

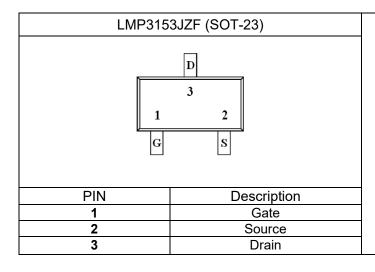
LMP3153JZF 30V P-Channel MOSFET

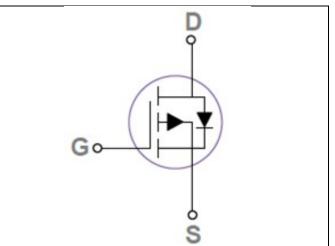
Features

- -30V/-4.8A, $R_{DS(ON)}$ <54m Ω @ V_{GS} =-10V
- -30V/-3.8A, $R_{DS(ON)} < 72m\Omega@V_{GS} = -4.5V$
- -30V/-3.0A, R_{DS(ON)}<120mΩ@V_{GS}=-2.5V
- Suit for -4.5V Gate Drive Applications
- SOT-23 package design

Product Description

These P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance,


provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.


These devices are well suited for high efficiency fast switching applications.

Applications

- Notebook
- LED display
- DC-DC System
- LDC Panel

Pin Configuration

Ordering Information

Ordering Information						
Part Number	P/N	PKG code	Pb Free code	Package	Quantity	
LMP3153JZF	LMP3153	JZ	F	SOT-23	3000	

Marking Information

Marking Information				
Part Marking	Part Number	LFC code		
31XWM	31	XWM		

Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter		Typical	Unit	
V _{DSS}	Drain-Source Voltage		-30	V	
V _{GSS}	Gate-Source Voltage	±12	V		
lο	O 1: D : O 1/T 450%	T _A =25°C	-4.8		
	Continuous Drain Current (T _J =150℃)	T _A =70°C	-3.8	Α	
I_{DM}	Pulsed Drain Current		-19	Α	
ls	Continuous Source Current (Diode Conduction)		-1	Α	
P _D	Power Dissipation	T _A =25°C	1.92	W	
	1 ewel Bissipation	T _A =70°C	1.23		
TJ	Operating Junction Temperature		150	°C	
T _{STG}	Storage Temperature Range		-55/150	°C	
Rеја	Thermal Resistance-Junction to Ambient (t ≤ 10s)		65	°C/W	

LMP3153JZF 2

Electrical Characteristics

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static						
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250uA -30				V
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =-250uA	/ _{GS} , I _D =-250uA -0.7		-1.3	
I_{GSS}	Gate Leakage Current	V _{DS} =0V, V _{GS} =±12V			±10 0	nA
	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	uA
I _{DSS}		V_{DS} =-24V, V_{GS} =0V, T_J =85°C			-30	
	Drain-Source On-Resistance	V _{GS} =-10V, I _D =-4.8A		44	54	
R _{DS(on)}		V _{GS} =-4.5V, I _D =-3.8A		62	72	mΩ
		V _{GS} =-2.5V, I _D =-3.0A		98	120	
V _{SD}	Diode Forward Voltage	I _S =-1.0A, V _{GS} =0V		-0.7	-1.0	V
		Dynamic				
Ciss	Input Capacitance	V _{DS} =-15V, V _{GS} =0V,		573		pF nC
Coss	Output Capacitance	f=1MHz		74		
Crss	Reverse Transfer Capacitance	1- 11VII 12		53		
Q_g	Total Gate Charge	V _{DS} =-15V, V _{GS} =-10V, I _D =-		13. 6		
Q_gs	Gate-Source Charge	4.8A		1.2		
Q_gd	Gate-Drain Charge			2.0		
t _{d(on)}	Turn-On Time	V_{DD} =-15V, R_{L} =10 Ω , I_{D} =-1.0A, V_{GEN} =-10V, R_{G} =6.0 Ω		6.9		ns
Tr				12. 3		
t _{d(off)}				25		
T _f	- Turn-Off Time			13		
I f						<u> </u>

