National Semiconductor October 2006

LM98714

Three Channel, 16-Bit, 45 MSPS Digital Copier Analog Front End with Integrated CCD/CIS Sensor Timing Generator and LVDS Output

General Description

The LM98714 is a fully integrated, high performance 16-Bit, 45 MSPS signal processing solution for digital color copiers, scanners, and other image processing applications. Highspeed signal throughput is achieved with an innovative architecture utilizing Correlated Double Sampling (CDS), typically employed with CCD arrays, or Sample and Hold (S/H) inputs (for Contact Image Sensors and CMOS image sensors). The signal paths utilize 8 bit Programmable Gain Amplifiers (PGA), a +/-9-Bit offset correction DAC and independently controlled Digital Black Level correction loops for each input. The PGA and offset DAC are programmed independently allowing unique values of gain and offset for each of the three inputs. The signals are then routed to a 45MHz high performance analog-to-digital converter (ADC). The fully differential processing channel shows exceptional noise immunity, having a very low noise floor of -74dB. The 16-bit ADC has excellent dynamic performance making the LM98714 transparent in the image reproduction chain.

Applications

- Multi-Function Peripherals
- Facsimile Equipment
- Flatbed or Handheld Color Scanners
- High-speed Document Scanner

- Independent Gain/Offset Correction for Each Channel
- Digital Black Level Correction Loop for Each Channel
- Programmable Input Clamp Voltage
- Flexible CCD/CIS Sensor Timing Generator

Key Specifications

■ Maximum Input Level 1.2 or 2.4 Volt Modes

(both with + or - polarity option)

■ ADC Resolution■ ADC Sampling Rate16-Bit45 MSPS

■ INL +/- 23 LSB (typ)

■ Channel Sampling Rate 15/22.5/30 MSPS

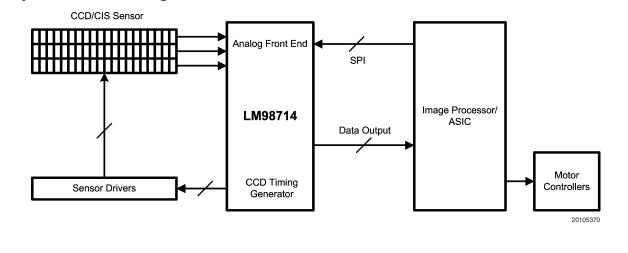
■ PGA Gain Steps 256 Steps

■ PGA Gain Range■ Analog DAC Resolution0.7 to 7.84x■ +/-9 Bits

■ Analog DAC Range +/-300mV or +/-600mV

■ Digital DAC Resolution +/-6 Bits
 ■ Digital DAC Range -1024 LSB to + 1008 LSB

■ SNR -74dB (@0dB PGA Gain)


■ Power Dissipation 505mW (LVDS) 610mW (CMOS)
■ Operating Temp 0 to 70°C

■ Supply Voltage 3.3V Nominal (3.0V to 3.6V range)

Features

- LVDS/CMOS Outputs
- LVDS/CMOS Pixel Rate Input Clock or ADC Input Clock
- CDS or S/H Processing for CCD or CIS sensors

