

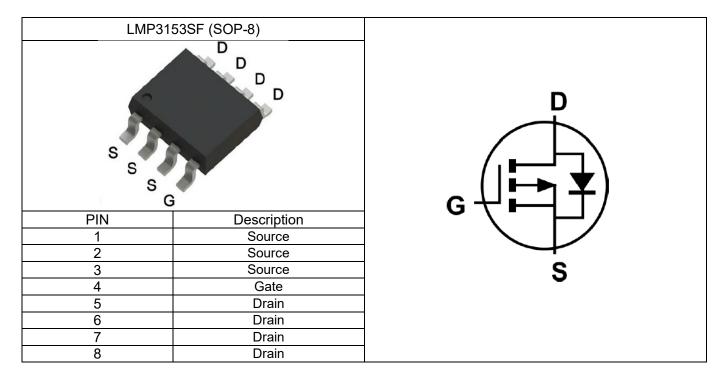
LMP3153SF 30V P-Channel Enhancement Mode MOSFET

Features

- $R_{DS(ON)}=54m\Omega@V_{GS}=-10V$
- $R_{DS(ON)}=72m\Omega@V_{GS}=-4.5V$
- $R_{DS(ON)}=120m\Omega@V_{GS}=-2.5V$
- Suit for -2.5V Gate Drive Applications

Product Description

LMP3153SF, P-Channel enhancement mode MOSFET, uses Advanced Trench Technology to provide excellent $R_{DS(ON)}$, low gate charge.


These devices are particularly suited for low

Pin Configuration

voltage power management, and low in-line power loss are needed in commercial industrial surface mount applications.

Applications

- Notebook
- LED Display
- DC-DC System
- LCD Panel

Ordering Information

Ordering Information						
Part Number	P/N	P/N PKG code Pb Free code		Package	Quantity	
LMP3153SF	LMP3153	S	F	SOP-8	4000pcs	

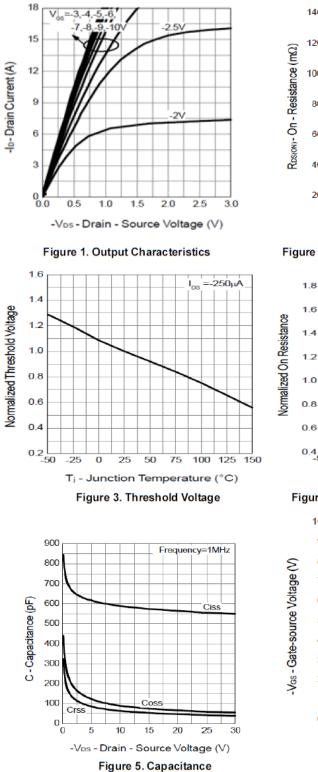
Marking Information

Marking Information					
Product Code:	LFC code				
3153S					

Absolute Maximum Ratings

(T_C=25°C Unless otherwise noted)

Symbol	Parameter		Typical	Unit
V _{DSS}	Drain-Source Voltage	Drain-Source Voltage		V
V _{GSS}	Gate-Source Voltage	Gate-Source Voltage		V
	Continuous Drain Current	T _A =25℃	-4.4	^
ID	(T _J =150°C)	T _A =70℃	-3.5	A
I _{DM}	Pulsed Drain Current	Pulsed Drain Current		A
ls			-1	
P _D	Power Dissipation	T _A =25℃	1.5	W
		T _A =70℃	1	V V
TJ	Operating Junction Tempera	Operating Junction Temperature		°C
T _{STG}	Storage Temperature Range	;	-55 to +150	°C
R _{0JA}	Thermal Resistance-Junction to Case		80	°C/W


