Applications

- Ultrasound Imaging
- Communications
- Portable Instrumentation
- -Sonar

Ultrasound Receive Analog Front End (AFE) Key Specifications

(Full path unless noted)

B-Mode:

Total Input Voltage Noise (RTI)	0.9 nV/vHz
Max AFE Gain	58 dB
Single-Ended Input Swing	500mVpp
Programmable Maximum DVGA	38, 36, 34, 32 dB
Attenuation	
Programmable Post Amp Gain	31 or 38 dB
Attenuator Step Resolution	0.05 or 0.1 dB
ADC Resolution	12 bits
Conversion Rate (ADC CLK)	40 to 50 MSPS
ADC Digital Filter stop band	72 dB
attenuation	
ADC Digital Filter Passband Ripple	± 0.01 dB
ADC Instant Overload Recovery	1 ADC Clock Period
Power Consumption (per channel)	110 mW
CW Doppler Mode:	
Phase Rotation Resolution	22.5 degrees
Phase Noise (Per Channel, Offset =	-144 dBc/Hz
5KHz)	
Dynamic Range	-161 dB/Hz
Amplitude Quadrature Error (I to Q)	± 0.04 dB
Phase Quadrature Error (I to Q)	± 0.10°
Power Consumption (Per Channel)	208 mW
Common Specifications:	
LNA Input Voltage Noise	0.82 nV/vHz
Operating temp. Range	0 to +70°C

LM96511

M96511 Ultrasound Receive Analog Front End (AFE)

National Semiconductor

General Description

tion angles is included.

vice programming and control.

Low-power consumption Embedded ADC Digital Filter

ADC Instant Overload Recoverv

© 2010 National Semiconductor Corporation

300870

Embedded ADC "clock-cleaning" PLL

11 mm x 17 mm RoHS BGA Package

Features

ADC

The LM96511 is an 8-channel integrated analog front end

(AFE) module for multi-channel applications, particularly

medical ultrasound. Each of the 8 signal paths consists of a low noise amplifier (LNA), a digitally programmable variable gain amplifier (DVGA) and a 12-bit, 40 to 50 Mega Samples Per Second (MSPS) analog-to-digital converter (ADC) with Instant Overload Recovery (IOR). The architecture of the DV-GA is a digitally-controlled linear-in-dB step attenuator driving a fixed-gain post-amplifier (PA). The ADC uses a Continuous-Time-Sigma-Delta ($CT\Sigma\Delta$) architecture with digital decimation filtering to maximize dynamic performance and provide an alias free input bandwidth to ADC CLK / 2. The ADC digital outputs are serialized and provided on differential LVDS outputs. The ADC includes an on-chip clock cleaner PLL. In addition, for baseband CW Doppler Beamformer applications, an 8-channel demodulator with 16 discrete phase rota-

Selective power reduction is included to minimize consumption of idle sections during interleaved imaging modes. An SPI[™] compatible serial interface allows dynamic digital programming and control. National Semiconductor offers a full development package for sale which includes acquisition analysis hardware and software with user friendly GUI for de-

8-channel LNA, DVGA, and 12-bit Continuous Time $\Sigma \Delta$

Programmable Active Termination LNA

8-channel, integrated CW Doppler Beamforer

Simplified LM96511 Block Diagram

2

www.national.com

Table of Contents

General Description	. 1
Features	. 1
Key Specifications	. 1
Applications	. 1
Simplified LM96511 Block Diagram	. 2
Typical Application	. 2
Connection Diagrams	. 4
Ordering Information	. 5
Pin Descriptions	. 6
Typical Performance Characteristics	11
CW Doppler Plots	15
Physical Dimensions	17

List of Figures

FIGURE 1. Simplified LM96511 Block Diagram	. 2
FIGURE 2. 376–Pin BGA Package Top View (18 Rows by 32 Columns)	. 4

