

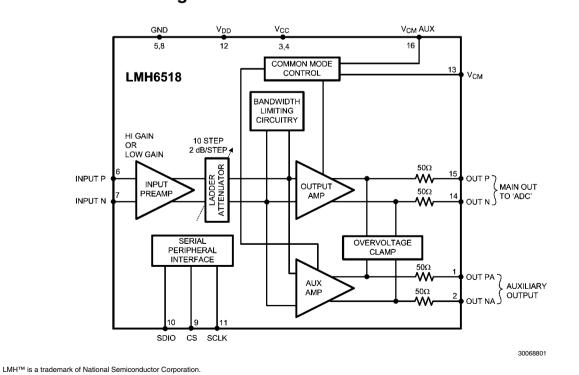
May 30, 2008

LMH6518 825 MHz, Digital Controlled, Variable Gain Amplifier

General Description

The LMH6518 is a digitally controlled variable gain amplifier whose total gain can be varied from -1.16 dB to 38.84 dB for a 40 dB range in 2 dB steps. The -3 dB bandwidth is 825 MHz at all gains. Gain accuracy at each setting is typically 0.1 dB. When used in conjunction with a National Semiconductor Gsample/second (Gsps) ADC with adjustable full scale (FS) range, the LMH6518 gain adjustment will accommodate full scale input signals from 6.8 mV_{PP} to 920 mV_{PP}.

The LMH6518 gain is programmed via a SPI-1 serial bus. A signal path combined gain resolution of 8.5 mdB can be achieved when the LMH6518's gain and the Gsps ADC's FS input are both manipulated. Propagation Delay variation across gain settings is typically 100 ps. 2nd/3rd order harmonic distortion is -50/-53 dBc at 100 MHz.


Inputs and outputs are dc-coupled. The outputs are differential with individual Common Mode (CM) voltage control (for Main and Auxiliary outputs) and have a selectable bandwidth limiting circuitry (common to both Main & Auxiliary) of 20, 100, 200, 350, 650 MHz, 750 MHz or full bandwidth. The Auxiliary output ("OUT PA" and "OUT NA") follows the Main output and is intended for use in Oscilloscope trigger function circuitry but may have other uses in other applications.

Features

■ Gain range	40 dB
 Gain step size 	2 dB
 Combined gain resolution with 	8.5 mdB
Gsample/second ADC's	
Min gain	–1.16 dB
Max gain	38.84 dB
■ -3 dB BW	825 MHz
 Rise/fall time 	500 ps
 Recovery time 	5 ns
 Propagation delay variation 	100 ps
HD2 @ 100 MHz	–50 dBc
HD3 @ 100 MHz	–53 dBc
 Input-referred noise (max gain) 	0.93 nV/√Hz
 Power consumption 	1.1W

Applications

- Oscilloscope programmable gain amplifier
- Differential ADC drivers
- High frequency single ended input to differential conversion
- Precision gain control applications
- Medical applications
- RF/ IF applications

Functional Block Diagram

^{© 2008} National Semiconductor Corporation 300688

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance	
Human Body Model	2000V
Machine Model	200V
Supply Voltage	
V _{CC} (5V nominal)	TBD
V _{DD} (3.3V nominal)	TBD

Operating Ratings (Note 1)

Thermal Resistance (θJ_A), LLP

Supply Voltage	$V_{CC} = 5V \ (\pm 5\%)$
	V _{DD} = 3.3V (±5%)
Temperature Range	–40°C to 85°C
Thermal Properties	
Junction-to-Ambient	

45°C/W

3.3V nominal)	TBD	Junction Temperature	150°C max
rical Characteristics	Unless otherwise specif	ied, all limits are guaranteed for	$T_A = 25^{\circ}C$, Input CM = 2.5V,
$2V$, V_{CM} AUX = 1.2V, V_{CC} = 5V, V_{DI}	$_{\rm D}$ = 3.3V, R _L = 100 Ω diffe	rential, V _{OUT} = 0.7 V _{PP} differenti	al, Main and Auxiliary Output
tions, full bandwidth setting, gain =	18.84 dB (Preamp HG.	0 dB ladder attenuation). Full Po	ower setting (Note 3).

