

LME49743 Quad High Performance, High Fidelity Audio Operational Amplifier

General Description

The LME49743 is a low distortion, low noise, high slew rate operational amplifier optimized and fully specified for high performance, high fidelity applications. The LME49743 audio operational amplifier delivers superior audio signal amplification for outstanding audio performance. The LME49743 combines low voltage noise density (3.5nV/ $\sqrt{\rm Hz}$) and THD+N (0.0001%) to easily satisfy demanding audio applications. To ensure that the most challenging loads are driven without compromise, the LME49743 has a slew rate of $\pm 12 \rm V/\mu s$ and an output current capability of $\pm 21 \rm mA$.

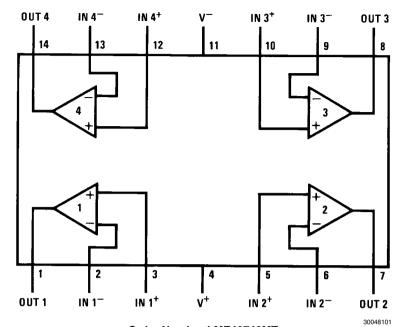
The LME49743's outstanding CMRR(106dB), PSRR(98dB), and $\rm V_{OS}~(\pm 0.15 mV)$ give the amplifier excellent operational amplifier DC performance.

The LME49743 has a wide supply range of ±4.0V to ±17V. Over this supply range the LME49743's input circuitry maintains excellent common-mode, power supply rejection, and low input bias current. The LME49743 is unity gain stable.

The LME49743 is available in 14-lead TSSOP.

Key Specifications

■ Power Supply Voltage Range	±4.0V to ±17V
■ THD+N ($A_V = 1$, $V_{OUT} = 3V_{RMS}$,	
$f_{IN} = 1kHz$	
$R_L = 2k\Omega$	0.0001% (typ)
$R_L = 600\Omega$	0.0001% (typ)
■ Input Noise Density	$3.5 \text{nV}/\sqrt{\text{Hz}}$ (typ)
■ Slew Rate	±12V/µs (typ)
■ Gain Bandwidth Product	30MHz (typ)
■ Open Loop Gain (R _L = 600Ω)	110dB (typ)
■ Input Bias Current	190nA (typ)
■ Input Offset Voltage	±0.15mV (typ)


Features

- Easily drives 600Ω loads
- Optimized for superior audio signal fidelity
- Output short circuit protection
- 98dB (typ) PSRR and 106dB (typ) CMRR
- TSSOP package

Applications

- Audio amplifiers and preamplifiers
- Professional Audio
- Equalization and crossover networks
- Line drivers and receivers
- Active filters

Connection Diagram

Order Number LME49743MT See NS Package Number — MTC14

2

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage $(V_S = V^+ - V^-)$

 $(V_S = V^+ - V^-)$ 36V

Storage Temperature -65°C to 150°C

Input Voltage (V-) - 0.7V to (V+) + 0.7V

Output Short Circuit (Note 3) Continuous

Power Dissipation Internally Limited ESD Susceptibility (Note 4) 750V ESD Susceptibility (Note 5) 175V Junction Temperature 150°C

Thermal Resistance

 θ_{JA} (MT) 140°C/W

Temperature Range

 $T_{MIN} \le T_A \le T_{MAX}$ $-40^{\circ}C \le T_A \le 85^{\circ}C$ Supply Voltage Range $\pm 4.0V \le V_S \le \pm 17V$

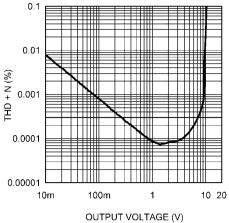
Electrical Characteristics (Notes 1, 2) The following specifications apply for $V_S = \pm 15V$, $R_L = 2k\Omega$, $f_{IN} = 1kHz$, and $T_A = 25C$, unless otherwise specified.

