ns--25TDI setup time to TCK risetTDI_SUJ9

ns--25TDI hold time from TCK risetTDI_HLDJ10

ns3523-2-mA driveTCK fall to Data Valid from High-ZJ11

t TDO_ZDV ns26154-mA drive

ns25148-mA drive

ns29188-mA drive with slew rate control

ns3521-2-mA driveTCK fall to Data Valid from Data ValidJ12

t TDO_DV ns25144-mA drive

ns24138-mA drive

ns28188-mA drive with slew rate control

ns119-2-mA driveTCK fall to High-Z from Data ValidJ13

t TDO_DVZ ns974-mA drive

ns868-mA drive

ns978-mA drive with slew rate control

a. Pending characterization completion.

Figure 27-4. JTAG Test Clock Input Timing

TCK

J6 J5

J3 J4

J2

1001February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-5. JTAG Test Access Port (TAP) Timing

TDO Output Valid

TCK

TDO Output Valid

J12

TDO

TDI

TMS

TDI Input Valid TDI Input Valid

J13

J9 J10

TMS Input Valid

J9 J10

TMS Input Valid

J11

J7 J8J8J7

27.2.4 Reset

Table 27-17. Reset Characteristics

UnitMaxNomMinParameter NameParameterParameter No.

V-2.0-Reset thresholdVTHR1

V2.952.92.85Brown-Out thresholdVBTHR2

ms-10-Power-On Reset timeoutTPORR3

µs-500-Brown-Out timeoutTBORR4

system clocks95--Internal reset timeout after PORTIRPORR5

system clocks7--Internal reset timeout after BORTIRBORR6

system clocks7--Internal reset timeout after hardware reset (RST pin)TIRHWRR7

system clocks16--Internal reset timeout after software-initiated system resetTIRSWRR8

system clocks16--Internal reset timeout after watchdog resetTIRWDRR9

system clocks32--Internal reset timeout after MOSC failure resetTIRMFRR10

ms100--Supply voltage (VDD) rise time (0V-3.3V)TVDDRISER11

µs--2Minimum RST pulse widthTMINR12

Figure 27-6. External Reset Timing (RST)

RST

/Reset
(Internal)

R7R12

February 24, 20091002
Preliminary

Electrical Characteristics

Figure 27-7. Power-On Reset Timing

VDD

/POR
(Internal)

/Reset
(Internal)

R3

R1

R5

Figure 27-8. Brown-Out Reset Timing

VDD

/BOR
(Internal)

/Reset
(Internal)

R2

R4

R6

Figure 27-9. Software Reset Timing

R8

SW Reset

/Reset
(Internal)

Figure 27-10. Watchdog Reset Timing

WDOG
Reset

(Internal)

/Reset
(Internal)

R9

1003February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-11. MOSC Failure Reset Timing

MOSC
Fail Reset
(Internal)

/Reset
(Internal)

R10

27.2.5 General-Purpose I/O (GPIO)
Note: All GPIOs are 5-V tolerant.

Table 27-18. GPIO Characteristics

UnitMaxNomMinConditionParameter NameParameter

ns2014-2-mA driveGPIO Rise Time (from 20% to 80% of VDD)tGPIOR
ns1074-mA drive

ns548-mA drive

ns868-mA drive with slew rate control

ns2114-2-mA driveGPIO Fall Time (from 80% to 20% of VDD)tGPIOF
ns1174-mA drive

ns648-mA drive

ns868-mA drive with slew rate control

27.2.6 External Peripheral Interface (EPI)

Table 27-19. EPI Characteristicsa

UnitMaxNomMinConditionParameter NameParameter

ns4.43.3-2-mA driveEPI Rise Time (from 20% to 80% of VDD)tEPIR
ns2.31.64-mA drive

ns1.51.18-mA drive

ns3.02.68-mA drive with slew rate control

ns4.83.1-2-mA driveEPI Fall Time (from 80% to 20% of VDD)tEPIF
ns2.71.84-mA drive

ns2.31.58-mA drive

ns3.42.38-mA drive with slew rate control

a. Load conditions when using EPI: CL is 8 pF.

February 24, 20091004
Preliminary

Electrical Characteristics

Figure 27-12. SDRAM Initialization and Load Mode Register Timing
T0 T1 Tn +1 To +1 Tp +1 Tp +2 Tp +3

t
CKS

t
CKH

t
CL

t
CH

t
CK

Command

CLK

CKE

DQM/DQML,
DQMH

A0-A9, A11

Precharge Auto
Refresh

t
CMS t

CMH
t
CMS

t
CMH

t
CMS

t
CMH

NOP

RowCode

NOP
Lode Mode
Register

Auto
Refresh

NOPNOP
Active

Code
All Banks

Single Bank

t
AS

t
AH

Row

All Banks
Bank

A1

DQ

BA0,BA1

Don’t Care

T=100µs
MIN

High-Z

Power-up:
VDD and CLK stable

t
RP

t
RFC

t
RFC

t
MRD

Precharge
all banks

Auto Refresh Auto Refresh Program Mode Register
2,3,4

Notes:
1. If CS is high at clock high time, all applied commands are NOP.
2. The Mode register may be loaded prior to the auto refresh cycles if desired.
3. JEDEC and PC100 specify three clocks.
4. Outputs are guaranteed High-Z after command is issued.

t
AH

t
AS

1005February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-13. SDRAM Read Command Timing

CLK

tHold (1 ns)

CKE

CAS

WE

Column Address

CS

RAS

Don’t Care

A0-A9,A11: x4
A0-A9: x8
A0-A8: x16

High

BA0,BA1 Bank Address

A11: x8
A9,A11: x16

Enable Auto Precharge

Disable Auto Precharge

A10

February 24, 20091006
Preliminary

Electrical Characteristics

Figure 27-14. SDRAM Write Command Timing

CLK

tHold (1 ns)

CKE

CAS

WE

Column Address

CS

RAS

Don’t Care

A0-A9,A11: x4
A0-A9: x8
A0-A8: x16

High

BA0,BA1 Bank Address

A11: x8
A9,A11: x16

Enable Auto Precharge

Disable Auto Precharge

A10

1007February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-15. SDRAM Write Burst Timing

CLK

Don’t Care

Command NOP NOP NOPWRITE

Address BANK COLn

Transitioning
Data

DQ DIN n DIN n

February 24, 20091008
Preliminary

Electrical Characteristics

Figure 27-16. SDRAM Precharge Command Timing

CLK

tHold (1 ns)

CKE

A10

All Banks

Don’t Care

BA0, BA1 Bank Address

A0-A9

High

CS

RAS

CAS

WE

Bank Selected

Valid Address

1009February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-17. SDRAM CAS Latency Timing

Command

DQ

CLK

CL = 2

Dout

T0 T1 T2

Read NOP NOP

Don’t CareUndefined

February 24, 20091010
Preliminary

Electrical Characteristics

Figure 27-18. SDRAM Active Row Bank Timing

CLK

tHold (1 ns)

CKE

CS

RAS

CAS

WE

A0-A10, A11 Row Address

Don’t Care

BA0, BA1 Bank Address

High

Figure 27-19. SRAM Nor Read Timing

OE

Tsu

DATA Valid

Address

Dout
High-Z

Thld

CSn

Note: Tsu = Thld = 1 baud clock period

1011February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-20. General-Purpose Mode Read Timing

OE

Tsu

DATA Valid

Address

Dout
High-Z

Thld

CSn

Note: Tsu = Thld = 1 baud clock period

Figure 27-21. General-Purpose Mode Write Timing

Din

Valid AddressAddress

WE

Note: Tsu = Thld = 1 baud clock period

Tsu Thld

DATAin Valid

CSn

27.2.7 Analog-to-Digital Converter

Table 27-20. ADC Characteristicsa

UnitMaxNomMinParameter NameParameter

VpendingbpendingbpendingbMaximum single-ended, full-scale analog input voltageVADCIN
VpendingbpendingbpendingbMinimum single-ended, full-scale analog input voltage

VpendingbpendingbpendingbMaximum differential, full-scale analog input voltage

VpendingbpendingbpendingbMinimum differential, full-scale analog input voltage

pFpendingbpendingbpendingbEquivalent input capacitanceCADCIN

bitspendingbpendingbpendingbResolutionN

MHzpendingbpendingbpendingbADC internal clock frequency
c

fADC

February 24, 20091012
Preliminary

Electrical Characteristics

UnitMaxNomMinParameter NameParameter

tADCcycles
dpendingbpendingbpendingbConversion timetADCCONV

k samples/spendingbpendingbpendingbConversion ratef ADCCONV
LSBpendingbpendingbpendingbIntegral nonlinearityINL

LSBpendingbpendingbpendingbDifferential nonlinearityDNL

LSBpendingbpendingbpendingbOffsetOFF

LSBpendingbpendingbpendingbGainGAIN

a. The ADC reference voltage is 3.0 V. This reference voltage is internally generated from the 3.3 VDDA supply by a band
gap circuit.

b. Pending characterization completion.
c. The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly.
d. tADC= 1/fADC clock

27.2.8 Synchronous Serial Interface (SSI)

Table 27-21. SSI Characteristics

UnitMaxNomMinParameter NameParameterParameter No.

system clocks65024-2SSIClk cycle timetCLK_PERS1

t clk_per-0.5-SSIClk high timetCLK_HIGHS2

t clk_per-0.5-SSIClk low timetCLK_LOWS3

ns267.4-SSIClk rise/fall timetCLKRFS4

ns20-0Data from master valid delay timetDMDS5

ns--20Data from master setup timetDMSS6

ns--40Data from master hold timetDMHS7

ns--20Data from slave setup timetDSSS8

ns--40Data from slave hold timetDSHS9

Figure 27-22. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

SSIClk

SSIFss

SSITx
SSIRx MSB LSB

S2

S3

S1

S4

4 to 16 bits

1013February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-23. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer

0

SSIClk

SSIFss

SSITx

SSIRx

MSB LSB

MSB LSB

S2

S3

S1

8-bit control

4 to 16 bits output data

Figure 27-24. SSI Timing for SPI Frame Format (FRF=00), with SPH=1

SSIClk
(SPO=1)

SSITx
(master)

SSIRx
(slave) LSB

SSIClk
(SPO=0)

S2

S1

S4

SSIFss

LSB

S3

MSB

S5

S6 S7

S9S8

MSB

27.2.9 Inter-Integrated Circuit (I2C) Interface

Figure 27-25. I2C Timing

I2CSCL

I2CSDA

I1

I2

I4

I6

I7 I8

I5

I3 I9

February 24, 20091014
Preliminary

Electrical Characteristics

27.2.10 Inter-Integrated Circuit Sound (I2S) Interface

Table 27-22. I2S Master Clock (Receive and Transmit)

UnitMaxNomMinParameter NameParameterParameter No.

nspendingapendingapendingaCycle timetMCLK_PERM1

nspendingapendingapendingaRise/fall timetMCLKRFM2

nspendingapendingapendingaHigh timetMCLK_HIGHM3

nspendingapendingapendingaLow timetMCLK_LOWM4

nspendingapendingapendingaDuty cycletMDCM5

nspendingapendingapendingaJittertMJITTERM6

a. Pending characterization completion.

Table 27-23. I2S Slave Clock (Receive and Transmit)

UnitMaxNomMinParameter NameParameterParameter No.

nspendingapendingapendingaCycle timetSCLK_PERM7

nspendingapendingapendingaHigh timetSCLK_HIGHM8

nspendingapendingapendingaLow timetSCLK_LOWM9

nspendingapendingapendingaDuty cycletSDCM10

a. Pending characterization completion.

Table 27-24. I2S Master Mode

UnitMaxNomMinParameter NameParameterParameter No.

nspendingapendingapendingaSCK fall to WS validtMFALLM11

nspendingapendingapendingaSCK rise to TXSD validtMRISEM12

nspendingapendingapendingaRXSD setup time to SCK risetMRXSDM13

nspendingapendingapendingaRXSD hold time to SCK risetMTXSDM14

a. Pending characterization completion.

Table 27-25. I2S Slave Mode

UnitMaxNomMinParameter NameParameterParameter No.

nspendingapendingapendingaCycle timetSCLK_PERM15

nspendingapendingapendingaHigh timetSCLK_HIGHM16

nspendingapendingapendingaLow timetSCLK_LOWM17

nspendingapendingapendingaDuty cycletSDCM18

nspendingapending
b

pendingaWS setup time to SCK falltSSETUPM19

nspendingapending
c

pendingaWS hold time to SCK falltSHOLDM20

nspendingapendingapendingaSCK rise to TXSD validtSRISEM21

nstpendingapendingapendingaRXSD setup time to SCK risetSRXSDM22

nspendingapendingapendingaRXSD hold time to SCK risetSTXSDM23

a. Pending characterization completion.
b. Pending characterization completion.
c. Pending characterization completion.

1015February 24, 2009
Preliminary

LM3S9B92 Microcontroller

27.2.11 Ethernet Controller

Table 27-26. 100BASE-TX Transmitter Characteristicsa

UnitMaxNomMinParameter Name

mVpk1050-950Peak output amplitude

%102-98Output amplitude symmetry

%5--Output overshoot

ns5-3Rise/Fall time

ps500--Rise/Fall time imbalance

ps---Duty cycle distortion

ns1.4--Jitter

a. Measured at the line side of the transformer.

Table 27-27. 100BASE-TX Transmitter Characteristics (informative)a

UnitMaxNomMinParameter Name

dB--16Return loss

µH--350Open-circuit inductance

a. The specifications in this table are included for information only. They are mainly a function of the external transformer
and termination resistors used for measurements.

Table 27-28. 100BASE-TX Receiver Characteristics

UnitMaxNomMinParameter Name

mVppd-700600Signal detect assertion threshold

mVppd-425350Signal detect de-assertion threshold

kΩ-3.6-Differential input resistance

ns--4Jitter tolerance (pk-pk)

%+80--80Baseline wander tracking

µs1000--Signal detect assertion time

µs4--Signal detect de-assertion time

Table 27-29. 10BASE-T Transmitter Characteristicsa

UnitMaxNomMinParameter Name

V2.7-2.2Peak differential output signal

dB--27Harmonic content

ns-100-Link pulse width

ns-300

350

-Start-of-idle pulse width

a. The Manchester-encoded data pulses, the link pulse and the start-of-idle pulse are tested against the templates and using
the procedures found in Clause 14 of IEEE 802.3.

Table 27-30. 10BASE-T Transmitter Characteristics (informative)a

UnitMaxNomMinParameter Name

dB--15Output return loss

dB--29-17log(f/10)Output impedance balance

February 24, 20091016
Preliminary

Electrical Characteristics

UnitMaxNomMinParameter Name

mV50--Peak common-mode output voltage

mV100--Common-mode rejection

ns1--Common-mode rejection jitter

a. The specifications in this table are included for information only. They are mainly a function of the external transformer
and termination resistors used for measurements.

Table 27-31. 10BASE-T Receiver Characteristics

UnitMaxNomMinParameter Name

ns-2630Jitter tolerance (pk-pk)

mVppd540440340Input squelched threshold

kΩ-3.6-Differential input resistance

V--25Common-mode rejection

Table 27-32. Isolation Transformersa

ConditionValueName

+/- 5%1 CT : 1 CTTurns ratio

@ 10 mV, 10 kHz350 uH (min)Open-circuit inductance

@ 1 MHz (min)0.40 uH (max)Leakage inductance

25 pF (max)Inter-winding capacitance

0.9 Ohm (max)DC resistance

0-65 MHz0.4 dB (typ)Insertion loss

Vrms1500HIPOT

a. Two simple 1:1 isolation transformers are required at the line interface. Transformers with integrated common-mode
chokes are recommended for exceeding FCC requirements. This table gives the recommended line transformer
characteristics.

Note: The 100Base-TX amplitude specifications assume a transformer loss of 0.4 dB.

Table 27-33. Ethernet Reference Crystal

ConditionValueName

MHz25.00000Frequency

PPM±100Frequency tolerance

PPM/yr±2Aging

PPM±5Temperature stability (-40° to 85°)

Parallel resonance, fundamental modeOscillation mode

Parameters at 25° C ±2° C; Drive level = 0.5 mW

µW50-100Drive level (typ)

pF10Shunt capacitance (max)

fF10Motional capacitance (min)

Ω60Serious resistance (max)

> 5 dB below main within 500 kHzSpurious response (max)

1017February 24, 2009
Preliminary

LM3S9B92 Microcontroller

Figure 27-26. External XTLP Oscillator Characteristics

Tclkper

Tr

Tclkhi Tclklo

Tf

Table 27-34. External XTLP Oscillator Characteristics

UnitMaxNomMinParameter NameParameter

-0.8--XTLN Input Low VoltageXTLNILV

--25.0-XTLP FrequencyaXTLPF
--40-XTLP PeriodbTCLKPER
%60

60

-40

40

XTLP Duty CycleXTLPDC

ns4.0--Rise/Fall TimeTr , Tf
ns0.1--Absolute Jitter

a. IEEE 802.3 frequency tolerance ±50 ppm.
b. IEEE 802.3 frequency tolerance ±50 ppm.

