

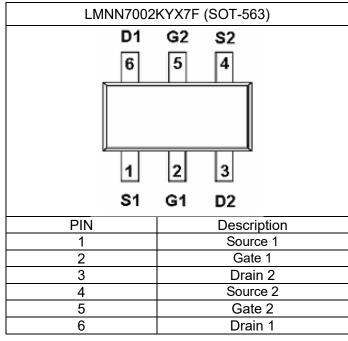
LMNN7002KY Dual N-Channel Enhancement Mode MOSFET

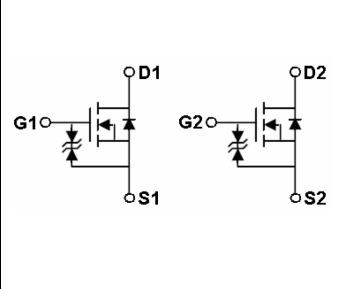
Features

- 60V/0.5A, $R_{DS(ON)}=3.0\Omega@V_{GS}=10V$
- 60V/0.2A, $R_{DS(ON)}=4.0\Omega@V_{GS}=4.5V$
- Super high density cell design for extremely low R_{DS (ON)}
- Exceptional on-resistance and maximum DC current capability
- SOT-563 package design

Product Description

The LMNN7002KY is the Dual N-Channel enhancement mode field effect transistors are produced using high cell density DMOS technology.


These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance.


They can be used in most applications requiring up to 640mA DC and can deliver pulsed currents up to 950mA. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Applications

- Drivers: Relays, Solenoids, Lamps, Hammers, Display, Memories, Transistors, etc.
- High saturation current capability. Direct Logic-Level Interface: TTL/CMOS
- Battery Operated Systems
- Solid-State Relays

Pin Configuration

Ordering Information

Ordering Information					
Part Number	P/N	PKG code	Pb Free code	Package	Quantity
LMNN7002KYX7F	LMNN7002KY	X7	F	SOT-563	4000pcs

Marking Information

Marking Information					
Part Number	LFC code				
<u>e2</u>	XW				

Absolute Maximum Ratings

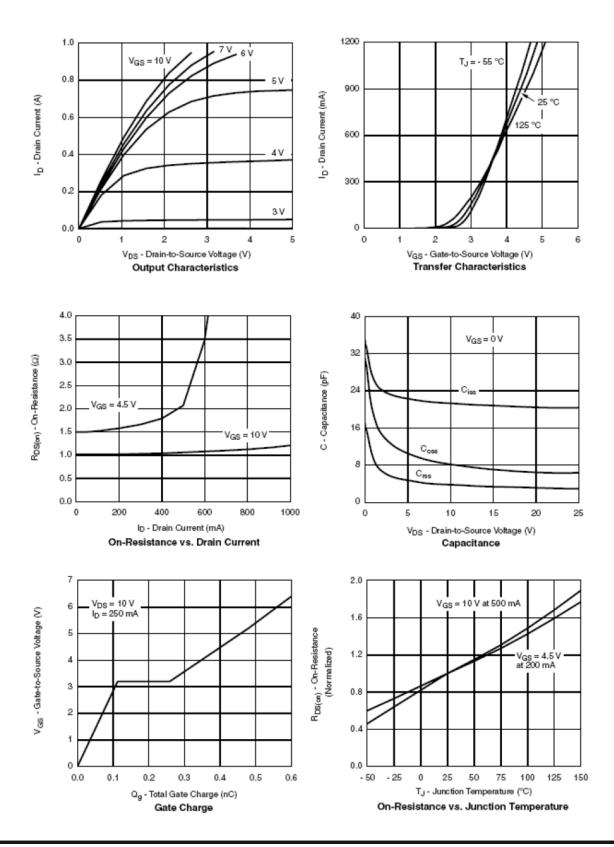
(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Parameter		Unit
V_{DS}	Drain-Source Voltage	Drain-Source Voltage		V
V_{GS}	Gate-Source Voltage	Gate-Source Voltage		V
	Continuous Drain Current	T _A =25℃	270	Δ.
I _D		T _A =70℃	216	——————————————————————————————————————
I _{DM}	Pulsed Drain Current ¹	Pulsed Drain Current ¹		Α
P_D	Power Dissipation	T _A =25℃	0.35	10/
		T _A =70°C	0.22	W
TJ	Operating Junction Temperate	Operating Junction Temperature		$^{\circ}$
T _{STG}	Storage Temperature Range	Storage Temperature Range		$^{\circ}$
$R_{\theta JA}$	Thermal Resistance-Junction to Ambient		357	°C/W

¹⁾ Pulse width limited by safe operating area.

