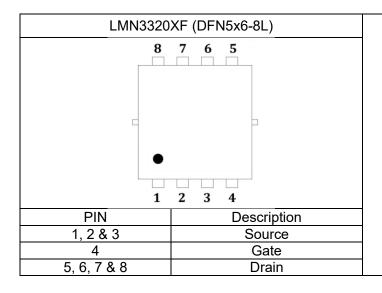


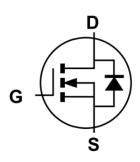
LMN3320XF 30V N-Channel MOSFETs

Features

- Low R_{DS(ON)}
- DFN5x6-8L package
- RoHS Compliant and Halogen Free

Product Description


LMN1072 3320XF is an N-channel enhancement mode power MOSFET uses trench DMOS technology.


It has been especially tailored to minimize onstate resistance and provides a superior switching performance that is well suited for high efficiency fast switching applications.

Applications

- Power Management Application
- DC-DC Converter
- Power Load Switch

Pin Configuration

Ordering Information

Ordering Information					
Part Number	P/N	PKG code	Pb Free code	Package	Quantity
LMN3320XF	LMN3320	Х	F	DFN5x6-8L	3000 PCS

Marking Information

Marking Information					
Part Marking	Package Code	Green Level:	Product Code:	LFC Code	
332012	X	F	3320		

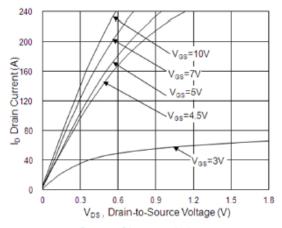
Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

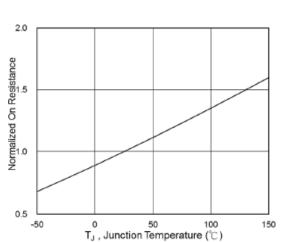
Symbol	Parameter	Parameter		Unit
V_{DS}	Drain-Source Voltage	Drain-Source Voltage		V
V_{GS}	Gate-Source Voltage	Gate-Source Voltage		V
I_	Continuous Drain Cur	T _A =25°C	85	Α
I _D	Continuous Drain Current	T _A =100°C	66	^
I _{DM}	Pulsed Drain Current ²	2	240	A
E _{AS}	Avalanche Energy, Si	Avalanche Energy, Single pulse ³		mJ
P_D	Power Dissination —	T _A =25°C	73	W
		T _A =100°C	29	VV
TJ	Operating Junction Te	Operating Junction Temperature		°C
T _{STG}	Storage Temperature	Storage Temperature Range		°C
$R_{ heta JC}$	Thermal Resistance-J	Thermal Resistance-Junction to Case		°C/W
$R_{\theta JA}$	Thermal Resistance-J	Thermal Resistance-Junction to Ambient ¹		°C/W

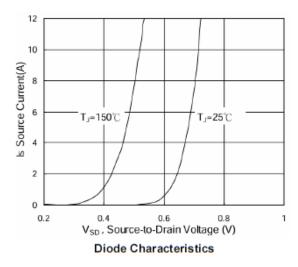
Electrical Characteristics

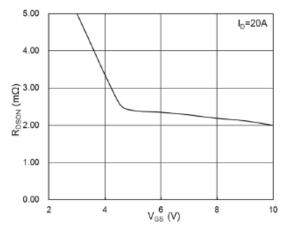
(T_C=25°C Unless otherwise noted)