27.2.12 Universal Serial Bus (USB) Controller
The Stellaris® USB controller AC electrical specifications are compliant with the “Universal Serial
Bus Specification Rev. 2.0” (full-speed and low-speed support) and the “On-The-Go Supplement
to the USB 2.0 Specification Rev. 1.0”.

27.2.13 Analog Comparator

Table 27-35. Analog Comparator Characteristics

UnitMaxNomMinParameter NameParameter

mV±25±10-Input offset voltageVOS
VVDD-1.5-0Input common mode voltage rangeVCM
dB--50Common mode rejection ratioCMRR

µs1--Response timeTRT
µs10--Comparator mode change to Output ValidTMC

February 24, 20091018
Preliminary

Electrical Characteristics

Table 27-36. Analog Comparator Voltage Reference Characteristics

UnitMaxNomMinParameter NameParameter

LSB-VDD/31-Resolution high rangeRHR

LSB-VDD/23-Resolution low rangeRLR

LSB±1/2--Absolute accuracy high rangeAHR
LSB±1/4--Absolute accuracy low rangeALR

1019February 24, 2009
Preliminary

LM3S9B92 Microcontroller

28 Package Information
Figure 28-1. 100-Pin LQFP Package

Note: The following notes apply to the package drawing.

1. All dimensions shown in mm.

2. Dimensions shown are nominal with tolerances indicated.

3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.

February 24, 20091020
Preliminary

Package Information

Body +2.00 mm Footprint, 1.4 mm package thickness

100LLeadsSymbols

1.60Max.A

0.05 Min./0.15 Max.-A1
1.40±0.05A2
16.00±0.20D

14.00±0.05D1

16.00±0.20E

14.00±0.05E1
0.60+0.15/-0.10L

0.50Basice

0.22+0.05b

0˚-7˚-θ

0.08Max.ddd

0.08Max.ccc

MS-026JEDEC Reference Drawing

BEDVariation Designator

1021February 24, 2009
Preliminary

LM3S9B92 Microcontroller

A Boot Loader
A.1 Boot Loader

The Stellaris® Boot Loader is executed from the ROM when flash is empty and is used to download
code to the flash memory of a device without the use of a debug interface. The boot loader uses a
simple packet interface to provide synchronous communication with the device. The boot loader
runs off the internal oscillator and does not enable the PLL, so its speed is determined by the speed
of the internal oscillator. The following serial interfaces can be used:

■ UART0

■ SSI0

■ I2C0

■ Ethernet

For simplicity, both the data format and communication protocol are identical for all serial interfaces.

See the Stellaris® Boot Loader User's Guide for information on the boot loader software.

A.2 Interfaces
Once communication with the boot loader is established via one of the serial interfaces, that interface
is used until the boot loader is reset or new code takes over. For example, once you start
communicating using the SSI port, communications with the boot loader via the UART are disabled
until the device is reset.

A.2.1 UART
The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial
format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is
automatically detected by the boot loader and can be any valid baud rate supported by the host and
the device. The auto detection sequence requires that the baud rate should be no more than 1/32
the internal oscillator frequency of the board that is running the boot loader (which is at least 8.4
MHz, providing support for up to 262,500 baud). This is actually the same as the hardware limitation
for the maximum baud rate for any UART on a Stellaris® device which is calculated as follows:

Max Baud Rate = System Clock Frequency / 16

In order to determine the baud rate, the boot loader needs to determine the relationship between
the internal oscillator and the baud rate. This is enough information for the boot loader to configure
its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to
use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the boot
loader two bytes that are both 0x55. This generates a series of pulses to the boot loader that it can
use to calculate the ratios needed to program the UART to match the host’s baud rate. After the
host sends the pattern, it attempts to read back one byte of data from the UART. The boot loader
returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received
after at least twice the time required to transfer the two bytes, the host can resend another pattern
of 0x55, 0x55, and wait for the 0xCC byte again until the boot loader acknowledges that it has
received a synchronization pattern correctly. For example, the time to wait for data back from the

February 24, 20091022
Preliminary

Boot Loader

boot loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate
of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI
The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications,
with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See “Frame
Formats” on page 573 in the SSI chapter for more information on formats for this transfer protocol.
Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI
clock can run. This allows the SSI clock to be at most 1/12 the internal oscillator frequency of the
board running the boot loader (which is at least 8.4 MHz, providing support for up to 700 KHz)..
Since the host device is the master, the SSI on the boot loader device does not need to determine
the clock as it is provided directly by the host.

A.2.3 I2C
The Inter-Integrated Circuit (I2C) port operates in slave mode with a slave address of 0x42. The I2C
port will work at both 100 KHz and 400 KHz I2C clock frequency. Since the host device is the master,
the I2C on the boot loader device does not need to determine the clock as it is provided directly by
the host.

A.2.4 Ethernet
(Pending)

A.3 Packet Handling
All communications, with the exception of the UART auto-baud, are done via defined packets that
are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same
format for receiving and sending packets, including the method used to acknowledge successful or
unsuccessful reception of a packet.

A.3.1 Packet Format
All packets sent and received from the device use the following byte-packed format.

struct
{

unsigned char ucSize;
unsigned char ucCheckSum;
unsigned char Data[];

};

ucSize The first byte received holds the total size of the transfer including
the size and checksum bytes.

ucChecksum This holds a simple checksum of the bytes in the data buffer only.
The algorithm is Data[0]+Data[1]+…+ Data[ucSize-3].

Data This is the raw data intended for the device, which is formatted in
some form of command interface. There should be ucSize–2
bytes of data provided in this buffer to or from the device.

1023February 24, 2009
Preliminary

LM3S9B92 Microcontroller

A.3.2 Sending Packets
The actual bytes of the packet can be sent individually or all at once; the only limitation is that
commands that cause flash memory access should limit the download sizes to prevent losing bytes
during flash programming. This limitation is discussed further in the section that describes the boot
loader command, COMMAND_SEND_DATA (see “COMMAND_SEND_DATA (0x24)” on page 1025).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or
SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned
from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from
the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This
does not indicate that the actual contents of the command issued in the data portion of the packet
were valid, just that the packet was received correctly.

A.3.3 Receiving Packets
The boot loader sends a packet of data in the same format that it receives a packet. The boot loader
may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte
is the size of the packet followed by a checksum byte, and finally followed by the data itself. There
is no break in the data after the first non-zero byte is sent from the boot loader. Once the device
communicating with the boot loader receives all the bytes, it must either ACK or NAK the packet to
indicate that the transmission was successful. The appropriate response after sending a NAK to
the boot loader is to resend the command that failed and request the data again. If needed, the host
may send leading zeros before sending down the ACK/NAK signal to the boot loader, as the boot
loader only accepts the first non-zero data as a valid response. This zero padding is needed by the
SSI interface in order to receive data to or from the boot loader.

A.4 Commands
The next section defines the list of commands that can be sent to the boot loader. The first byte of
the data should always be one of the defined commands, followed by data or parameters as
determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)
This command simply accepts the command and sets the global status to success. The format of
the packet is as follows:

Byte[0] = 0x03;
Byte[1] = checksum(Byte[2]);
Byte[2] = COMMAND_PING;

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one
byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status,
the receipt of an ACK can be interpreted as a successful ping to the boot loader.

A.4.2 COMMAND_DOWNLOAD (0x21)
This command is sent to the boot loader to indicate where to store data and how many bytes will
be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit
values that are both transferred MSB first. The first 32-bit value is the address to start programming
data into, while the second is the 32-bit size of the data that will be sent. This command also triggers
an erase of the full area to be programmed so this command takes longer than other commands.
This results in a longer time to receive the ACK/NAK back from the board. This command should

February 24, 20091024
Preliminary

Boot Loader

be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size
are valid for the device running the boot loader.

The format of the packet to send this command is a follows:

Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]

A.4.3 COMMAND_RUN (0x22)
This command is used to tell the boot loader to execute from the address passed as the parameter
in this command. This command consists of a single 32-bit value that is interpreted as the address
to execute. The 32-bit value is transmitted MSB first and the boot loader responds with an ACK
signal back to the host device before actually executing the code at the given address. This allows
the host to know that the command was received successfully and the code is now running.

Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]

A.4.4 COMMAND_GET_STATUS (0x23)
This command returns the status of the last command that was issued. Typically, this command
should be sent after every command to ensure that the previous command was successful or to
properly respond to a failure. The command requires one byte in the data of the packet and should
be followed by reading a packet with one byte of data that contains a status code. The last step is
to ACK or NAK the received data so the boot loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS

A.4.5 COMMAND_SEND_DATA (0x24)
This command should only follow a COMMAND_DOWNLOAD command or another
COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands
automatically increment address and continue programming from the previous location. For packets
which do not contain the final portion of the downloaded data, a multiple of four bytes should always
be transferred. The command terminates programming once the number of bytes indicated by the
COMMAND_DOWNLOAD command has been received. Each time this function is called it should be
followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into
the flash. If the boot loader sends a NAK to this command, the boot loader does not increment the

1025February 24, 2009
Preliminary

LM3S9B92 Microcontroller

current address to allow retransmission of the previous data. The following example shows a
COMMAND_SEND_DATA packet with 8 bytes of packet data:

Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]

A.4.6 COMMAND_RESET (0x25)
This command is used to tell the boot loader device to reset. Unlike the COMMAND_RUN command,
this allows the initial stack pointer to be read by the hardware and set up for the new code. It can
also be used to reset the boot loader if a critical error occurs and the host device wants to restart
communication with the boot loader.

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The boot loader responds with an ACK signal back to the host device before actually executing the
software reset to the device running the boot loader. This allows the host to know that the command
was received successfully and the part will be reset.

February 24, 20091026
Preliminary

Boot Loader

B ROM DriverLib Functions
B.1 DriverLib Functions Included in the Integrated ROM

The Stellaris® Peripheral Driver Library (DriverLib) APIs that are available in the integrated ROM of
the Stellaris® family of devices are listed below. The detailed description of each function is available
in the Stellaris® ROM User’s Guide.

ROM_ADCHardwareOversampleConfigure
// Configures the hardware oversampling factor of the ADC.

ROM_ADCIntClear
// Clears sample sequence interrupt source.

ROM_ADCIntDisable
// Disables a sample sequence interrupt.

ROM_ADCIntEnable
// Enables a sample sequence interrupt.

ROM_ADCIntStatus
// Gets the current interrupt status.

ROM_ADCProcessorTrigger
// Causes a processor trigger for a sample sequence.

ROM_ADCSequenceConfigure
// Configures the trigger source and priority of a sample sequence.

ROM_ADCSequenceDataGet
// Gets the captured data for a sample sequence.

ROM_ADCSequenceDisable
// Disables a sample sequence.

ROM_ADCSequenceEnable
// Enables a sample sequence.

ROM_ADCSequenceOverflow
// Determines if a sample sequence overflow occurred.

ROM_ADCSequenceOverflowClear
// Clears the overflow condition on a sample sequence.

ROM_ADCSequenceStepConfigure
// Configure a step of the sample sequencer.

ROM_ADCSequenceUnderflow
// Determines if a sample sequence underflow occurred.

ROM_ADCSequenceUnderflowClear
// Clears the underflow condition on a sample sequence.

1027February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_CANBitTimingGet
// Reads the current settings for the CAN controller bit timing.

ROM_CANBitTimingSet
// Configures the CAN controller bit timing.

ROM_CANDisable
// Disables the CAN controller.

ROM_CANEnable
// Enables the CAN controller.

ROM_CANErrCntrGet
// Reads the CAN controller error counter register.

ROM_CANInit
// Initializes the CAN controller after reset.

ROM_CANIntClear
// Clears a CAN interrupt source.

ROM_CANIntDisable
// Disables individual CAN controller interrupt sources.

ROM_CANIntEnable
// Enables individual CAN controller interrupt sources.

ROM_CANIntStatus
// Returns the current CAN controller interrupt status.

ROM_CANMessageClear
// Clears a message object so that it is no longer used.

ROM_CANMessageGet
// Reads a CAN message from one of the message object buffers.

ROM_CANMessageSet
// Configures a message object in the CAN controller.

ROM_CANRetryGet
// Returns the current setting for automatic retransmission.

ROM_CANRetrySet
// Sets the CAN controller automatic retransmission behavior.

ROM_CANStatusGet
// Reads one of the controller status registers.

ROM_ComparatorConfigure
// Configures a comparator.

ROM_ComparatorIntClear
// Clears a comparator interrupt.

February 24, 20091028
Preliminary

ROM DriverLib Functions

ROM_ComparatorIntDisable
// Disables the comparator interrupt.

ROM_ComparatorIntEnable
// Enables the comparator interrupt.

ROM_ComparatorIntStatus
// Gets the current interrupt status.

ROM_ComparatorRefSet
// Sets the internal reference voltage.

ROM_ComparatorValueGet
// Gets the current comparator output value.

ROM_EthernetConfigGet
// Gets the current configuration of the Ethernet controller.

ROM_EthernetConfigSet
// Sets the configuration of the Ethernet controller.

ROM_EthernetDisable
// Disables the Ethernet controller.

ROM_EthernetEnable
// Enables the Ethernet controller for normal operation.

ROM_EthernetInitExpClk
// Initializes the Ethernet controller for operation.

ROM_EthernetIntClear
// Clears Ethernet interrupt sources.

ROM_EthernetIntDisable
// Disables individual Ethernet interrupt sources.

ROM_EthernetIntEnable
// Enables individual Ethernet interrupt sources.

ROM_EthernetIntStatus
// Gets the current Ethernet interrupt status.

ROM_EthernetMACAddrGet
// Gets the MAC address of the Ethernet controller.

ROM_EthernetMACAddrSet
// Sets the MAC address of the Ethernet controller.

ROM_EthernetPacketAvail
// Check for packet available from the Ethernet controller.

ROM_EthernetPacketGet
// Waits for a packet from the Ethernet controller.

1029February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_EthernetPacketGetNonBlocking
// Receives a packet from the Ethernet controller.

ROM_EthernetPacketPut
// Waits to send a packet from the Ethernet controller.

ROM_EthernetPacketPutNonBlocking
// Sends a packet to the Ethernet controller.

ROM_EthernetPHYRead
// Reads from a PHY register.

ROM_EthernetPHYWrite
// Writes to the PHY register.

ROM_EthernetSpaceAvail
// Checks for packet space available in the Ethernet controller.

ROM_FlashErase
// Erases a block of flash.

ROM_FlashIntClear
// Clears flash controller interrupt sources.

ROM_FlashIntDisable
// Disables individual flash controller interrupt sources.

ROM_FlashIntEnable
// Enables individual flash controller interrupt sources.

ROM_FlashIntGetStatus
// Gets the current interrupt status.

ROM_FlashProgram
// Programs flash.

ROM_FlashProtectGet
// Gets the protection setting for a block of flash.

ROM_FlashProtectSave
// Saves the flash protection settings.

ROM_FlashProtectSet
// Sets the protection setting for a block of flash.

ROM_FlashUsecGet
// Gets the number of processor clocks per micro-second.

ROM_FlashUsecSet
// Sets the number of processor clocks per micro-second.

ROM_FlashUserGet
// Gets the user registers.

February 24, 20091030
Preliminary

ROM DriverLib Functions

ROM_FlashUserSave
// Saves the user registers.

ROM_FlashUserSet
// Sets the user registers.

ROM_GPIODirModeGet
// Gets the direction and mode of a pin.

ROM_GPIODirModeSet
// Sets the direction and mode of the specified pin(s).

ROM_GPIOIntTypeGet
// Gets the interrupt type for a pin.

ROM_GPIOIntTypeSet
// Sets the interrupt type for the specified pin(s).

ROM_GPIOPadConfigGet
// Gets the pad configuration for a pin.

ROM_GPIOPadConfigSet
// Sets the pad configuration for the specified pin(s).