			LME49743		
Symbol	Parameter	Conditions	Typical Limit		Units
		Conditions	(Note 6)	(Notes 7, 8)	(Limits)
		$A_V = 1$, $V_{OUT} = 3V_{RMS}$			
THD+N	Total Harmonic Distortion + Noise	$R_L = 2k\Omega$	0.0001		
		$R_L = 600\Omega$	0.0001	0.0002	% (max)
IMD	Intermodulation Distortion	$A_V = 1$, $V_{OUT} = 3V_{RMS}$ Two-tone, 60Hz & 7kHz 4:1	0.0005		% (max)
GBWP	Gain Bandwidth Product		30	25	MHz (min)
SR	Slew Rate		12	9.5	V/µs (min)
FPBW	Full Power Bandwidth	V _{OUT} = 1V _{P-P} , -3dB referenced to output magnitude at f = 1kHz	10		MHz
t _s	Settling time	$A_V = 1$, 10V step, $C_L = 100$ pF 0.1% error range	1.2		μs
	Equivalent Input Noise Voltage	f _{BW} = 20Hz to 20kHz	0.48	0.65	μV_{RMS}
e _n	Equivalent Input Noise Density	f = 1kHz	3.5	4.5	nV/√Hz (max)
"		f = 10Hz	6.4	ļ	nV/√ Hz
	Current Noise Density	f = 1kHz	1.6		pA / √Hz
i _n			3.1	ļ	pA/√Hz
V _{OS}	Offset Voltage		±0.15	±1.0	mV (max)
ΔV _{OS} /ΔTemp	Average Input Offset Voltage Drift vs Temperature	40°C ≤ T _A ≤ 85°C	0.05		μV/°C
PSRR	Average Input Offset Voltage Shift vs Power Supply Voltage	ΔV _S = 20V (Note 9)	98	94	dB (min)
180	Channel-to-Channel Isolation	f _{IN} = 1kHz	118		dB
ISO _{CH-CH}	Charmer to-Charmer isolation	f _{IN} = 20kHz	112		dB
I _B	Input Bias Current	$V_{CM} = 0V$	190	250	nA (max)
ΔI _{OS} /ΔTemp	Input Bias Current Drift vs Temperature	-40°C ≤ T _A ≤ 85°C	0.05		nA/°C
I _{os}	Input Offset Current	$V_{CM} = 0V$	7	40	nA (max)
V _{IN-CM}	Common-Mode Input Voltage Range		±13.2	(V+)-2.0 (V-)+2.0	V (min) V (min)
CMRR	Common-Mode Rejection	-10V <v<sub>CM<10V</v<sub>	106	98	dB (min)
7	Differential Input Impedance		30		kΩ
Z _{IN}	Common Mode Input Impedance	-10V <v<sub>CM<10V</v<sub>	1000		MΩ
		$-10V < V_{OUT} < 10V, R_L = 600\Omega$	110		dB (min)
A _{VOL}	Open Loop Voltage Gain	$-10V < V_{OUT} < 10V, R_L = 2k\Omega$	110		dB (min)
10L		$-10V < V_{OUT} < 10V, R_L = 10k\Omega$	110	100	dB (min)

Symbol	Parameter	Conditions	LME	49743	
			Typical	Limit	Units
			(Note 6)	(Notes 7,	(Limits)
				8)	
V _{OUTMAX}	Maximum Output Voltage Swing	$R_L = 600\Omega$	±12.4	±12.0	V (min)
		$R_L = 2k\Omega$	±13.0		V (min)
		$R_L = 10k\Omega$	±13.0		V (min)
I _{OUT}	Output Current	$R_L = 600\Omega, V_S = \pm 17V$	±21	±20	mA (min)
I _{OUT-CC}	Short Circuit Current		+30		mA
			-38		mA
		f _{IN} = 10kHz			
R _{OUT}		Closed-Loop	0.01		Ω
		Open-Loop	13		Ω
C _{LOAD}	Capacitive Load Drive Overshoot	100pF	16		%
I _s	Total Quiescent Current	I _{OUT} = 0mA	10	14	mA (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.

