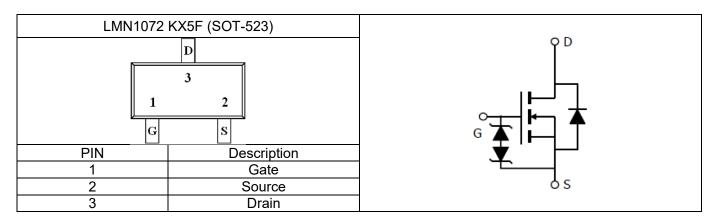


LMN1073KX7F 20V N-Channel Enhancement Mode MOSFET

Features

- 20V/0.5A, $R_{DS(ON)}$ =300m Ω @VGS=4.5V
- 20V/0.4A, $R_{DS(ON)}$ =450m Ω @VGS=2.5V
- 20V/0.2A, R_{DS(ON)}=800mΩ@VGS=1.8V
- 20V/0.1A, $R_{DS(ON)}$ =1200m Ω @VGS=1.5V
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Circuits
- Low Battery Voltage Operation
- ESD Protected
- SOT-523 package design

Product Description


LMN1072 KX7F, N-Channel enhancement mode MOSFET, uses Advanced Trench

Technology to provide excellent RDS(ON), low gate charge. These devices are particularly suited for low voltage power management, such as smart phone and notebook computer, and low in-line power loss are needed in commercial industrial surface mount applications.

Applications

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories
- Battery Operated Systems
- Power Supply Converter Circuits
- Load/Power Switching Smart Phones, Pagers

Pin Configuration

Ordering Information

Ordering Information					
Part Number	P/N	PKG code	Pb Free code	Package	Quantity
LMN1072KX7F	LMN1072K	X7	F	SOT-523	3000 PCS

Marking Information

Marking Information					
Part Marking	Part Number	LFC code			
2W	2	WM			

Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter		Typical	Unit
V_{DSS}	Drain-Source Voltage	Drain-Source Voltage		V
V_{GSS}	Gate-Source Voltage	Gate-Source Voltage		V
l _D	Continuous Drain Current	T _A =25°C	0.7	A
	Continuous Drain Current	T _A =70°C	0.5	
I _{DM}	Pulsed Drain Current	Pulsed Drain Current		A
ls	Continuous Source Curre	Continuous Source Current (Diode Conduction)		А
P_{D}	Power Dissination L	_A =25°C	0.27	W
		_A =70°C	0.18	VV
TJ	Operating Junction Temporation	Operating Junction Temperature		°C
T _{STG}	Storage Temperature Rar	Storage Temperature Range		°C
$R_{\theta JA}$	Thermal Resistance-Junction to Ambient		463	°C/W

Electrical Characteristics

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Static							
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	20			V	
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , ID=250uA	0.3		1	V	
I_{GSS}	Gate Leakage Current	V _{DS} =0V, V _{GS} =±10V			±10	uA	
	Zero Gate Voltage Drain Current	V_{DS} =16V, V_{GS} =0V			1		
I _{DSS}		V_{DS} =16V, V_{GS} =0V T_{J} =85°C			30	uA	
		V _{GS} =4.5V, I _D =0.5A		210	300		
В	Drain Course On Desistance	$V_{GS}=2.5V, I_{D}=0.4A$		285	450		
$R_{DS(on)}$	Drain-Source On-Resistance	V _{GS} =1.8V, I _D =0.2A		430	800	mΩ	
		V _{GS} =1.5V, I _D =0.1A		710	1200		
g fs	Forward Transconductance	V_{DS} =10V, I_{D} =0.4A			1.2	S	
V_{SD}	Diode Forward Voltage	I _S =0.5A, V _{GS} =0V			1.3	V	
Dynamic							
Q_{g}	Total Gate Charge	\/ -10\/ \/ -4.5\/		0.73		nC	
Q_gs	Gate-Source Charge	V_{DS} =10V, V_{GS} =4.5V, I_{D} =0.25A		0.93			
Q_{gd}	Gate-Drain Charge	ID-0.25A		0.12			
C _{iss}	Input Capacitance	\/ -16\/ \/ -0\/		60.7		pF	
Coss	Output Capacitance	V_{DS} =16V, V_{GS} =0V, f=1MHz		9.7			
C _{rss}	Reverse Transfer Capacitance	I−IIVI⊓Z		5.4			
$t_{d(on)}$	Turn-On Time	\/ -10\/ D -170		5.1		ns	
t _r	Tutti-Ott fillle	V_{DD} =10V, R_L =47 Ω , I_D =0.2A, V_{GS} =4.5V,		7.4			
$t_{d(off)}$	Turn-Off Time	$R_{G}=10\Omega$		26.7			
t _f	Turri-On time	1XG-1022		12.3			

