

LMT050DNCFWU-NAD

LCD Module User Manual

Prepared by:	Checked by:	Approved by:
Lu jianhui		
Date: 2018-08-07	Date:	Date:

Rev.	Descriptions	Release Date
0.1	Preliminary new release	2018-08-07

URL: www.topwaydisplay.com
Document Name: LMT050DNCFWU-NAD-Manual-Rev0.1.doc
www.topwaysz.com
Page: 1 of 17

Table of Content

1. General Specification	3
1.1 Block Diagram	3
2. Terminal Functions	4
2.1 K1 TFT Driver Terminal	4
3. Absolute Maximum Ratings	4
4. Electrical Characteristics	5
4.1 DC Characteristics	5
4.2 Power ON/OFF Sequence	5
5. AC Characteristics	6
5.1 AC Timing	6
5.2 Data Input format	7
5.3 I2C AC Electrical Characteristics	8
6. CTP Function Characteristics	9
6.1 Initialization	9
6.2 I2C Slave Interface	9
6.3 Register Read	9
6.4 Register Write	10
6.5 I2C Electrical Waveform	10
6.6 Report Page Registers	11
7. Optical Characteristics	13
8. Precautions of using LCD Modules	15

1. General Specification

Screen Size(Diagonal): 5.0 inch Resolution: 800 x 480

Signal Interface : 24bit parallel interface

Color Depth: 16.7M color

Pixel Pitch : 0.135 x 0.135 (mm)

Pixel Configuration: RGB Stripe

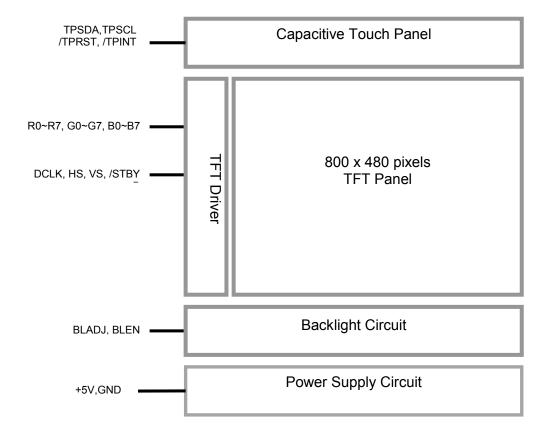
Display Mode: Transmissive / normal white

Surface Treatment: HC Treatment

Viewing Direction: 6H (*1) (gray scale inverse)

12H (*2)

Outline Dimension: 121.3 x 76.4 x 8.3 (mm)


(see attached drawing for details)

Active Area : $108 \times 64.8 \text{ (mm)}$ Operating Temperature : $-20 \sim +70^{\circ}\text{C}$ Storage Temperature : $-30 \sim +80^{\circ}\text{C}$

Note:

- *1. For saturated color display content (eg. pure-red, pure-green, pure-blue, or pure-colors-combinations).
- *2. For "color scales" display content.
- *3. Color tone may slightly change by Temperature and Driving Condition.

1.1 Block Diagram

2. Terminal Functions

2.1 K1 TFT Driver Terminal

Pin No.	Pin Name	I/O	Descriptions
1	5V		-1
<u>:</u>	:	Power	5V power supply
5	5V		
6	GND	1_	
:	:	Power	0V power supply
10	GND		
11	BLADJ	Input	Backlight brightness PWM signal (active low)
12	BLEN	Input	Backlight enable signal (active high)
13	NC(MODE)	NC	No Connection
14	NC(DE)	NC	No Connection
15	VS	Input	Vertical sync signal
16	HS	Input	Horizontal sync signal
17	B7		
•	:	Input	Blue data line
24	B0	·	
25	G7		
:	:	Input	Green data line
32	G0	1 '	
33	R7		
:	:	Input	Red data line
40	R0	1 '	
41	GND	Power	Ground, 0V
42	DCLK	Input	Pixel clock
43	GND	Power	Ground, 0V
44	/STBYB	Input	STBYB signal (pull hi for normal operation)
45	GND	Power	Ground, 0V
46	/TPRST	Input	Reset signal, active low reset
47	/TPINT	Output	Interrupt signal, active low interrupt
48	TPSDA	I/O	I ² C data (*1)
49	TPSCL	Input	I ² C clock (*1)
50	GND	Power	Ground
Note.	טואט	I OWEI	Ground

Note:

3. Absolute Maximum Ratings

Items	Symbol	Min.	Max.	Unit	Condition
Power Voltage	V_{5V}	-0.3	+6	V	GND = 0V
Operating Temperature	T _{OP}	-20	+70	$^{\circ}\mathbb{C}$	No Condensation
Storage Temperature	T _{ST}	-30	+80	$^{\circ}$ C	No Condensation

Cautions:

Any Stresses exceeding the Absolute Maximum Ratings may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Document Name: LMT050DNCFWU-NAD-Manual-Rev0.1.doc Page: 4 of 17

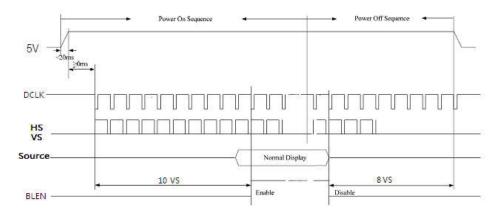
^{*1.} With internal resister(4.7k) pull up.

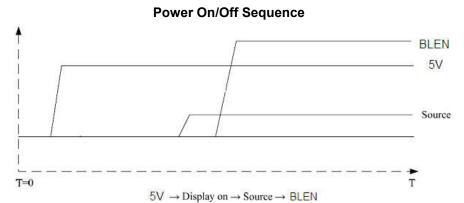
4. Electrical Characteristics

4.1 DC Characteristics

GND=0V, V_{5V} =5.0V, T_{OP} =25 °C

Items	Symbol	MIN.	TYP.	MAX.	Unit	Applicable Pin
Power Voltage	V_{5V}	4.5	5.0	5.5	V	5V
Operating Current (*1)	I _{5V}	-	260	400	mA	
Input High Voltage	V_{IH}	3.0	-	3.3	V	Input pins
Input Low Voltage	V_{IL}	0	-	0.3	V	Input pins
Output Signal High Voltage	V_{oH}	3.0	-	3.6	V	
Output Signal Low Voltage	V_{oL}	0	-	0.6	V	

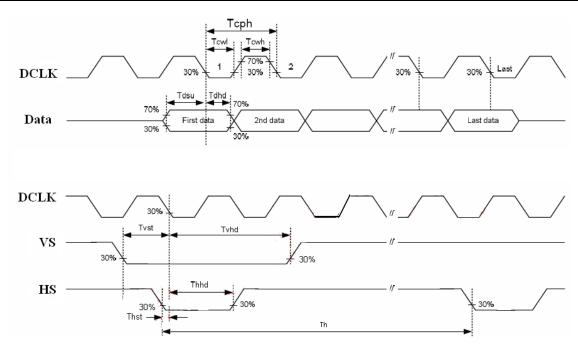

Note.


URL:

www.topwaydisplay.com www.topwaysz.com


- *1. For different LCM, the value may have a bit of difference.
- *2. To test the current dissipation, use "all Black Pattern".

4.2 Power ON/OFF Sequence

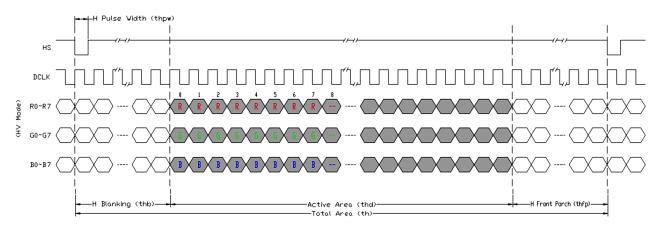

Power OFF Sequence

5. AC Characteristics

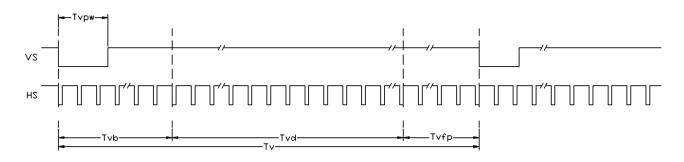
5.1 AC Timing

GND=0V, V_{5V} =5.0V, T_{OP} =25 °C

Item	Symbol	MIN.	TYP.	MAX.	Unit	Remark
HS setup time	Thst	8	-	-	ns	
HS hold time	Thhd	8	-	-	ns	
VS setup time	Tvst	8	-	-	ns	
VS hold time	Tvhd	8	-	-	ns	
Data setup time	Tdsu	8	-	-	ns	
Data hole time	Tdhd	8	-	-	ns	
DE setup time	Tesu	8	-	-	ns	
DCLK cycle time	Tcph	20	-	-	ns	
DCLK pulse duty	Tcwh	40	50	60	%	