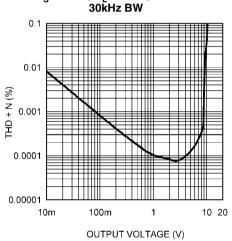
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.


- Note 3: Amplifier output connected to GND, any number of amplifiers within a package.
- Note 4: Human body model, 100pF discharged through a 1.5k Ω resistor.
- Note 5: Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50Ω).

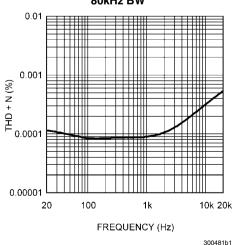
4

- Note 6: Typical specifications are specified at +25°C and represent the most likely parametric norm.
- Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
- Note 8: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
- Note 9: PSRR is measured as follows: V_{OS} is measured at two supply voltages, $\pm 5V$ and $\pm 15V$. PSRR = $|20log(\Delta V_{OS}/\Delta V_S)|$.

Typical Performance Characteristics


THD+N vs Output Voltage $V_S = \pm 15V$, $R_L = 2k\Omega$, f = 1kHz 30kHz BW

300481b6

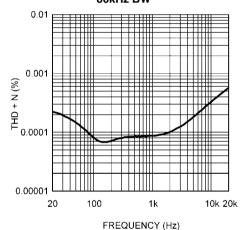

THD+N vs Output Voltage

 $V_S = \pm 15V, R_L = 600\Omega, f = 1kHz$

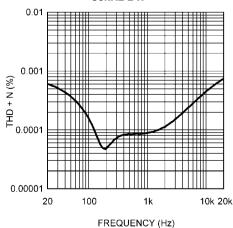


300481b8

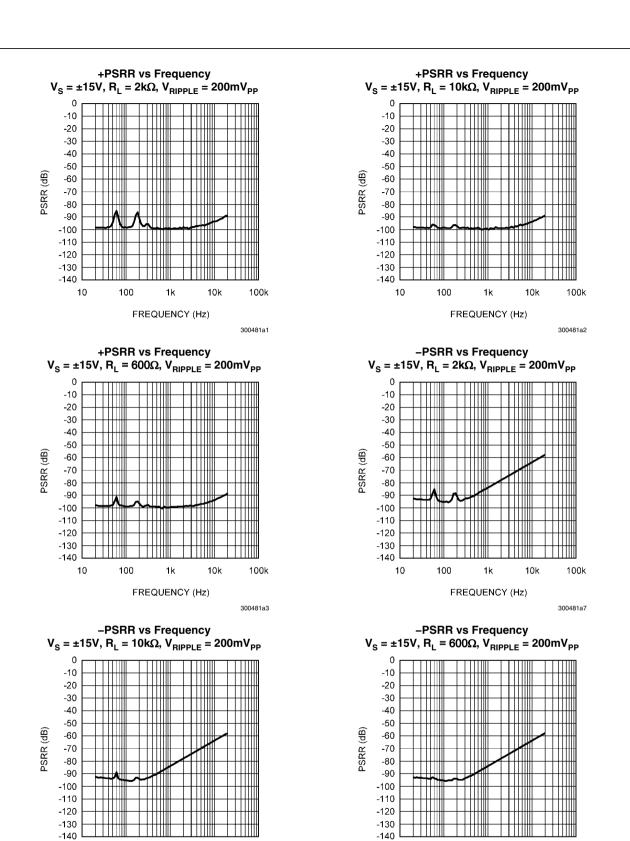
THD+N vs Frequency $V_S = \pm 15 V, \, V_{OUT} = 3 V_{RMS}, \, R_L = 10 k\Omega$ 80kHz BW



THD+N vs Output Voltage $V_S = \pm 15V, R_L = 10k\Omega, f = 1kHz$ 30kHz BW


300481b7

THD+N vs Frequency $V_S = \pm 15V, \, V_{OUT} = 3V_{RMS}, \, R_L = 2k\Omega$ 80kHz BW



300481b0

THD+N vs Frequency $V_S = \pm 15 V, \, V_{OUT} = 3 V_{RMS}, \, R_L = 600 \Omega$ 80kHz BW

