

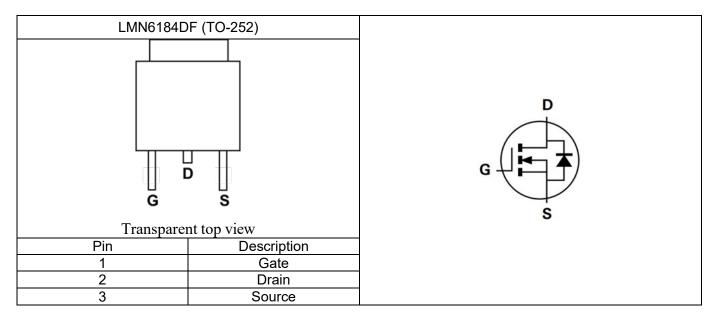
LMN6184DF 60V N-Channel Enhancement Mode MOSFET

Features

- $R_{DS(ON)}=92m\Omega@V_{GS}=10V$
- $R_{DS(ON)}=100m\Omega@V_{GS}=4.5V$
- Improved dv/dt capability
- Fast switching
- 100% EAS guaranteed.

Product Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has

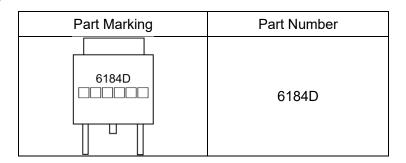

been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

These devices are well suited for high efficiency fast switching applications.

Applications

- Motor Drive
- Power Tools
- LED Lighting

Pin Configuration



Ordering Information

Ordering Information						
Part Number	P/N	PKG code	Pb Free code	Package	Quantity	
LMN6184DF	LMN4184	D	F	TO-252	2500 PCS	

Marking Information

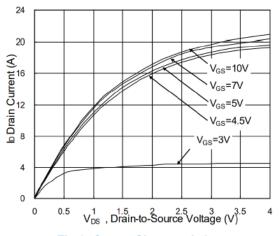
Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Parameter		Unit
V_{DSS}	Drain-Source Voltage	Drain-Source Voltage		V
V _{GSS}	Gate-Source Voltage	Gate-Source Voltage		V
	Continuous Drain Current ¹	T _C =25°C	10	
•		T _C =100°C	6	Δ.
l _D		T _A =25°C	3	A
		T _A =70°C	2	
I _{DM}	Pulsed Drain Current ²		20	A
I _{AS}	Single Pulse Avalanche Curr	Single Pulse Avalanche Current		А
E _{AS}	Single Pulse Avalanche Ene	Single Pulse Avalanche Energy ³		mJ
	Total Power Dissipation ⁴	T _C =25°C	20.8	
<u></u>		T _C =100°C	8.3	10/
P_{D}		T _A =25°C	2	W
		T _A =70°C	1.2	
TJ	Operating Junction Tempera	Operating Junction Temperature		°C
T_{STG}	Storage Temperature Range	Storage Temperature Range		°C
R _{θJC}	Thermal Resistance, Junctio	Thermal Resistance, Junction to Case ¹		°C /W
$R_{\theta JA}$	Thermal Resistance-Junction to Ambient ¹		62	°C /W

Electrical Characteristics

(T_C=25°C Unless otherwise noted)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Static						
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	60			V	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1		3	V	
I_{GSS}	Gate Leakage Current	V_{DS} =0V, V_{GS} =±20V			±100	nΑ	
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =60V, V_{GS} =0V			1	uA	
R _{DS(on)}	Drain-Source On-Resistance ²	V_{GS} =10V, I_D =6A		85	92	mΩ	
1 (DS(on)		V_{GS} =4.5V, I_D =3A		90	100		
9 FS	Forward Transconductance	V_{DS} =10V, I_{D} =3A		3.6		S	
		Dynamic					
Q_g	Total Gate Charge	V _{DS} =48V, V _{GS} =4.5V,		4.9		nC	
Q_gs	Gate-Source Charge	$I_{D}=10A$		1.8			
Q_gd	Gate-Drain Charge	ID-TOA		2.2			
C _{iss}	Input Capacitance	\/ -15\/ \/ -0\/		511		pF	
Coss	Output Capacitance	V_{DS} =15V, V_{GS} =0V, f=1MHz		38			
C _{rss}	Reverse Transfer Capacitance	1-11/11/12		25			
t _{d(on)}	Turn-On Time ^{2,3}			6		ns	
t _r	Tum-On Time-,	V_{DD} =30V, I_{D} =3A,		9			
$t_{d(off)}$	Turn-Off Time ^{2,3}	V_{GS} =4.5V, R_{G} =3.3 Ω		18			
t _f	Turn-Oil Time ^{2,9}			5			
Diode characteristics							
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V, I _S =10A			1.4	V	
I _S	Continuous Source Current ¹	$V_G=V_D=0V$,			10	А	
ıs	Continuous Source Current	Force Current					
trr	Reverse Recovery Time	$I_S=3A$, $V_{GS}=0V$		19		nS	
Qrr	Reverse Recovery Charge	dI/dt=100A/μs		28		nC	