LMP3153JZF 3

Typical Performance Characteristics

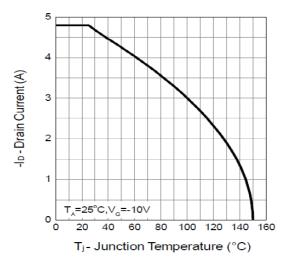


Figure 1. Drain Current vs. Temperature

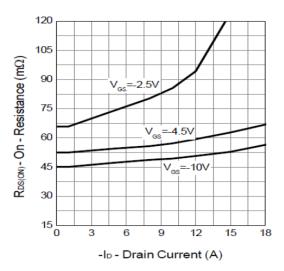


Figure 2. On-Resistance vs. Drain Current

140

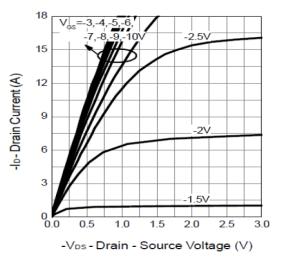
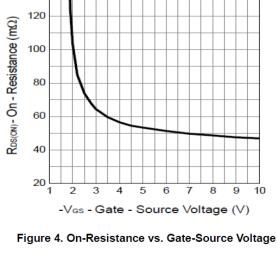



Figure 3. Output Characteristics

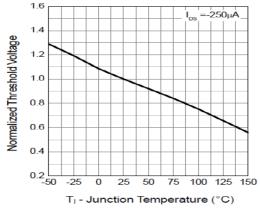


Figure 5. Threshold Voltage

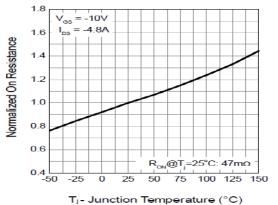
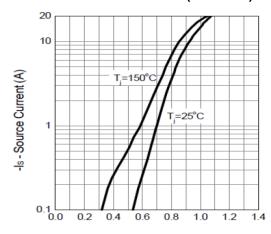



Figure 6. On-Resistance vs. Gate-Source Voltage

Typical Performance Characteristics(continue)

-Vsp - Source - Drain Voltage (V)

Figure 7. Source-Drain Diode Foward Voltage

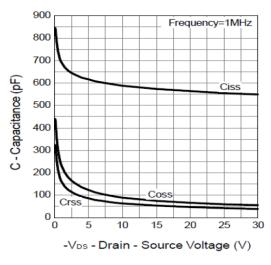


Figure 8. Capacitance

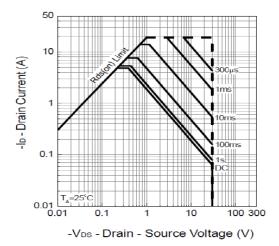


Figure 10. Safe Operation Area

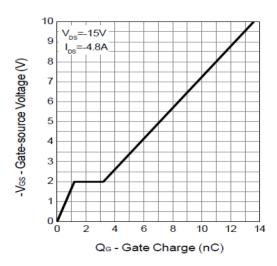
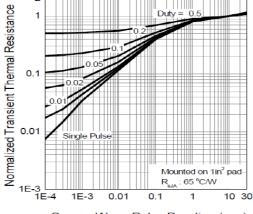
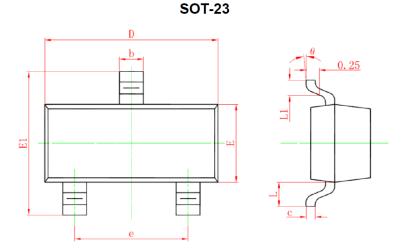



Figure 9. Gate Charge



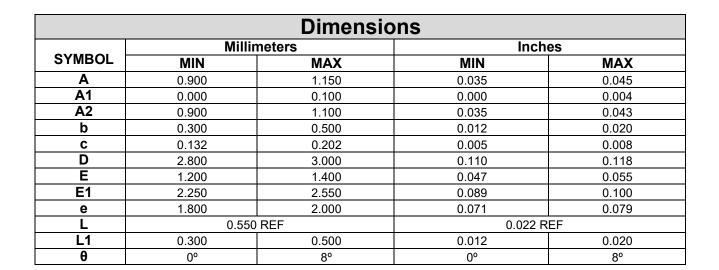

Square Wave Pulse Duration (sec)

Figure 11. Normalized Thermal Transient Impedance

Package Dimension:

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.