300481b2

10

100

1k

FREQUENCY (Hz)

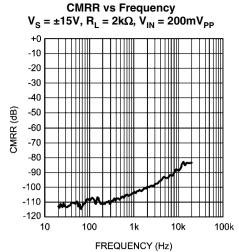
10k

100k

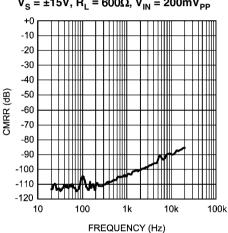
300481a8

10

100


1k

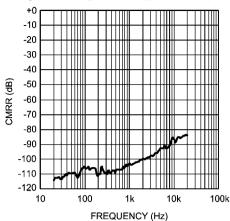
FREQUENCY (Hz)


10k

100k

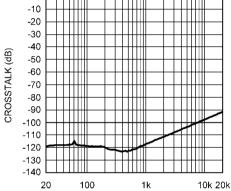
300481a9

30048189 **CMRR vs Frequency** $V_S = \pm 15V$, $R_L = 600\Omega$, $V_{IN} = 200 \text{mV}_{PP}$



30048191

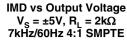
300481c0

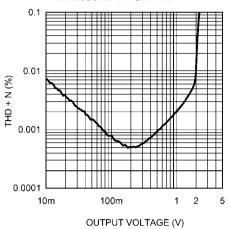

Crosstalk vs Frequency $V_S = \pm 15V$, $V_{OUT} = 3V_{RMS}$, $R_L = 10k\Omega$ -10 -20 -30 -40 CROSSTALK (dB) -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 20 100 10k 20k 1k FREQUENCY (Hz)

CMRR vs Frequency $V_{S} = \pm 15V, R_{L} = 10k\Omega, V_{IN} = 200mV_{PP}$

30048190

Crosstalk vs Frequency $V_S = \pm 15V$, $V_{OUT} = 3V_{BMS}$, $R_L = 2k\Omega$ -10 -20 -30 -40 -50




FREQUENCY (Hz)

300481b9 Crosstalk vs Frequency

 $V_S = \pm 15V$, $V_{OUT} = 3V_{RMS}$, $R_L = 600\Omega$ -10 -20 -30 -40 CROSSTALK (dB) -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 20 100 10k 20k 1k FREQUENCY (Hz)

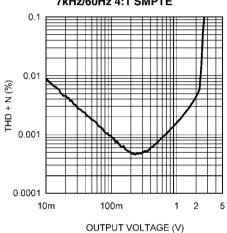
300481c1

30048195

0.01 HDH 0.001

IMD vs Output Voltage $V_S = \pm 5V, R_L = 10k\Omega$ 7kHz/60Hz 4:1 SMPTE

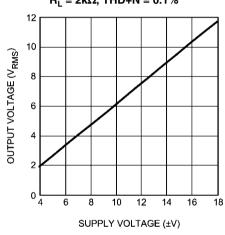
0.1


0.0001

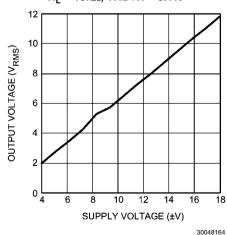
10m

OUTPUT VOLTAGE (V)