ROM_GPIOPinIntClear
// Clears the interrupt for the specified pin(s).

ROM_GPIOPinIntDisable
// Disables interrupts for the specified pin(s).

ROM_GPIOPinIntEnable
// Enables interrupts for the specified pin(s).

ROM_GPIOPinIntStatus
// Gets interrupt status for the specified GPIO port.

ROM_GPIOPinRead
// Reads the values present of the specified pin(s).

ROM_GPIOPinTypeADC
// Configures pin(s) for use as analog-to-digital converter inputs.

ROM_GPIOPinTypeCAN
// Configures pin(s) for use as a CAN device.

ROM_GPIOPinTypeComparator
// Configures pin(s) for use as an analog comparator input.

ROM_GPIOPinTypeGPIOInput
// Configures pin(s) for use as GPIO inputs.

ROM_GPIOPinTypeGPIOOutput
// Configures pin(s) for use as GPIO outputs.

1031February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_GPIOPinTypeGPIOOutputOD
// Configures pin(s) for use as GPIO open drain outputs.

ROM_GPIOPinTypeI2C
// Configures pin(s) for use by the I2C peripheral.

ROM_GPIOPinTypePWM
// Configures pin(s) for use by the PWM peripheral.

ROM_GPIOPinTypeQEI
// Configures pin(s) for use by the QEI peripheral.

ROM_GPIOPinTypeSSI
// Configures pin(s) for use by the SSI peripheral.

ROM_GPIOPinTypeTimer
// Configures pin(s) for use by the Timer peripheral.

ROM_GPIOPinTypeUART
// Configures pin(s) for use by the UART peripheral.

ROM_GPIOPinTypeUSBDigital
// Configures pin(s) for use by the USB peripheral.

ROM_GPIOPinWrite
// Writes a value to the specified pin(s).

ROM_I2CMasterBusBusy
// Indicates whether or not the I2C bus is busy.

ROM_I2CMasterBusy
// Indicates whether or not the I2C Master is busy.

ROM_I2CMasterControl
// Controls the state of the I2C Master module.

ROM_I2CMasterDataGet
// Receives a byte that has been sent to the I2C Master.

ROM_I2CMasterDataPut
// Transmits a byte from the I2C Master.

ROM_I2CMasterDisable
// Disables the I2C master block.

ROM_I2CMasterEnable
// Enables the I2C Master block.

ROM_I2CMasterErr
// Gets the error status of the I2C Master module.

ROM_I2CMasterInitExpClk
// Initializes the I2C Master block.

February 24, 20091032
Preliminary

ROM DriverLib Functions

ROM_I2CMasterIntClear
// Clears I2C Master interrupt sources.

ROM_I2CMasterIntDisable
// Disables the I2C Master interrupt.

ROM_I2CMasterIntEnable
// Enables the I2C Master interrupt.

ROM_I2CMasterIntStatus
// Gets the current I2C Master interrupt status.

ROM_I2CMasterSlaveAddrSet
// Sets the address that the I2C Master will place on the bus.

ROM_I2CSlaveDataGet
// Receives a byte that has been sent to the I2C Slave.

ROM_I2CSlaveDataPut
// Transmits a byte from the I2C Slave.

ROM_I2CSlaveDisable
// Disables the I2C slave block.

ROM_I2CSlaveEnable
// Enables the I2C Slave block.

ROM_I2CSlaveInit
// Initializes the I2C Slave block.

ROM_I2CSlaveIntClear
// Clears I2C Slave interrupt sources.

ROM_I2CSlaveIntDisable
// Disables the I2C Slave interrupt.

ROM_I2CSlaveIntEnable
// Enables the I2C Slave interrupt.

ROM_I2CSlaveIntStatus
// Gets the current I2C Slave interrupt status.

ROM_I2CSlaveStatus
// Gets the I2C Slave module status.

ROM_IntDisable
// Disables an interrupt.

ROM_IntEnable
// Enables an interrupt.

ROM_IntMasterDisable
// Disables the processor interrupt.

1033February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_IntMasterEnable
// Enables the processor interrupt.

ROM_IntPriorityGet
// Gets the priority of an interrupt.

ROM_IntPriorityGroupingGet
// Gets the priority grouping of the interrupt controller.

ROM_IntPriorityGroupingSet
// Sets the priority grouping of the interrupt controller.

ROM_IntPrioritySet
// Sets the priority of an interrupt.

ROM_MPUDisable
// Disables the MPU for use.

ROM_MPUEnable
// Enables and configures the MPU for use.

ROM_MPURegionCountGet
// Gets the count of regions supported by th MPU.

ROM_MPURegionDisable
// Disables a specific region.

ROM_MPURegionEnable
// Enables a specific region.

ROM_MPURegionGet
// Gets the current settings for a specific region.

ROM_MPURegionSet
// Sets up the access rules for a specific region.

ROM_PWMDeadBandDisable
// Disables the PWM dead band output.

ROM_PWMDeadBandEnable
// Enables the PWM dead band output, and sets the dead band delays.

ROM_PWMFaultIntClear
// Clears the fault interrupt for a PWM module.

ROM_PWMFaultIntClearExt
// Clears the fault interrupt for a PWM module.

ROM_PWMGenConfigure
// Configures a PWM generator.

ROM_PWMGenDisable
// Disables the timer/counter for a PWM generator block.

February 24, 20091034
Preliminary

ROM DriverLib Functions

ROM_PWMGenEnable
// Enables the timer/counter for a PWM generator block.

ROM_PWMGenFaultClear
// Clears one or more latched fault triggers for a given PWM generator.

ROM_PWMGenFaultConfigure
// Configures the minimum fault period and fault pin senses for a given PWM generator.

ROM_PWMGenFaultStatus
// Returns the current state of the fault triggers for a given PWM generator.

ROM_PWMGenFaultTriggerGet
// Returns the set of fault triggers currently configured for a given PWM generator.

ROM_PWMGenFaultTriggerSet
// Configures the set of fault triggers for a given PWM generator.

ROM_PWMGenIntClear
// Clears the specified interrupt(s) for the specified PWM generator block.

ROM_PWMGenIntStatus
// Gets interrupt status for the specified PWM generator block.

ROM_PWMGenIntTrigDisable
// Disables interrupts for the specified PWM generator block.

ROM_PWMGenIntTrigEnable
// Enables interrupts and triggers for the specified PWM generator block.

ROM_PWMGenPeriodGet
// Gets the period of a PWM generator block.

ROM_PWMGenPeriodSet
// Set the period of a PWM generator.

ROM_PWMIntDisable
// Disables generator and fault interrupts for a PWM module.

ROM_PWMIntEnable
// Enables generator and fault interrupts for a PWM module.

ROM_PWMIntStatus
// Gets the interrupt status for a PWM module.

ROM_PWMOutputFault
// Specifies the state of PWM outputs in response to a fault condition.

ROM_PWMOutputFaultLevel
// Specifies the level of PWM outputs suppressed in response to a fault condition.

ROM_PWMOutputInvert
// Selects the inversion mode for PWM outputs.

1035February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_PWMOutputState
// Enables or disables PWM outputs.

ROM_PWMPulseWidthGet
// Gets the pulse width of a PWM output.

ROM_PWMPulseWidthSet
// Sets the pulse width for the specified PWM output.

ROM_PWMSyncTimeBase
// Synchronizes the counters in one or multiple PWM generator blocks.

ROM_PWMSyncUpdate
// Synchronizes all pending updates.

ROM_QEIConfigure
// Configures the quadrature encoder.

ROM_QEIDirectionGet
// Gets the current direction of rotation.

ROM_QEIDisable
// Disables the quadrature encoder.

ROM_QEIEnable
// Enables the quadrature encoder.

ROM_QEIErrorGet
// Gets the encoder error indicator.

ROM_QEIIntClear
// Clears quadrature encoder interrupt sources.

ROM_QEIIntDisable
// Disables individual quadrature encoder interrupt sources.

ROM_QEIIntEnable
// Enables individual quadrature encoder interrupt sources.

ROM_QEIIntStatus
// Gets the current interrupt status.

ROM_QEIPositionGet
// Gets the current encoder position.

ROM_QEIPositionSet
// Sets the current encoder position.

ROM_QEIVelocityConfigure
// Configures the velocity capture.

ROM_QEIVelocityDisable
// Disables the velocity capture.

February 24, 20091036
Preliminary

ROM DriverLib Functions

ROM_QEIVelocityEnable
// Enables the velocity capture.

ROM_QEIVelocityGet
// Gets the current encoder speed.

ROM_SSIConfigSetExpClk
// Configures the synchronous serial interface.

ROM_SSIDataGet
// Gets a data element from the SSI receive FIFO.

ROM_SSIDataGetNonBlocking
// Gets a data element from the SSI receive FIFO.

ROM_SSIDataPut
// Puts a data element into the SSI transmit FIFO.

ROM_SSIDataPutNonBlocking
// Puts a data element into the SSI transmit FIFO.

ROM_SSIDisable
// Disables the synchronous serial interface.

ROM_SSIDMADisable
// Disable SSI DMA operation.

ROM_SSIDMAEnable
// Enable SSI DMA operation.

ROM_SSIEnable
// Enables the synchronous serial interface.

ROM_SSIIntClear
// Clears SSI interrupt sources.

ROM_SSIIntDisable
// Disables individual SSI interrupt sources.

ROM_SSIIntEnable
// Enables individual SSI interrupt sources.

ROM_SSIIntStatus
// Gets the current interrupt status.

ROM_SysCtlADCSpeedGet
// Gets the sample rate of the ADC.

ROM_SysCtlADCSpeedSet
// Sets the sample rate of the ADC.

ROM_SysCtlClockGet
// Gets the processor clock rate.

1037February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_SysCtlClockSet
// Sets the clocking of the device.

ROM_SysCtlDeepSleep
// Puts the processor into deep-sleep mode.

ROM_SysCtlFlashSizeGet
// Gets the size of the flash.

ROM_SysCtlGPIOAHBDisable
// Disables a GPIO peripheral for access from the AHB.

ROM_SysCtlGPIOAHBEnable
// Enables a GPIO peripheral for access from the AHB.

ROM_SysCtlIntClear
// Clears system control interrupt sources.

ROM_SysCtlIntDisable
// Disables individual system control interrupt sources.

ROM_SysCtlIntEnable
// Enables individual system control interrupt sources.

ROM_SysCtlIntStatus
// Gets the current interrupt status.

ROM_SysCtlLDOGet
// Gets the output voltage of the LDO.

ROM_SysCtlLDOSet
// Sets the output voltage of the LDO.

ROM_SysCtlPeripheralClockGating
// Controls peripheral clock gating in sleep and deep-sleep mode.

ROM_SysCtlPeripheralDeepSleepDisable
// Disables a peripheral in deep-sleep mode.

ROM_SysCtlPeripheralDeepSleepEnable
// Enables a peripheral in deep-sleep mode.

ROM_SysCtlPeripheralDisable
// Disables a peripheral.

ROM_SysCtlPeripheralEnable
// Enables a peripheral.

ROM_SysCtlPeripheralPresent
// Determines if a peripheral is present.

ROM_SysCtlPeripheralReset
// Performs a software reset of a peripheral.

February 24, 20091038
Preliminary

ROM DriverLib Functions

ROM_SysCtlPeripheralSleepDisable
// Disables a peripheral in sleep mode.

ROM_SysCtlPeripheralSleepEnable
// Enables a peripheral in sleep mode.

ROM_SysCtlPinPresent
// Determines if a pin is present.

ROM_SysCtlPWMClockGet
// Gets the current PWM clock configuration.

ROM_SysCtlPWMClockSet
// Sets the PWM clock configuration.

ROM_SysCtlReset
// Resets the device.

ROM_SysCtlResetCauseClear
// Clears reset reasons.

ROM_SysCtlResetCauseGet
// Gets the reason for a reset.

ROM_SysCtlSleep
// Puts the processor into sleep mode.

ROM_SysCtlSRAMSizeGet
// Gets the size of the SRAM.

ROM_SysCtlUSBPLLDisable
// Powers down the USB PLL.

ROM_SysCtlUSBPLLEnable
// Powers up the USB PLL.

ROM_SysTickDisable
// Disables the SysTick counter.

ROM_SysTickEnable
// Enables the SysTick counter.

ROM_SysTickIntDisable
// Disables the SysTick interrupt.

ROM_SysTickIntEnable
// Enables the SysTick interrupt.

ROM_SysTickPeriodGet
// Gets the period of the SysTick counter.

ROM_SysTickPeriodSet
// Sets the period of the SysTick counter.

1039February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_SysTickValueGet
// Gets the current value of the SysTick counter.

ROM_TimerConfigure
// Configures the timer(s).

ROM_TimerControlEvent
// Controls the event type.

ROM_TimerControlLevel
// Controls the output level.

ROM_TimerControlStall
// Controls the stall handling.

ROM_TimerControlTrigger
// Enables or disables the trigger output.

ROM_TimerDisable
// Disables the timer(s).

ROM_TimerEnable
// Enables the timer(s).

ROM_TimerIntClear
// Clears timer interrupt sources.

ROM_TimerIntDisable
// Disables individual timer interrupt sources.

ROM_TimerIntEnable
// Enables individual timer interrupt sources.

ROM_TimerIntStatus
// Gets the current interrupt status.

ROM_TimerLoadGet
// Gets the timer load value.

ROM_TimerLoadSet
// Sets the timer load value.

ROM_TimerMatchGet
// Gets the timer match value.

ROM_TimerMatchSet
// Sets the timer match value.

ROM_TimerPrescaleGet
// Get the timer prescale value.

ROM_TimerPrescaleSet
// Set the timer prescale value.

February 24, 20091040
Preliminary

ROM DriverLib Functions

ROM_TimerRTCDisable
// Disable RTC counting.

ROM_TimerRTCEnable
// Enable RTC counting.

ROM_TimerValueGet
// Gets the current timer value.

ROM_UARTBreakCtl
// Causes a BREAK to be sent.

ROM_UARTCharGet
// Waits for a character from the specified port.

ROM_UARTCharGetNonBlocking
// Receives a character from the specified port.

ROM_UARTCharPut
// Waits to send a character from the specified port.

ROM_UARTCharPutNonBlocking
// Sends a character to the specified port.

ROM_UARTCharsAvail
// Determines if there are any characters in the receive FIFO.

ROM_UARTConfigGetExpClk
// Gets the current configuration of a UART.

ROM_UARTConfigSetExpClk
// Sets the configuration of a UART.

ROM_UARTDisable
// Disables transmitting and receiving.

ROM_UARTDisableSIR
// Disables SIR (IrDA) mode on the specified UART.

ROM_UARTDMADisable
// Disable UART DMA operation.

ROM_UARTDMAEnable
// Enable UART DMA operation.

ROM_UARTEnable
// Enables transmitting and receiving.

ROM_UARTEnableSIR
// Enables SIR (IrDA) mode on specified UART.

ROM_UARTFIFOLevelGet
// Gets the FIFO level at which interrupts are generated.

1041February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_UARTFIFOLevelSet
// Sets the FIFO level at which interrupts are generated.

ROM_UARTIntClear
// Clears UART interrupt sources.

ROM_UARTIntDisable
// Disables individual UART interrupt sources.

ROM_UARTIntEnable
// Enables individual UART interrupt sources.

ROM_UARTIntStatus
// Gets the current interrupt status.

ROM_UARTParityModeGet
// Gets the type of parity currently being used.

ROM_UARTParityModeSet
// Sets the type of parity.

ROM_UARTSpaceAvail
// Determines if there is any space in the transmit FIFO.

ROM_uDMAChannelAttributeDisable
// Disables attributes of a uDMA channel.

ROM_uDMAChannelAttributeEnable
// Enables attributes of a uDMA channel.

ROM_uDMAChannelAttributeGet
// Gets the enabled attributes of a uDMA channel.

ROM_uDMAChannelControlSet
// Sets the control parameters for a uDMA channel.

ROM_uDMAChannelDisable
// Disables a uDMA channel for operation.

ROM_uDMAChannelEnable
// Enables a uDMA channel for operation.

ROM_uDMAChannelIsEnabled
// Checks if a uDMA channel is enabled for operation.

ROM_uDMAChannelModeGet
// Gets the transfer mode for a uDMA channel.

ROM_uDMAChannelRequest
// Requests a uDMA channel to start a transfer.

ROM_uDMAChannelSizeGet
// Gets the current transfer size for a uDMA channel.

February 24, 20091042
Preliminary

ROM DriverLib Functions

ROM_uDMAChannelTransferSet
// Sets the transfer parameters for a uDMA channel.