Electrical Characteristics

(T_C=25°C Unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	S	Static characteristics			•		
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250uA	-30			V	
V _{GS (th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =-250uA	-0.4		-1.3	V	
l _{GSS}	Gate Leakage Current	V _{DS} =0V, V _{GS} =±12V			±100	uA	
		V _{DS} =-24V, V _{GS} =0V			-1		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V TJ=85⁰C			-30	uA	
V _{SD}	Diode Forward Voltage	I _S =-1A, V _{GS} =0V		-0.7	-1.0	V	
	Drain-Source On-Resistance	V _{GS} =-10V, I _D =-4.8A		44	54		
$R_{DS(on)}$		V _{GS} =-4.5V, I _D =-3.8A		62	72	mΩ	
		V _{GS} =-2.5V, I _D =-3.0A		98	120		
	Бу	namic characteristics	•		•	•	
Qg	Total Gate Charge	1/2 - 10/(1)/2 - 10/(1)		13.6		nC	
Q_{gs}	Gate-Source Charge	V _{DD} =-10V, V _{GS} =-10V, I _D =-4.8A		1.2			
Q_{gd}	Gate-Drain Charge	ID4.0A		2.0			
C _{iss}	Input Capacitance			573		pF	
C _{oss}	Output Capacitance	V _{DS} =-15V, V _{GS} =0V, f=1.0MHz		74			
Crss	Reverse Transfer Capacitance			53			
t _{d(on)}	–Turn-On Time	V _{DD} =-15V, V _{GEN} =-10V, -R _L =10Ω, I _D =-1.0A, R _G =6.0Ω		6.9		ns	
t _r				12.3			
t _{d(off)}	-Turn-Off Time			25			
t _f		1.6 0.022		13			

Typical Performance Characteristics

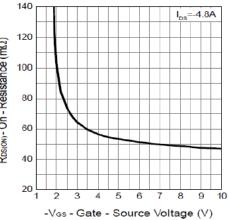
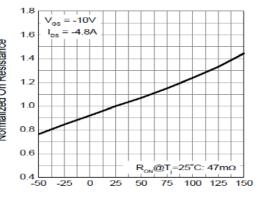
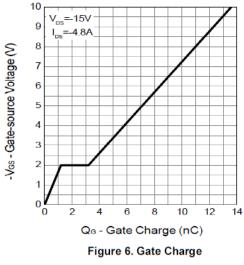
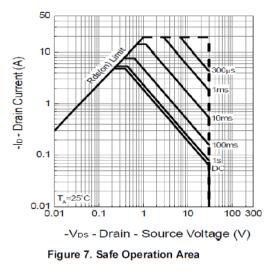
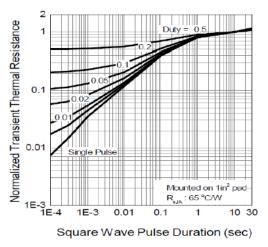
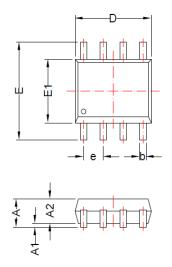




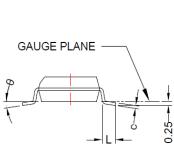
Figure 2. On-Resistance vs. Gate-Source Voltage

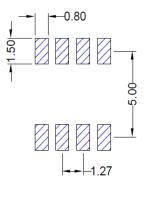


T_i- Junction Temperature (°C)

Figure 4. Drain-Source On-State Resistance vs 1


Figure 8. Normalized Thermal Transient Impedance


SOP-8

Package Dimension

Recommended Land Pattern

Dimensions					
Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
A	-	1.75	-	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	-	0.049	-	
b	0.31	0.51	0.012	0.020	
C	0.10	0.25	0.004	0.010	
D	4.70	5.10	0.185	0.201	
E	5.80	6.20	0.228	0.244	
E1	3.80	4.00	0.150	0.157	
e	1.27 (BSC)		0.050 (BSC)		
L	0.4	1.27	0.016	0.050	
θ	0°	8°	0°	8°	

NOTE:

Dimensions are exclusive of Burrs, Mold Flash & Tie Bar extrusions.

NOTICE:

LFC Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all LFC Semiconductor products described or contained herein. LFC Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. LFC Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Information furnished is believed to be accurate and reliable. However LFC Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of LFC Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of LFC Semiconductor.