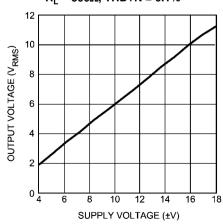
30048196


IMD vs Output Voltage $V_S = \pm 5V, R_L = 600\Omega$ 7kHz/60Hz 4:1 SMPTE

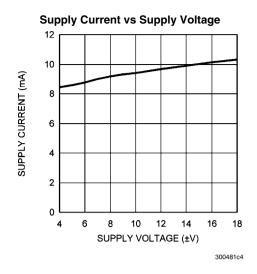
30048197

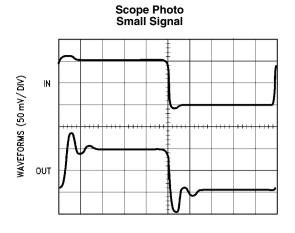

Output Voltage vs Supply Voltage $R_L = 2k\Omega,\, THD + N = 0.1\%$

100m

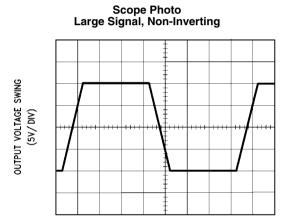


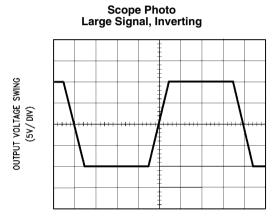
30048163


Output Voltage vs Supply Voltage $R_L = 10k\Omega$, THD+N = 0.1%



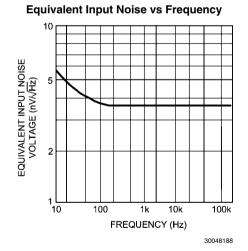
Output Voltage vs Supply Voltage $R_L = 600\Omega,\, THD + N = 0.1\%$

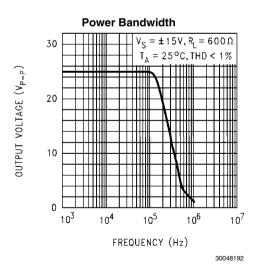

30048165

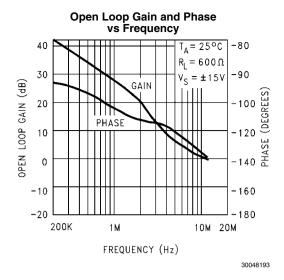


TIME (0.1 µs / DIV)

30048185






TIME (1 μs / DIV)

30048186

TIME (1 μ s / DIV)

Application Information

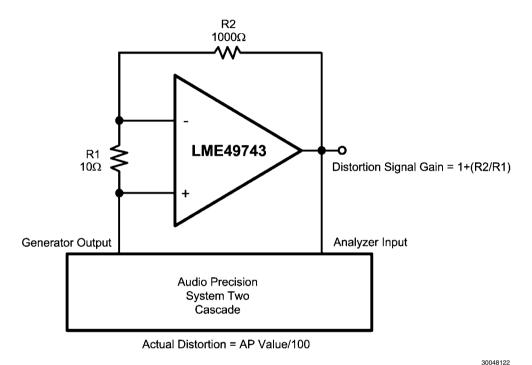
DISTORTION MEASUREMENTS

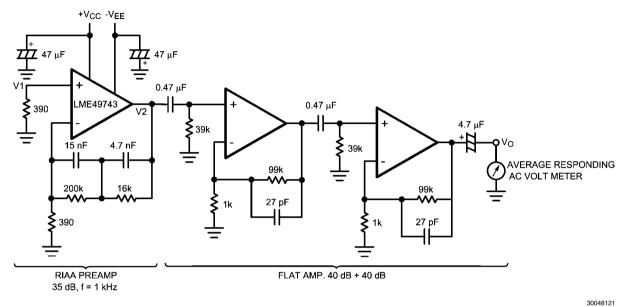
The vanishingly low residual distortion produced by LME49743 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution, however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.

The LME49743's low residual distortion is an input referred internal error. As shown in Figure 1, adding the 10Ω resistor connected between the amplifier's inverting and non-inverting

inputs changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure 1.

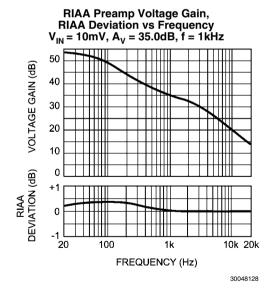
This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so produces distortion components that are within the measurement equipment's capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