System Block Diagram

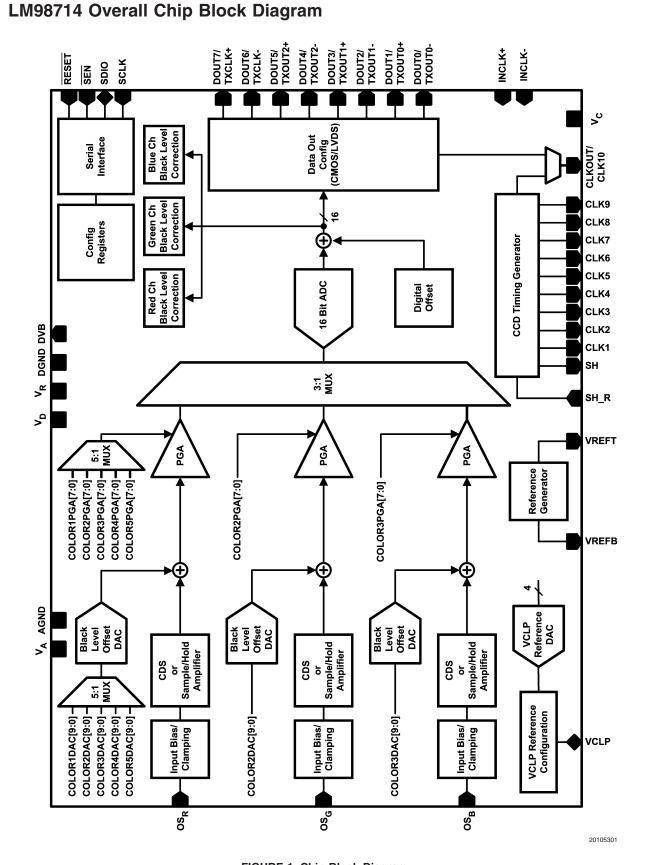
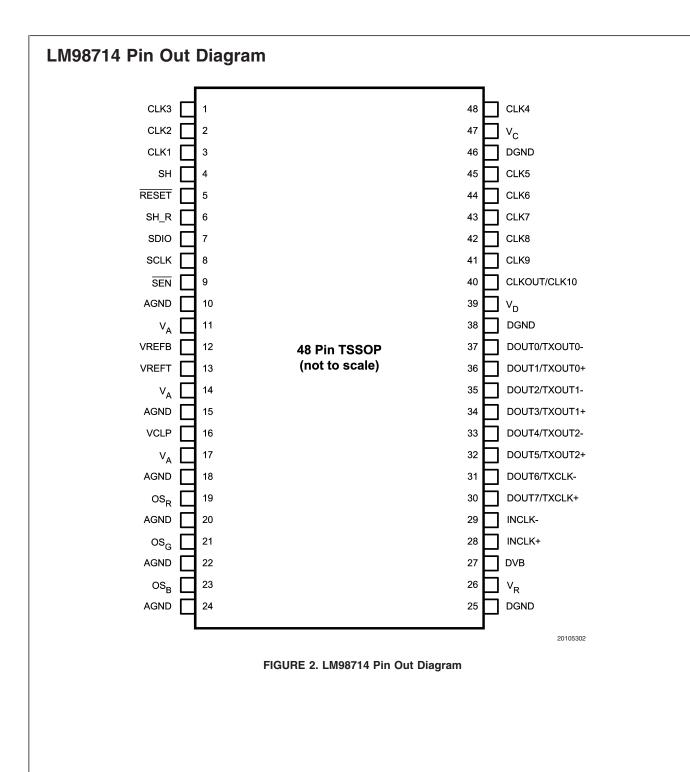
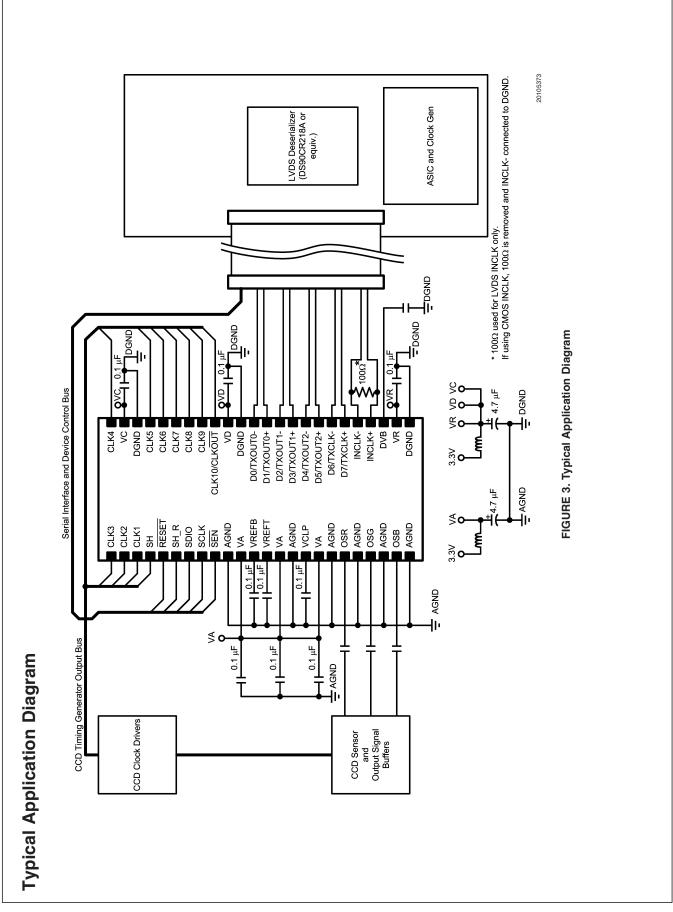