ROM_uDMAControlBaseGet
// Gets the base address for the channel control table.

ROM_uDMAControlBaseSet
// Sets the base address for the channel control table.

ROM_uDMADisable
// Disables the uDMA controller for use.

ROM_uDMAEnable
// Enables the uDMA controller for use.

ROM_uDMAErrorStatusClear
// Clears the uDMA error interrupt.

ROM_uDMAErrorStatusGet
// Gets the uDMA error status.

ROM_UpdateEthernet
// Starts an update over the Ethernet interface.

ROM_UpdateI2C
// Starts an update over the I2C0 interface.

ROM_UpdateSSI
// Starts an update over the SSI0 interface.

ROM_UpdateUART
// Starts an update over the UART0 interface.

ROM_USBDevAddrGet
// Returns the current device address in device mode.

ROM_USBDevAddrSet
// Sets the address in device mode.

ROM_USBDevConnect
// Connects the USB controller to the bus in device mode.

ROM_USBDevDisconnect
// Removes the USB controller from the bus in device mode.

ROM_USBDevEndpointConfig
// Sets the configuration for an endpoint.

ROM_USBDevEndpointDataAck
// Acknowledge that data was read from the given endpoint's FIFO in device mode.

ROM_USBDevEndpointStall
// Stalls the specified endpoint in device mode.

1043February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_USBDevEndpointStallClear
// Clears the stall condition on the specified endpoint in device mode.

ROM_USBDevEndpointStatusClear
// Clears the status bits in this endpoint in device mode.

ROM_USBEndpointDataGet
// Retrieves data from the given endpoint's FIFO.

ROM_USBEndpointDataPut
// Puts data into the given endpoint's FIFO.

ROM_USBEndpointDataSend
// Starts the transfer of data from an endpoint's FIFO.

ROM_USBEndpointDataToggleClear
// Sets the Data toggle on an end oint to zero.

ROM_USBEndpointStatus
// Returns the current status of an endpoint.

ROM_USBFIFOAddrGet
// Returns the absolute FIFO address for a given endpoint.

ROM_USBFIFOConfigGet
// Returns the FIFO configuration for an endpoint.

ROM_USBFIFOConfigSet
// Sets the FIFO configuration for an endpoint.

ROM_USBFIFOFlush
// Forces a flush of an endpoint's FIFO.

ROM_USBFrameNumberGet
// Get the current frame number.

ROM_USBHostAddrGet
// Gets the current functional device address for an endpoint.

ROM_USBHostAddrSet
// Sets the functional address for the device that is connected to an endpoint in host mode.

ROM_USBHostEndpointConfig
// Sets the base configuration for a host endpoint.

ROM_USBHostEndpointDataAck
// Acknowledge that data was read from the given endpoint's FIFO in host mode.

ROM_USBHostEndpointDataToggle
// Sets the value data toggle on an endpoint in host mode.

ROM_USBHostEndpointStatusClear
// Clears the status bits in this endpoint in host mode.

February 24, 20091044
Preliminary

ROM DriverLib Functions

ROM_USBHostHubAddrGet
// Get the current device hub address for this endpoint.

ROM_USBHostHubAddrSet
// Set the hub address for the device that is connected to an endpoint.

ROM_USBHostPwrDisable
// Disables the external power pin.

ROM_USBHostPwrEnable
// Enables the external power pin.

ROM_USBHostPwrFaultConfig
// Sets the configuration for USB power fault.

ROM_USBHostPwrFaultDisable
// Disables power fault detection.

ROM_USBHostPwrFaultEnable
// Enables power fault detection.

ROM_USBHostRequestIN
// Schedules a request for an IN transaction on an endpoint in host mode.

ROM_USBHostRequestStatus
// Issues a request for a status IN transaction on endpoint zero.

ROM_USBHostReset
// Handles the USB bus reset condition.

ROM_USBHostResume
// Handles the USB bus resume condition.

ROM_USBHostSpeedGet
// Returns the current speed of the USB device connected.

ROM_USBHostSuspend
// Puts the USB bus in a suspended state.

ROM_USBIntDisable
// Disables the sour es for USB interrupts.

ROM_USBIntEnable
// Enables the sources for USB interrupts.

ROM_USBIntStatus
// Returns the status of the USB interrupts.

ROM_WatchdogEnable
// Enables the watchdog timer.

ROM_WatchdogIntClear
// Clears the watchdog timer interrupt.

1045February 24, 2009
Preliminary

LM3S9B92 Microcontroller

ROM_WatchdogIntEnable
// Enables the watchdog timer interrupt.

ROM_WatchdogIntStatus
// Gets the current watchdog timer interrupt status.

ROM_WatchdogLock
// Enables the watchdog timer lock mechanism.

ROM_WatchdogLockState
// Gets the state of the watchdog timer lock mechanism.

ROM_WatchdogReloadGet
// Gets the watchdog timer reload value.

ROM_WatchdogReloadSet
// Sets the watchdog timer reload value.

ROM_WatchdogResetDisable
// Disables the watchdog timer reset.

ROM_WatchdogResetEnable
// Enables the watchdog timer reset.

ROM_WatchdogRunning
// Determines if the watchdog timer is enabled.

ROM_WatchdogStallDisable
// Disables stalling of the watchdog timer during debug events.

ROM_WatchdogStallEnable
// Enables stalling of the watchdog timer during debug events.

ROM_WatchdogUnlock
// Disables the watchdog timer lock mechanism.

ROM_WatchdogValueGet
// Gets the current watchdog timer value.

February 24, 20091046
Preliminary

ROM DriverLib Functions

C Advance Encryption Standard and Cyclic
Redundancy Check Software in ROM
AES and CRC software is available in the integrated ROM of the LM3S9B92 microcontroller at
0x0100.5000. For more information on this software, see Stellaris® ROM User’s Guide.

C.1 Advanced Encryption Standard Software
The Advanced Encryption Standard (AES) is a publicly defined encryption standard used by the
U.S. Government. It is a strong encryption method with reasonable performance and size. AES is
fast in both hardware and software, is fairly easy to implement, and requires little memory. AES is
ideal for applications that can use pre-arranged keys, such as setup during manufacturing or
configuration.

C.2 Cyclic Redundancy Check Software
CRC (Cyclic Redundancy Check) is a technique to validate a span of data has the same contents
as when previously checked. This technique can be used to validate correct receipt of messages
(nothing lost or modified in transit), to validate data after decompression, to validate that Flash
memory contents have not been changed, and for other cases where the data needs to be validated.
A CRC is preferred over a simple checksum (e.g. XOR all bits) because it catches changes more
readily.

1047February 24, 2009
Preliminary

LM3S9B92 Microcontroller

D Register Quick Reference
16171819202122232425262728293031

0123456789101112131415

System Control
Base 0x400F.E000

DID0, type RO, offset 0x000, reset -

CLASSVER

MINORMAJOR

PBORCTL, type R/W, offset 0x030, reset 0x0000.7FFD

BORIOR

RIS, type RO, offset 0x050, reset 0x0000.0000

BORRISPLLLRISUSBPLLLRISMOSCPUPRIS

IMC, type R/W, offset 0x054, reset 0x0000.0000

BORIMPLLLIMUSBPLLLIMMOSCPUPIM

MISC, type R/W1C, offset 0x058, reset 0x0000.0000

BORMISPLLLMISUSBPLLLMISMOSCPUPMIS

RESC, type R/W, offset 0x05C, reset -

MOSCFAIL

EXTPORBORWDT0SWreservedWDT1

RCC, type R/W, offset 0x060, reset 0x078E.3AD1

PWMDIVUSEPWMDIVUSESYSDIVSYSDIVACG

MOSCDISIOSCDISOSCSRCXTALBYPASSPWRDN

PLLCFG, type RO, offset 0x064, reset -

RF

GPIOHBCTL, type R/W, offset 0x06C, reset 0x0000.0000

PORTAPORTBPORTCPORTDPORTEPORTFPORTGPORTHPORTJ

RCC2, type R/W, offset 0x070, reset 0x0780.6810

FRACTSYSDIV2USEFRACTUSERCC2

OSCSRC2BYPASS2PWRDN2USBPWRDN

MOSCCTL, type R/W, offset 0x07C, reset 0x0000.0000

CVAL

DSLPCLKCFG, type R/W, offset 0x144, reset 0x0780.0000

DSDIVORIDE

DSOSCSRC

DSFLASHCFG, type R/W, offset 0x14C, reset 0x0000.0000

SHDWN

PIOSCCAL, type R/W, offset 0x150, reset 0x0000.0000

UTEN

UTUPDATE

I2SMCLKCFG, type R/W, offset 0x170, reset 0x0000.0000

RXFRXIRXEN

TXFTXITXEN

DID1, type RO, offset 0x004, reset -

PARTNOFAMVER

QUALROHSPKGTEMPPINCOUNT

February 24, 20091048
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

DC0, type RO, offset 0x008, reset 0x017F.007F

SRAMSZ

FLASHSZ

DC1, type RO, offset 0x010, reset -

ADC0ADC1PWMCAN0CAN1WDT1

JTAGSWDSWOWDT0PLLTEMPSNSMPUMAXADC0SPDMAXADC1SPDMINSYSDIV

DC2, type RO, offset 0x014, reset 0x570F.5337

TIMER0TIMER1TIMER2TIMER3COMP0COMP1COMP2I2S0EPI0

UART0UART1UART2SSI0SSI1QEI0QEI1I2C0I2C1

DC3, type RO, offset 0x018, reset 0xBFFF.B6FF

ADC0AIN0ADC0AIN1ADC0AIN2ADC0AIN3ADC0AIN4ADC0AIN5ADC0AIN6ADC0AIN7CCP0CCP1CCP2CCP3CCP4CCP532KHZ

PWM0PWM1PWM2PWM3PWM4PWM5C0MINUSC0PLUSC1MINUSC1PLUSC2MINUSC2PLUSPWMFAULT

DC4, type RO, offset 0x01C, reset 0x5000.F1FF

EMAC0EPHY0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJROMUDMACCP6CCP7

DC5, type RO, offset 0x020, reset 0x0F30.00FF

PWMESYNCPWMEFLTPWMFAULT0PWMFAULT1PWMFAULT2PWMFAULT3

PWM0PWM1PWM2PWM3PWM4PWM5PWM6PWM7

DC6, type RO, offset 0x024, reset 0x0000.0013

USB0USB0PHY

DC7, type RO, offset 0x028, reset 0xFFFF.FFFF

DMACH16DMACH17DMACH18DMACH19DMACH20DMACH21DMACH22DMACH23DMACH24DMACH25DMACH26DMACH27DMACH28DMACH29DMACH30reserved-31

DMACH0DMACH1DMACH2DMACH3DMACH4DMACH5DMACH6DMACH7DMACH8DMACH9DMACH10DMACH11DMACH12DMACH13DMACH14DMACH15

DC8, type RO, offset 0x02C, reset 0xFFFF.FFFF

ADC1AIN0ADC1AIN1ADC1AIN2ADC1AIN3ADC1AIN4ADC1AIN5ADC1AIN6ADC1AIN7ADC1AIN8ADC1AIN9ADC1AIN10ADC1AIN11ADC1AIN12ADC1AIN13ADC1AIN14ADC1AIN15

ADC0AIN0ADC0AIN1ADC0AIN2ADC0AIN3ADC0AIN4ADC0AIN5ADC0AIN6ADC0AIN7ADC0AIN8ADC0AIN9ADC0AIN10ADC0AIN11ADC0AIN12ADC0AIN13ADC0AIN14ADC0AIN15

DC9, type RO, offset 0x190, reset 0x00FF.00FF

ADC1DC0ADC1DC1ADC1DC2ADC1DC3ADC1DC4ADC1DC5ADC1DC6ADC1DC7

ADC0DC0ADC0DC1ADC0DC2ADC0DC3ADC0DC4ADC0DC5ADC0DC6ADC0DC7

NVMSTAT, type RO, offset 0x1A0, reset 0x0000.0001

FWB

RCGC0, type R/W, offset 0x100, reset 0x00000040

ADC0ADC1PWMCAN0CAN1WDT1

WDT0MAXADC0SPDMAXADC1SPD

SCGC0, type R/W, offset 0x110, reset 0x00000040

ADC0ADC1PWMCAN0CAN1WDT1

WDT0MAXADC0SPDMAXADC1SPD

DCGC0, type R/W, offset 0x120, reset 0x00000040

ADC0ADC1PWMCAN0CAN1WDT1

WDT0MAXADC0SPDMAXADC1SPD

RCGC1, type R/W, offset 0x104, reset 0x00000000

TIMER0TIMER1TIMER2TIMER3COMP0COMP1COMP2I2S0EPI0

UART0UART1UART2SSI0SSI1QEI0QEI1I2C0I2C1

SCGC1, type R/W, offset 0x114, reset 0x00000000

TIMER0TIMER1TIMER2TIMER3COMP0COMP1COMP2I2S0EPI0

UART0UART1UART2SSI0SSI1QEI0QEI1I2C0I2C1

DCGC1, type R/W, offset 0x124, reset 0x00000000

TIMER0TIMER1TIMER2TIMER3COMP0COMP1COMP2I2S0EPI0

UART0UART1UART2SSI0SSI1QEI0QEI1I2C0I2C1

1049February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

RCGC2, type R/W, offset 0x108, reset 0x00000000

USB0EMAC0EPHY0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJUDMA

SCGC2, type R/W, offset 0x118, reset 0x00000000

USB0EMAC0EPHY0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJUDMA

DCGC2, type R/W, offset 0x128, reset 0x00000000

USB0EMAC0EPHY0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJUDMA

SRCR0, type R/W, offset 0x040, reset 0x00000000

ADC0ADC1PWMCAN0CAN1WDT1

WDT0

SRCR1, type R/W, offset 0x044, reset 0x00000000

TIMER0TIMER1TIMER2TIMER3COMP0COMP1COMP2I2S0EPI0

UART0UART1UART2SSI0SSI1QEI0QEI1I2C0I2C1

SRCR2, type R/W, offset 0x048, reset 0x00000000

USB0EMAC0EPHY0

GPIOAGPIOBGPIOCGPIODGPIOEGPIOFGPIOGGPIOHGPIOJUDMA

Internal Memory
Flash Registers (Flash Control Offset)
Base 0x400F.D000

FMA, type R/W, offset 0x000, reset 0x0000.0000

OFFSET

OFFSET

FMD, type R/W, offset 0x004, reset 0x0000.0000

DATA

DATA

FMC, type R/W, offset 0x008, reset 0x0000.0000

WRKEY

WRITEERASEMERASECOMT

FCRIS, type RO, offset 0x00C, reset 0x0000.0000

ARISPRIS

FCIM, type R/W, offset 0x010, reset 0x0000.0000

AMASKPMASK

FCMISC, type R/W1C, offset 0x014, reset 0x0000.0000

AMISCPMISC

FMC2, type R/W, offset 0x020, reset 0x0000.0000

WRKEY

WRBUF

FWBVAL, type R/W, offset 0x030, reset 0x0000.0000

FWB[n]

FWB[n]