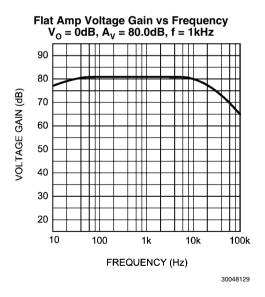



FIGURE 1. THD+N and IMD Distortion Test Circuit

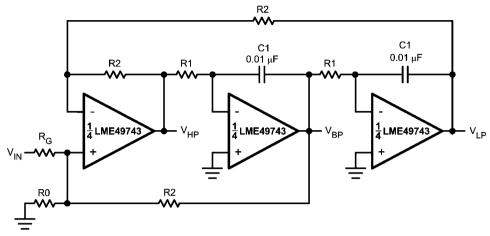
Application Hints

The LME49743 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

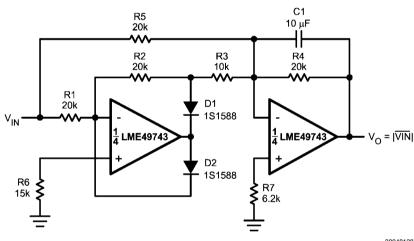

Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this is to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

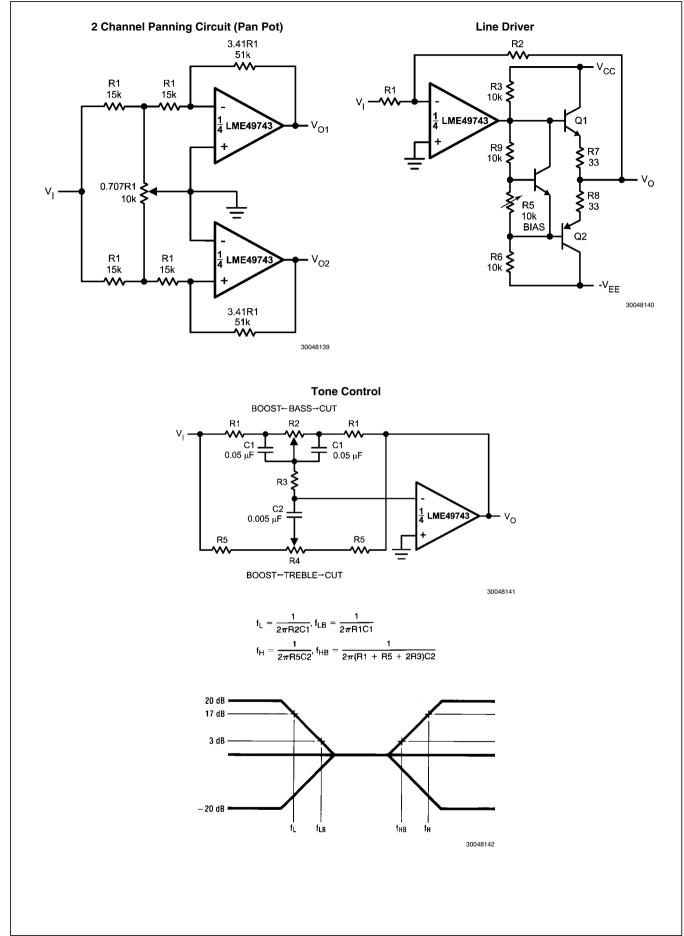

Noise Measurement Circuit

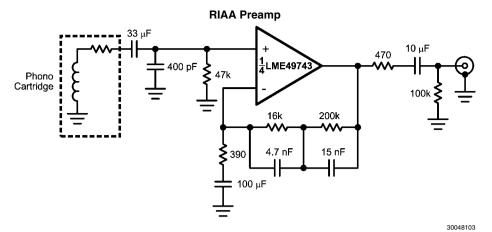
Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.