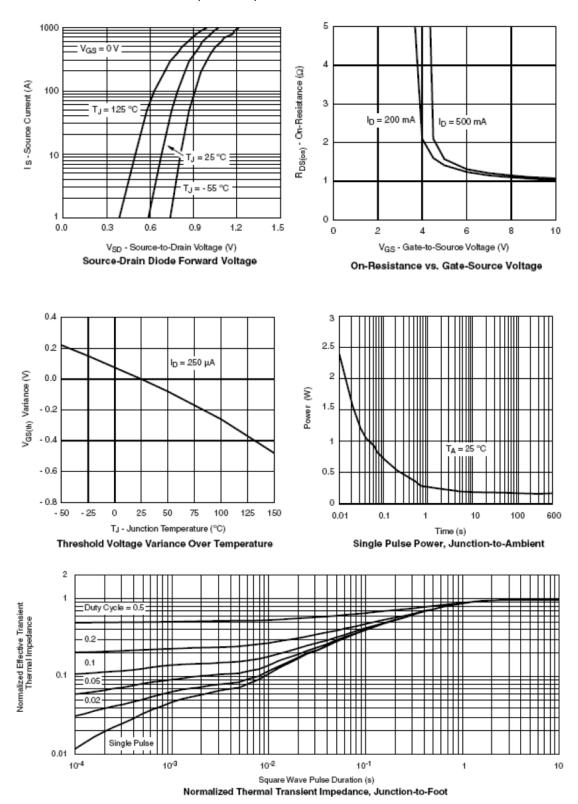
Electrical Characteristics

(T_C=25°C Unless otherwise noted)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	S	Static characteristics		•	•	•	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	60			V	
$V_{GS\ (th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	1		2.5	V	
I _{GSS}	Gate Leakage Current	V _{DS} =0V, V _{GS} =±20V			±10	uA	
. 7	Zero Gate Voltage Drain Current	V _{DS} =60V, V _{GS} =0V, T _J =25°C V _{DS} =60V, V _{GS} =0V, T _J =85°C			1	uA	
I _{DSS}					30		
D D.	Drain-Source On-Resistance	V _{GS} =10V, I _D =500mA			3	Ω	
$R_{DS(on)}$		V _{GS} =4.5V, I _D =200mA			4		
	Dy	namic characteristics					
Q_g	Total Gate Charge	\/=10\/_\/=4.5\/		1000		pC	
Q_gs	Gate-Source Charge	V _{DD} =10V, V _{GS} =4.5V, I _D =0.25A		100			
Q_{gd}	Gate-Drain Charge	10-0.23A		150			
C _{iss}	Input Capacitance	\/ -25\/ \/ -0\/		32			
Coss	Output Capacitance	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		8		pF	
C_{rss}	Reverse Transfer Capacitance	1 - 1.0MH2		6			
$t_{d(on)}$	Turn-On Time			10	20	ns	
t _r		V_{DD} =30V, V_{GEN} =4.5V,		35	50		
$t_{d(off)}$	Turn-Off Time	$R_G=10\Omega$, $I_D=0.2A$, $R_L=150\Omega$		20	30		
t _f				40	60		
V_{SD}	Diode Forward Voltage	I _S =0.2A, V _{GS} =0V		0.7	1.3	V	
g _{fs}	Forward Transconductance	V _{DS} =10V, I _D =0.2A		0.2		S	
Is	Continuous Source Current	$V_G = V_D = 0V$, Force Current			450	mA	

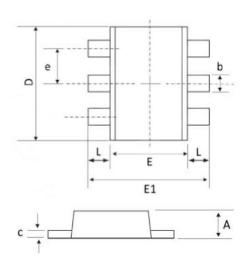
Note

- 1. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.
- 2. Essentially independent of operating temperature.



Typical Performance Characteristics

Typical Performance Characteristics(continue)



LMNN7002KY

Package Dimension:

SOT-563

-		Dimensions			
Cymphol	Millimeters		Inches		
Symbol	Min	Max	Min	Max	
Α	0.500	0.600	0.020	0.024	
b	0.150	0.300	0.006	0.012	
С	0.100	0.180	0.004	0.007	
D	1.500	1.700	0.059	0.067	
E	1.100	1.250	0.043	0.049	
E1	1.550	1.700	0.061	0.067	
е	0.5 BSC		0.02	BSC	
L	0.100	0.300	0.004	0.012	

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.

LMNN7002KY 6