FWBn, type R/W, offset 0x100 - 0x13C, reset 0x0000.0000

DATA

DATA

February 24, 20091050
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

Internal Memory
Memory Registers (System Control Offset)
Base 0x400F.E000

RMCTL, type R/W1C, offset 0x0F0, reset -

BA

RMVER, type RO, offset 0x0F4, reset 0x0202.5400

SIZECONT

REVVER

FMPRE0, type R/W, offset 0x130 and 0x200, reset 0xFFFF.FFFF

READ_ENABLE

READ_ENABLE

FMPPE0, type R/W, offset 0x134 and 0x400, reset 0xFFFF.FFFF

PROG_ENABLE

PROG_ENABLE

USER_DBG, type R/W, offset 0x1D0, reset 0xFFFF.FFFE

DATANW

DBG0DBG1DATA

USER_REG0, type R/W, offset 0x1E0, reset 0xFFFF.FFFF

DATANW

DATA

USER_REG1, type R/W, offset 0x1E4, reset 0xFFFF.FFFF

DATANW

DATA

USER_REG2, type R/W, offset 0x1E8, reset 0xFFFF.FFFF

DATANW

DATA

USER_REG3, type R/W, offset 0x1EC, reset 0xFFFF.FFFF

DATANW

DATA

FMPRE1, type R/W, offset 0x204, reset 0xFFFF.FFFF

READ_ENABLE

READ_ENABLE

FMPRE2, type R/W, offset 0x208, reset 0xFFFF.FFFF

READ_ENABLE

READ_ENABLE

FMPRE3, type R/W, offset 0x20C, reset 0xFFFF.FFFF

READ_ENABLE

READ_ENABLE

FMPPE1, type R/W, offset 0x404, reset 0xFFFF.FFFF

PROG_ENABLE

PROG_ENABLE

FMPPE2, type R/W, offset 0x408, reset 0xFFFF.FFFF

PROG_ENABLE

PROG_ENABLE

FMPPE3, type R/W, offset 0x40C, reset 0xFFFF.FFFF

PROG_ENABLE

PROG_ENABLE

1051February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

Micro Direct Memory Access (μDMA)
μDMA Channel Control Structure
Base n/a

DMASRCENDP, type R/W, offset 0x000, reset -

ADDR

ADDR

DMADSTENDP, type R/W, offset 0x004, reset -

ADDR

ADDR

DMACHCTL, type R/W, offset 0x008, reset -

ARBSIZESRCSIZESRCINCDSTSIZEDSTINC

XFERMODENXTUSEBURSTXFERSIZEARBSIZE

Micro Direct Memory Access (μDMA)
μDMA Registers
Base 0x400F.F000

DMASTAT, type RO, offset 0x000, reset 0x001F.0000

DMACHANS

MASTENSTATE

DMACFG, type WO, offset 0x004, reset -

MASTEN

DMACTLBASE, type R/W, offset 0x008, reset 0x0000.0000

ADDR

ADDR

DMAALTBASE, type RO, offset 0x00C, reset 0x0000.0200

ADDR

ADDR

DMAWAITSTAT, type RO, offset 0x010, reset 0x0000.0000

WAITREQ[n]

WAITREQ[n]

DMASWREQ, type WO, offset 0x014, reset -

SWREQ[n]

SWREQ[n]

DMAUSEBURSTSET, type RO, offset 0x018, reset 0x0000.0000 (Reads)

SET[n]

SET[n]

DMAUSEBURSTSET, type WO, offset 0x018, reset 0x0000.0000 (Writes)

SET[n]

SET[n]

DMAUSEBURSTCLR, type WO, offset 0x01C, reset -

CLR[n]

CLR[n]

DMAREQMASKSET, type RO, offset 0x020, reset 0x0000.0000 (Reads)

SET[n]

SET[n]

DMAREQMASKSET, type WO, offset 0x020, reset 0x0000.0000 (Writes)

SET[n]

SET[n]

DMAREQMASKCLR, type WO, offset 0x024, reset -

CLR[n]

CLR[n]

February 24, 20091052
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

DMAENASET, type RO, offset 0x028, reset 0x0000.0000 (Reads)

SET[n]

SET[n]

DMAENASET, type WO, offset 0x028, reset 0x0000.0000 (Writes)

SET[n]

SET[n]

DMAENACLR, type WO, offset 0x02C, reset -

CLR[n]

CLR[n]

DMAALTSET, type RO, offset 0x030, reset 0x0000.0000 (Reads)

SET[n]

SET[n]

DMAALTSET, type WO, offset 0x030, reset 0x0000.0000 (Writes)

SET[n]

SET[n]

DMAALTCLR, type WO, offset 0x034, reset -

CLR[n]

CLR[n]

DMAPRIOSET, type RO, offset 0x038, reset 0x0000.0000 (Reads)

SET[n]

SET[n]

DMAPRIOSET, type WO, offset 0x038, reset 0x0000.0000 (Writes)

SET[n]

SET[n]

DMAPRIOCLR, type WO, offset 0x03C, reset -

CLR[n]

CLR[n]

DMAERRCLR, type RO, offset 0x04C, reset 0x0000.0000 (Reads)

ERRCLR

DMAERRCLR, type WO, offset 0x04C, reset 0x0000.0000 (Writes)

ERRCLR

DMACHALT, type R/W, offset 0x500, reset 0x0000.0000

CHALT[n]

CHALT[n]

DMACHIS, type R/W1C, offset 0x504, reset 0x0000.0000

CHIS[n]

CHIS[n]

DMAPeriphID0, type RO, offset 0xFE0, reset 0x0000.0030

PID0

DMAPeriphID1, type RO, offset 0xFE4, reset 0x0000.00B2

PID1

DMAPeriphID2, type RO, offset 0xFE8, reset 0x0000.000B

PID2

DMAPeriphID3, type RO, offset 0xFEC, reset 0x0000.0000

PID3

1053February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

DMAPeriphID4, type RO, offset 0xFD0, reset 0x0000.0004

PID4

DMAPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

DMAPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

DMAPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

DMAPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

General-Purpose Input/Outputs (GPIOs)
GPIO Port A (APB) base: 0x4000.4000
GPIO Port A (AHB) base: 0x4005.8000
GPIO Port B (APB) base: 0x4000.5000
GPIO Port B (AHB) base: 0x4005.9000
GPIO Port C (APB) base: 0x4000.6000
GPIO Port C (AHB) base: 0x4005.A000
GPIO Port D (APB) base: 0x4000.7000
GPIO Port D (AHB) base: 0x4005.B000
GPIO Port E (APB) base: 0x4002.4000
GPIO Port E (AHB) base: 0x4005.C000
GPIO Port F (APB) base: 0x4002.5000
GPIO Port F (AHB) base: 0x4005.D000
GPIO Port G (APB) base: 0x4002.6000
GPIO Port G (AHB) base: 0x4005.E000
GPIO Port H (APB) base: 0x4002.7000
GPIO Port H (AHB) base: 0x4005.F000
GPIO Port J (APB) base: 0x4003.D000
GPIO Port J (AHB) base: 0x4006.0000