Electr $V_{CM} = 1.2$ Specifications, full bandwidth setting, gain = 18.84 dB (Preamp HG, 0 dB ladder attenuation), Full Power setting (Note 3). Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min Typ	Max	Units
Dynamic Perfo	ormance				
LSBW	-3 dB Bandwidth	All Gains	750 825		MHz
Peaking	Peaking	All Gains	0.5		dB
GF_0.1dB	±0.1 dB Gain Flatness	All Gains	200		MHz
GF_1dB	±1 dB Gain Flatness	All Gains	600		MHz
TRS	Rise Time		500	TBD	
TRL	Fall Time		500	TBD	– ps
OS	Overshoot	Main Output	7		%
t _{s_long}	Long Term Settling time	Main Output, ±0.5%	10		
t _{s_short}	Short Term Settling time	Main Output, ±0.05%	14		ns
t_recover_1	Recovery Time	Preamp HG, 0 dB Ladder	5		
	(Note 2)	$\Delta V_{IN} = 12 \text{ mV}_{PP}$			
t_recover_2	_	Preamp HG, 20 dB Ladder	TBD		
		$\Delta V_{IN} = 120 \text{ mV}_{PP}$			
t_recover_3	_	Preamp LG, 0 dB Ladder	TBD		ns
		$\Delta V_{IN} = 120 \text{ mV}_{PP}$			
t_recover_4	_	Preamp LG, 20 dB Ladder	TBD		
		$\Delta V_{IN} = 1.2 V_{PP}$			
PD	Propagation Delay		1.6		ns
PD_var	Propagation Delay Variation	Gain Varied	100		ps
Noise, Distorti	on, and RF Specifications		• •		•
e _{n_1}	Input Noise Spectral Density	Max Gain, 10 MHz	0.93		nV/√Hz
e _{n_2}	—	Preamp LG and 0 dB Ladder	4.3		
2		Attenuation, 10 MHz			
e _{no_1}	RMS Output Noise	Preamp LG and 0 dB Ladder	940		μV
		Attenuation, 100 Hz to 400 MHz			
e _{no_2}		Max Gain, 100 Hz to 400 MHz	2.2		mV
NF_1	Noise Figure	Preamp LG and 0 dB Ladder	13.5		
		Attenuation, $R_S = 50\Omega$ each Input			dB
NF_2		Max Gain, $R_s = 50\Omega$ each Input	3.8		
HD2/ HD3_1	2 nd / 3 rd Harmonic Distortion	Main Output, 100 MHz, All Gains	-50/-53		
HD2/ HD3_2	7	Auxiliary Output, 100 MHz, All Gains	-48/-50		40-
HD2/ HD3_3		Main Output, 250 MHz, All Gains	-44/-50		- dBc
HD2/ HD3_4	7	Auxiliary Output, 250 MHz, All Gains	-42/-42		1
IMD3	Intermodulation Distortion	f = 250 MHz, Main output	-65		dBc