FIGURE 1. Chip Block Diagram

Pin Descriptions

Pin	Name	I/O	Тур	Res	Description
1	CLK3	0	D	PU	Configurable sensor control output.
2	CLK2	0	D	PD	Configurable sensor control output.
3	CLK1	0	D	PU	Configurable sensor control output.
4	SH	0	D	PD	Sensor - Shift or transfer control signal for CCD and CIS sensors.
5	RESET	ı	D	PU	Active-low master reset. NC when function not being used.
6	SH_R	ı	D	PD	External request for an SH pulse.
7	SDIO	I/O	D		Serial Interface Data Input
8	SCLK	I	D	PD	Serial Interface shift register clock.
9	SEN	I	D	PU	Active-low chip enable for the Serial Interface.
10	AGND		Р		Analog ground return.
11	V _A		Р		Analog power supply. Bypass voltage source with 4.7 μ F and pin with 0.1 μ F to AGND.
12	VREFB	0	Α		Bottom of ADC reference. Bypass with a 0.1µF capacitor to ground.
13	VREFT	0	Α		Top of ADC reference. Bypass with a 0.1µF capacitor to ground.
14	V _A		Р		Analog power supply. Bypass voltage source with 4.7 μ F and pin with 0.1 μ F to AGND.
15	AGND		Р		Analog ground return.
16	VCLP	10	Α		Input Clamp Voltage. Normally bypassed with a 0.1µF, and a 4.7µF capacitor to
					AGND. An external reference voltage may be applied to this pin.
17	V _A		Р		Analog power supply. Bypass voltage source with 4.7µF and pin with 0.1µF to AGND.
18	AGND		Р		Analog ground return.
19	OS _R	I	Α		Analog input signal. Typically sensor Red output AC-coupled thru a capacitor.
20	AGND		Р		Analog ground return.
21	OS _G	Ι	Α		Analog input signal. Typically sensor Green output AC-coupled thru a capacitor.
22	AGND		Р		Analog ground return.
23	OS _B	I	Α		Analog input signal. Typically sensor Blue output AC-coupled thru a capacitor.
24	AGND		Р		Analog ground return.
25	DGND		Р		Digital ground return.
26	V _R		Р		Power supply input for internal voltage reference generator. Bypass this supply pin with a 0.1µF capacitor.
27	DVB	0	Р		Digital Core Voltage bypass. Not an input. Bypass with 0.1µF capacitor to DGND.
28	INCLK+	I	D		Clock Input. Non-Inverting input for LVDS clocks or CMOS clock input. CMOS clock is selected when pin 29 is held at DGND, otherwise clock is configured
					for LVDS operation.
29	INCLK-	h	D		Clock Input. Inverting input for LVDS clocks, connect to DGND for CMOS clock.
30	DOUT7/	0	D		Bit 7 of the digital video output bus in CMOS Mode, LVDS Frame Clock+ in
	TXCLK+				LVDS Mode.
31	DOUT6/	0	D		Bit 6 of the digital video output bus in CMOS Mode, LVDS Frame Clock- in
	TXCLK-				LVDS Mode.
32	DOUT5/	0	D		Bit 5 of the digital video output bus in CMOS Mode, LVDS Data Out2+ in LVDS
	TXOUT2+				Mode.
33	DOUT4/	0	D		Bit 4 of the digital video output bus in CMOS Mode, LVDS Data Out2- in LVDS
	TXOUT2-				Mode.
34	DOUT3/	0	D		Bit 3 of the digital video output bus in CMOS Mode, LVDS Data Out1+ in LVDS
	TXOUT1+				Mode.
35	DOUT2/	0	D		Bit 2 of the digital video output bus in CMOS Mode, LVDS Data Out1- in LVDS
	TXOUT1-	1			Mode.