Connection Diagrams

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	LNA PD	DVGA PD	AMP RST	AMP SPI CS	ADC SPI CS	DVGA INIT MSB	AMP DVDD	AMP DGND	AGND	AMP AVCC A	CW I CH7	AGND	AGND	CW DGND	CW DGND	AGND	A
в	DVGA PA HI	CW AVCC	SPI CLK	SPI DIO	DVGA INIT LSB	AMP IO DVDD	AMP DVDD	AMP AVCC A	DVGA BYP CH7	CW AVCC	CW Q CH7	CW DGND	CW DGND	CW AVCC	CW AVCC	CW I CH6	в
С	NC	CW AVCC	AGND	NC										CW AVCC	DVGA BYP CH6	AMP AVCC A	С
D	LNA IN CH7-	LNA IN CH7+	AGND	LNA OUT CH7-										AMP AVCC A	AMP AVCC A	DVGA BYP CH5	D
Е	LNA IN CH6+	CW AVCC	NC	AMP AVCC A										AMP AVCC A	CWICH5	CW AVCC	E
F	LNA OUT CH6-	LNA IN CH6-	AGND	CW AVCC			AMP THRM GND			CW Q CH5	CW DGND	CW DGND	F				
G	LNA IN CH5+	NC	AMP AVCC A	CW AVCC			AMP THRM GND			CW Q CH4	CW AVCC	CWICH4	G				
н	LNA OUT CH5 -	LNA IN CH5-	AGND	CW AVCC			AMP THRM GND			AMP DGND	CW AVCC	AMP DVDD	н				
J	LNA IN CH4+	NC	AMP AVCC A	CW AVCC			AMP THRM GND			CW CLK+	CW CLK-	AMP AVCC A	J				
к	LNA OUT CH4-	LNA IN CH4-	AGND	CW AVCC			AMP THRM GND			DVGA CLK	CW/DVGA RST	AMP CW/DVGA	к				
L	LNA IN CH3+	NC	AMP AVCC A	CW AVCC			AMP THRM GND			AMP IO DVDD	DVGA BYP CH3	AMP AVCC A	L				
м	LNA OUT CH3-	LNA IN CH3-	AGND	AMP AVCC A			AMP THRM GND			CW AVCC	CW AVCC	CW I CH3	м				
Ν	LNA IN CH2+	CW AVCC	NC	AMP AVCC A			AMP THRM GND			CW Q CH3	CW DGND	CW DGND	N				
Ρ	LNA OUT CH2-	LNA IN CH2-	AGND	CW AVCC										AGND	CW I CH2	CW AVCC	Р
R	LNA IN CH1+	NC	AMP AVCC A	AGND										AMP AVCC A	AMP AVCC A	DVGA BYP CH2	R
т	LNA OUT CH1-	LNA IN CH1-	CW AVCC	AMP AVCC A										AMP AVCC A	AMP AVCC A	CW AVCC	Т
U	LNA IN CHO+	NC	AGND	AMP AVCC A	AMP DGND	AGND	AMP AVCC A	AMP AVCC A	CW AVCC	CW Q CHD	CW DGND	AGND	AMP AVCC A	AMP DVDD	AMP DVDD	CW AVCC	U
۷	LNA IN CHO-	LNA OUT CHD-	AGND	AMP AVCC A	AMP DVDD	AMP AVCC A	NC	DVGA BYP CHD	CW AVCC	CWICHO	AGND	AGND	AMP AVCC A	CW I CH1	AGND	CW DGND	۷
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
																2009	7003