Total Gain: 115 dB at f = 1 kHz Input Referred Noise Voltage: e_n = V_O/560,000 (V)

Typical Applications


State Variable Filter

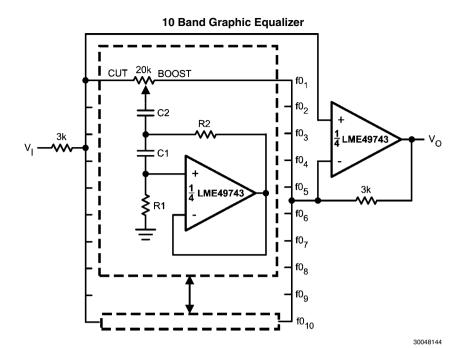

30048137


$$f_0 = \frac{1}{2\pi C1R1}, Q = \frac{1}{2}\left(1 + \frac{R2}{R0} + \frac{R2}{RG}\right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$$

AC/DC Converter

30048138

 $\begin{array}{l} A_{\nu}=35~dB\\ E_{n}=0.33~\mu V\\ S/N=90~dB\\ f=1~kHz\\ A~Weighted\\ A~Weighted,~V_{IN}=10~mV\\ @~f=1~kHz\\ \end{array}$


Balanced Input Mic Amp R3 R4 10k 10k LME49743 R2 10k 1/4 LME49743 R1 \$ R5 10k R6 R7 10k 10k 1/4 LME49743

30048143

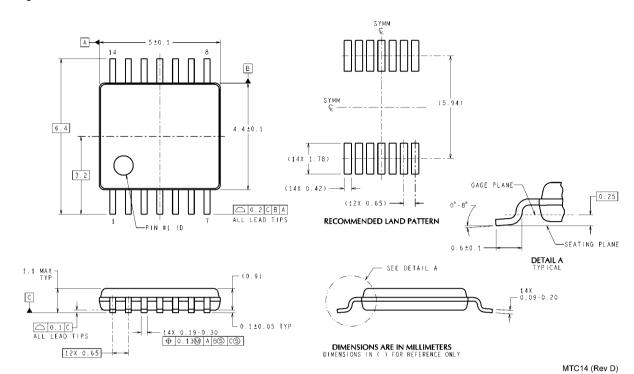
If R2 = R5, R3 = R6, R4 = R7

$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

Illustration is: V0 = 101(V2 - V1)

fo (Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12µF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51kΩ	510Ω

Note 10: At volume of change = $\pm 12 \text{ dB}$


Q = 1.7

Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

Revision History

Rev	Date	Description
1.0	03/26/08	Initial release.
1.01	01/12/09	Fixed a typo.

Physical Dimensions inches (millimeters) unless otherwise noted

Dual-In-Line Package Order Number LME49743MT NS Package Number MTC14

18

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

oducts	Design Support		
www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
www.national.com/audio	App Notes	www.national.com/appnotes	
www.national.com/timing	Reference Designs	www.national.com/refdesigns	
www.national.com/adc	Samples	www.national.com/samples	
www.national.com/interface	Eval Boards	www.national.com/evalboards	
www.national.com/lvds	Packaging	www.national.com/packaging	
www.national.com/power	Green Compliance	www.national.com/quality/green	
www.national.com/switchers	Distributors	www.national.com/contacts	
www.national.com/ldo	Quality and Reliability	www.national.com/quality	
www.national.com/led	Feedback/Support	www.national.com/feedback	
www.national.com/vref	Design Made Easy	www.national.com/easy	
www.national.com/powerwise	Solutions	www.national.com/solutions	
www.national.com/sdi	Mil/Aero	www.national.com/milaero	
www.national.com/tempsensors	Solar Magic®	www.national.com/solarmagic	
www.national.com/wireless	Analog University®	www.national.com/AU	
	www.national.com/amplifiers www.national.com/audio www.national.com/timing www.national.com/adc www.national.com/interface www.national.com/lvds www.national.com/power www.national.com/switchers www.national.com/ldo www.national.com/led www.national.com/ref www.national.com/powerwise www.national.com/sdi www.national.com/sdi	www.national.com/amplifiers WEBENCH® Tools www.national.com/audio App Notes www.national.com/timing Reference Designs www.national.com/adc Samples www.national.com/interface Eval Boards www.national.com/lvds Packaging www.national.com/power Green Compliance www.national.com/switchers Distributors www.national.com/ldo Quality and Reliability www.national.com/led Feedback/Support www.national.com/vref Design Made Easy www.national.com/powerwise Solutions www.national.com/sdi Mil/Aero www.national.com/stempsensors Solar Magic®	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com