Symbol	Parameter	Conditions	Mi n	Тур	Max	Unit	
Static							
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =250uA	30			V	
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , ID=250uA	1.2	1.6	2.5	V	
I_{GSS}	Gate Leakage Current	V_{DS} =0V, V_{GS} =±20V			±100	nA	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V			1	uA	
D	Drain-Source On-Resistance	V_{GS} =10V, I_D =20A		2.0	2.6	mΩ	
$R_{DS(on)}$	Dialii-Source Off-Resistance	V_{GS} =4.5V, I_D =15A		2.7	3.8	11122	
g FS	Forward Transconductance	V_{DS} =10V, I_{D} =5A		24		S	
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V			1	V	
Is	Continuous Source Current	V _G =V _D =0V, Force Current			73	Α	
		Dynamic					
Q_g	Total Gate Charge	V _{DS} =15V, V _{GS} =10V,		112		nC	
Q_gs	Gate-Source Charge	$I_{D}=15A$		13.8			
Q_gd	Gate-Drain Charge	10-19/		23.5			
C_{iss}	Input Capacitance	\/=1 5 \/ \/=0\/		4345			
C_{oss}	Output Capacitance	V_{DS} =15V, V_{GS} =0V, f=1MHz		340		pF	
C_{rss}	Reverse Transfer Capacitance	1-1101112		225			
t _{d(on)}	Turn-On Time	V _{DD} =15V, I _D =1A,		20.1		ns	
t _r	Turn-On Time			6.3			
$t_{d(off)}$	Turn-Off Time	V_{GS} =10V, R_{G} =3.3 Ω		124.6			
t _f	Turr-On time			15.8			
Rg	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		1.7		Ω	

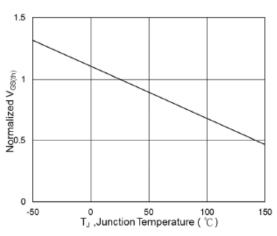
NOTE:


- 1. Device mounted on FR4 board with 1 inch², 2 oz. Cu.
- 2. Pulse width ≤ 300 us , duty cycle $\leq 2\%$
- 3. The test condition is VDD=20V, V_{GS} =10V, L=0.5mH, I_{AS} =24A
- 4. The maximum current rating is package limited

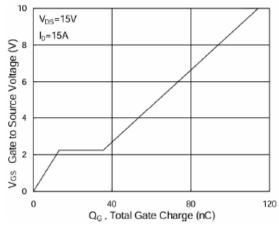

Typical Performance Characteristics



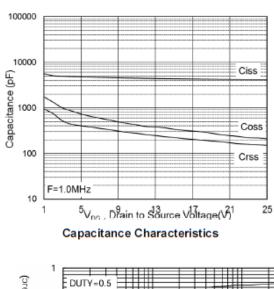
Output Characteristics

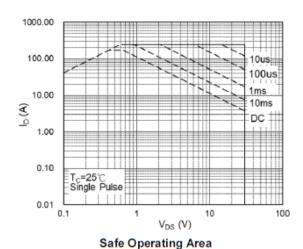


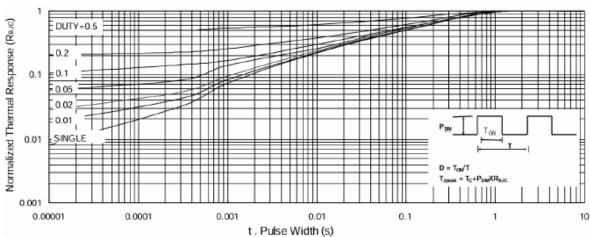
Normalized On-Resistance vs. Temperature



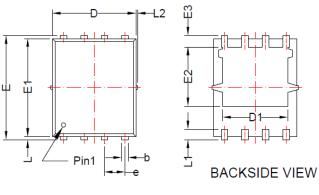
On-Resistance vs. Gate-Source Voltage

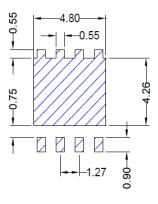

Normalized V_{GS(th)} vs. Temperature




Gate Charge Characteristics

Typical Performance Characteristics(continue)


Normalized Maximum Transient Thermal Impedance


Package Dimension:

DFN5x6-8L

Package Dimension

Recommended Land Pattern

Dimensions					
Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
Α	0.80	1.20	0.031	0.047	
A1	0.00	0.05	0.000	0.002	
b	0.25	0.51	0.010	0.020	
С	0.20	0.35	0.008	0.014	
D	4.90	5.40	0.193	0.213	
D1	3.40	4.60	0.134	0.181	
E	5.90	6.20	0.232	0.244	
E1	5.40	5.90	0.213	0.232	
E2	3.20	3.80	0.126	0.150	
E3	0.40	0.80	0.016	0.031	
е	1.27BSC		0.050BSC		
L	0.10	0.25	0.004	0.010	
L1	0.45	0.75	0.018	0.030	
L2	-	0.15	-	0.006	

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.