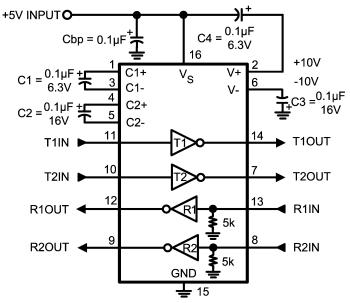
LMS202 5V Single Supply TIA/EIA-232 Dual Transceivers General Description Features

The LMS202 features two transmitters and two receivers for RS-232 communication. It has a DC-to-DC converter that permits the device to operate with only a single +5V power supply. The on-chip DC-to-DC converter which utilizes four external 0.1 μ F capacitors to generate dual internal power supplies for RS-232 compatible output levels.


The device meet EIA/TIA-232E and CCITT V.28 specifications up to 230kbits/sec. The LMS202 is available in a 16 pin narrow and Wide SOIC package.

- Single +5V power supply
- 230 kbps data rate
- On-board DC-to-DC converter
- 0.1µF charge pump capacitors
- Drop-in replacement to Maxim's MAX202

Applications

- POS equipment (Bar code reader)
- Hand-held equipment
- General purpose RS-232 communication

Connection Diagram and Typical Circuit

20062901

LMS202

Pin Descriptions

Pin Number	Pin Name	Pin Function
1, 3	C1+, C1-	External capacitor connection pins. Recommended external capacitor C1 = 0.1μ F (6.3V)
2	V+	Positive supply for TIA/EIA-232E drivers. Recommended external capacitor C4 = 0.1μ F (6.3V)
4, 5	C2+, C2-	External capacitor connection pins. Recommended external capacitor C2 = 0.1μ F (16V)
6	V-	Negative supply for TIA/EIA-232E drivers. Recommended external capacitor C3 = 0.1µF (16V)
7, 14	T1out, T2out	Transmitter output pins conform to TIA/EIA-232E levels. The typical transmitter output swing is $\pm 8V$ when loaded $3k\Omega$ load to ground. The open-circuit output voltage swings from (V+ – 0.6V) to V–
8,13	R1in, R2in	Receiver inputs accept TIA/EIA-232
9, 12	R1out and R2out	Receiver output pins are TTL/CMOS compatible
10, 11	Tin1, Tin2	Transmitter input pins are TTL/CMOS compatible. Inputs of transmitter do not have pull-up resistors. Connect all unused transmitter inputs to ground
15	GND	Ground pin
16	Vs	Power supply pin for the device, +5V (±10%)

Ordering Information

Package Part Number		Package Marking	Transport Media	NSC Drawing	
	LMS202CM	LMS202CM 48 Units/Rail			
16-Pin SOIC	LMS202CMX	LIVISZUZCIVI	2.5k Units Tape and Reel	M16A	
10-FIII 3010	LMS202IM	LMS202IM 48 Units/Rail		WITCA	
	LMS202IMX		2.5k Units Tape and Reel		
	LMS202CMW		LMS202CMW 45 Units/Rail		
16-Pin Wide SOIC	LMS202CMWX		1.0k Units Tape and Reel	M16B	
10-FIII WILLE SOIC	LMS202IMW	LMS202IMW	45 Units/Rail		
	LMS202IMWX	LIVISZUZIIVIVV	1.0k Units Tape and Reel		

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	Vs	-0.3V to 6V
	V+	$(V_{S} - 0.3V)$ to + 14V
	V-	+0.3V to -14V
	Driver Input Voltage, T _{IN}	-0.3V to (V+ +0.3V)
	Receiver Input Voltage, R _{IN}	± 30V
	Driver Output Voltage T _O	(V0.3V to (V + + 0.3V)
	Receiver Output Voltage R _O	-0.3 to (V _S + 0.3)
	Short Circuit Duration, T _O	Continuous
	ESD Rating	
	Human Body Model (Note 2)	2kV
www.Data	Machine Model (Note 6)	200V
	Soldering Information	

Infrared or Convection 235°C (20sec.) Junction Temperature 150°C Storage Temperature Range -65°C to +150°C

Operating Ratings

Supply Voltage V _S	4.5V to 5.5V
Ambient Temperature Range, T _A	
Commercial (C)	0°C to +70°C
Industrial (I)	–40°C to +85°C
Package Thermal Resistance	
(Note 3)	
SO	71°C/W
WSO	55°C/W

Electrical Characteristics

Over record	mmended operating supply a	nd temperature ranges unless otherwise s	pecified C1 =	C2 = C3 =	C4 = Cbp	= 0.1µF