Pin Descriptions (Continued)

Pin	Name	I/O	Тур	Res	Description
36	DOUT1/	0	D		Bit 1 of the digital video output bus in CMOS Mode, LVDS Data Out0+ in LVDS
	TXOUT0+				Mode.
37	DOUT0/	0	D		Bit 0 of the digital video output bus in CMOS Mode, LVDS Data Out0- in LVDS
	TXOUT0-				Mode.
38	DGND		Р		Digital ground return.
39	V _D		Р		Power supply for the digital circuits. Bypass this supply pin with 0.1µF
					capacitor. A single 4.7µF capacitor should be used between the supply and the
					VD, VR and VC pins.
40	CLKOUT/	0	D	PD	Output clock for registering output data when using CMOS outputs, or
	CLK10				configurable sensor control output.
41	CLK9	0	D	PD	Configurable sensor control output.
42	CLK8	0	D	PD	Configurable sensor control output.
43	CLK7	0	D	PD	Configurable sensor control output.
44	CLK6	0	D	PU	Configurable sensor control output.
45	CLK5	0	D	PD	Configurable sensor control output.
46	DGND		Р		Digital ground return.
47	V _C		Р		Power supply for the sensor control outputs. Bypass this supply pin with 0.1µF
					capacitor.
48	CLK4	0	D	PD	Configurable sensor control output.

(I=Input), (O=Output), (IO=Bi-directional), (P=Power), (D=Digital), (A=Analog), (PU=Pull Up with an internal resistor), (PD=Pull Down with an internal resistor.).

Absolute Maximum Ratings (Notes 2,

1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (VA,VR,VD,VC)	4.2V
Voltage on Any Input Pin	-0.3V to
(Not to exceed 4.2V)	(VA + 0.3V)
Voltage on Any Output Pin	-0.3V to
(execpt DVB and not to exceed	(VA + 0.3V)
4.2V)	
DVB Output Pin Voltage	2.0V
Input Current at any pin other than	±25 mA

Supply Pins (Note 3)

Package Input Current (except

Supply Pins) (Note 3)

Maximum Junction Temperature (TA)

Thermal Resistance (θ_{JA})	66°C/W
Package Dissipation at T _A = 25°C	1.89W

ESD Rating (Note 5)

Human Body Model 2500V
Machine Model 250V
Storage Temperature -65°C to +150°C
Soldering process must comply with National
Semiconductor's Reflow Temperature Profile
specifications. Refer to www.national.com/packaging.

(Note 6)

(Note 4)

Operating Ratings (Notes 1, 2)

Operating Temperature Range $0^{\circ}\text{C} \le \text{T}_{\text{A}} \le +70^{\circ}\text{C}$ All Supply Voltage +3.0V to +3.6V

Electrical Characteristics

The following specifications apply for VA = VD = VR = VC = 3.3V, C_L = 10pF, and f_{INCLK} = 15MHz unless otherwise specified. Boldface limits apply for T_A = T_{MIN} to T_{MAX} ; all other limits T_A = 25°C.