Input Clock and Data Timing Diagram

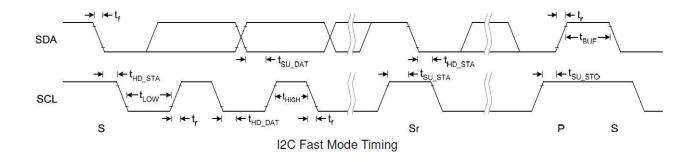


5.2 Data Input format

Item	Symbol	MIN.	TYP.	MAX.	Unit	Remark
Horizontal Display Area	thd		800		DCLK	
DCLK Frequency	fclk	-	30	50	MHz	
One Horizontal Line	th	889	928	1143	DCLK	
HS pulse width	thpw	1	48	255	DCLK	
HS Blanking	thb		88		DCLK	
HS Front Porch	thfp	1	40	255	DCLK	
Vertical Display Area	tvd		480		TH	
VS period time	tv	513	525	767	TH	
VS pulse width	tvpw	3	3	255	TH	
VS Blanking	tvb		32	_	TH	
VS Front Porch	tvfp	1	13	255	TH	

Horizontal input timing diagram

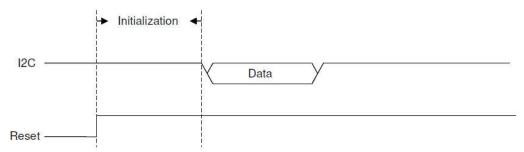
Vertical input timing diagram


URL:

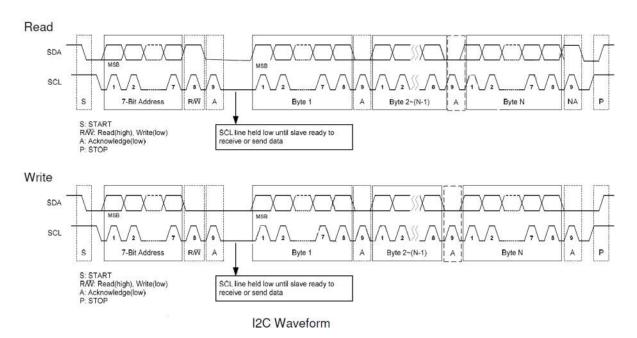
www.topwaydisplay.com www.topwaysz.com

5.3 I2C AC Electrical Characteristics

GND=0V, V_{5V} =5.0V, T_{OP} =25 $^{\circ}$ C


Cymbol	Darameter		Rating		Unit
Symbol	Parameter	Min.	Тур.	Max.	Offic
fscL	SCL clock frequency	0	-	400	kHz
t LOW	Low period of the SCL clock	1.3	-	-	us
t HIGH	High period of the SCL clock	0.6	-	-	us
t f	Signal falling time	-	-	300	us
tr	Signal rising time	-	-	300	us
tsu_sta	Set up time for a repeated START condition	0.6	-	-	us
thd_sta	Hold time (repeated) START condition. After this period, the first clock pulse is generated	0.6	-	-	us
tsu_dat	Data set up time	100	-	-	us
thd_dat	Data hold time	0	-	0.9	us
tsu_sto	Set up time for STOP condition	0.6	-	-	us
t BUF	Bus free time between a STOP and START condition	1.3	-	-	us

6. CTP Function Characteristics


6.1 Initialization

After hardware reset, touch controller needs some time for initialization. The touch controller can be accessed via I2C interface after initialization. Initialization time is 50ms.

6.2 I2C Slave Interface

Touch IC equipped with I2C provides two wires, serial data (SDA) and serial clock (SCL), to carry transferring information at up to 400 kbit/s(Fast mode). I2C address is default to 0x55 (7-bits address). Touch IC plays the slave role in I2C transfer. Both SDA and SCL are bidirectional lines, connected to IOVDD via pull-up resistors. All transactions begin with a START (S) and can be terminated by a STOP (P). 7-bits address follows START to recognize device. Each bye is 8-bits length and followed by an acknowledge bit. A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition. The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

6.3 Register Read

For reading register value from I2C device, host has to tell I2C device the Start Register Address before reading corresponding register value.