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%
- 3. The EAS data shows Max. rating. The test condition is VDD=25V, VGS=10V, L=0.1mH, IAS=11.2A
- 4. The power dissipation is limited by $150\,^{\circ}\mathrm{C}$ junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Typical Performance Characteristics

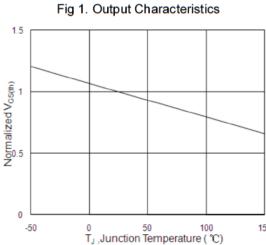


Fig. 3 Normalized Gate Threshold Voltage

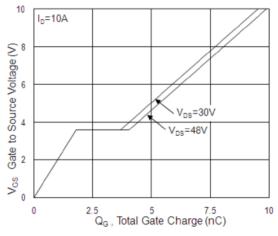


Fig. 5 Gate Charge Characteristics

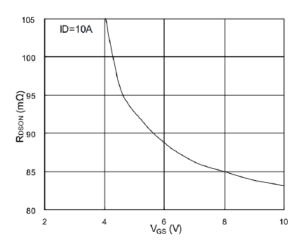


Fig. 2 On-Resistance vs. Gate Source

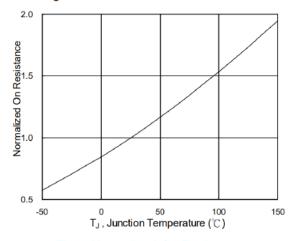


Fig. 4 Normalized On-Resistance

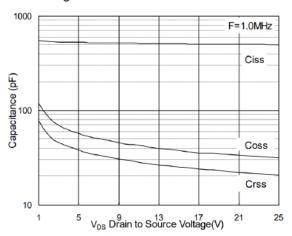


Fig. 6 Typical Capacitance

Typical Performance Characteristics

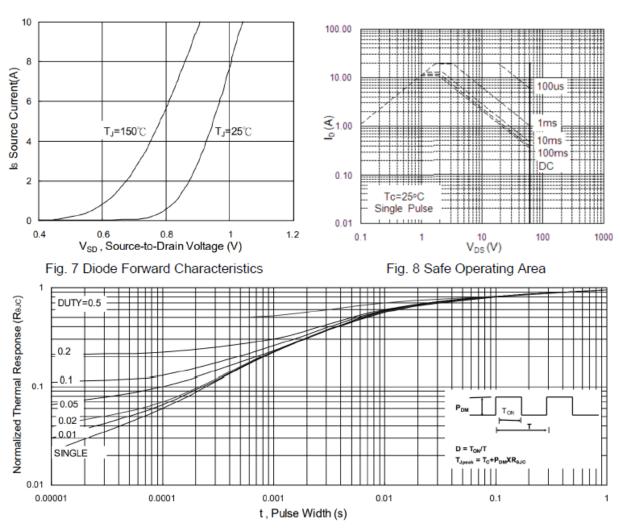
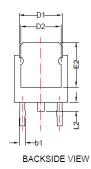
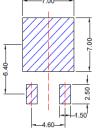
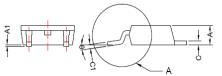


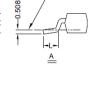
Fig. 9 Transient Thermal Impedance



Package Dimension:


TO-252


Package Dimension



Recommended Land Pattern

	Dimensions				
Compleal	Millimeters		Inches		
Symbol	Min	Max	Min	Max	
Α	2.18	2.40	0.086	0.094	
A1	0.00	0.15	0.000	0.006	
b	0.50	0.90	0.020	0.035	
С	0.45	0.89	0.018	0.035	
c1	0.40	0.61	0.016	0.024	
D	6.35	6.80	0.250	0.268	
D1	4.95	5.50	0.195	0.217	
D2	3.81	-	0.150	-	
E	9.40	10.41	0.370	0.410	
E1	5.33	5.80	0.210	0.228	
E2	4.57	-	0.180	-	
е	2.286 BSC		0.090 BSC		
L	1.40	1.78	0.055	0.070	
L1	2.40	3.00	0.094	0.118	
θ	0°	8°	0°	8°	

NOTICE

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.