±50 mA

150°C

				Тур		
Symbol	Parameter	Conditions	Min	(Note 8)	Max	Units
CMOS Digi	tal Input DC Specifications (RESE	Tb, SH_R, SCLK, SENb)				
V _{IH}	Logical "1" Input Voltage		2.0			V
V_{IL}	Logical "0" Input Voltage				0.8	V
I _{IH}	Logical "1" Input Current	V _{IH} = VD				
		RESET		235		nA
		SH_R, SCLK		70		μΑ
		SEN		130		nA
I _{IL}	Logical "0" Input Current	VIL = DGND				
		RESET		70		μΑ
		SH_R, SCLK		235		nA
		SEN		70		μA
CMOS Digi	tal Output DC Specifications (SH,	CLK1 to CLK10, CMOS Data C	outputs)			•
V _{OH}	Logical "1" Output Voltage	I _{OUT} = -0.5mA	2.95			V
V _{OL}	Logical "0" Output Voltage	I _{OUT} = 1.6mA			0.25	V
I _{os}	Output Short Circuit Current	V _{OUT} = DGND		16		mA
		V _{OUT} = VD		-20		
l _{oz}	CMOS Output TRI-STATE	V _{OUT} = DGND		20		nA
	Current	$V_{OUT} = VD$		-25		
CMOS Digi	tal Input/Output DC Specifications	s (SDIO)	•			•
I _{IH}	Logical "1" Input Current	V _{IH} = VD		90		nA
I _{IL}	Logical "0" Input Current	V _{IL} = DGND		90		nA
LVDS/CMO	S Clock Receiver DC Specification	ns (INCLK+ and INCLK- Pins)	•			
V _{IHL}	Differential LVDS Clock	R _L = 100W			100	mV
	High Threshold Voltage	V _{CM} (LVDS Input Common				
		Mode Voltage)= 1.25V		<u> </u>		
V _{ILL}	Differential LVDS Clock]	-100			mV
	Low Threshold Voltage					

Electrical Characteristics (Continued)

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10pF$, and $f_{INCLK} = 15MHz$ unless otherwise specified. **Boldface limits apply for T_A = T_{MIN} to T_{MAX};** all other limits $T_A = 25^{\circ}C$.

0	Daywooday	O a sa distinue	NA:	Тур		11-4-
Symbol	Parameter	Conditions	Min	(Note 8)	Max	Units
V_{IHC}	CMOS Clock High Threshold Voltage	INCLK- = DGND	2.0			V
V _{ILC}	CMOS Clock				0.8	V
iLO	Low Threshold Voltage					
I _{IHL}	CMOS Clock				280	μA
	Input High Current					
I _{ILC}	CMOS Clock				-150	μA
	Input Low Current					
LVDS Outp	out DC Specifications					1
V _{OD}	Differential Output Voltage	$R_L = 100\Omega$	180	328	450	mV
V _{os}	LVDS Output Offset Voltage	_	1.17	1.23	1.3	V
I _{os}	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$		7.9		mA
	ply Specifications					1
IA	VA Analog Supply Current	VA Normal State	60	97	125	mA
	- ''	VA Low Power State	12	23	32	mA
		(Powerdown)				
IR	VR Digital Supply Current	VR Normal State	30	64	75	mA
		(LVDS Outputs)				
		CMOS Output Data Format	15	47	55	mA
		LVDS Output Data Format		47		mA
		with Data Outputs Disabled				
ID	VD Digital Output Driver Supply	LVDS Output Data Format		0.05		mA
	Current	CMOS Output Data Format	12		40	mA
		(ATE Loading of CMOS				
		Outputs > 50pF)				
IC	VC CCD Timing Generator	Typical sensor outputs:	0.5		12	mA
	Output Driver Supply Current	SH, CLK1=Φ1A, CLK2=Φ2A,				
		CLK3=ФВ, CLK4=ФС,				
		CLK5=RS, CLK6=CP				
		(ATE Loading of CMOS				
		Outputs > 50pF)				
PWR	Average Power Dissipation	LVDS Output Data Format	350	505	650	mW
		CMOS Output Data Format	380	610	700	mW
		(ATE Loading of CMOS				
		Outputs > 50pF)				
Input Samp	oling Circuit Specifications					
V _{IN}	Input Voltage Level	CDS Gain=1x, PGA Gain=1x		2.3		Vp-p
		CDS Gain=2x, PGA Gain=		1.22		
		1x				

Electrical Characteristics (Continued)

The following specifications apply for VA = VD = VR = VC = 3.3V, C_L = 10pF, and f_{INCLK} = 15MHz unless otherwise specified.