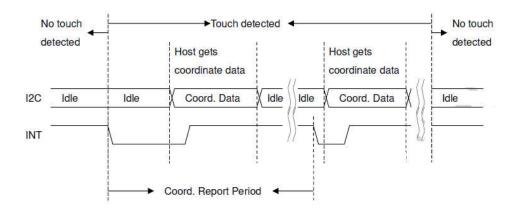
I2C Start	I2C Header (W)	Start Reg. Addr (a)	I2C Stop	I2C Start	I2 C Header (R)	Value of Reg(a)	Value of Reg(a+1)		Value of Reg(a+n)	I2C Stop	
--------------	----------------------	---------------------------	-------------	--------------	-----------------------	--------------------	----------------------	--	----------------------	-------------	--

Register Read Format

I2C host interface protocol supports Repeated Register Read. That is, once the Start Register Address has been set by host, consequent I2C Read(R) transactions will directly read register values starting from the Start Register Address without setting address first, as shown in **Repeated Register Read**.

I2 Sta	Header		Value of Reg(a+1)	•••	Value of Reg(a+n)	I2C Stop	I2C Start	I2C Header	Value	Value of Reg(a+1)	 Value of Reg(a+n)	I2C Stop
	(R)	Reg(a)	100.00		95825.1			(R)	Reg(a)	NORTH AND	15 15 CT 15	12.0

Repeated Register Read


6.4 Register Write

For writing register to I2C device, host has to tell I2C device the Start Register Address in each I2C Register Write transaction. Register values to the I2C device will be written to the address starting from the Start Register Address described in Register Write I2C transaction as shown in **Register Write Format**.

|--|

Register Write Format

6.5 I2C Electrical Waveform

Document Name: LMT050DNCFWU-NAD-Manual-Rev0.1.doc Page: 10 of 17

URL:

6.6 Report Page Registers

Touch IC provides a register set for host to configure device attributes and retrieve information about fingers and raw data through device host interface. Host interface registers are listed below.

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x00	Firmware Version	Version (RO)								
0x01	Status Reg.	Error Code (RO) Device Status (RO)								
0x02	Device Control Reg.	Reserv ed	Multi- Touch Disable (RW)	Proximi ty Enable (RW)	Reserv ed	Reserv ed	Deep Power Down (RW)	Power Down (RW)	Reset (RW)	
0x03	Timeout to Idle Reg.	Timeout to Idle (sec.) (RW)								
0x04	XY Resolution (High Byte)	Reserv ed	X Res H (RO)			Reserv ed	Y_Res_H (RO)			
0x05	X Resolution (Low Byte)	X_Res_L (RO)								
0x06	Y Resolution (Low Byte)	Y_Res_L (RO)								
0x07	Sensing Counter (High Byte)	Sensing_Counter_H (RO)								
0x08	Sensing Counter (Low Byte)	Sensing_Counter_L (RO)								
0x09 0x0B		Reserved								
0x0C	Firmware Revision 3	FW_Rev_3 (RO)								
0x0D	Firmware Revision 2	FW_Rev_2 (RO)								
0x0E	Firmware Revision 1	FW_Rev_1 (RO)								
0x0F	Firmware Revision 0	FW_Rev_0 (RO)								
0x10	Advanced Touch Info.	Reserv ed	Proximi ty Flag (RO)	Water Flag (RO)	Reserv ed	Gesture Type(RO)				
0x11	Keys Reg.				Keys	(RO)				
0x12	XY0 Coord. (High Byte)	Valid 0 (RO)	X0_H (RO) Reserv ed Y0_H (RO)				Y0_H (RO)			
0x13	X0 Coord. (Low Byte)	X0_L (RO)								
0x14	Y0 Coord. (Low Byte)	Y0_L (RO)								
0x15		Reserved.								

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x16	XY1 Coord. (High Byte)	Valid 1 (RO) Reserv ed					Y1_H (RO)				
0x17	X1 Coord. (Low Byte)	X1_L (RO)									
0x18	Y1 Coord. (Low Byte)	Y1_L (RO)									
0x19		Reserved.									
0x1A 0x35											
0x36	XY9 Coord. (High Byte)	Valid 9 X9_H (RO) Reserv Y9_H (RO)									
0x37	X9 Coord. (Low Byte)	(RO) X9_H (RO) ed T9_H (RO) X9_L (RO)									
0x38	Y9 Coord. (Low Byte)	Y9_L (RO)									
0x39	Reserved	Reserved.									
0x3A 0x3E		Reserved									
0x3F	Contact Count Max.	Max Number of Contacts Support (RO)									
0x40 0xCA		Reserved									
0xCB	PWM0 Duty	Reserv ed PWM0 Duty (RW)									
0xCC	PWM1 Duty	Reserv ed PWM1 Duty (RW)									
0xCD	PWM2 Duty	Reserv ed PWM2 Duty (RW)									
0xCE	PWM3 Duty	Reserv ed			PW	M3 Duty (F	RW)				
0xCF	PWM Control	PWM Trigger (RW)	PW	PWM3 P PWM Clock (RW) Enable E (RW) (PWM1 Enable (RW)	PWM0 Enable (RW)		
0xD0 		Reserved									
0xEF 0xF0	Misc. Info.	Smart Wake Up Flag (RO)									
0xF1	Misc. Control	Enable Smart Wake Up (RW)	Enable Smart Wake Reserved Up								
0xF2	Smart Wake Up ID	Smart Wake Up ID (RW)									
0xF3 0xFE		Reserved									
0xFF	Page Reg.	Page Number (RW)									