17 18 19 23 27 28 30 31 20 21 22 24 25 26 29 32 Α ADC IO DGND Α ADC IO DGND CW Q CH6 NC ADC AVDD NC ADC CLK-AGND AGND ADC DVDD ADC WCLK-ADC WCLK+ ADC BCLK ADC BCLK+ NC AGND в в ADC IO DGND ADC IO DGND ADC IO DVDD ADC DOUT CH7-AGND NC AGND AGND AGND ADC CLK+ AGND AGND ADC DVDD ADC DVDD AGND AGND с С ADC DOUT CH7+ AMP AVCC A ADC AVDD AGND AGND D ADC IO DGND ADC DOUT CH6-D AMP AVCC AGND AGND Е ADC IO DGND ADC DOUT CH6+ Е CW AVCC NC NC F F ADC THRM GND ADC THRM GND ADC THRM GND ADC THRM GND ADC THRM ADC DOUT CH5-AGND ADC AVDD AGND AGND ADC THRM GND G ADC THRM GND ADC THRM GND ADC THRM GND ADC THRM GND ADC IO DVDD ADC DOUT CH5+ G AGND AGND AGND н н ADC THRM GND ADC IO DVDD ADC DOUT CH4-AMP DVDD NC NC J DVGA BYP CH4 ADC THRM GND ADC THRM GND ADC THRM GND ADC DOUT CH4+ J ADC THRM GND ADC THRM ADC AVDD AGND AGND ĸ κ ADC THRM GND ADC THRM GND ADC THRM GND ADC DOUT CH3-ADC THRM GND ADC THRM GND AMP AVCC A AGND NC AGND L ADC THRM GND ADC THRM GND ADC THRM GND ADC THRM GND ADC DOUT CH3+ L ADC THRM GND DVGA UP AGND NC AGND м М ADC THRM GND ADC THRM GND ADC THRM GND ADC IO DGND ADC THRM GND ADC THRM GND AGND AGND ADC AVDD AGND N N ADC THRM GND ADC IO DGND ADC THRM GND ADC THRM GND ADC THRM GND ADC THRM GND ADC DOUT CH2-AGND AGND NC Ρ ADC DOUT CH2+ Ρ CW Q CH2 AGND AGND NC R R ADC AVDD CW AVCC AGND AGND NC т т DVGA BYP CH1 ADC DOUT CH1-AGND NC AGND υ U ADC DOUT CH1+ ADC IO DGND ADC IO DVDD ADC DVDD AMP DGND ADC RREF ADC AVDD ADC AVDD NC ADC AVDD NC AGND AGND ADC RST ADC AVDD AGND V ADC VREF ADC LPF BYP ADC CW/DVGA ADC IO DGND ADC DOUT CHD+ ADC DOUT CHD-۷ CW Q CH1 NC AGND NC ADC VREF AGND AGND ADC AVDD ADC DVDD ADC AVDD 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

30087011

FIGURE 2. 376–Pin BGA Package Top View (18 Rows by 32 Columns)

www.national.com

Ordering Information								
Order Number	Package Type	NSC Package Drawing	Supplied As					
LM96511CCSM NOPB	TFBGA 376	SLM376A	Trays					

SPI[™] is a trademark of Motorola Inc.

TRI_STATE® is a registered trademark of National Semiconductor Corporation.

Pin Descriptions

Ball Id. (Row Column)	Pin Name	Function	Description					
Amplifier Signals								
U1	LNA IN CH0+							
R1	LNA IN CH1+							
N1	LNA IN CH2+							
L1	LNA IN CH3+							
J1	LNA IN CH4+		LNA Non-Inverting Input					
G1	LNA IN CH5+							
E1	LNA IN CH6+							
D2	LNA IN CH7+							
V1	LNA IN CH0-	Input	LNA Inverting Input					
T2	LNA IN CH1-							
P2	LNA IN CH2-							
M2	LNA IN CH3-							
K2	LNA IN CH4-							
H2	LNA IN CH5-							
F2	LNA IN CH6-							
D1	LNA IN CH7-							
V2	LNA OUT CH0-	_	LNA Inverting Output					
T1	LNA OUT CH1-							
P1	LNA OUT CH2-							
M1	LNA OUT CH3-	<u> </u>						
K1	LNA OUT CH4-	Output						
H1	LNA OUT CH5 -							
F1	LNA OUT CH6-							
D4	LNA OUT CH7-							
V8	DVGA BYP CH0							
T17	DVGA BYP CH1							
R16	DVGA BYP CH2							
L15	DVGA BYP CH3	5						
J17	DVGA BYP CH4	Bypass	Decoupling Capacitor to Analog Ground					
D16	DVGA BYP CH5							
C15	DVGA BYP CH6							
B9	DVGA BYP CH7							
J14	CW CLK+	laput	CW DOPPLER Differential Input Clock +					
J15	CW CLK-	Input	CW DOPPLER Differential Input Clock -					
V10	CW I CH0							
V14	CW I CH1							
P15	CW I CH2							
M16	CW I CH3	Output	CW DOPPI FB In-Phase output current					
G16	CW I CH4	Culput						
E15	CW I CH5							
B16	CW I CH6							
A11	CW CH7							