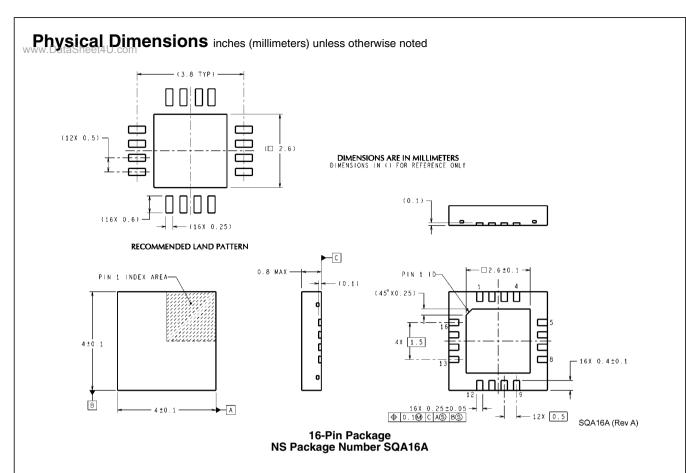
LMH6518

Symbol	Parameter	Condition	Min	Тур	Max	Units	
WWW.DataSheet OIP3_1	Intermodulation Intercept	Main Output, 250 MHz		26			
OIP3_2		Auxiliary Output, 250 MHz		TBD		dBm	
P_1dB_main	-1 dB Compression	Main Output, 250 MHz		TBD		d D an	
P_1dB_aux		Auxiliary Output, 250 MHz		TBD		dBm	
Gain Paramete	rs					•	
A _{V_MAX}	Max Gain	Up to 50 MHz	37.84	38.84	39.84	dB	
A _{V_MIN}	Min Gain		-2.16	-1.16	-0.16	dB	
Gain_step	Gain Step Size	Up to 50 MHz	1.8	2	2.2	dB	
	Gain Step Size with ADC See (Note 1)	ADC FS Adjusted		8.5		mdB	
Gain_Range	Gain Range		39	40	41	dB	
TC_A _V	Gain Temp Coefficient	0 to 40°C		-1	±10	mdB/°C	
Gain_A _{CC}	Absolute Gain Accuracy	Up to 50 MHz	TBD	0.1	TBD	dB	
Matching Spec	ifications	-				1	
Gain_match	Gain Matching Main/Auxiliary	All Gains		±0.1		dB	
BW_match	-3 dB Bandwidth Matching Main/ Auxiliary	All Gains		5		%	
RT_match	Rise Time Matching Main/ Auxiliary	All Gains		5		%	
PD_match	Propagation Delay Matching Main/ Auxiliary	All Gains		TBD		ps	
Analog I/O		•				4	
V _{IN_MAX}	Maximum Differential Input voltage	Min Gain	TBD	0.8		V _{PP}	
	Common Mode Voltage Range		TBD	2V to 3V	TBD	V	
Z _{in_diff}	Differential Input Impedance	All Gains		150 1.5			
Z _{in_CM}	CM Input impedance	Preamp HG		420 1.7		KΩ∥pl	
In_CM		Preamp LG		900 1.7		-	
FS _{OUT1}	Full Scale Voltage Swing	Main Output, THD < -40 dBc @ 100 MHz	770	800		mV _{PP}	
FS _{OUT2}		Auxiliary Output	TBD	700		1 "	
I _{OUT_1}	Maximum Output Current	Main Output, Sourcing		TBD			
I _{OUT_2}	-	Auxiliary Output, Sourcing		TBD		1	
1	-	Main Output, Sinking		TBD		- mA	
IOUT_3	-	Auxiliary Output, Sinking		TBD		-	
I _{OUT_4} 7	Differential Output Impedance		TBD	100	TBD	Ohms	
Z _{out_diff}		All Goin Sottings		TBD	±50	mV	
V _{OOS}	Output Offset Voltage Output Offset Voltage Drift	All Gain Settings 0 to 40°C				μV/°C	
	· •		0.05	500	TBD	· ·	
	Output CM voltage range		0.95	1.2	1.45 TPD	V	
V _{OS_CM}	Output CM offset voltage			15 	TBD	mV	
TC_V _{OS_CM}	CM Offset Voltage Temp Coefficient			TBD		mV/°C	
BAL_Error_DC	Output Gain Balance Error	DC, $\frac{\Delta V_{O_CM}}{\Delta V_{OUT}}$		-70			
BAL_Error_AC		f = 750 MHz, <u>V_{O_CM}</u> V _{OUT}		-45		- dB	
BAL_Error_AC_ Phase	Output Phase Balance Error	f = 750 MHz, ($V_{OUT^+} - V_{OUT^-}$) Phase		±0.8		deg	
PSRR1	Output Referred Differential Power	Preamp HG		-80			
PSRR2	Supply Rejection	Preamp LG		-70		- dB	
PSRR_CM	CM Power Supply Rejection			TBD		dB	
	CM Rejection Ratio	2V < CMVR < 3V, DC (see definition)		TBD		+	

LMH6518

Symbol	Parameter	Condition	Min	Тур	Max	Units
Sheet4U.com V _{CM_I}	V _{CM} Input Bias Current			1	TBD	
V _{CM_AUX_I}	V _{CM AUX} Input Bias Current			1	TBD	nA
Digital I/O & Ti	iming					
Logic	Input/Output Levels		3.0	3.3	3.6	V
I_in	Input Bias Current			TBD		nA
CLK_max	Maximum SCLK Rate			TBD		KHz
Power Require	ements	_	•			
I _{S1}	Supply Current	V _{cc}		210	TBD	
I _{S1_off}		V _{CC} Aux off		150	TBD	mA
I _{S2}		V _{DD}		160	TBD	μA
P _{O_FP}	Power Consumption	Full Power		1.1		
P _{O_AUX_off}		Aux off		0.75		W
	niting Filter Specifications			ļļ		
Filter	Parameter	Condition	Min	Тур	Max	Units
20 MHz	Pass Band Tolerance	–3 dB Bandwidth		-0, +20		
	Pass Band Tolerance (Gain Varied)	-		TBD		%
	Stop Band Attenuation	at 40 MHz		-7		dB
100 MHz	Pass Band Tolerance	-3 dB Bandwidth		-0, +20		- %
	Pass Band Tolerance (Gain Varied)			TBD		
	Stop Band Attenuation	at 200 MHz		-7		dB
200 MHz	Pass Band Tolerance	-3 dB Bandwidth		-0, +20		0/
	Pass Band Tolerance (Gain Varied)			TBD		%
	Stop Band Attenuation	at 400 MHz		-6.5		dB
350 MHz	Pass Band Tolerance	-3 dB Bandwidth		±10		0/
	Pass Band Tolerance (Gain Varied)			±25		%
	Stop Band Attenuation	at 750 MHz		-8		dB
650 MHz	Pass Band Tolerance -3 dB Bandwidth			±10		%
	Pass Band Tolerance (Gain Varied)			±25		70
	Stop Band Attenuation	at 1 GHz		-9		dB
750 MHz	Pass Band Tolerance	–3 dB Bandwidth		±10		0/
	Pass Band Tolerance (Gain Varied)			±25		%
	Stop Band Attenuation	at TBD		TBD		dB