GPIODATA, type R/W, offset 0x000, reset 0x0000.0000

DATA

GPIODIR, type R/W, offset 0x400, reset 0x0000.0000

DIR

GPIOIS, type R/W, offset 0x404, reset 0x0000.0000

IS

GPIOIBE, type R/W, offset 0x408, reset 0x0000.0000

IBE

GPIOIEV, type R/W, offset 0x40C, reset 0x0000.0000

IEV

GPIOIM, type R/W, offset 0x410, reset 0x0000.0000

IME

GPIORIS, type RO, offset 0x414, reset 0x0000.0000

RIS

GPIOMIS, type RO, offset 0x418, reset 0x0000.0000

MIS

February 24, 20091054
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

GPIOICR, type W1C, offset 0x41C, reset 0x0000.0000

IC

GPIOAFSEL, type R/W, offset 0x420, reset -

AFSEL

GPIODR2R, type R/W, offset 0x500, reset 0x0000.00FF

DRV2

GPIODR4R, type R/W, offset 0x504, reset 0x0000.0000

DRV4

GPIODR8R, type R/W, offset 0x508, reset 0x0000.0000

DRV8

GPIOODR, type R/W, offset 0x50C, reset 0x0000.0000

ODE

GPIOPUR, type R/W, offset 0x510, reset -

PUE

GPIOPDR, type R/W, offset 0x514, reset 0x0000.0000

PDE

GPIOSLR, type R/W, offset 0x518, reset 0x0000.0000

SRL

GPIODEN, type R/W, offset 0x51C, reset -

DEN

GPIOLOCK, type R/W, offset 0x520, reset 0x0000.0001

LOCK

LOCK

GPIOCR, type -, offset 0x524, reset -

CR

GPIOAMSEL, type R/W, offset 0x528, reset 0x0000.0000

GPIOAMSEL

GPIOPCTL, type R/W, offset 0x52C, reset -

PMC4PMC5PMC6PMC7

PMC0PMC1PMC2PMC3

GPIOPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000

PID4

GPIOPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000

PID5

GPIOPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000

PID6

1055February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

GPIOPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000

PID7

GPIOPeriphID0, type RO, offset 0xFE0, reset 0x0000.0061

PID0

GPIOPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000

PID1

GPIOPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018

PID2

GPIOPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001

PID3

GPIOPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

GPIOPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

GPIOPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

GPIOPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

External Peripheral Interface (EPI)
Base 0x400D.0000

EPICFG, type R/W, offset 0x000, reset 0x0000.0000

MODEBLKEN

EPIBAUD, type R/W, offset 0x004, reset 0x0000.0000

COUNT

EPISDRAMCFG, type R/W, offset 0x010, reset 0x42EE.0000

RFSHFREQ

SIZESLEEP

EPIHB8CFG, type R/W, offset 0x010, reset 0x0000.FF00

RDHIGHWRHIGHXFEENXFFEN

MODERDWSWRWSMAXWAIT

EPIGPCFG, type R/W, offset 0x010, reset 0x0000.FF00

RD2CYCWR2CYCRWFRMCNTFRM50FRMPINRDYENCLKGATECLKPIN

DSIZEASIZEMAXWAIT

EPIHB8CFG2, type R/W, offset 0x014, reset 0x0000.0000

CSCFGreservedWORD

EPIGPCFG2, type R/W, offset 0x014, reset 0x0000.0000

WORD

EPIADDRMAP, type R/W, offset 0x01C, reset 0x0000.0000

ERADRERSZEPADREPSZ

February 24, 20091056
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

EPIRSIZE0, type R/W, offset 0x020, reset 0x0000.0003

SIZE

EPIRSIZE1, type R/W, offset 0x030, reset 0x0000.0003

SIZE

EPIRADDR0, type R/W, offset 0x024, reset 0x0000.0000

ADDR

ADDR

EPIRADDR1, type R/W, offset 0x034, reset 0x0000.0000

ADDR

ADDR

EPIRPSTD0, type R/W, offset 0x028, reset 0x0000.0000

POSTCNT

EPIRPSTD1, type R/W, offset 0x038, reset 0x0000.0000

POSTCNT

EPISTAT, type R, offset 0x060, reset 0x0000.0000

ACTIVENBRBUSYWBUSYINITSEQXFEMPTYXFFULLCELOW

EPIRFIFOCNT, type R, offset 0x06C, reset -

COUNT

EPIREADFIFO, type R, offset 0x070, reset 0x0000.0000

DATA

DATA

EPIREADFIFO1, type R, offset 0x074, reset 0x0000.0000

DATA

DATA

EPIREADFIFO2, type R, offset 0x078, reset 0x0000.0000

DATA

DATA

EPIREADFIFO3, type R, offset 0x07C, reset 0x0000.0000

DATA

DATA

EPIREADFIFO4, type R, offset 0x080, reset 0x0000.0000

DATA

DATA

EPIREADFIFO5, type R, offset 0x084, reset 0x0000.0000

DATA

DATA

EPIREADFIFO6, type R, offset 0x088, reset 0x0000.0000

DATA

DATA

EPIREADFIFO7, type R, offset 0x08C, reset 0x0000.0000

DATA

DATA

EPIFIFOLVL, type R/W, offset 0x200, reset 0x0000.0033

RSERRWFERR

RDFIFOWRFIFO

1057February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

EPIWFIFOCNT, type R, offset 0x204, reset 0x0000.0000

WTAV

EPIIM, type R/W, offset 0x210, reset 0x0000.0000

ERRIMRDIMWRIM

EPIRIS, type R, offset 0x214, reset 0x0000.0000

ERRRISRDRISWRRIS

EPIMIS, type R, offset 0x218, reset 0x0000.0000

ERRMISRDMISWRMIS

EPIEISC, type R/W1C, offset 0x21C, reset 0x0000.0000

TOUTRSTALLWTFULL

General-Purpose Timers
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000

GPTMCFG, type R/W, offset 0x000, reset 0x0000.0000

GPTMCFG

GPTMTAMR, type R/W, offset 0x004, reset 0x0000.0000

TAMRTACMRTAAMSTACDIRTAMIETAWOTTASNAPS

GPTMTBMR, type R/W, offset 0x008, reset 0x0000.0000

TBMRTBCMRTBAMSTBCDIRTBMIETBWOTTBSNAPS

GPTMCTL, type R/W, offset 0x00C, reset 0x0000.0000

TAENTASTALLTAEVENTRTCENTAOTETAPWMLTBENTBSTALLTBEVENTTBOTETBPWML

GPTMIMR, type R/W, offset 0x018, reset 0x0000.0000

TATOIMCAMIMCAEIMRTCIMTAMIMTBTOIMCBMIMCBEIMTBMIM

GPTMRIS, type RO, offset 0x01C, reset 0x0000.0000

TATORISCAMRISCAERISRTCRISTAMRISTBTORISCBMRISCBERISTBMRIS

GPTMMIS, type RO, offset 0x020, reset 0x0000.0000

TATOMISCAMMISCAEMISRTCMISTAMMISTBTOMISCBMMISCBEMISTBMMIS

GPTMICR, type W1C, offset 0x024, reset 0x0000.0000

TATOCINTCAMCINTCAECINTRTCCINTTAMCINTTBTOCINTCBMCINTCBECINTTBMCINT

GPTMTAILR, type R/W, offset 0x028, reset 0xFFFF.FFFF

TAILRH

TAILRL

GPTMTBILR, type R/W, offset 0x02C, reset 0x0000.FFFF

TBILRL

GPTMTAMATCHR, type R/W, offset 0x030, reset 0xFFFF.FFFF

TAMRH

TAMRL

February 24, 20091058
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

GPTMTBMATCHR, type R/W, offset 0x034, reset 0x0000.FFFF

TBMRL

GPTMTAPR, type R/W, offset 0x038, reset 0x0000.0000

TAPSR

GPTMTBPR, type R/W, offset 0x03C, reset 0x0000.0000

TBPSR

GPTMTAR, type RO, offset 0x048, reset 0xFFFF.FFFF

TARH

TARL

GPTMTBR, type RO, offset 0x04C, reset 0x0000.FFFF

TBRL

GPTMTAV, type RO, offset 0x050, reset 0xFFFF.FFFF

TAVH

TAVL

GPTMTBV, type RO, offset 0x054, reset 0x0000.FFFF

TBVL

Watchdog Timer
WDT0 base: 0x4000.0000
WDT1 base: 0x4000.1000

WDTLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFF

WDTLOAD

WDTLOAD

WDTVALUE, type RO, offset 0x004, reset 0xFFFF.FFFF

WDTVALUE

WDTVALUE

WDTCTL, type R/W, offset 0x008, reset 0x0000.0000 for WDT0, 0x8000.0000 for WDT1

WRC

INTENRESEN

WDTICR, type WO, offset 0x00C, reset -

WDTINTCLR

WDTINTCLR

WDTRIS, type RO, offset 0x010, reset 0x0000.0000

WDTRIS

WDTMIS, type RO, offset 0x014, reset 0x0000.0000

WDTMIS

WDTTEST, type R/W, offset 0x418, reset 0x0000.0000

STALL

WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000

WDTLOCK

WDTLOCK

WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000

PID4

1059February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000

PID5

WDTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000

PID6

WDTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000

PID7

WDTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0005

PID0

WDTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0018

PID1

WDTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018

PID2

WDTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001

PID3

WDTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

WDTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

WDTPCellID2, type RO, offset 0xFF8, reset 0x0000.0006

CID2

WDTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

Analog-to-Digital Converter (ADC)
ADC0 base: 0x4003.8000
ADC1 base: 0x4003.9000

ADCACTSS, type R/W, offset 0x000, reset 0x0000.0000

ASEN0ASEN1ASEN2ASEN3

ADCRIS, type RO, offset 0x004, reset 0x0000.0000

INRDC

INR0INR1INR2INR3

ADCIM, type R/W, offset 0x008, reset 0x0000.0000

DCONSS0DCONSS1DCONSS2DCONSS3

MASK0MASK1MASK2MASK3

ADCISC, type R/W1C, offset 0x00C, reset 0x0000.0000

DCINSS0DCINSS1DCINSS2DCINSS3

IN0IN1IN2IN3

ADCOSTAT, type R/W1C, offset 0x010, reset 0x0000.0000

OV0OV1OV2OV3

February 24, 20091060
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

ADCEMUX, type R/W, offset 0x014, reset 0x0000.0000

EM0EM1EM2EM3

ADCUSTAT, type R/W1C, offset 0x018, reset 0x0000.0000

UV0UV1UV2UV3

ADCSSPRI, type R/W, offset 0x020, reset 0x0000.3210

SS0SS1SS2SS3

ADCPSSI, type WO, offset 0x028, reset -

SYNCWAITGSYNC

SS0SS1SS2SS3

ADCSAC, type R/W, offset 0x030, reset 0x0000.0000

AVG

ADCDCISC, type R/W1C, offset 0x034, reset 0x0000.0000

DCINT0DCINT1DCINT2DCINT3DCINT4DCINT5DCINT6DCINT7

ADCCTL, type R/W, offset 0x038, reset 0x0000.0000

VREF

ADCSSMUX0, type R/W, offset 0x040, reset 0x0000.0000

MUX4MUX5MUX6MUX7

MUX0MUX1MUX2MUX3

ADCSSCTL0, type R/W, offset 0x044, reset 0x0000.0000

D4END4IE4TS4D5END5IE5TS5D6END6IE6TS6D7END7IE7TS7

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

ADCSSFIFO0, type RO, offset 0x048, reset 0x0000.0000

DATA

ADCSSFIFO1, type RO, offset 0x068, reset 0x0000.0000

DATA

ADCSSFIFO2, type RO, offset 0x088, reset 0x0000.0000

DATA

ADCSSFIFO3, type RO, offset 0x0A8, reset 0x0000.0000

DATA

ADCSSFSTAT0, type RO, offset 0x04C, reset 0x0000.0100

TPTRHPTREMPTYFULL

ADCSSFSTAT1, type RO, offset 0x06C, reset 0x0000.0100

TPTRHPTREMPTYFULL

ADCSSFSTAT2, type RO, offset 0x08C, reset 0x0000.0100

TPTRHPTREMPTYFULL

ADCSSFSTAT3, type RO, offset 0x0AC, reset 0x0000.0100

TPTRHPTREMPTYFULL

1061February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

ADCSSOP0, type R/W, offset 0x050, reset 0x0000.0000

S4DCOPS5DCOPS6DCOPS7DCOP

S0DCOPS1DCOPS2DCOPS3DCOP

ADCSSDC0, type R/W, offset 0x054, reset 0x0000.0000

S4DCSELS5DCSELS6DCSELS7DCSEL

S0DCSELS1DCSELS2DCSELS3DCSEL

ADCSSMUX1, type R/W, offset 0x060, reset 0x0000.0000

MUX0MUX1MUX2MUX3

ADCSSMUX2, type R/W, offset 0x080, reset 0x0000.0000

MUX0MUX1MUX2MUX3

ADCSSCTL1, type R/W, offset 0x064, reset 0x0000.0000

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

ADCSSCTL2, type R/W, offset 0x084, reset 0x0000.0000

D0END0IE0TS0D1END1IE1TS1D2END2IE2TS2D3END3IE3TS3

ADCSSOP1, type R/W, offset 0x070, reset 0x0000.0000

S0DCOPS1DCOPS2DCOPS3DCOP

ADCSSOP2, type R/W, offset 0x090, reset 0x0000.0000

S0DCOPS1DCOPS2DCOPS3DCOP

ADCSSDC1, type R/W, offset 0x074, reset 0x0000.0000

S0DCSELS1DCSELS2DCSELS3DCSEL

ADCSSDC2, type R/W, offset 0x094, reset 0x0000.0000

S0DCSELS1DCSELS2DCSELS3DCSEL

ADCSSMUX3, type R/W, offset 0x0A0, reset 0x0000.0000

MUX0

ADCSSCTL3, type R/W, offset 0x0A4, reset 0x0000.0002

D0END0IE0TS0

ADCSSOP3, type R/W, offset 0x0B0, reset 0x0000.0000

S0DCOP

ADCSSDC3, type R/W, offset 0x0B4, reset 0x0000.0000

S0DCSEL

ADCDCRIC, type R/W, offset 0xD00, reset 0x0000.0000

DCTRIG0DCTRIG1DCTRIG2DCTRIG3DCTRIG4DCTRIG5DCTRIG6DCTRIG7

DCINT0DCINT1DCINT2DCINT3DCINT4DCINT5DCINT6DCINT7

ADCDCCTL0, type R/W, offset 0xE00, reset 0x0000.0000

CIMCICCIECTMCTCCTE

ADCDCCTL1, type R/W, offset 0xE04, reset 0x0000.0000

CIMCICCIECTMCTCCTE

February 24, 20091062
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

ADCDCCTL2, type R/W, offset 0xE08, reset 0x0000.0000

CIMCICCIECTMCTCCTE

ADCDCCTL3, type R/W, offset 0xE0C, reset 0x0000.0000

CIMCICCIECTMCTCCTE

ADCDCCTL4, type R/W, offset 0xE10, reset 0x0000.0000

CIMCICCIECTMCTCCTE

ADCDCCTL5, type R/W, offset 0xE14, reset 0x0000.0000

CIMCICCIECTMCTCCTE

ADCDCCTL6, type R/W, offset 0xE18, reset 0x0000.0000

CIMCICCIECTMCTCCTE

ADCDCCTL7, type R/W, offset 0xE1C, reset 0x0000.0000

CIMCICCIECTMCTCCTE

ADCDCCMP0, type R/W, offset 0xE40, reset 0x0000.0000

COMP1

COMP0

ADCDCCMP1, type R/W, offset 0xE44, reset 0x0000.0000

COMP1

COMP0

ADCDCCMP2, type R/W, offset 0xE48, reset 0x0000.0000

COMP1

COMP0

ADCDCCMP3, type R/W, offset 0xE4C, reset 0x0000.0000

COMP1

COMP0

ADCDCCMP4, type R/W, offset 0xE50, reset 0x0000.0000

COMP1

COMP0

ADCDCCMP5, type R/W, offset 0xE54, reset 0x0000.0000

COMP1

COMP0

ADCDCCMP6, type R/W, offset 0xE58, reset 0x0000.0000

COMP1

COMP0

ADCDCCMP7, type R/W, offset 0xE5C, reset 0x0000.0000

COMP1

COMP0

Universal Asynchronous Receivers/Transmitters (UARTs)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UART2 base: 0x4000.E000

UARTDR, type R/W, offset 0x000, reset 0x0000.0000

DATAFEPEBEOE

UARTRSR/UARTECR, type RO, offset 0x004, reset 0x0000.0000 (Reads)

FEPEBEOE

1063February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

UARTRSR/UARTECR, type WO, offset 0x004, reset 0x0000.0000 (Writes)

DATA

UARTFR, type RO, offset 0x018, reset 0x0000.0090

CTSDSRDCDBUSYRXFETXFFRXFFTXFERI

UARTILPR, type R/W, offset 0x020, reset 0x0000.0000

ILPDVSR

UARTIBRD, type R/W, offset 0x024, reset 0x0000.0000

DIVINT

UARTFBRD, type R/W, offset 0x028, reset 0x0000.0000

DIVFRAC

UARTLCRH, type R/W, offset 0x02C, reset 0x0000.0000

BRKPENEPSSTP2FENWLENSPS

UARTCTL, type R/W, offset 0x030, reset 0x0000.0300

UARTENSIRENSIRLPSMARTEOTHSEreservedLINLBETXERXEDTRRTSRTSENCTSEN

UARTIFLS, type R/W, offset 0x034, reset 0x0000.0012

TXIFLSELRXIFLSEL

UARTIM, type R/W, offset 0x038, reset 0x0000.0000

RXIMTXIMRTIMFEIMPEIMBEIMOEIMLMSBIMLME1IMLME5IM

UARTRIS, type RO, offset 0x03C, reset 0x0000.000F

RXRISTXRISRTRISFERISPERISBERISOERISLMSBRISLME1RISLME5RIS

UARTMIS, type RO, offset 0x040, reset 0x0000.0000

RXMISTXMISRTMISFEMISPEMISBEMISOEMISLMSBMISLME1MISLME5MIS

UARTICR, type W1C, offset 0x044, reset 0x0000.0000

RXICTXICRTICFEICPEICBEICOEIC

UARTDMACTL, type R/W, offset 0x048, reset 0x0000.0000

RXDMAETXDMAEDMAERR

UARTLCTL, type R/W, offset 0x090, reset 0x0000.0000

MASTERBLEN

UARTLSS, type RO, offset 0x094, reset 0x0000.0000

TSS

UARTLTIM, type RO, offset 0x098, reset 0x0000.0000

TIMER

UARTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000

PID4

February 24, 20091064
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

UARTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000

PID5

UARTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000

PID6

UARTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000

PID7

UARTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0060

PID0

UARTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000

PID1

UARTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018

PID2

UARTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001

PID3

UARTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

UARTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

UARTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

UARTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

Synchronous Serial Interface (SSI)
SSI0 base: 0x4000.8000
SSI1 base: 0x4000.9000

SSICR0, type R/W, offset 0x000, reset 0x0000.0000

DSSFRFSPOSPHSCR

SSICR1, type R/W, offset 0x004, reset 0x0000.0000

LBMSSEMSSODEOT

SSIDR, type R/W, offset 0x008, reset 0x0000.0000

DATA

SSISR, type RO, offset 0x00C, reset 0x0000.0003

TFETNFRNERFFBSY

SSICPSR, type R/W, offset 0x010, reset 0x0000.0000

CPSDVSR

1065February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

SSIIM, type R/W, offset 0x014, reset 0x0000.0000

RORIMRTIMRXIMTXIM

SSIRIS, type RO, offset 0x018, reset 0x0000.0008

RORRISRTRISRXRISTXRIS

SSIMIS, type RO, offset 0x01C, reset 0x0000.0000

RORMISRTMISRXMISTXMIS

SSIICR, type W1C, offset 0x020, reset 0x0000.0000

RORICRTIC

SSIDMACTL, type R/W, offset 0x024, reset 0x0000.0000

RXDMAETXDMAE

SSIPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000

PID4

SSIPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000

PID5

SSIPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000

PID6

SSIPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000

PID7

SSIPeriphID0, type RO, offset 0xFE0, reset 0x0000.0022

PID0

SSIPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000

PID1

SSIPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018

PID2

SSIPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001

PID3

SSIPCellID0, type RO, offset 0xFF0, reset 0x0000.000D

CID0

SSIPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0

CID1

SSIPCellID2, type RO, offset 0xFF8, reset 0x0000.0005

CID2

SSIPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1

CID3

February 24, 20091066
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

Inter-Integrated Circuit (I2C) Interface
I2C Master
I2C Master 0 base: 0x4002.0000
I2C Master 1 base: 0x4002.1000

I2CMSA, type R/W, offset 0x000, reset 0x0000.0000

R/SSA

I2CMCS, type RO, offset 0x004, reset 0x0000.0000 (Reads)

BUSYERRORADRACKDATACKARBLSTIDLEBUSBSY

I2CMCS, type WO, offset 0x004, reset 0x0000.0000 (Writes)

RUNSTARTSTOPACK

I2CMDR, type R/W, offset 0x008, reset 0x0000.0000

DATA

I2CMTPR, type R/W, offset 0x00C, reset 0x0000.0001

TPR

I2CMIMR, type R/W, offset 0x010, reset 0x0000.0000

IM

I2CMRIS, type RO, offset 0x014, reset 0x0000.0000

RIS

I2CMMIS, type RO, offset 0x018, reset 0x0000.0000

MIS

I2CMICR, type WO, offset 0x01C, reset 0x0000.0000

IC

I2CMCR, type R/W, offset 0x020, reset 0x0000.0000

LPBKMFESFE

Inter-Integrated Circuit (I2C) Interface
I2C Slave
I2C Slave 0 base: 0x4002.0800
I2C Slave 1 base: 0x4002.1800

I2CSOAR, type R/W, offset 0x000, reset 0x0000.0000

OAR

I2CSCSR, type RO, offset 0x004, reset 0x0000.0000 (Reads)

RREQTREQFBR

I2CSCSR, type WO, offset 0x004, reset 0x0000.0000 (Writes)

DA

I2CSDR, type R/W, offset 0x008, reset 0x0000.0000

DATA

I2CSIMR, type R/W, offset 0x00C, reset 0x0000.0000

DATAIMSTARTIMSTOPIM

1067February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

I2CSRIS, type RO, offset 0x010, reset 0x0000.0000

DATARISSTARTRISSTOPRIS

I2CSMIS, type RO, offset 0x014, reset 0x0000.0000

DATAMISSTARTMISSTOPMIS

I2CSICR, type WO, offset 0x018, reset 0x0000.0000

DATAICSTARTICSTOPIC

Inter-Integrated Circuit Sound (I2S) Interface
Base 0x4005.4000

I2STXFIFO, type WO, offset 0x000, reset 0x0000.0000

TXFIFO

TXFIFO

I2STXFIFOCFG, type R/W, offset 0x004, reset 0x0000.0000

LRSCSS

I2STXCFG, type R/W, offset 0x008, reset 0x1400.7DF0

MSLFMTWMLRPSCPDLYJST

SDSZSSZ

I2STXLIMIT, type R/W, offset 0x00C, reset 0x0000.0000

LIMIT

I2STXISM, type R/W, offset 0x010, reset 0x0000.0000

FFI

FFM

I2STXLEV, type RO, offset 0x018, reset 0x0000.0000

LEVEL

I2SRXFIFO, type RO, offset 0x800, reset 0x0000.0000

RXFIFO

RXFIFO

I2SRXFIFOCFG, type R/W, offset 0x804, reset 0x0000.0000

LRSCSSFMM

I2SRXCFG, type R/W, offset 0x808, reset 0x1400.7DF0

MSLRMLRPSCPDLYJST

SDSZSSZ

I2SRXLIMIT, type R/W, offset 0x80C, reset 0x0000.7FFF

LIMIT

I2SRXISM, type R/W, offset 0x810, reset 0x0000.0000

FFI

FFM

I2SRXLEV, type RO, offset 0x818, reset 0x0000.0000

LEVEL

I2SCFG, type R/W, offset 0xC00, reset 0x0000.0000

TXENRXENTXSLVRXSLV

February 24, 20091068
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

I2SIM, type R/W, offset 0xC10, reset 0x0000.0000

TXFSRTXWERXFSRRXRE

I2SRIS, type RO, offset 0xC14, reset 0x0000.0000

TXFSRTXWERXFSRRXRE

I2SMIS, type RO, offset 0xC18, reset 0x0000.0000

TXFSRTXWERXFSRRXRE

I2SIC, type WO, offset 0xC1C, reset 0x0000.0000

TXWERXRE

Controller Area Network (CAN) Module
CAN0 base: 0x4004.0000
CAN1 base: 0x4004.1000

CANCTL, type R/W, offset 0x000, reset 0x0000.0001

INITIESIEEIEDARCCETEST

CANSTS, type R/W, offset 0x004, reset 0x0000.0000

LECTXOKRXOKEPASSEWARNBOFF

CANERR, type RO, offset 0x008, reset 0x0000.0000

TECRECRP

CANBIT, type R/W, offset 0x00C, reset 0x0000.2301

BRPSJWTSEG1TSEG2

CANINT, type RO, offset 0x010, reset 0x0000.0000

INTID

CANTST, type R/W, offset 0x014, reset 0x0000.0000

BASICSILENTLBACKTXRX

CANBRPE, type R/W, offset 0x018, reset 0x0000.0000

BRPE

CANIF1CRQ, type R/W, offset 0x020, reset 0x0000.0001

MNUMBUSY

CANIF2CRQ, type R/W, offset 0x080, reset 0x0000.0001

MNUMBUSY

CANIF1CMSK, type R/W, offset 0x024, reset 0x0000.0000

DATABDATAA
NEWDAT

/
TXRQST

CLRINTPNDCONTROLARBMASKWRNRD

CANIF2CMSK, type R/W, offset 0x084, reset 0x0000.0000

DATABDATAA
NEWDAT

/
TXRQST

CLRINTPNDCONTROLARBMASKWRNRD

1069February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

CANIF1MSK1, type R/W, offset 0x028, reset 0x0000.FFFF

MSK

CANIF2MSK1, type R/W, offset 0x088, reset 0x0000.FFFF

MSK

CANIF1MSK2, type R/W, offset 0x02C, reset 0x0000.FFFF

MSKMDIRMXTD

CANIF2MSK2, type R/W, offset 0x08C, reset 0x0000.FFFF

MSKMDIRMXTD

CANIF1ARB1, type R/W, offset 0x030, reset 0x0000.0000

ID

CANIF2ARB1, type R/W, offset 0x090, reset 0x0000.0000

ID

CANIF1ARB2, type R/W, offset 0x034, reset 0x0000.0000

IDDIRXTDMSGVAL

CANIF2ARB2, type R/W, offset 0x094, reset 0x0000.0000

IDDIRXTDMSGVAL

CANIF1MCTL, type R/W, offset 0x038, reset 0x0000.0000

DLCEOBTXRQSTRMTENRXIETXIEUMASKINTPNDMSGLSTNEWDAT

CANIF2MCTL, type R/W, offset 0x098, reset 0x0000.0000

DLCEOBTXRQSTRMTENRXIETXIEUMASKINTPNDMSGLSTNEWDAT

CANIF1DA1, type R/W, offset 0x03C, reset 0x0000.0000

DATA

CANIF1DA2, type R/W, offset 0x040, reset 0x0000.0000

DATA

CANIF1DB1, type R/W, offset 0x044, reset 0x0000.0000

DATA

CANIF1DB2, type R/W, offset 0x048, reset 0x0000.0000

DATA

CANIF2DA1, type R/W, offset 0x09C, reset 0x0000.0000

DATA

CANIF2DA2, type R/W, offset 0x0A0, reset 0x0000.0000

DATA

CANIF2DB1, type R/W, offset 0x0A4, reset 0x0000.0000

DATA

February 24, 20091070
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

CANIF2DB2, type R/W, offset 0x0A8, reset 0x0000.0000

DATA

CANTXRQ1, type RO, offset 0x100, reset 0x0000.0000

TXRQST

CANTXRQ2, type RO, offset 0x104, reset 0x0000.0000

TXRQST

CANNWDA1, type RO, offset 0x120, reset 0x0000.0000

NEWDAT

CANNWDA2, type RO, offset 0x124, reset 0x0000.0000

NEWDAT

CANMSG1INT, type RO, offset 0x140, reset 0x0000.0000

INTPND

CANMSG2INT, type RO, offset 0x144, reset 0x0000.0000

INTPND

CANMSG1VAL, type RO, offset 0x160, reset 0x0000.0000

MSGVAL

CANMSG2VAL, type RO, offset 0x164, reset 0x0000.0000

MSGVAL

Ethernet Controller
Ethernet MAC
Base 0x4004.8000

MACRIS/MACIACK, type RO, offset 0x000, reset 0x0000.0000 (Reads)