Boldface limits apply for T_A = T_{MIN} to T_{MAX}; all other limits T_A = 25°C.

				Тур		
Symbol	Parameter	Conditions	Min	(Note 8)	Max	Units
I _{IN_SH}	Sample and Hold Mode	Source Followers Off	50		70	μΑ
	Input Leakage Current	CDS Gain = 1x	(-70)		(-40)	
		$OS_X = VA (OS_X = AGND)$				
		Source Followers Off	75		105	μA
		CDS Gain = 2x	(-105)		(-75)	
		$OS_X = VA (OS_X = AGND)$, ,		, ,	
		Source Followers On	-200	-10	200	nA
		CDS Gain = 2x		-16		
		$OS_X = VA (OS_X = AGND)$				
C _{SH}	Sample/Hold Mode	CDS Gain = 1x		2.5		pF
OSH	Equivalent Input Capacitance	ODS Gain = 1x		2.5		ρı
		CDS Coin Ov		4		nF
1	(see Figure 11)	CDS Gain = 2x	000	4	000	pF
I _{IN_CDS}	CDS Mode	Source Followers Off	-300	7	300	nA
	Input Leakage Current	$OS_X = VA (OS_X = AGND)$		(-25)		_
R_{CLPIN}	CLPIN Switch Resistance			16	50	Ω
	(OS _X to VCLP Node in Figure 8)					
CLP Refe	erence Circuit Specifications					
	VCLP DAC Resolution			4		Bits
	VCLP DAC Step Size			0.16		V
V _{VCLP}	VCLP DAC Voltage Min Output	VCLP Config. Register =	0.14	0.26	0.43	V
		0001 0000b				
	VCLP DAC Voltage Max Output	VCLP Config. Register =	2.38	2.68	2.93	V
		0001 1111b				
	Resistor Ladder Enabled	VCLP Config. Register =	1.54	V _A / 2	1.73	V
		0010 xxxxb				
I _{SC}	VCLP DAC Short Circuit Output	VCLP Config. Register =		30		mA
isc	Current	0001 xxxxb				ША
Black I ove	el Offset DAC Specifications	0001 XXXXD				
DIACK LEVE	Resolution			10		Dito
						Bits
	Monotonicity	00000	G	uaranteed by	cnaracterizat	ion
	Offset Adjustment Range	CDS Gain = 1x				
	Referred to AFE Input	Minimum DAC Code =		-614		
						mV
		0x000				
		Maximum DAC Code =		614		
		Maximum DAC Code = 0x3FF		614		
		Maximum DAC Code =		614		
		Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code =		-307		
		Maximum DAC Code = 0x3FF CDS Gain = 2x		-		mV
		Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code =		-		
		Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code = 0x000		-307		
	Offset Adjustment Range	Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF Minimum DAC Code =	-16000	-307	-18200	
	Offset Adjustment Range	Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF	-16000	-307	-18200	mV
	Offset Adjustment Range Referred to AFE Output	Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF Minimum DAC Code =	-16000 16000	-307	-18200 18200	
		Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF Minimum DAC Code = 0x000		-307		mV
		Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF Minimum DAC Code = 0x000 Maximum DAC Code =		-307		mV
	Referred to AFE Output	Maximum DAC Code = 0x3FF CDS Gain = 2x Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF		-307 307		mV LSB

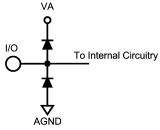
Electrical Characteristics (Continued)

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10 pF$, and $f_{INCLK} = 15 MHz$ unless otherwise specified. Boldface limits apply for $T_A = T_{MIN}$ to T_{MAX} ; all other limits $T_A = 25 \,^{\circ}C$.