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 5)		(Note 5)	
DC Charac	teristics					
I _s	Supply Current	No Load, $T_A = 25^{\circ}C$		1	7	mA
Logic						
I _{INPUT}	Input Leakage Current	$T_{IN} = 0V \text{ to } V_S$			±10	μA
V _{THL}	Input Logic Theshold Low	T _{IN}			0.8	V
V _{THH}	Input Logic Theshold High	T _{IN}	2.0			V
V _{OL}	TTL/CMOS Output Voltage Low	R _{OUT} , I _{OUT} = 3.2mA			0.4	V
V _{он}	TTL/CMOS Output Voltage High	$R_{OUT}, I_{OUT} = -1.0 mA$	3.5	V _S -0.1		V
RS-232 Re	ceiver Inputs		1		11	
V _{RI}	Receiver Input Voltage Range		-30		+30	V
V _{RTHL}	Receiver Input Theshold Low	$V_{S} = 5V, T_{A} = 25^{\circ}C$	0.8	1.4		V
V _{RTHH}	Receiver Input Theshold High	$V_{\rm S}$ = 5V, $T_{\rm A}$ = 25°C		2	2.4	V
V _{HYST}	Receiver Input Hysteresis	$V_{\rm S} = 5V$	0.2	0.6	1.0	V
R _I	Receiver Input Resistance	$V_{\rm S} = 5V, T_{\rm A} = 25^{\circ}{\rm C}$	3	5	7	kΩ
RS-232 Tra	Insmitter Outputs		1		11	
Vo	Transmitter Output Voltage Swing	All transmitters loaded with $3k\Omega$ to GND	±5	±8		V
R _o	Output Resistance	$V_{S} = V_{+} = V_{-} = 0V,$ $V_{O} = \pm 2V$	300			Ω
l _{os}	Output Short Circuit Current			±11	±60	mA
	aracteristics		•			
DR	Maximum Data Rate	$C_{L} = 50 \text{pF}$ to 1000 pF, $R_{L} = 3 k \Omega$ to $7 k \Omega$	230			kbps
T _{rplh} T _{rphl}	Receiver Propagation Delay	C _L = 150pF		0.08	1	μs
T _{dplh} T _{dphl}	Transmitter Propagation Delay	$R_L = 3k\Omega$, $C_L = 2500pF$ All transmitters loaded		2.4		μs

LMS202

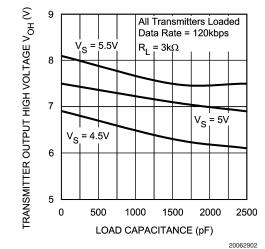
Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified $C1 = C2 = C3 = C4 = Cbp = 0.1 \mu F$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 5)		(Note 5)	
V _{SLEW}	Transition Region Slew Rate	$T_{A} = 25^{\circ}C, V_{S} = 5V$	3	6	30	V/µs
		C_L = 50pF to 1000pF, R_L = 3k Ω to 7k Ω				
		Measured from +3V to -3V or vice versa				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human Body Model, 1.5kΩ in series with 100pF

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.


Note 4: Typical Values represent the most likely parametric norm.

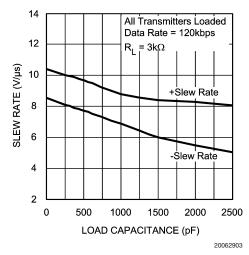
Note 5: All limits are guaranteed by testing or statistical analysis

Note 6: Machine model, 0Ω in series with 200pF

Typical Characteristics

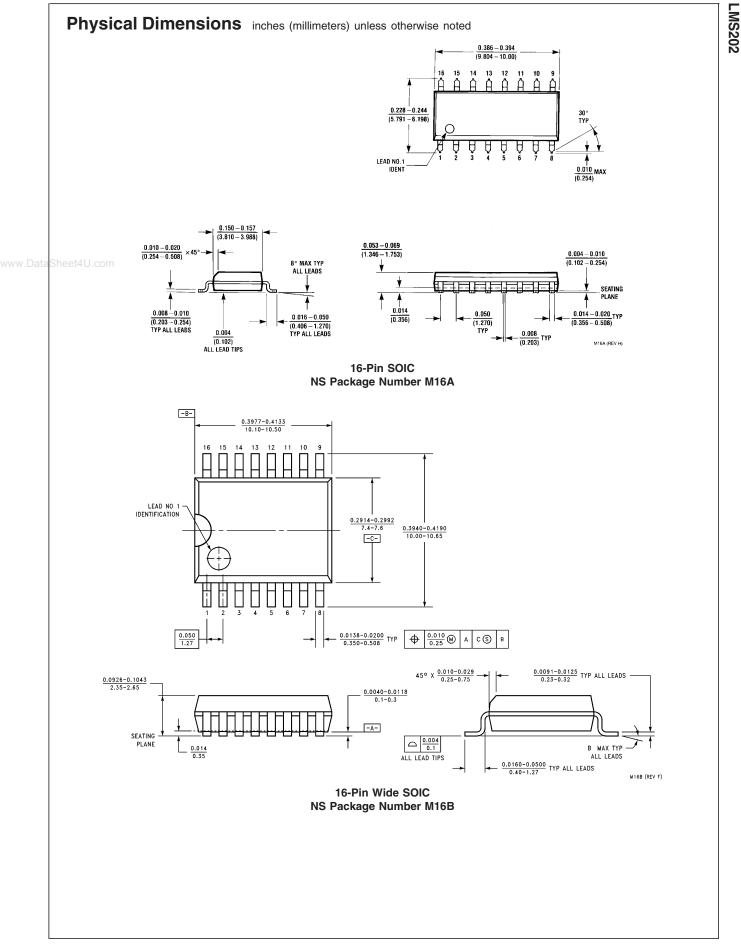
Transmitter Output High Voltage vs. Load Capacitance

Application Information


CAPACITOR SELECTION

The recommended capacitors are $0.1\mu F.$ However, larger capacitors for the charge pump may be used to minimized ripples on V+ and V– pins.

POWER SUPPLY DECOUPLING


In some applications that are sensitive to power supply noise from the charge pump, place a decoupling capacitor, Cbp, from V_S to GND. Use at least a 0.1μ F capacitor or the same size as the charge pump capacitors (C1 – C4).

Transmitter Slew Rate vs. Load Capacitance

CHARGED PUMP

The dual internal charged-pump provides the $\pm 10V$ to the to transmitters. Using capacitor C1, the charge pump converts +5V to +10V then stores the +10V in capacitor C3. The charge pump uses capacitor C2 to invert the +10V to -10V. The -10V is then stored in capacitor C4.