RXINTTXERTXEMPFOVRXERMDINTPHYINT

MACRIS/MACIACK, type WO, offset 0x000, reset 0x0000.0000 (Writes)

RXINTTXERTXEMPFOVRXERMDINTPHYINT

MACIM, type R/W, offset 0x004, reset 0x0000.007F

RXINTMTXERMTXEMPMFOVMRXERMMDINTMPHYINTM

MACRCTL, type R/W, offset 0x008, reset 0x0000.0008

RXENAMULPRMSBADCRCRSTFIFO

MACTCTL, type R/W, offset 0x00C, reset 0x0000.0000

TXENPADENCRCDUPLEX

MACDATA, type RO, offset 0x010, reset 0x0000.0000 (Reads)

RXDATA

RXDATA

MACDATA, type WO, offset 0x010, reset 0x0000.0000 (Writes)

TXDATA

TXDATA

1071February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

MACIA0, type R/W, offset 0x014, reset 0x0000.0000

MACOCT3MACOCT4

MACOCT1MACOCT2

MACIA1, type R/W, offset 0x018, reset 0x0000.0000

MACOCT5MACOCT6

MACTHR, type R/W, offset 0x01C, reset 0x0000.003F

THRESH

MACMCTL, type R/W, offset 0x020, reset 0x0000.0000

STARTWRITEREGADR

MACMDV, type R/W, offset 0x024, reset 0x0000.0080

DIV

MACMTXD, type R/W, offset 0x02C, reset 0x0000.0000

MDTX

MACMRXD, type R/W, offset 0x030, reset 0x0000.0000

MDRX

MACNP, type RO, offset 0x034, reset 0x0000.0000

NPR

MACTR, type R/W, offset 0x038, reset 0x0000.0000

NEWTX

MACLED, type R/W, offset 0x040, reset 0x0000.0010

LED0[3:0]LED1[3:0]

MDIX, type R/W, offset 0x044, reset 0x0000.0000

EN

Ethernet Controller
MII Management
MR0, type R/W, address 0x00, reset 0x3100

COLTDUPLEXRANEGISOPWRDNANEGENSPEEDSLLOOPBKRESET

MR1, type RO, address 0x01, reset 0x7849

EXTDJABLINKANEGARFAULTANEGC10T_H10T_F100X_H100X_F

MR2, type RO, address 0x02, reset 0x0161

OUI[21:6]

MR3, type RO, address 0x03, reset 0xB410

RNMNOUI[5:0]

MR4, type R/W, address 0x04, reset 0x01E1

SA0A1A2A3RFNP

MR5, type RO, address 0x05, reset 0x0000

SA[7:0]RFACKNP

MR6, type RO, address 0x06, reset 0x0000

LPANEGAPRXLPNPAPDF

MR16, type R0, address 0x10, reset 0x0040

SR

February 24, 20091072
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

MR17, type R/W, address 0x11, reset 0x0002

ENONFGLSPADBPREFCEFASTESTFLPBKMDPBLSQEEDPDFASTRIP

MR27, type RO, address 0x1B, reset -

XPOL

MR29, type RO, address 0x1D, reset 0x0000

PRXISPDFISLPACKISLDISRFLTISANCOMPISEONIS

MR30, type R/W, address 0x1E, reset 0x0000

PRXIMPDFIMLPACKIMLDIMRFLTIMANCOMPIMEONIM

MR31, type R/W, address 0x1F, reset 0x00040

SCRDISSPEEDAUTODONE

Universal Serial Bus (USB) Controller
Base 0x4005.0000

USBFADDR, type R/W, offset 0x000, reset 0x00

FUNCADDR

USBPOWER, type R/W, offset 0x001, reset 0x20 (Host Mode)

PWRDNPHYSUSPENDRESUMERESET

USBPOWER, type R/W, offset 0x001, reset 0x20 (Device Mode)

PWRDNPHYSUSPENDRESUMERESETSOFTCONNISOUP

USBTXIS, type RO, offset 0x002, reset 0x0000

EP0EP1EP2EP3

USBRXIS, type RO, offset 0x004, reset 0x0000

EP1EP2EP3

USBTXIE, type R/W, offset 0x006, reset 0x000F

EP0EP1EP2EP3

USBRXIE, type R/W, offset 0x008, reset 0x000E

EP1EP2EP3

USBIS, type RO, offset 0x00A, reset 0x00 (Host Mode)

RESUMEBABBLESOFCONNDISCONSESREQVBUSERR

USBIS, type RO, offset 0x00A, reset 0x00 (Device Mode)

SUSPENDRESUMERESETSOFDISCONSESREQVBUSERR

USBIE, type R/W, offset 0x00B, reset 0x06 (Host Mode)

SUSPNDRESUMERESETSOFCONNDISCONSESREQVBUSERR

USBIE, type R/W, offset 0x00B, reset 0x06 (Device Mode)

SUSPNDRESUMEBABBLESOFCONNDISCONSESREQVBUSERR

USBFRAME, type RO, offset 0x00C, reset 0x0000

Frame

USBEPIDX, type R/W, offset 0x00E, reset 0x00

EPIDX

USBTEST, type R/W, offset 0x00F, reset 0x00 (Host Mode)

FORCEFSFIFOACCFORCEH

USBTEST, type R/W, offset 0x00F, reset 0x00 (Device Mode)

FORCEFSFIFOACC

USBFIFO0, type R/W, offset 0x020, reset 0x0000.0000

EPDATA

EPDATA

USBFIFO1, type R/W, offset 0x024, reset 0x0000.0000

EPDATA

EPDATA

USBFIFO2, type R/W, offset 0x028, reset 0x0000.0000

EPDATA

EPDATA

1073February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

USBFIFO3, type R/W, offset 0x02C, reset 0x0000.0000

EPDATA

EPDATA

USBDEVCTL, type R/W, offset 0x060, reset 0x80 (Host Mode)

SESSIONHOSTREQHOSTVBUSLSDEVFSDEVDEV

USBDEVCTL, type R/W, offset 0x060, reset 0x80 (Device Mode)

SESSIONHOSTREQVBUSDEV

USBTXFIFOSZ, type R/W, offset 0x062, reset 0x00

SIZEDPB

USBRXFIFOSZ, type R/W, offset 0x063, reset 0x00

SIZEDPB

USBTXFIFOADD, type R/W, offset 0x064, reset 0x0000

ADDR

USBRXFIFOADD, type R/W, offset 0x066, reset 0x0000

ADDR

USBCONTIM, type R/W, offset 0x07A, reset 0x5C

WTIDWTCON

USBVPLEN, type R/W, offset 0x07B, reset 0x3C

VPLEN

USBFSEOF, type R/W, offset 0x07D, reset 0x77

FSEOFG

USBLSEOF, type R/W, offset 0x07E, reset 0x72

LSEOFG

USBTXFUNCADDR0, type R/W, offset 0x080, reset 0x00

ADDR

USBTXFUNCADDR1, type R/W, offset 0x088, reset 0x00

ADDR

USBTXFUNCADDR2, type R/W, offset 0x090, reset 0x00

ADDR

USBTXFUNCADDR3, type R/W, offset 0x098, reset 0x00

ADDR

USBTXHUBADDR0, type R/W, offset 0x082, reset 0x00

ADDRMULTTRAN

USBTXHUBADDR1, type R/W, offset 0x08A, reset 0x00

ADDRMULTTRAN

USBTXHUBADDR2, type R/W, offset 0x092, reset 0x00

ADDRMULTTRAN

USBTXHUBADDR3, type R/W, offset 0x09A, reset 0x00

ADDRMULTTRAN

USBTXHUBPORT0, type R/W, offset 0x083, reset 0x00

PORT

USBTXHUBPORT1, type R/W, offset 0x08B, reset 0x00

PORT

USBTXHUBPORT2, type R/W, offset 0x093, reset 0x00

PORT

USBTXHUBPORT3, type R/W, offset 0x09B, reset 0x00

PORT

USBRXFUNCADDR1, type R/W, offset 0x08C, reset 0x00

ADDR

USBRXFUNCADDR2, type R/W, offset 0x094, reset 0x00

ADDR

February 24, 20091074
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

USBRXFUNCADDR3, type R/W, offset 0x09C, reset 0x00

ADDR

USBRXHUBADDR1, type R/W, offset 0x08E, reset 0x00

ADDRMULTTRAN

USBRXHUBADDR2, type R/W, offset 0x096, reset 0x00

ADDRMULTTRAN

USBRXHUBADDR3, type R/W, offset 0x09E, reset 0x00

ADDRMULTTRAN

USBRXHUBPORT1, type R/W, offset 0x08F, reset 0x00

PORT

USBRXHUBPORT2, type R/W, offset 0x097, reset 0x00

PORT

USBRXHUBPORT3, type R/W, offset 0x09F, reset 0x00

PORT

USBTXMAXP1, type R/W, offset 0x110, reset 0x0000

MAXLOAD

USBTXMAXP2, type R/W, offset 0x120, reset 0x0000

MAXLOAD

USBTXMAXP3, type R/W, offset 0x130, reset 0x0000

MAXLOAD

USBCSRL0, type W1C, offset 0x102, reset 0x00 (Host Mode)

RXRDYTXRDYSTALLEDSETUPERRORREQPKTSTATUSNAKTO

USBCSRL0, type W1C, offset 0x102, reset 0x00 (Device Mode)

RXRDYTXRDYSTALLEDDATAENDSETENDSTALLRXRDYCSETENDC

USBCSRH0, type W1C, offset 0x103, reset 0x00 (Host Mode)

FLUSHDTDTWE

USBCSRH0, type W1C, offset 0x103, reset 0x00 (Device Mode)

FLUSH

USBCOUNT0, type RO, offset 0x108, reset 0x00

COUNT

USBTYPE0, type R/W, offset 0x10A, reset 0x00

SPEED

USBNAKLMT, type R/W, offset 0x10B, reset 0x00

NAKLMT

USBTXCSRL1, type R/W, offset 0x112, reset 0x00 (Host Mode)

TXRDYFIFONEERRORFLUSHSETUPSTALLEDCLRDT
NAKTO

/
INCTX

USBTXCSRL2, type R/W, offset 0x122, reset 0x00 (Host Mode)

TXRDYFIFONEERRORFLUSHSETUPSTALLEDCLRDT
NAKTO

/
INCTX

USBTXCSRL3, type R/W, offset 0x132, reset 0x00 (Host Mode)

TXRDYFIFONEERRORFLUSHSETUPSTALLEDCLRDT
NAKTO

/
INCTX

USBTXCSRL1, type R/W, offset 0x112, reset 0x00 (Device Mode)

TXRDYFIFONEUNDRNFLUSHSTALLSTALLEDCLRDTINCTX

USBTXCSRL2, type R/W, offset 0x122, reset 0x00 (Device Mode)

TXRDYFIFONEUNDRNFLUSHSTALLSTALLEDCLRDTINCTX

USBTXCSRL3, type R/W, offset 0x132, reset 0x00 (Device Mode)

TXRDYFIFONEUNDRNFLUSHSTALLSTALLEDCLRDTINCTX

USBTXCSRH1, type R/W, offset 0x113, reset 0x00 (Host Mode)

DTDTWEDMAMODFDTDMAENMODEAUTOSET

1075February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

USBTXCSRH2, type R/W, offset 0x123, reset 0x00 (Host Mode)

DTDTWEDMAMODFDTDMAENMODEAUTOSET

USBTXCSRH3, type R/W, offset 0x133, reset 0x00 (Host Mode)

DTDTWEDMAMODFDTDMAENMODEAUTOSET

USBTXCSRH1, type R/W, offset 0x113, reset 0x00 (Device Mode)

DMAMODFDTDMAENMODEISOAUTOSET

USBTXCSRH2, type R/W, offset 0x123, reset 0x00 (Device Mode)

DMAMODFDTDMAENMODEISOAUTOSET

USBTXCSRH3, type R/W, offset 0x133, reset 0x00 (Device Mode)

DMAMODFDTDMAENMODEISOAUTOSET

USBRXMAXP1, type R/W, offset 0x114, reset 0x0000

MAXLOAD

USBRXMAXP2, type R/W, offset 0x124, reset 0x0000

MAXLOAD

USBRXMAXP3, type R/W, offset 0x134, reset 0x0000

MAXLOAD

USBRXCSRL1, type R/W, offset 0x116, reset 0x00 (Host Mode)

RXRDYFULLERROR
DATAERR

/
NAKTO

FLUSHREQPKTSTALLEDCLRDT

USBRXCSRL2, type R/W, offset 0x126, reset 0x00 (Host Mode)

RXRDYFULLERROR
DATAERR

/
NAKTO

FLUSHREQPKTSTALLEDCLRDT

USBRXCSRL3, type R/W, offset 0x136, reset 0x00 (Host Mode)

RXRDYFULLERROR
DATAERR

/
NAKTO

FLUSHREQPKTSTALLEDCLRDT

USBRXCSRL1, type R/W, offset 0x116, reset 0x00 (Device Mode)

RXRDYFULLOVERDATAERRFLUSHSTALLSTALLEDCLRDT

USBRXCSRL2, type R/W, offset 0x126, reset 0x00 (Device Mode)

RXRDYFULLOVERDATAERRFLUSHSTALLSTALLEDCLRDT

USBRXCSRL3, type R/W, offset 0x136, reset 0x00 (Device Mode)

RXRDYFULLOVERDATAERRFLUSHSTALLSTALLEDCLRDT

USBRXCSRH1, type R/W, offset 0x117, reset 0x00 (Host Mode)

INCRXDTDTWEDMAMODPIDERRDMAENAUTORQAUTOCL

USBRXCSRH2, type R/W, offset 0x127, reset 0x00 (Host Mode)

INCRXDTDTWEDMAMODPIDERRDMAENAUTORQAUTOCL

USBRXCSRH3, type R/W, offset 0x137, reset 0x00 (Host Mode)

INCRXDTDTWEDMAMODPIDERRDMAENAUTORQAUTOCL

USBRXCSRH1, type R/W, offset 0x117, reset 0x00 (Device Mode)

INCRXDMAMOD
DISNYET

/
PIDERR

DMAENISOAUTOCL

USBRXCSRH2, type R/W, offset 0x127, reset 0x00 (Device Mode)

INCRXDMAMOD
DISNYET

/
PIDERR

DMAENISOAUTOCL

USBRXCSRH3, type R/W, offset 0x137, reset 0x00 (Device Mode)

