UNISONIC TECHNOLOGIES CO., LTD

LMV3012

Preliminary

LINEAR INTEGRATED CIRCUIT

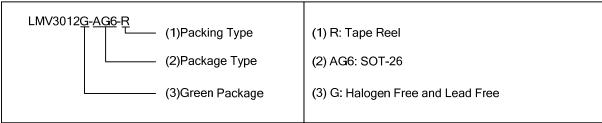
SOT-26

NANOPOWER, 1.8V, COMPARATOR WITH VOLTAGE REFERENCE

DESCRIPTION

The UTC **LMV3012** is a push-pull output comparator and can provide an independent on-chip voltage reference. The UTC **LMV3012** has $5\mu A$ (max) quiescent current, input common-mode range 200mV beyond the supply rails. Single-supply operation can range from 1.8V to 5.5V. The integrated 1.242V series voltage reference with low 100ppm/°C (max) drift, is stable with up to 10nF capacitive load, and the output current can be up to 0.5mA (Typ).

The UTC **LMV3012** is also available in the tiny SC59-6 package for space-conservative designs. The device is specified for the temperature range of $-40^{\circ}\text{C} \sim +125^{\circ}\text{C}$.

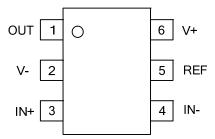


- * Low quiescent current: 5µA (max)
- * Stable on-chip voltage reference: 1.242V
- * Voltage reference initial accuracy: ±1%
- * Reference output current: 0.5mA (Typ)
- * Input common-mode range: 200mV beyond rails
- * Push-pull output
- * The lower supply voltage: 1.8V ~ 5.5V
- * Fast response time:6µs propagation delay

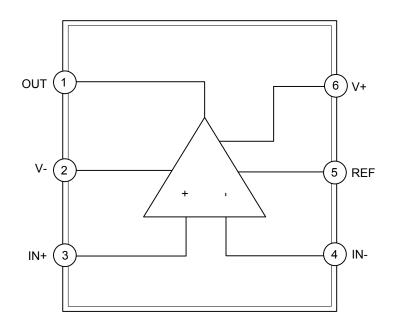
with 100mV overdrive

ORDERING INFORMATION

Ordering Number	Package	Packing
LMV3012G-AG6-R	SOT-26	Tape Reel
Note: Pin Assignment: G: Gate D: Drain	S: Source	


MARKING

<u>www.unisonic.com.tw</u> 1 of 6


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT	Comparator output.
2	V-	Negative supply.
3	IN+	Noninverting comparator input.
4	IN-	Inverting comparator input.
5	REF	Voltage reference output.
6	V+	Positive supply.

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	+7	V
Signal Input Terminals, Voltage (Note 1)		-0.5~(V+)+0.5	V
Signal Input Terminals, Current (Note 1)		±10	mA
Output Short-Circuit (Note 2)		Continuous	
Junction Temperature	TJ	+150	°C
Operating Temperature	T _{OPR}	-40~+125	°C
Storage Temperature	T _{STG}	-55~+150	°C
Lead Temperature (Soldering, 10s)	TL	+300	°C

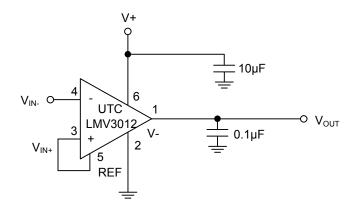
- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current limited to 10mA or less.
 - 3. Short-circuit to ground

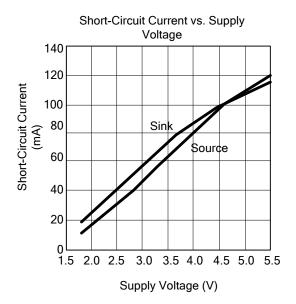
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	230	°C/W

■ ELECTRICAL CHARACTERISTICS (V_S=+1.8V~+5.5V)


Boldface limits apply over the specified temperature range, T_A =-40°C~+125°C. At T_A =+25°C, V_{OUT} = V_S , unless otherwise noted

OUTCI WISC HOLCO									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFFSET VOLTAGE									
Input Offset Voltage	Vos	V_{CM} =0V, I_O =0A		0.5	12	mV			
V _S Temperature	dV _{OS} /dT	T _A =-40°C~ +125°C		±12		μV/°C			
V _S Power Supply	PSRR	V _S =1.8V~5.5V		100	1000	μV/V			
INPUT BIAS CURRENT									
Input Bias Current	I _B	V _{CM} =V _S /2		±1	±10	рА			
Input Offset Current	Ios	V _{CM} =V _S /2		±1	±10	pА			
NPUT VOLTAGE RANGE									
Common-Mode Voltage Range	V_{CM}		(V-) -0.2V		(V+)+0.2V	V			
Common Mode Dejection Datio	CMRR	V _{CM} =-0.2V~ (V+)-1.5V	60	74		dB			
Common-Mode Rejection Ratio		V_{CM} =-0.2V~ (V+)+0.2V	54	62		dB			
INPUT IMPEDANCE									
Common-Mode				10 ¹³ 2		ΩllpF			
Differential				10 ¹³ 4		ΩllpF			
SWITCHING CHARACTERISTICS	(f=10kHz, V	STEP=1V)							
Propagation Delay Time,		Input Overdrive=10mV		12		μs			
Low-to-High	t _(PLH)	Input Overdrive=100mV		6		μs			
Propagation Delay Time,		Input Overdrive=10mV		13.5		μs			
High-to-Low t _(PHL)		Input Overdrive=100mV		6.5		μs			
Rise Time	t _R	C _L =10pF		100		ns			
Fall Time	t _F	C _L =10pF		100		ns			
OUTPUT (V _S =5V)									
Voltage Output Low from Rail	V _{OL}	I _{OUT} =-5mA		150	200	mV			
Voltage Output High From Rail	V _{OH}	I _{OUT} =5mA, V _S -V _{OUT}		90	200	mV			
Short-Circuit Current		V _{CC} =5V		110		mA			


■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAI	METER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
VOLTAGE REFERENCE								
Voltage Reference		V_{OUT}	V _{IN} =5V	1.230	1.242	1.254	V	
Initial Accuracy						±1	%	
Temperature Drift dV _{OUT} /dT		dV _{OUT} /dT	-40°C≤T _A ≤125°C		40	100	ppm/°C	
Load Regulation	Sourcing	dV _{OUT} /dI _{LOAD}	0mA< I _{SOURCE} ≤0.5mA		0.36	1	mV/mA	
	Sinking		0mA< I _{SOURCE} ≤0.5mA		6.6		mV/mA	
Output Current		I _{LOAD}			0.5		mA	
Line Regulation dV _{OUT} /dV		dV _{OUT} /dV _{IN}	1.8V≤V _{IN} ≤5.5V		10	100	μV/V	
NOISE								
Reference Voltage Noise			f=0.1Hz~10Hz		0.2		mV_{PP}	
POWER SUPPLY								
Specified Voltage V _S		Vs		1.8		5.5	V	
Operating Voltage Range				1.8		5.5	V	
Quiescent Current		ΙQ	V _S =5V, V _O =High		2.8	5	μA	

■ TYPICAL APPLICATION CIRCUIT

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.