

Line Drivers/Receivers

LM55122/LM75122 triple line receivers

general description

The LM55122/LM75122 are triple line receivers designed for digital data transmission with line impedances from 50Ω to 500Ω . Each receiver has one input with built-in hysteresis which provides a large noise margin. The other inputs on each receiver are in a standard TTL configuration. The LM55122/LM75122 are compatible with standard TTL logic and supply voltage levels.

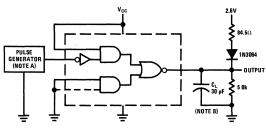
features

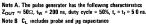
- Built-in input threshold hysteresis
- High speed ... typical propagation delay time 20 ns
- Independent channel strobes
- Input gating increases application flexibility
- Single 5.0V supply operation
- Fanout to 10 series 54/74 standard loads
- Plug-in replacement for the SN55122 and the 8T14

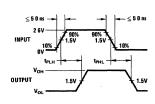
connection diagram

Dual-In-Line Package Voc. 1S 1R 1Y 3A 3S 3R 3Y 16 15 14 13 12 11 10 8 1 2 3 4 5 6 7 8 1A 1B 2R 2S 2A 2B 2Y GND TOP VIEW

Order Number LM55122J, LM75122J See Package 17 Order Number LM75122N See Package 23


truth table


А	INPI B [†]	JTS R	s	OUTPUT Y
Н	Н	Х	х	٦
×	X	L	н	L
L	X	Н	Х	н
L	X	Х	L	Н
×	L	Н	Х	н
×	L	Х	L	н


H = high level, L = low level, X = irrelevant

†B input and last two lines of the truth table
are applicable to receivers 1 and 2 only

ac test circuit and switching time waveforms

absolute maximum ratings		operating conditions					
(Notes 1 and 2)			MIN	MAX	UNITS		
Supply Voltage, V _{CC}	6.0V	Supply Voltage, V _{CC}	4.75	5.25	V		
Input Voltage R Input A, B, or S Input Output Voltage	6.0V 5.5V 6.0V	Operating Temperature, T _A LM55122 LM75122	√ -55 0	+125 +75	°c °c		
Output Current	±100 mA	High Level Output Current	,	500	μΑ		
Continuous Total Power Dissipation at (or below) 25°C Free-Air Temperature (Note Storage Temperature Range –65° Lead Temperature (Soldering, 10 seconds)	5) 800 mW °C to +150°C 300°C	I _{OH} Low Level Output Current I _{OL}	,	16	mA		

electrical characteristics (Note 3) V_{CC} = 4.75V to 5.25V (unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
High Level Input Voltage (V _{IH}) A, B, R, or S		2.0			v
Low Level Input Voltage (V _{IL}) A, B, R, or S				0.8	V
Hysteresis (V _{T+} - V _{T-}) R	V _{CC} = 5.0V, T _A = 25°C (Note 7)	0.3	0.6		v
Input Clamp Voltage (V _I) A, B, or S	$V_{CC} = 5 0V, I_1 = -12 mA$			-1.5	, v
Input Breakdown Voltage (V _{(BR)1}) A, B, or S	V _{CC} = 5 0V, I ₁ = 10 mA	5.5			v
High Level Output Voltage (V _{OH})	$V_{IH} = 0V$, $V_{IL} = 0.8V$, $I_{OH} = -500\mu A$, (Note 4)	2.6			V
	$V_{1(A)} = 0V$, $V_{1(B)} = 0V$, $V_{1(S)} = 2.0V$, $V_{1(R)} = 1.45V$, (Note 8), $I_{OH} = -500\mu A$	26			V
Low Level Output Voltage (V _{OL})	$V_{IH} = 2 \text{ oV}, V_{IL} = 0 \text{ 8V}, I_{OL} = 16 \text{ mA},$ (Note 4)			0.4	v
	$V_{1(A)} = 0V$, $V_{1(B)} = 0V$, $V_{1(S)} = 2 0V$, $V_{1(R)} = 1.45V$, (Note 9), $I_{OL} = 16 \text{ mA}$			0.4	V
High Level Input Current (I _{IH}) A, B, or S R	V ₁ = 4 5V V ₁ = 3 8V			40 170	μΑ μΑ
Low Level Input Current (I _{IL}) A, B, or S	V ₁ = 0.4V	-0.1		-1.6	mA
Short Circuit Output Current (I _{OS})	$V_{CC} = 5.0V, T_A = 25^{\circ}C, (Note 6)$	-50		-100	mA
Supply Current (I _{CC})	V _{CC} = 5.25V			72	mA

switching characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time, Low to High Level			20	30	ns
Output from R Input (t _{PLH})	(See AC Test Circuit and Switching			}	•
Propagation Delay Time, High to Low Level Output from R Input (t _{PHL})	Time Waveforms)		20	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

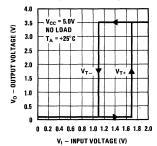
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.

Note 3: Min/max limits apply across the guaranteed operating temperature range of -55° C to $+125^{\circ}$ C for LM55122 and 0° C to $+75^{\circ}$ C for LM75122, unless otherwise specified. Typicals are for $V_{CC} = 5$ OV, $T_{A} = 25^{\circ}$ C. Positive current is defined as current into the referenced pin.

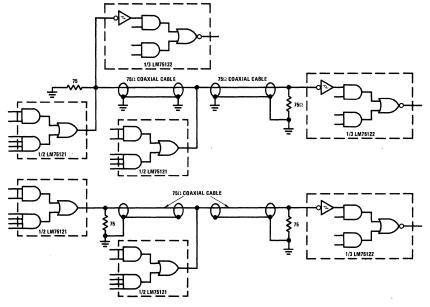
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output

Note 5: For operating at elevated temperatures, the cavity DIP package (J) has a maximum junction temperature of +150°C and must be derated based on a thermal resistance of +85°C/W, junction to ambient. The molded DIP package (N) has a maximum junction temperature of +150°C and must be derated based on a thermal resistance of +150°C/W, junction to ambient

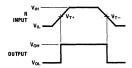
Note 6: Not more than one output should be shorted at a time


Note 7: Hysteresis is the difference between the positive going input threshold voltage, V_{T+} , and the negative going input threshold voltage, V_{T-} .

Note 8: Receiver input was at a high level immediately before being reduced to 1.45V.


Note 9: Receiver input was at a low level immediately before being raised to 1.45V.

typical performance characteristics


Output Voltage vs Receiver Input Voltage

typical applications

Single-Ended Party Line Circuits

THE HIGH GAIN AND BUILT IN HYSTERESIS OF THE LM55122/ LM75122 LINE RECEIVERS ENABLE THEM TO BE USED AS SCHMITT TRIGGERS IN SQUARING UP PULSES

Pulse Squaring