INCRXDMAMOD
DISNYET

/
PIDERR

DMAENISOAUTOCL

USBRXCOUNT1, type RO, offset 0x118, reset 0x0000

COUNT

USBRXCOUNT2, type RO, offset 0x128, reset 0x0000

COUNT

February 24, 20091076
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

USBRXCOUNT3, type RO, offset 0x138, reset 0x0000

COUNT

USBTXTYPE1, type R/W, offset 0x11A, reset 0x00

TEPPROTOSPEED

USBTXTYPE2, type R/W, offset 0x12A, reset 0x00

TEPPROTOSPEED

USBTXTYPE3, type R/W, offset 0x13A, reset 0x00

TEPPROTOSPEED

USBTXINTERVAL1, type R/W, offset 0x11B, reset 0x00

TXPOLL / NAKLMT

USBTXINTERVAL2, type R/W, offset 0x12B, reset 0x00

TXPOLL / NAKLMT

USBTXINTERVAL3, type R/W, offset 0x13B, reset 0x00

TXPOLL / NAKLMT

USBRXTYPE1, type R/W, offset 0x11C, reset 0x00

TEPPROTOSPEED

USBRXTYPE2, type R/W, offset 0x12C, reset 0x00

TEPPROTOSPEED

USBRXTYPE3, type R/W, offset 0x13C, reset 0x00

TEPPROTOSPEED

USBRXINTERVAL1, type R/W, offset 0x11D, reset 0x00

TXPOLL / NAKLMT

USBRXINTERVAL2, type R/W, offset 0x12D, reset 0x00

TXPOLL / NAKLMT

USBRXINTERVAL3, type R/W, offset 0x13D, reset 0x00

TXPOLL / NAKLMT

USBRQPKTCOUNT1, type R/W, offset 0x304, reset 0x0000

COUNT

USBRQPKTCOUNT2, type R/W, offset 0x308, reset 0x0000

COUNT

USBRQPKTCOUNT3, type R/W, offset 0x30C, reset 0x0000

COUNT

USBRXDPKTBUFDIS, type R/W, offset 0x340, reset 0x0000

EP1EP2EP3

USBTXDPKTBUFDIS, type R/W, offset 0x342, reset 0x0000

EP1EP2EP3

USBEPC, type R/W, offset 0x400, reset 0x0000.0000

EPENEPENDEPFLTENPFLTSENPFLTAENPFLTACT

USBEPCRIS, type RO, offset 0x404, reset 0x0000.0000

PF

USBEPCIM, type R/W, offset 0x408, reset 0x0000.0000

PF

USBEPCISC, type R/W, offset 0x40C, reset 0x0000.0000

PF

USBDRRIS, type RO, offset 0x410, reset 0x0000.0000

RESUME

1077February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

USBDRIM, type R/W, offset 0x414, reset 0x0000.0000

RESUME

USBDRISC, type W1C, offset 0x418, reset 0x0000.0000

RESUME

USBVDC, type R/W, offset 0x430, reset 0x0000.0000

VBDEN

USBVDCRIS, type RO, offset 0x434, reset 0x0000.0000

VD

USBVDCIM, type R/W, offset 0x438, reset 0x0000.0000

VD

USBVDCISC, type R/W, offset 0x43C, reset 0x0000.0000

VD

USBIDVRIS, type RO, offset 0x444, reset 0x0000.0000

ID

USBIDVIM, type R/W, offset 0x448, reset 0x0000.0000

ID

USBIDVISC, type R/W1C, offset 0x44C, reset 0x0000.0000

ID

USBEPS, type R/W, offset 0x450, reset 0x0000.0321

DMAADMABDMAC

Analog Comparators
Base 0x4003.C000

ACMIS, type R/W1C, offset 0x000, reset 0x0000.0000

IN0IN1IN2

ACRIS, type RO, offset 0x004, reset 0x0000.0000

IN0IN1IN2

ACINTEN, type R/W, offset 0x008, reset 0x0000.0000

IN0IN1IN2

ACREFCTL, type R/W, offset 0x010, reset 0x0000.0000

VREFRNGEN

ACSTAT0, type RO, offset 0x020, reset 0x0000.0000

OVAL

ACSTAT1, type RO, offset 0x040, reset 0x0000.0000

OVAL

ACSTAT2, type RO, offset 0x060, reset 0x0000.0000

OVAL

February 24, 20091078
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

ACCTL0, type R/W, offset 0x024, reset 0x0000.0000

CINVISENISLVALTSENTSLVALASRCPTOEN

ACCTL1, type R/W, offset 0x044, reset 0x0000.0000

CINVISENISLVALTSENTSLVALASRCPTOEN

ACCTL2, type R/W, offset 0x064, reset 0x0000.0000

CINVISENISLVALTSENTSLVALASRCPTOEN

Pulse Width Modulator (PWM)
Base 0x4002.8000

PWMCTL, type R/W, offset 0x000, reset 0x0000.0000

GlobalSync0GlobalSync1GlobalSync2GlobalSync3

PWMSYNC, type R/W, offset 0x004, reset 0x0000.0000

Sync0Sync1Sync2Sync3

PWMENABLE, type R/W, offset 0x008, reset 0x0000.0000

PWM0EnPWM1EnPWM2EnPWM3EnPWM4EnPWM5EnPWM6EnPWM7En

PWMINVERT, type R/W, offset 0x00C, reset 0x0000.0000

PWM0InvPWM1InvPWM2InvPWM3InvPWM4InvPWM5InvPWM6InvPWM7Inv

PWMFAULT, type R/W, offset 0x010, reset 0x0000.0000

Fault0Fault1Fault2Fault3Fault4Fault5Fault6Fault7

PWMINTEN, type R/W, offset 0x014, reset 0x0000.0000

IntFault0IntFault1IntFault2IntFault3

IntPWM0IntPWM1IntPWM2IntPWM3

PWMRIS, type RO, offset 0x018, reset 0x0000.0000

IntFault0IntFault1IntFault2IntFault3

IntPWM0IntPWM1IntPWM2IntPWM3

PWMISC, type R/W1C, offset 0x01C, reset 0x0000.0000

IntFault0IntFault1IntFault2IntFault3

IntPWM0IntPWM1IntPWM2IntPWM3

PWMSTATUS, type RO, offset 0x020, reset 0x0000.0000

Fault0Fault1Fault2Fault3

PWMFAULTVAL, type R/W, offset 0x024, reset 0x0000.0000

PWM0PWM1PWM2PWM3PWM4PWM5PWM6PWM7

PWM0CTL, type R/W, offset 0x040, reset 0x0000.0000

FLTSRCMINFLTPERLATCH

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

PWM1CTL, type R/W, offset 0x080, reset 0x0000.0000

FLTSRCMINFLTPERLATCH

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

PWM2CTL, type R/W, offset 0x0C0, reset 0x0000.0000

FLTSRCMINFLTPERLATCH

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

PWM3CTL, type R/W, offset 0x100, reset 0x0000.0000

FLTSRCMINFLTPERLATCH

EnableModeDebugLoadUpdCmpAUpdCmpBUpdGenAUpdGenBUpdDBCtlUpdDBRiseUpdDBFallUpd

1079February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

PWM0INTEN, type R/W, offset 0x044, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBD

PWM1INTEN, type R/W, offset 0x084, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBD

PWM2INTEN, type R/W, offset 0x0C4, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBD

PWM3INTEN, type R/W, offset 0x104, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBDTrCntZeroTrCntLoadTrCmpAUTrCmpADTrCmpBUTrCmpBD

PWM0RIS, type RO, offset 0x048, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM1RIS, type RO, offset 0x088, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM2RIS, type RO, offset 0x0C8, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM3RIS, type RO, offset 0x108, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM0ISC, type R/W1C, offset 0x04C, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM1ISC, type R/W1C, offset 0x08C, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM2ISC, type R/W1C, offset 0x0CC, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM3ISC, type R/W1C, offset 0x10C, reset 0x0000.0000

IntCntZeroIntCntLoadIntCmpAUIntCmpADIntCmpBUIntCmpBD

PWM0LOAD, type R/W, offset 0x050, reset 0x0000.0000

Load

PWM1LOAD, type R/W, offset 0x090, reset 0x0000.0000

Load

PWM2LOAD, type R/W, offset 0x0D0, reset 0x0000.0000

Load

PWM3LOAD, type R/W, offset 0x110, reset 0x0000.0000

Load

PWM0COUNT, type RO, offset 0x054, reset 0x0000.0000

Count

February 24, 20091080
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

PWM1COUNT, type RO, offset 0x094, reset 0x0000.0000

Count

PWM2COUNT, type RO, offset 0x0D4, reset 0x0000.0000

Count

PWM3COUNT, type RO, offset 0x114, reset 0x0000.0000

Count

PWM0CMPA, type R/W, offset 0x058, reset 0x0000.0000

CompA

PWM1CMPA, type R/W, offset 0x098, reset 0x0000.0000

CompA

PWM2CMPA, type R/W, offset 0x0D8, reset 0x0000.0000

CompA

PWM3CMPA, type R/W, offset 0x118, reset 0x0000.0000

CompA

PWM0CMPB, type R/W, offset 0x05C, reset 0x0000.0000

CompB

PWM1CMPB, type R/W, offset 0x09C, reset 0x0000.0000

CompB

PWM2CMPB, type R/W, offset 0x0DC, reset 0x0000.0000

CompB

PWM3CMPB, type R/W, offset 0x11C, reset 0x0000.0000

CompB

PWM0GENA, type R/W, offset 0x060, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM1GENA, type R/W, offset 0x0A0, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM2GENA, type R/W, offset 0x0E0, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM3GENA, type R/W, offset 0x120, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM0GENB, type R/W, offset 0x064, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM1GENB, type R/W, offset 0x0A4, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

1081February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

PWM2GENB, type R/W, offset 0x0E4, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM3GENB, type R/W, offset 0x124, reset 0x0000.0000

ActZeroActLoadActCmpAUActCmpADActCmpBUActCmpBD

PWM0DBCTL, type R/W, offset 0x068, reset 0x0000.0000

Enable

PWM1DBCTL, type R/W, offset 0x0A8, reset 0x0000.0000

Enable

PWM2DBCTL, type R/W, offset 0x0E8, reset 0x0000.0000

Enable

PWM3DBCTL, type R/W, offset 0x128, reset 0x0000.0000

Enable

PWM0DBRISE, type R/W, offset 0x06C, reset 0x0000.0000

RiseDelay

PWM1DBRISE, type R/W, offset 0x0AC, reset 0x0000.0000

RiseDelay

PWM2DBRISE, type R/W, offset 0x0EC, reset 0x0000.0000

RiseDelay

PWM3DBRISE, type R/W, offset 0x12C, reset 0x0000.0000

RiseDelay

PWM0DBFALL, type R/W, offset 0x070, reset 0x0000.0000

FallDelay

PWM1DBFALL, type R/W, offset 0x0B0, reset 0x0000.0000

FallDelay

PWM2DBFALL, type R/W, offset 0x0F0, reset 0x0000.0000

FallDelay

PWM3DBFALL, type R/W, offset 0x130, reset 0x0000.0000

FallDelay

PWM0FLTSRC0, type R/W, offset 0x074, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM1FLTSRC0, type R/W, offset 0x0B4, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM2FLTSRC0, type R/W, offset 0x0F4, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

February 24, 20091082
Preliminary

Register Quick Reference

16171819202122232425262728293031

0123456789101112131415

PWM3FLTSRC0, type R/W, offset 0x134, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM0FLTSRC1, type R/W, offset 0x078, reset 0x0000.0000

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7

PWM1FLTSRC1, type R/W, offset 0x0B8, reset 0x0000.0000

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7

PWM2FLTSRC1, type R/W, offset 0x0F8, reset 0x0000.0000

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7

PWM3FLTSRC1, type R/W, offset 0x138, reset 0x0000.0000

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7

PWM0MINFLTPER, type R/W, offset 0x07C, reset 0x0000.0000

MFP

PWM1MINFLTPER, type R/W, offset 0x0BC, reset 0x0000.0000

MFP

PWM2MINFLTPER, type R/W, offset 0x0FC, reset 0x0000.0000

MFP

PWM3MINFLTPER, type R/W, offset 0x13C, reset 0x0000.0000

MFP

PWM0FLTSEN, type R/W, offset 0x800, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM1FLTSEN, type R/W, offset 0x880, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM2FLTSEN, type R/W, offset 0x900, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM3FLTSEN, type R/W, offset 0x980, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM0FLTSTAT0, type -, offset 0x804, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM1FLTSTAT0, type -, offset 0x884, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM2FLTSTAT0, type -, offset 0x904, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

PWM3FLTSTAT0, type -, offset 0x984, reset 0x0000.0000

FAULT0FAULT1FAULT2FAULT3

1083February 24, 2009
Preliminary

LM3S9B92 Microcontroller

16171819202122232425262728293031

0123456789101112131415

PWM0FLTSTAT1, type -, offset 0x808, reset 0x0000.0000

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7

PWM1FLTSTAT1, type -, offset 0x888, reset 0x0000.0000

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7

PWM2FLTSTAT1, type -, offset 0x908, reset 0x0000.0000

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7

PWM3FLTSTAT1, type -, offset 0x988, reset 0x0000.0000

DCMP0DCMP1DCMP2DCMP3DCMP4DCMP5DCMP6DCMP7

Quadrature Encoder Interface (QEI)
QEI0 base: 0x4002.C000
QEI1 base: 0x4002.D000

QEICTL, type R/W, offset 0x000, reset 0x0000.0000

FILTCNT

EnableSwapSigModeCapModeResModeVelEnVelDivINVAINVBINVISTALLENFILTEN

QEISTAT, type RO, offset 0x004, reset 0x0000.0000

ErrorDirection

QEIPOS, type R/W, offset 0x008, reset 0x0000.0000

Position

Position

QEIMAXPOS, type R/W, offset 0x00C, reset 0x0000.0000

MaxPos

MaxPos

QEILOAD, type R/W, offset 0x010, reset 0x0000.0000

Load

Load

QEITIME, type RO, offset 0x014, reset 0x0000.0000

Time

Time

QEICOUNT, type RO, offset 0x018, reset 0x0000.0000

Count

Count

QEISPEED, type RO, offset 0x01C, reset 0x0000.0000

Speed

Speed

QEIINTEN, type R/W, offset 0x020, reset 0x0000.0000

IntIndexIntTimerIntDirIntError

QEIRIS, type RO, offset 0x024, reset 0x0000.0000

IntIndexIntTimerIntDirIntError

QEIISC, type R/W1C, offset 0x028, reset 0x0000.0000

IntIndexIntTimerIntDirIntError

February 24, 20091084
Preliminary

Register Quick Reference

E Ordering and Contact Information
E.1 Ordering Information

L M 3 S n n n n – g p p s s – r r m

Part Number

Temperature

Package

Speed

Revision

Shipping Medium

E=-40 C to 105 C
I = -40 C to 85 C

T = Tape-and-reel
Omitted = Default shipping (tray or tube)

Example: A1, A2, B0
If value is omitted, default to current
shipping revision.BZ = 108-ball BGA

QC = 100-pin LQFP
QN = 48-pin LQFP
QR = 64-pin LQFP
RN = 28-pin SOIC

20 = 20 MHz
25 = 25 MHz
50 = 50 MHz

nnn = Sandstorm family parts
nnnn = all other family parts

Table E-1. Part Ordering Information

DescriptionOrderable Part Number

Stellaris® LM3S9B92 MicrocontrollerLM3S9B92-IQC80

Stellaris® LM3S9B92 MicrocontrollerLM3S9B92-IQC80(T)a

a. T = Tape-and-reel packaging

E.2 Kits
The Luminary Micro Stellaris® Family provides the hardware and software tools that engineers need
to begin development quickly.

■ Reference Design Kits accelerate product development by providing ready-to-run hardware, and
comprehensive documentation including hardware design files:

http://www.luminarymicro.com/products/reference_design_kits/

■ Evaluation Kits provide a low-cost and effective means of evaluating Stellaris® microcontrollers
before purchase:

http://www.luminarymicro.com/products/kits.html

■ Development Kits provide you with all the tools you need to develop and prototype embedded
applications right out of the box:

http://www.luminarymicro.com/products/development_kits.html

See the Luminary Micro website for the latest tools available, or ask your Luminary Micro distributor.

1085February 24, 2009
Preliminary

LM3S9B92 Microcontroller

E.3 Company Information
Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs).
Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the
world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the
Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit
microcontroller designs. With entry-level pricing at $1.00 for an ARM technology-based MCU,
Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural
upgrades or software tool changes.

Luminary Micro, Inc.
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com
sales@luminarymicro.com

E.4 Support Information
For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3

February 24, 20091086
Preliminary

Ordering and Contact Information