Typical Performance Characteristics

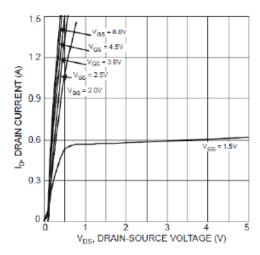


Fig. 1 Typical Output Characteristics

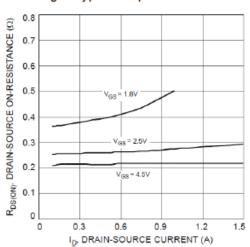


Fig. 3 Typical On-Resistance vs. ID and VGS

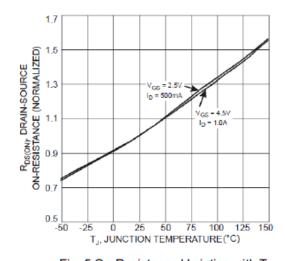


Fig. 5 On-Resistance Variation with T_J

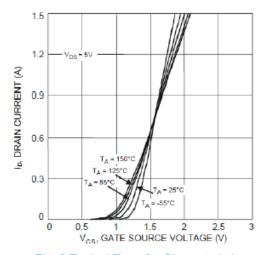


Fig. 2 Typical Transfer Characteristics

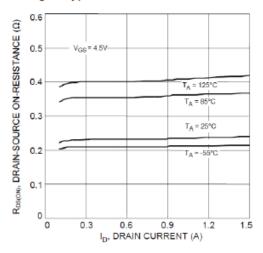


Fig. 4 Typical Drain-Source On-Resistance

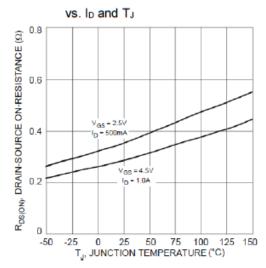


Fig. 6 On-Resistance Variation with TJ

Typical Performance Characteristics(continue)

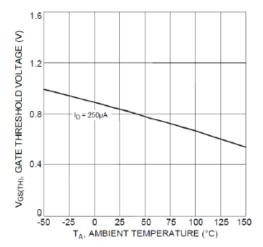


Fig. 7 Gate Threshold Variation vs. TA

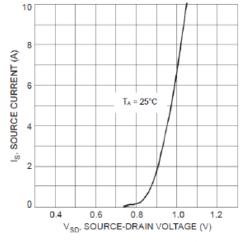


Fig. 8 Diode Forward Voltage vs. Current

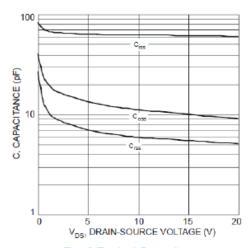


Fig. 9 Typical Capacitance

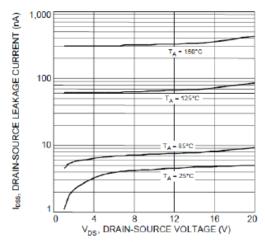
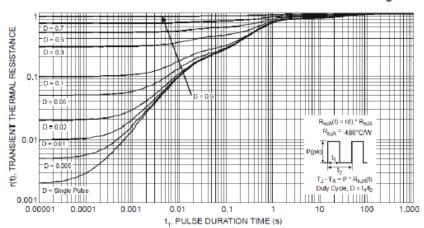
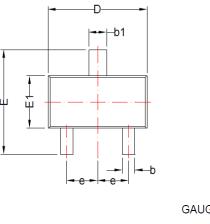
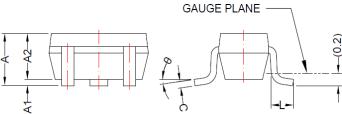


Fig. 10 Typical Drain-Source Leakage Current vs. Drain-Source Voltage


Fig. 11 Transient Thermal Response

Package Dimension:

SOT-523

	Dimensions					
Symbol	Millimeters		Inches			
Symbol	Min	Max	Min	Max		
Α	0.60	0.95	0.024	0.037		
A1	0.00	0.10	0.000	0.004		
A2	0.60	0.85	0.024	0.033		
b	0.15	0.30	0.006	0.012		
b1	0.25	0.40	0.010	0.016		
С	0.08	0.25	0.003	0.010		
D	1.40	1.80	0.055	0.071		
Е	1.40	1.80	0.055	0.071		
E1	0.70	0.90	0.028	0.035		
е	0.50BSC		0.02	0BSC		
L	0.26	0.46	0.010	0.018		
θ	0°	8°	0°	8°		

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.