Ball Id. (Row_Column)	Pin Name	Function	Description					
U10	CW Q CH0							
V17	CW Q CH1							
P17	CW Q CH2							
N14	CW Q CH3	Outrast						
G14	CW Q CH4	Output	CW DOPPLER Quadrature-Phase output current					
F14	CW Q CH5							
A17	CW Q CH6							
B11	CW Q CH7							
		Amplifier	Controls					
K14	DVGA CLK		DVGA GAIN Clock					
L17	DVGA UP		1 = Increment DVGA gain 0 = Decrement DVGA gain					
A6	DVGA INIT MSB		DVGA Initial Gain Control. Sets the initial DVGA gain. See					
B5	DVGA INIT LSB		application section.					
K15	CW/DVGA RST	Input	1 = CW DOPPLER Phase and DVGA Gain Reset					
K16	AMP CW/DVGA		0 = B-mode 1 = CW DOPPLER mode					
A1	LNA PD		1 = LNA Power-down					
A2	DVGA PD		1 = DVGA Power-down					
A3	AMP RST		1 = Reset all Amplifier SPI™ Registers					
B1	DVGA PA HI		Post Amplifier Gain:					
	-		1= 38 dB					
			0= 31 dB					
		ADC S	Signals					
B22	ADC CLK+		Differential Input Clock. The input clock must lie in the range of 40					
A22	ADC CLK-	Input	MHz to 50 MHz. It is used by the PLL to generate the internal					
			sampling clocks .					
V31	ADC DOUT CH0+							
032	ADC DOUT CH1+							
P32	ADC DOUT CH2+							
L32	ADC DOUT CH3+							
J32	ADC DOUT CH4+							
G32	ADC DOUT CH5+		Differential Serial Outputs for channels 0 to 7. Each pair of outputs					
E32	ADC DOUT CH6+		provides the serial output for the specific channel. The default					
C32	ADC DOUT CH7+	Output	output is LVDS format, but programming the appropriate control					
V32	ADC DOUT CH0-	Cuipui	registers, the output format can be changed to SLVS.					
T32	ADC DOUT CH1-		nossible to internally terminate these outputs with 1000 resistors					
N32	ADC DOUT CH2-							
K32	ADC DOUT CH3-							
H32	ADC DOUT CH4-							
F32	ADC DOUT CH5-							
D32	ADC DOUT CH6-							
B32	ADC DOUT CH7-							

Ball Id. (Row_Column)	Pin Name	Function	Description					
A30 A29	ADC WCLK+ ADC WCLK-	Output	Word Clock. Differential output frame clock used to indicate the bit boundary of each data sample. Information on timing can be seen in the Electrical Specifications section of the datasheet. By programming TX_term (bit 4) in the LVDS Control register, it is possible to internally terminate these outputs with 100Ω resistors.					
A32 A31	ADC BCLK+ ADC BCLK-	Output	Bit clock. Differential output clock used for sampling the serial outputs. Information on timing can be seen in the Electrical Specifications section of the datasheet. By programming TX_term (bit 4) in the LVDS Control register, it is possible to internally terminate these outputs with 100Ω resistors.					
	-	ADC C	Controls					
U25	ADC RST	Input	This pin is an active low reset for the entire ADC, both analog and digital components. The pin must be held low for 500 ns then returned to high in order to ensure that the chip is reset correctly.					
V26	ADC CW/DVGA		0 = B-mode 1 = CW DOPPLER mode, PLL and References are still active to minimize recovery time.					
V22	ADC VREF		ADC Optional External Reference Voltage; Improves channel-to- channel and converter-to-converter matching.					
V21	ADC VREF GND		If Internal Reference is used, connect to AGND.					
U23	ADC RREF	Output	External 10k ±1% resistor to ADC Analog GND. Used to set internal bias currents. Required regardless of the type of reference used.					
V23	ADC LPF BYP	Bypass	Capacitor required by the Modulator DAC's LP Filter. Must be at least 100 nF to ADC Analog GND. Can be increased to 10 μ F to minimize close-in phase noise.					
		SPI™ Compa	tible Interface					
B3	SPI™ CLK	Input	SPI™ clock					
B4	SPI™ DIO	Input/Output	SPI™ Data Input/Output					
A5	ADC SPI™ CS		0 = ADC SPI™ Chip Select					
A4	AMP SPI™ CS		0 = Amplifier SPI™ Chip Select.					