				Тур		
Symbol	Parameter	Conditions	Min	(Note 8)	Max	Units
INL	Integral Non-Linearity		-3.1		2.65	LSB
PGA Spec	ifications					
	Gain Resolution			8		Bits
	Monotonicity		G	uaranteed by	characteriza	tion
	Maximum Gain	CDS Gain = 1x	7.18	7.9	8.77	V/V
		CDS Gain = 1x	17.1	17.9	18.9	dB
	Minimum Gain	CDS Gain = 1x	0.56	0.7	0.82	V/V
		CDS Gain = 1x	-5	-3	-1.72	dB
	PGA Function	Gain (V/\	/) = (196/(2	280-PGA Code	e))	
		Gain (dB) = 2	0LOG10(1	96/(280-PGA	Code))	
	Channel Matching	Minimum PGA Gain		3		%
		Maximum PGA Gain		12.7		
ADC Spec	ifications					•
V _{REFT}	Top of Reference			2.07		V
V_{REFB}	Bottom of Reference			0.89		V
V _{REFT} -	Differential Reference Voltage		1.07	1.18	1.29	V
	Overrange Output Code			65535		
	Underrange Output Code			0		
Digital Off	set "DAC" Specifications					1
	Resolution			7		Bits
	Digital Offset DAC LSB Step Size	Referred to AFE Output		16		LSB
	Offset Adjustment Range	Min DAC Code =7b0000000		-1024		
	Referred to AFE Output	Mid DAC Code =7b1000000		0		1.00
		Max DAC Code =		1008		LSE
		7b1111111				
Full Chani	nel Performance Specifications					
DNL	Differential Non-Linearity		-0.99	0.8/-0.6	2.55	LSB
INL	Integral Non-Linearity		-73	+/-23	78	LSB
SNR	Total Output Noise	Minimum PGA Gain		-79		dB
				7.2		LSE
						RMS
		PGA Gain = 1x		-74		dB
				13	30	LSE
						RMS
		Maximum PGA Gain		-56		dB
				104	<u> </u>	LSE
						RMS
	Channel to Channel Crosstalk	Mode 3		47		LSB
		Mode 2		16		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Operating Ratings is not recommended.

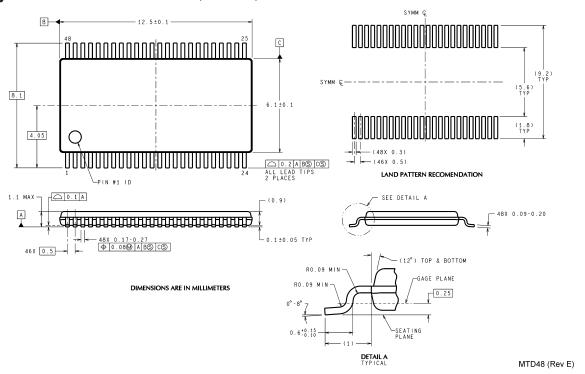
Note 2: All voltages are measured with respect to AGND = DGND = 0V, unless otherwise specified.


Note 3: When the input voltage (V_{IN}) at any pin exceeds the power supplies $(V_{IN} < GND \text{ or } V_{IN} > V_A \text{ or } V_D)$, the current at that pin should be limited to 25 mA. The 50 mA maximum package input current rating limits the number of pins that can simultaneously safely exceed the power supplies with an input current of 25 mA to two.

Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} and the ambient temperature, T_A . The maximum allowable power dissipation at any temperature is $P_D = (T_{JMAX} - T_A)/\theta_{JA}$. The values for maximum power dissipation listed above will be reached only when the device is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.

Note 5: Human body model is 100 pF capacitor discharged through a 1.5 k Ω resistor. Machine model is 220 pF discharged through 0Ω .

Note 6: Reflow temperature profiles are different for lead-free and non-lead-free packages.


Note 7: The analog inputs are protected as shown below. Input voltage magnitudes beyond the supply rails will not damage the device, provided the current is limited per note 3. However, input errors will be generated If the input goes above VA and below AGND.

20105371

Note 8: Typical figures are at $T_A = 25^{\circ}C$, and represent most likely parametric norms at the time of product characterization. The typical specifications are not guaranteed.

Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead TSSOP NS Package Number MTD48

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at: www.national.com/quality/green.

Lead free products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560