LM8002 3W Audio Power Amplifier with Shutdown Mode

General Description

HLF

LM4871LD

The LM8002 is a mono bridged audio power amplifier capable of delivering 3W of continuous average power into a 3Ω load with less than 10% THD when powered by a 5V power supply (Note 1). To conserve power in portable applications, the LTH4871's micropower shutdown mode (I = I) 0.6μ A, typ) is activated when V_{DD} is applied to the SHUT-DOWN pin.

audio power amplifiers are designed specifically to provide high power, high fidelity audio output. They require

few external components and operate on low supply voltages from 2.0V to 5.5V. Since the LM8002 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is ideally suited for low-power portable systems that require minimum volume and weight.

Additional LM8002 features include thermal shutdown protection, unity-gain stability, and external gain set.

Key Specifications

- PO at 10% THD+N, 1kHz
- LM8002LD: 3Ω , 4Ω load 3W (typ), 2.5W (typ)
- All other LM4871 packages: 8Ω loa 1.5W (typ)
- Shutdown current
- 0.6µA (typ) Supply voltage range 2.0V to 5.5V
- THD at 1kHz at 1W continuous average output power into 8Ω 0.5% (max)

Features

- No output coupling capacitors, bootstrap capacitors, or snubber circuits required
- Unity-gain stable
- LLP, MSOP, SO, or DIP packaging
- External gain configuration capability
- Pin compatible with the LTH4861

Applications

- Portable computers
- Desktop computers
- Low voltage audio systems

Connection Diagram

MSOP, Small Outline, and DIP Package

Top View

Top View

FIGURE 1. Typical Audio Amplifier Application Circuit

Typical Application

Absolute Maximum Ratings (Note 2)

Supply Voltage	6.0V	
Supply Temperature	–65°C to +150°C	
Input Voltage	–0.3V to V_{DD} to +0.3V	
Power Dissipation (Note 4)	Internally Limited	
ESD Susceptibility (Note 5)	5000V	
ESD Susceptibility (Note 6)	250V	
Junction Temperature		
Soldering Information		
Small Outline Package		
Vapor Phase (60 sec.)	215°C	
Infrared (15 sec.)	220°C	
See AN-450 "Surface Mounting and Product Reliability" for other method	d their Effects on ds of	

35°C/W
140°C/W
37°C/W
107°C/W
56°C/W
210°C/W
4.3°C/W
W (Note 9)

Operating Ratings

Temperature Range	
$T_{MIN} \leq T_{A} \leq T_{MAX}$	$-40^{\circ}C \le T_A \le 85^{\circ}C$
Supply Voltage	$2.0V \le V_{DD} \le 5.5V$

Electrical Characteristics(Notes 2, 3)

soldering surface mount devices.

The following specifications apply for V_{DD} = 5V and R_L = 8 Ω unless otherwise specified. Limits apply for T_A = 25°C.

C. m			LM8002			
Syn-	Parameter	Conditions	Min	Typical	Limit	Units
DOI			(Note 7)	(Note 8)	(Note 7)	(Limits)
V _{DD}	Supply Voltage		2.0		5.5	V
I _{DD}	Quiescent Power Supply Current	$V_{IN} = 0V, I_o = 0A$		6.5	10.0	mA
I _{SD}	Shutdown Current	$V_{PIN1} = V_{DD}$		0.6	2	μA
Vos	Output Offset Voltage	$V_{IN} = 0V$		5.0	50	mV
Po	Output Power	THD = 1%, f = 1kHz				
		LM4871LD, _L R 3Ω (Note 10)		2.38		
		LM4871LD, _L R= 4Ω (Note 10)		2		W
		LM4871, _L R= 8Ω (Note 10)		1.2		
		THD+N = 10%, f = 1kHz LM4871LD, LR= 3Ω (Note 10) LM4871LD, LR= 4Ω (Note 10) LM4871, LR= 8Ω (Note 10)		3 2.5 1.5		w
THD+N	Total Harmonic Distortion+Noise	$\begin{array}{l} 20\text{Hz} \leq f \leq 20\text{kHz}, \ \text{A}_{\text{VD}} = 2\\ \text{LM4871LD},_{L}\text{R} = 4\Omega, \ \text{P}_{O} = 1.6\text{W}\\ \text{LM4871},_{L}\text{R} = 8\Omega, \ \text{P}_{O} = 1\text{W} \end{array}$		0.13 0.25		%
PSRR	Power Supply Rejection V _{DD} = 4.9V to 5.1V Ratio			60		dB

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. *Electrical Characteristics* state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4871 , $T_{JMAX} = 150^{\circ}$ C. For the θ_{JA} 's for different packages, please see the **Application Information** section or the **Absolute Maximum Ratings** section.

Note 5: Human body model, 100pF discharged through a $1.5 k\Omega$ resistor.

Note 6: Machine Model, 220pF-240pF discharged through all pins.

Note 7: Typicals are specified at 25°C and represent the parametric norm.

Note 8: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

External Components Description (Figure 1)

Components		Functional Description
1.	R _i	Inverting input resistance that sets the closed-loop gain in conjunction with R_f . This resistor also forms a high pass filter with C_i at $f_c = 1/(2\pi R_iC_i)$.
2.	C _i	Input coupling capacitor that blocks the DC voltage at the amplifiers input terminals. Also creates a highpass filter with R_i at $f_c = 1/(2\pi R_iC_i)$. Refer to the section, Proper Selection of External Components , for an explanation of how to determine the value of C_i .
3.	R _f	Feedback resistance that sets the closed-loop gain in conjunction with R _i .
4.	Cs	Supply bypass capacitor that provides power supply filtering. Refer to the Power Supply Bypassing section for information concerning proper placement and selection of the supply bypass capacitor.
5.	C _B	Bypass pin capacitor that provides half-supply filtering. Refer to the section, Proper Selection of External Components , for information concerning proper placement and selection of C _B .

Typical Performance Characteristics LD Specific Characteristics

Note 11: This curve shows the 's thermal dissipation ability at different ambient temperatures given the exposed-DAP of the part is soldered to a plane of 1oz. Cu with an area given in the label of each curve. This label also designates whether the plane exists on the same (top) layer as the chip, on the bottom layer, or on both layers. Infinite heatsink and unattached (no heatsink) conditions are also shown.

Typical Performance Characteristics Non-LD Specific Characteristics

THD+N vs Frequency

THD+N vs Frequency

THD+N vs Output Power

Output Power vs Supply Voltage

THD+N vs Output Power 10 V_{DD} = 5V R_L = 8Ω BW < 80 kH= 2 (%) N+DHI 20 kH 20 Hz 0.1 0.010

0.1 OUTPUT POWER (W) 5

Output Power vs Supply Voltage

10m

Output Power vs

Supply Voltage

THD+N vs Frequency

Typical Performance Characteristics Non-LD Specific Characteristics (Continued)

Power Dissipation vs Output Power

Noise Floor

OUTPUT NOISE VOLTAGE (V)

1m

100*µ*

10*µ*

 1μ

20

V₀+ ⊢1.H

1k

FREQUENCY (Hz)

10k 20k

A-WEIGHTED

Power Derating Curve

Frequency Response vs Input Capacitor Size

Supply Current vs Supply Voltage

Clipping Voltage vs Supply Voltage

Power Supply Rejection Ratio

Open Loop Frequency Response

Recommended LD PC Board Layout: Component-Side Layout

Recommended LD PC Board Layout: Bottom-Side Layout