Note:

Please refer to ST1633i IC datasheet and Sitronix Touch IC Protocol for detail.

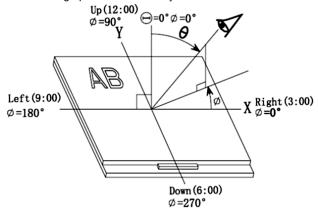
7. Optical Characteristics

Item		Symbol	Condition	MIN.	TYP.	MAX.	UNIT	Note.	
Viewing angle		θ_{T}		40	50	-		Note 2	
		θ_{B}	(CR≥10)	60	70	-	degree		
		θ_{L}	(CK ≥ 10)	60	70	ı	degree	Note 2	
		θ_{R}		60	70	-			
Contrast ratio		CR	θ=0°	500	600	ı	-	Note 1,3	
Response Time		T _{on}	25 ℃	-	20	30	msec	Note 1,4	
		T_{off}	25				msec		
	White	X		0.260	0.310	0.360		Note 1,5	
		Y		0.280	0.330	0.380			
	Red	X	Backlight	0.540	0.590	0.640			
Chromaticity		Y		0.300	0.350	0.400			
Cilioniaticity	Green	X	is on	0.298	0.348	0.398			
		Y		0.520	0.570	0.620			
	Blue	X		0.095	0.145	0.195			
	Diue	Υ		0.060	0.110	0.160			
Luminance		L		-	200	-	cd/m ²	Note 1,6	
NTSC				-	50		%	Note 5	
Luminance uniformity		U		75	80	-	%	Note 1,7	

Test Conditions:

^{1.} IF= 40mA, VF=21.7V, and the ambient temperature is 25. $^{\circ}\mathrm{C}$

^{2.} The test systems refer to Note 1 and Note 2.


The data are measured after LEDs are turned on for 5 minutes. LCM displays full white. The brightness is the average value of 9 measured spots. Measurement equipment SR-3A (1°) Measuring condition:

- Measuring surroundings: Dark room
- Measuring temperature: Ta=25℃.
- Adjust operating voltage to get optimum contrast at the center of the display.

Note 2:

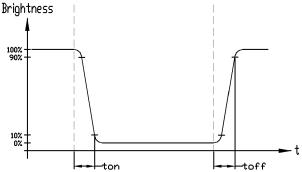
The definition of viewing angle:

Refer to the graph below marked by θ and Φ

Note 3:

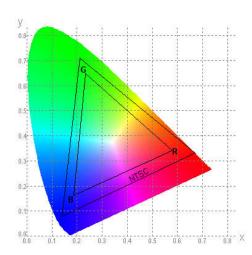
The definition of contrast ratio (Test LCM using SR-3A (1°)): Luminance When LCD is at "White" state Contrast Ratio(CR) Luminance When LCD is at "Black" state (Contrast Ratio is measured in optimum common electrode voltage)

Definition of Response time. (Test LCD using BM-7A(2 $^{\circ}$)):


The output signals of photo detector are measured

when the input signals are changed from

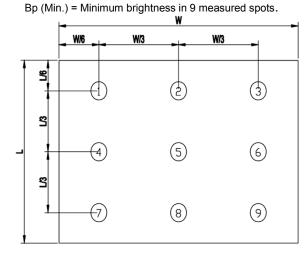
"black" to "white" (falling time)
and from "white" to "black" (rising time), respectively.


The response time is defined as

the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Definition of Color of CIE1931 Coordinate and NTSC Ratio.

Color gamut:



Note 6:

The luminance uniformity is calculated by using following formula.