Ball Id.	Pin Name	Function	Description				
(Row_Column)							
Power and Ground							
A10, B8, C16, C17,							
D14, D15, D17, E4,							
E14, G3, J3, J16, K17,			Amplifier Appleg Power				
L3, L16, M4, N4, R3,	AMP AVCC A		Nominally + 2.2V				
R14, R15, T4, T14,			Norminally +3.5V.				
T15, U4, U7, U8, U13,							
V4, V6, V13							
B10, B14, B15, C14,							
E16, E17, H15, G15,	CW AVCC	Power					
M14, M15, P16, R17,			CW DOPPLER Analog Power Nominally +5.0V.				
T16, U9, U16, V9, B2,							
C2, E2, F4, G4, H4,							
J4, K4, L4, N2, P4, T3							
V5, A7, B7, H16, H17,			DVGA Digital Power. Nominally +3.3V.				
U14, U15							
B6, L14			Amplifier IO Digital Power. Connect to ADC IO DVDD. Nominally				
			+1.2V.				
B30, G31, H31, U31	ADC IO DVDD		ADC IO Digital Power. Nominally +1.2V.				
A19, C18, F18, J18,							
M19, R19, U19, U24,	ADC AVDD		ADC Analog Power. Nominally +1.2V.				
U26, U28, V27, V29							
A26, B25, B26, U27, V28	ADC DVDD		ADC Digital Power. Nominally +1.2V .				

Ball Id. (Row Column)	Pin Name	Function	Description
A9, A12, A13, A16, A23, A24, A25, B17, B19, B20, B21, B23, B24, B29, B31, C3, C19, C31, D3, D18, D19, F3, F17, F19, F31, G17, G18, G19, H3, J19, J31, K3, K19, K31, L18, L31, M3, M17, M18, M32, N17, N18, P3, P14, P18, P31, R4, R18, R31, T18, T19, U3, U6, U12, U21, U22, U30, V3, V11, V12, V15, V19, V24, V25	AGND		Analog Ground
F7, F8, F9, F10, F11, G7, G8, G9, G10, G11, H7, H8, H9, H10, H11, J7, J8, J9, J10, J11, K7, K8, K9, K10, K11, L7, L8, L9, L10, L11, M7, M8, M9, M10, M11, N7, N8, N9, N10, N11	AMP THRM GND	Ground	
F23, F24, F25, F26, F27, G23, G24, G25, G26, G27, H23, H24, H25, H26, H27, J23, J24, J25, J26, J27, K23, K24, K25, K26, K27, L23, L24, L25, L26, L27. M23, M24, M25, M26, M27, N23, N24, N25, N26, N27	ADC THRM GND		Thermal Ground (Connect to AGND)
A14, A15, B12, B13, F15, F16, N15, N16, U11, V16	CW DGND		
A8, H14, U5, U17 A27, A28, B27, B28, D31, E31, M31, N31, U29, V30	AMP DGND		Digital Ground
Important: "NC" nins sh	nould be left unconnected	No Co	nnect
A18, A20, A21, B18, C1, E3, E18, E19, G2, H18, H19, J2, K18, L2, L19, N3, N19, P19, R2, U2, U18, U20, V18, V20, R32, T31, V7, C4	NC	.,	Do Not Connect

Typical Performance Characteristics Unless otherwise noted, AMP AVCC A = AMP DVDD= 3.3V, CW AVCC = 5V; ADC AVDD = ADC DVDD = 1.2V, ADC IO DVDD = AMP IO DVDD = 1.2V, Full Scale RF Input at 5 MHz; CW CLK = 80 MHz;; FCLK = 40 MSPS, TA =+25°C.

AFE Gain vs. Steps (DVGA PA HI = HI)

Attenuation Step Error from 0.1 dB

Gain Variation from Nominal vs Supply Voltage

Attenuation Step Error from 0.05 dB

Gain Variation from Nominal vs Temperature

RTI Noise vs. Frequency (DVGA Attenuation = 0dB)

HD vs. LNA Input Swing (PA HI pin = HI)

RTI Noise vs. Frequency (DVGA Attenuation = 32dB)

www.national.com

30087030

LM96511

CW Doppler Output Noise (CWDIFF CLK = 80.0MHz)

CW Doppler Phase Noise

30087081

I-Q Quadrature Phase Error (Within Channel)

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pro	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench		
Audio	www.national.com/audio	App Notes	www.national.com/appnotes		
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns		
Data Converters	www.national.com/adc	Samples	www.national.com/samples		
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards		
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging		
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green		
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts		
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality		
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback		
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy		
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions		
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero		
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic		
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com