Definition of Terms and Specifications


1.	CMRR (dB)	Differential Gain – CM Gain (from input to output).
2.	СМ	Common Mode
3.	$\Delta V_{O_{CM}}$	Variation in output common mode voltage (V _{O_CM}).
4.	Δν _{ουτ}	Change in differential output voltage (Corrected for DC offset (Voos)).
5.	Voos	DC offset voltage. Differential output voltage measured with inputs shorted together to $V_{CC}/2$.
6.	ΔV _{IN} (V)	Differential voltage across device inputs.
7. <u>ΔV_{0_CM}</u>		Balance Error. Measure of the output swing balance of "out P" and "out N", as reflected on the output common mode voltage (V _{O CM}), relative to the differential output swing
	ΔV _{OUT}	(V_{OUT}) . Calculated as output common mode voltage change $(\Delta V_{O_{CM}})$ divided by the output differential voltage change (ΔV_{OUT}) , which is nominally around 700 mV _{PP}).
8.	Out P	Positive Main Output
9.	Out N	Negative Main Output
10.	Out PA	Positive Auxiliary Output
11.	Out NA	Negative Auxiliary Output
12.	PSRR	Differential output change (ΔV_{OUT}) with respect to V_{CC} voltage change (ΔV_{CC}) with nominal differential output.
13.	PSRR_CM	Output common mode voltage change (ΔV_{O_CM}) with respect to V_{CC} voltage change (ΔV_{CC}).
14.	HG	Preamp High Gain
15.	LG	Preamp Low Gain
16.	Ladder	Ladder Attenuator setting (0-20 dB
17.	Min Gain	Gain = -1.16 dB
18.	Max Gain	Gain = 38.84 dB

Note 1: Gain Step Size with ADC: With the National Semiconductor GigaSample/second ADC Full Scale (FS) adjustment (512 steps from 0.56V to 0.84V), the worst case gain step size would be:

Gain step size = 20 log
$$\frac{0.56 + \left(\frac{0.84 - 0.56}{2 \times 512}\right)}{0.56 - \left(\frac{0.84 - 0.56}{2 \times 512}\right)} = 8.5 \text{ mdB}$$

Note 2: "Recovery time" is the slower of the Main and Auxiliary outputs. Measured values correspond to time it takes to return to zero. Note 3: "Full Power" setting is with Auxiliary output turned on.

Pin Out	Function
P1 = Out PA	Auxiliary positive output
P2 = Out NA	Auxiliary negative output
P3 = V _{CC} (5V)	Analog power supply
$P4 = V_{CC} (5V)$	Analog power supply
P5 = Gnd	Ground, electrically connected to the LLP heat sink
P6 = Input P	Positive Input
P7 = Input N	Negative Input
P8 = Gnd	Ground, electrically connected to the LLP heat sink
P9 = CS	SPI interface, Chip Select, Active low
P10 = SDIO	SPI interface, Serial Data Input/Output
P11 = SCLK	SPI interface, Clock
P12 = V _{DD} (3.3V)	Digital power supply
P13 = V _{CM}	Input from ADC to control main output CM
P14 = Out N	Main positive output
P15 = Out P	Main negative output
P16 = V _{CM_AUX}	Input from ADC to control auxiliary output CM

LMH6518

ወ

Notes

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench	
Audio	www.national.com/audio	Analog University	www.national.com/AU	
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes	
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts	
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green	
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging	
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality	
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns	
Power Management	www.national.com/power	Feedback	www.national.com/feedback	
Switching Regulators	www.national.com/switchers			
LDOs	www.national.com/ldo			
LED Lighting	www.national.com/led			
PowerWise	www.national.com/powerwise			
Serial Digital Interface (SDI)	www.national.com/sdi			
Temperature Sensors	www.national.com/tempsensors			
Wireless (PLL/VCO)	www.national.com/wireless			

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

www.national.com