Bp = Bp (Min.) / Bp (Max.)×100 (%)

Bp (Max.) = Maximum brightness in 9 measured spots

Measured the luminance of white state at center point

8. Precautions of using LCD Modules

Mounting

- Mounting must use holes arranged in four corners or four sides.
- The mounting structure so provide even force on to LCD module. Uneven force (ex. Twisted stress) should not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- It is suggested to attach a transparent protective plate to the surface in order to protect the polarizer. It should have sufficient strength in order to the resist external force.
- The housing should adopt radiation structure to satisfy the temperature specification.
- Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. Never rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics deteriorate the polarizer.)
- When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer

Operating

- The spike noise causes the mis-operation of circuits. It should be within the ± 200 mV level (Over and under shoot voltage)
- Response time depends on the temperature.(In lower temperature, it becomes longer.)
- Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- When fixed patterns are displayed for a long time, remnant image is likely to occur.
- Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference

Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

Storage

When storing modules as spares for a long time, the following precautions are necessary.

- Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

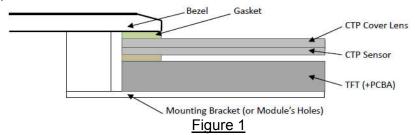
Protection Film

- When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt tore main on the polarizer. Please carefully peel off the protection film without rubbing it against the polarizer.
- When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Transportation

URL:

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.


Document Name: LMT050DNCFWU-NAD-Manual-Rev0.1.doc Page: 15 of 17

附录一:

CTP Application Precautions

1. CTP Mounting Precaution

- 1.1 Bezel Mounting (Figure 1)
- The bezel window should be bigger than the CTP active area. It should be ≥0.5mm each side.
- Gasket should be installed between the bezel and the CTP surface. The final gap should be about 0.5~1.0mm.
- It is recommended to provide an additional support bracket for backside support when necessary (e.g. slim type TFT module without mounding structure). They should only provide appropriate support and keep the module in place.
- The mounting structure should be strong enough to prevent external uneven force or twist act onto the module.

1.2 Surface Mounting (Figure 2)

- As the CTP assembling on the countersink area with double side adhesive.
 The countersink area should be flat and clean to ensure the double side adhesive installation result.
- The Bezel is recommend to keep a gap (≥0.3mm each side) around the cover lens for tolerance.
- It is recommended to provide an additional support bracket with gasket for backside support when necessary (e.g. TFT module without mounding structure). They should only provide appropriate support and keep the module in place.
- The mounting structure should be strong enough to prevent external uneven force or twist act onto the module.

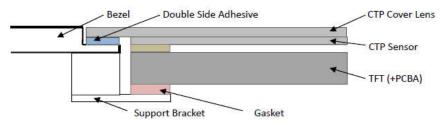
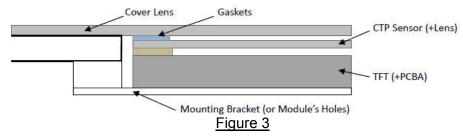



Figure 2

1.3 Additional Cover Lens Mounting (Figure 3)

- For the case of additional cover Lens mounting, it is necessary to recheck with the CTP specification about the material and thickness to ensure the functionality.
- It should keep a 0.2~0.3mm gap between the cover lens and the CTP surface..
- The cover lens window should be bigger than the active area of the CTP. It should be ≥0.5mm each side.
- It is recommended to provide an additional support bracket for backside support when necessary (e.g. slim type TFT module without mounding structure). They should only provide appropriate support and keep the module in place.
- The mounting structure should be strong enough to prevent external uneven force or twist act onto the module.

Document Name: LMT050DNCFWU-NAD-Manual-Rev0.1.doc Page: 16 of 17

URL:

2. Handling Precautions

- **2.1** The product made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 2.2 Do not apply excessive or uneven force to the product since this may damage to the performance.
- 2.3 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with Isopropyl alcohol or Ethyl alcohol solvents. Solvents other than those mentioned above may damage the product. Especially, do not use Water, Ketone, Aromatic solvents.
- 2.4 Do not attempt to disassemble the CTP Module.
- **2.5** If the logic circuit power is off, do not apply the input signals.
- **2.6** To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- a. Be sure to ground the body when handling the CTP Modules.
- b. Tools required for assembly, such as soldering irons, must be properly ground.
- c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- d. The CTP Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

3. Storage and Transportation Precautions

- **3.1** When storing the CTP modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- **3.2** The CTP modules should be stored the required temperature range. If the CTP modules will be stored for a long time, the recommend condition is the temperature of $0\sim40~^{\circ}$ C and relative humidity of $\leq 80\%$.
- 3.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- **3.4** The CTP modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

Document Name: LMT050DNCFWU-NAD-Manual-Rev0.1.doc Page: 17 of 17